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On the unstable directions and Lyapunov exponents of
Anosov endomorphisms
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Fernando Micena (Maceió) and Ali Tahzibi (São Carlos)

Abstract. Unlike in the invertible setting, Anosov endomorphisms may have in-
finitely many unstable directions. Here we prove, under the transitivity assumption, that
an Anosov endomorphism of a closed manifold M is either special (that is, every x ∈ M
has only one unstable direction), or for a typical point in M there are infinitely many un-
stable directions. Another result is the semi-rigidity of the unstable Lyapunov exponent of
a C1+α codimension one Anosov endomorphism that is C1-close to a linear endomorphism
of Tn for (n ≥ 2).

1. Introduction. In the 1970s, the works [8] and [6] generalized the
notion of Anosov diffeomorphism to non-invertible maps, introducing the
notion of Anosov endomorphism. Let M be a closed C∞ manifold.

Definition 1.1 ([8]). Let f : M → M be a C1 local diffeomorphism.
We say that f is an Anosov endomorphism if there are constants C, λ > 1
such that for every f -orbit (xn)n∈Z there is a splitting

TxiM = Esxi ⊕ E
u
xi , ∀i ∈ Z,

which is preserved by Df , and for all n ≥ 0 we have

‖Dfn(xi) · v‖ ≥ C−1λn‖v‖ for all v ∈ Euxi and i ∈ Z,
‖Dfn(xi) · v‖ ≤ Cλ−n‖v‖ for all v ∈ Esxi and i ∈ Z.

Anosov endomorphisms can be defined in an equivalent way [6]:

Definition 1.2 ([6]). A C1 local diffeomorphism f : M → M is called
an Anosov endomorphism if Df contracts uniformly a continuous sub-
bundle Es ⊂ TM into itself, and the action of Df on TM/Es is uniformly
expanding.
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Sakai [10] proved that, in fact, Definitions 1.1 and 1.2 are equivalent.

A contrast between Anosov diffeomorphisms and Anosov endomorphisms
is the non-structural stability of the latter. Indeed, C1-close to any linear
Anosov endomorphism A of the torus, Przytycki [8] constructed an Anosov
endomorphism which has infinitely many unstable directions for some or-
bit, and consequently A is not structurally stable. However, it is curious
to observe that topological entropy is locally constant among Anosov endo-
morphisms. Indeed, take the lift of an Anosov endomorphism to the inverse
limit space (see preliminaries for the definition). At the level of the inverse
limit space, two nearby Anosov endomorphisms are conjugate [8], [2], and
lifting to the inverse limit space does not change entropy.

Two endomorphisms (permitting singularities) f1, f2 are C1-inverse limit
conjugate if there exists a homeomorphism h : Mf1 →Mf2 such that h◦f̃1 =
f̃2 ◦ h where f̃i are the lifts of fi to the orbit space (see preliminaries).

Denote by p the natural projection p : M → M, where M is the uni-
versal covering. Note that an unstable direction Eu

f
(y) projects onto an

unstable direction of TxM , x = p(y), following Definition 1.1, that is,
Dp(y) · (Euf (y)) = Eu(x̃), where x̃ = p(O(y)).

Proposition 1.3 ([6]). A local diffeomorphism f is an Anosov endo-
morphism of M if and only if the lift f : M → M is an Anosov diffeomor-
phism of M, the universal cover of M.

An advantage to work with the latter definition is that in M we can
construct invariant foliations Fs

f
and Fu

f
.

Given an Anosov endomorphism and an f -orbit x̃ = (xn)n∈Z we denote
by Eu(x̃) the unstable bundle subspace of Tx0(M) corresponding to the or-
bit (xn)n∈Z. In [8] there are examples of Anosov endomorphisms such that
Eu(x̃) 6= Eu(ỹ) with x0 = y0, but (xn)n 6= (yn)n. In fact, it is possible that
x0 ∈ M has uncountably many unstable directions [8]. An Anosov endo-
morphism for which Eu(x̃) just depends on x0 (a unique unstable direction
for each point) is called a special Anosov endomorphism. A linear Anosov
endomorphism of the torus is an example of a special Anosov endomorphism.

A natural question is whether it is possible to find an example of a (non-
special) Anosov endomorphism such that each x ∈ M has a finite number
of unstable directions. It is also interesting to understand the structure of
points with infinitely many unstable directions. For transitive Anosov endo-
morphisms we prove the following dichotomy:

Theorem 1.4. Let f : M → M be a transitive Anosov endomorphism.
Then either

(1) f is a special Anosov endomorphism, or
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(2) there exists a residual subset R ⊂ M such that every x ∈ R has
infinitely many unstable directions.

Observe that when M is the torus Tn, n ≥ 2, all Anosov endomorphisms
of Tn are transitive (see [1]).

Analysing the unstable Lyapunov exponents of an Anosov endomor-
phism, similarly to [7] we can prove the following result for conservative
systems (preserving a probability measure equivalent to Lebesgue measure).

Theorem 1.5. Let A : Tn → Tn, n ≥ 2, be a linear Anosov endomor-
phism with dimEuA = 1. Then there is a C1-open set U , containing A, such
that for every C1+α, α > 0, conservative Anosov endomorphism f ∈ U , we
have λuf (x) ≤ λu(A) for m-almost every x ∈ Tn, where m is the Lebesgue
measure of Tn.

Remark 1.6. To prove Theorem 1.5, the neighbourhood U can be chosen
very small, such that every f ∈ U has its lift conjugate to A in Rn. Then
we can consider a priori that also dimEuf = 1.

2. General preliminaries. In this section we present some classical
results on Anosov endomorphisms that will be important for the rest of this
work.

2.1. The inverse limit space. Let (X, d) be a compact metric space
and f : X → X a continuous map. We define a new compact metric space,
called the inverse limit space for f or the natural extension of f, by

Xf :=
{

(xn)n∈Z ∈
∏
i∈Z

Xi : Xi = X ∀i ∈ Z and f(xi) = xi+1 ∀i ∈ Z
}
.

In this text we denote Xf by X̃. Also we denote by x̃ the element (xn)n∈Z
of X̃. We introduce a metric d̃ in X̃ by setting

d̃(x̃, ỹ) =
∑
i∈Z

d(xi, yi)

2|i|
.

It is easy to see that (X̃, d̃) is a compact metric space. Let π : X̃ → X be the
projection on the zero coordinate, that is, if x̃ = (xn)n∈Z, then π(x̃) = x0.
One can verify that π is continuous.

Definition 2.1. A prehistory of x is a sequence of type

x̃− = (. . . , x−2, x−1, x0 = x)

such that f(x−i) = x−i+1, i = 1, 2, . . . .

Denote by Xf
− or X̃− the space of all the prehistories with x0 ∈ X. The

space (X̃−, d̃) is also compact and the distance between two prehistories of
the same point x0 ∈ X is

∑∞
i=0 dM (x−i, y−i)/2

i.
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In the Anosov endomorphism context, Eu(x̃) depends only on x̃−, and
this is why in this work we often deal only with prehistories.

2.2. Some nice properties of Anosov endomorphisms. The set of
C1 Anosov endomorphisms is open, like that of Anosov diffeomorphisms.
However, structural stability in the usual sense does not hold for Anosov
endomorphisms (see the correct context for structural stability of Anosov
endomorphisms in Berger–Rovella [2]).

Theorem 2.2 (Przytycki [8], Mañé–Pugh [6]). The set of Anosov endo-
morphisms of a manifold M is an open set in the C1 topology.

Theorem 2.3 ([8]). Let f : M →M be an Anosov endomorphism. Then
the map x̃ 7→ Eu(x̃) is continuous.

Definition 2.4. Let f : M →M be an Anosov endomorphism, Denote
by Euf (x) :=

⋃
x̃:π(x̃)=xE

u(x̃) the union of all unstable directions at x.

Considering Definitions 1.2 and 1.1 a natural question arises: What is
the relation between Euf (x) and

⋃
y∈p−1(x)Dp(E

u
f
(y))?

Observe that Euf (x) is not necessarily
⋃
π(y)=xDp(y) · (Eu

f̃
(y)). Indeed,

the latter is a countable union and the former may be uncountable (see [8]).

Proposition 2.5. Let f : M →M be an Anosov endomorphism. Then

Euf (x) =
⋃

p(y)=x

Dp(y) · (Eu
f
(y)).

Proof. First of all, Euf (x) is a closed subset of the u-dimensional grass-
mannian of TxM. This is an immediate corollary of Theorem 2.3. Clearly⋃
π(y)=xDp(y) · (Eu

f̃
(y)) ⊂ Euf (x), so⋃

π(y)=x

Dp(y) · (Eu
f
(y)) ⊆ Euf (x).

Now for the opposite inclusion, let Eu(x̃) be an unstable direction at x ∈M.
We want to prove that Eu(x̃) ∈

⋃
p(y)=xDp(y) · (Eu

f
(y)).

We claim that given any finite prehistory (x−k, . . . , x−2, x−1, x = x0),

there is a finite piece of an f -orbit, (y−k, . . . , f
k
(y−k)), which projects onto

(x−k, . . . , x−2, x−1, x), that is,

π(f
j
y−k) = x−k+j , j ∈ {1, . . . , k}.

Indeed, choose any y−k ∈ M such that p(y−k) = x−k. As p ◦ f = f ◦ p,
the piece of the orbit of y−k under f projects onto (x−k, . . . , x−2, x−1, x).
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Now for each k consider O(y−k), the full orbit of y−k under f . It is clear
that p(O(y−k)) converges to x̃ in Mf . Recall that

(2.1) Eu(p(O(y−k))) = Dp(Eu(f
k
(y−k))).

By continuity [8], we have

Eu(π(O(y−k)))→ Eu(x̃),

and using (2.1) we obtain

Dp(Eu(f
k
(y−k)))→ Eu(x̃),

which completes the proof.

The next lemma is useful for the rest of this paper.

Lemma 2.6. Suppose that f : M →M is an Anosov endomorphism such
that there are two different unstable directions Eu1 (x) and Eu2 (x) at x. Then
the angle ∠(Dfn(x)(Eu1 (x)), Dfn(x)(Eu2 (x))) goes to zero as n→∞.

Proof. In fact, suppose that dimEs = k, dimEu = n, and Eu1 (x) 6=
Eu2 (x) for all x ∈ M. Let {v1, . . . , vn} and {u1, . . . , un} be bases for Eu1 (x)
and Eu2 (x) respectively. Since Eu1 (x) 6= Eu2 (x), there is ui, say u1, such that
B = {u1, v1, . . . , vn} is a linearly independent set.

Let E := 〈u1, v1, . . . , vn〉 with dimE = n+ 1 be the subspace generated
by B. Observe that dimE + dimEs = n+ k + 1 > n+ k = dimTxM. This
implies that E ∩ Es is non-trivial. Let 0 6= vs ∈ E ∩ Es. Then

vs = cu1 + v

for some c 6= 0 and v ∈ Eu1 (x) \ {0}.
Considering the following properties of vectors in stable and unstable

bundles:

‖Dfn(x)vs‖ → 0, ‖Dfn(x)u1‖ → ∞, ‖Dfn(x)v‖ → ∞,
it follows that ∠([Dfn(x)u1], Df

n(x)Eu1 (x))→ 0. In fact the same argument
shows that ∠([Dfn(x)ui], Df

n(x)Eu1 (x))→ 0 for all ui not in Eu1 (x). Thus

lim
n→∞

∠
(
Dfn(x)(Eu1 (x)), Dfn(x)(Eu2 (x))

)
= 0.

3. Proof of Theorem 1.4. In the course of the proof we need to analyse
the number of unstable directions as a function of x ∈ M . Let u : M →
N ∪ {∞} be defined as

u(x) := #(Euf (x)),

which assigns to each x the“number” of all possible unstable directions in
TxM .

A simple and useful remark is the following:

Lemma 3.1. u(x) is non-decreasing along the forward orbit of x.
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Proof. It is enough to use the fact that f is a local diffeomorphisms and
Df(x) is injective. However, we emphasize that it is not clear whether u(x)
is constant or not along the orbit. This is because all the prehistory of x is
included in the prehistory of f(x).

Proposition 3.2. Let f : M → M be a transitive Anosov endomor-
phism. Then either there is x ∈ M such that u(x) = ∞, or u is uniformly
bounded on M ; in fact, in the latter case, f is a special Anosov endomor-
phism.

Proof. Suppose that u(x) <∞ for all x ∈M. Define

Λk = {x ∈M | u(x) ≤ k}.

The sets Λk are closed. Indeed, by continuity (Theorem 2.3) the set M \Λk
is open. Now observe that

M =
∞⋃
k=1

Λk,

so by the Baire category theorem, there is k0 ≥ 1 such that intΛk0 6= ∅.
Now we claim that

M = Λk0 .

To prove this, take any x in M with l unstable directions, and a small
neighbourhood Vx of x such that each point in Vx has at least l unstable
directions. Consider a point with dense orbit in Vx and take an iterate of it
that belongs to Λk0 . By Lemma 3.1 we conclude that l ≤ k0, which yields
M = Λk0 .

Finally, we prove that M = Λ1, implying that f is a special Anosov
endomorphism. Suppose that there is x ∈M such that u(x) ≥ 2 and choose
two different unstable directions Eu1 (x), Eu2 (x) in TxM. Let α > 0 be the
angle between Eu1 (x) and Eu2 (x).

Let Ux be a small neighbourhood of x such that every y ∈ Ux has at least
two unstable directions, say Eu1 (y) and Eu2 (y), with ∠(Eu1 (y), Eu2 (y)) > α/2.

Let x0 be a point with dense orbit. Let n1 be a large number satisfying

• fn1(x0) ∈ Ux,
• ∠(Dfn1(x0) · E,Dfn1(x0) · F ) < α/3 for any E,F ∈ Euf (x0).

The choice of n1 is possible thanks to density of the forward orbit of x0 and
Lemma 2.6. By definition of Ux, the above two properties imply that either
Eu1 (fn1(x0)) or Eu2 (fn1(x0)) is not contained in Dfn1(x0) · Euf (x0). So, we
obtain

u(fn1(x0)) > u(x0) + 1.

By repeating this argument, we to obtain an infinite sequence fnk(x0) such
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that

u(fnk+1(x0)) ≥ u(fnk(x0)) + 1,

contradicting M = Λk0 .

3.1. Ending the proof of Theorem 1.4. To complete the proof of
Theorem 1.4 it remains to show that u(x) = ∞ for a residual set R ⊂ M,
whenever f is not a special Anosov endomorphism. In fact, suppose that
there is x ∈ M such that u(x) = ∞. Given k > 0, fix exactly k different
unstable directions at x, and a neighbourhood Ukx of x such that u(y) ≥ k
for every y ∈ Ukx . Now, since f is transitive, the open set Uk =

⋃
i≥0 f

i(Ukx )
is dense in M. Finally, consider

R :=
⋂
k≥1

Uk,

which is a residual set. By construction, given x ∈ R we have u(x) ≥ k
for every k > 1, which implies u(x) = ∞. This completes the proof of
Theorem 1.4.

4. Proof of Theorem1.5. Given an Anosov endomorphism f : Tn→Tn,
by Proposition 1.3, the lift f : Rn → Rn is an Anosov diffeomorphism.

Let f∗ : Tn → Tn be the linearization of f , by which we mean the unique
linear endomorphism of the torus, homotopic to f. By [1, Theorem 8.1.1],
the linearization map is hyperbolic.

Although Rn is not compact, since f preserves Zn, the derivatives of
f are periodic in fundamental compact domains of Tn. This periodicity
allows us to prove, in the Rn setting, results analogous to those for Anosov
diffeomorphisms in the compact case.

Lemma 4.1. Let f : Tn → Tn be a C1+α Anosov endomorphism. Then
for f : Rn → Rn there exist transversally absolutely continuous foliations
Fu
f

and Fs
f

tangent to Eu
f

and Es
f

respectively.

Proof. Similar to the compact case [5].

Definition 4.2. A foliation W of Rn is quasi-isometric if there exist
positive constants Q and b such that for all x, y in a common leaf of W we
have

dW (x, y) ≤ Q−1‖x− y‖+ b.

Here dW denotes the Riemannian metric on W and ‖x−y‖ is the Euclidean
distance.

Remark 4.3. Observe that if ‖x−y‖ is large enough, we can take b = 0
in the above definition.



44 F. Micena and A. Tahzibi

Lemma 4.4. Let A be as Theorem 1.5. If f is an Anosov endomorphism
sufficiently C1-close to A, then Fs,u

f
are quasi-isometric foliations.

This lemma follows directly from a proposition due to Brin [3]:

Proposition 4.5. Let W be a k-dimensional foliation on Rm. Suppose
that there is an (m− k)-dimensional plane ∆ such that TxW (x) ∩∆ = {0}
and ∠(TxW (x), ∆) ≥ β > 0 for every x ∈ Rm. Then W is quasi-isometric.

Proof of Lemma 4.4. Let U be a C1-open set containing A such that for
every f ∈ U, f and A are C1-close in the universal cover Rn.

The C1-neighbourhood U is taken such that

|∠(Eu
f
(x), EuA)| < α,(4.1)

|∠(Es
f
(x), EsA)| < α,(4.2)

for any x ∈ Rn, where α is a small number less than 1
2∠(EuA, E

s
A). For the

foliation Fu
f

take ∆ := EsA, and for Fs
f
, ∆ := EuA. Applying Proposition 4.5

completes the proof.

Corollary 4.6 (Nice properties). For any Anosov endomorphism f :
Tn → Tn close to its linearization A, the following properties hold in the
universal covering:

(1) For each k ∈ N and C > 1 there is M such that

‖x− y‖ > M ⇒ 1

C
≤ ‖f

k
x− fky‖

‖Akx−Aky‖
≤ C.

(2) lim
‖y−x‖→∞
y∈Fσ

f̄
(x)

y − x
‖y − x‖

= EσA, σ ∈ {s, u}, uniformly.

Proof. The proof follows the lines of [4]; we repeat it for completeness.
Let K be a fundamental domain of Td in Rd, d ≥ 2. On K we have

‖fk −Ak‖ <∞.
For x ∈ Rd, there are x ∈ K and ~n ∈ Zd such that x = x + ~n. Since

f∗ = A, we obtain

‖fk(x)−Ak(x)‖ = ‖fk(x+ ~n)−Ak(x+−→n )‖

= ‖fk(x) +Ak~n−Akx−Ak~n‖ <∞.

Now, for all x, y ∈ Rd,

‖fkx− fky‖ ≤ ‖Akx−Aky‖+ 2‖fk −Ak‖0,

‖Akx−Aky‖ ≤ ‖fkx− fky‖+ 2‖fk −Ak‖0,
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where

‖fk −Ak‖0 = max
x∈K
‖fk(x)−Ak(x)‖.

Since A is non-singular, if ‖x − y‖ → ∞, then ‖Akx − Aky‖ → ∞. So
dividing both expressions by ‖Akx − Aky‖ and letting ‖x − y‖ → ∞ we
obtain the proof of the first item.

For the second item, we just consider the case of EsA; for Eu just take
A−1 and (f)−1, and the same proof holds.

Let |θs| = max{ |θ| : θ is an eigenvalue of A and 0 < |θ| < 1}. Fix a
small ε > 0 and consider δ > 0 such that 0 < (1 + 2δ)|θs| < 1. If f is
sufficiently C1-close to A, then f is an Anosov diffeomorphism of Rd with
contracting constant less than (1 + δ)|θs|.

By hyperbolic splitting, there is k0 ∈ N such that if v ∈ Rd, k > k0 and

‖Akv‖ < (1 + 2δ)k|θs|k‖v‖,

then

‖πuA(v)‖ < ε‖πsA(v)‖.

Pick k > k0 and M sufficiently large, satisfying the first item with C = 2
and in accordance with Remark 4.3.

Take y ∈ Fs
f
(x) and ‖x−y‖ > M. Let ds denote the Riemannian distance

on stable leaves of Fs
f
. Since Fs

f
is quasi-isometric, we get

ds(f
k
x, f

k
y) < ((1 + δ)|θs|)kds(x, y) ⇒

‖fkx− fky‖ < ((1 + δ)|θs|)k(Q−1‖x− y‖) ⇒
‖Akx−Aky‖ < 2((1 + δ)|θs|)k(Q−1‖x− y‖).

Finally, for large k we have

2Q−1((1 + δ)|θs|)k ≤ ((1 + 2δ)|θs|)k.

So,

‖πuA(x− y)‖ < ε‖πsA(x− y)‖.

Lemma 4.7 ([7]). Let f : Td → Td be an Anosov endomorphism close
to A : Td → Td such that dimEuA = 1. Then for all n ∈ N and ε > 0 there
exists M such that for x, y with y ∈ Fu

f
(x) and ‖x− y‖ > M we have

(1− ε)enλuA‖y − x‖ ≤ ‖An(x)−An(y)‖ ≤ (1 + ε)enλ
u
A‖y − x‖,

where λu is the Lyapunov exponent of A corresponding to EuA.

Proof. Denote by EuA the eigenspace corresponding to λuA and |µ| = eλ
u
A ,

where µ is the eigenvalue of A in the EuA direction.
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Let N ∈ N and choose x, y ∈ Fuf (x) such that ‖x−y‖ > M. By Corollary
4.6, we have

x− y
‖x− y‖

= v + eM ,

where v = vEuA is a unitary eigenvector of A in the EuA direction and eM is
a correction vector that converges to zero uniformly as M →∞. We have

AN
(

x− y
‖x− y‖

)
= µNv +ANeM = µN

(
x− y
‖x− y‖

)
− µNeM +ANeM .

This implies that

‖x− y‖(|µ|N − |µ|N‖eM‖ − ‖A‖N‖eM‖) ≤ ‖AN (x− y)‖
≤ ‖x− y‖(|µ|N + |µ|N‖eM‖+ ‖A‖N‖eM‖).

Since N is fixed, we can choose M > 0 such that

|µ|N‖eM‖+ ‖A‖N‖eM‖ ≤ ε|µ|N ,
and the lemma is proved.

Remark 4.8. By the multiplicative ergodic theorem for endomorphisms
[9] the unstable Lyapunov exponent for a typical point is independent of
the unstable direction. We denote by λu(x) = λu(x̃) the unique unstable
Lyapunov exponent of x in our context where dimEu = 1.

Theorem 4.9 (Theorem 1.5). Let A : Tn → Tn, n ≥ 2, be a conservative
linear Anosov endomorphism with dimEuA = 1. Then there is a C1-open set
U , containing A, such that for every C1+α, α > 0, conservative Anosov
endomorphism f ∈ U , we have λuf (x) ≤ λuA for m-almost every x ∈ Tn,
where m is the Lebesgue measure of Tn.

Proof. Suppose for contradiction that there is a positive measure set
Z ⊂ Tn such that for every x ∈ Z we have λu

f
(x) > (1 + 5ε)λuA for a small

ε > 0. Since f is C1+α, the unstable foliation Fu
f

is absolutely continuous.

So, there is a positive measure set B ⊂ Rn such that for every x ∈ B,

(4.3) mu
x(Fu

f
(x) ∩ Z) > 0,

wheremu
x is the Lebesgue measure of the leafFu

f
(x). Choose a p ∈ B satisfying

(4.3) and consider an interval [x, y]u ⊂ Fuf (p) satisfying mu
p([x, y]u ∩Z) > 0

such that the length of [x, y]u is greater than M as required in Lemma 4.7
and Corollary 4.6. We can choose M such that

‖Ax−Ay‖ < (1 + ε)eλ
u
A‖y − x‖

and
‖f(x)− f(y)‖
‖Ax−Ay‖

< 1 + ε.
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whenever du(x, y) ≥ M, where du denotes the Riemannian distance in un-
stable leaves. The above implies that

‖f(x)− f(y)‖ < (1 + ε)2eλ
u
A‖y − x‖.

Inductively, we assume that for n ≥ 1 we have

(4.4) ‖fn(x)− fn(y)‖ < (1 + ε)2nenλ
u
A‖y − x‖.

Since f expands uniformly in the u direction, we have du(f
n
(x), f

n
(y)) > M,

and consequently

‖f(f
n
x)− f(f

n
y)‖ < (1 + ε)‖A(f

n
x)−A(f

n
y)‖

< (1 + ε)2eλ
u
A‖fnx− fny‖ < (1 + ε)2(n+1)e(n+1)λuA .

For each n > 0, let

An = {x ∈ Z : ‖Dfk(x)|Eu
f
(x)‖ > (1 + 2ε)2kekλ

u
A for any k ≥ n}.

We have m(Z) > 0 and Zn := An ∩ Z ↑ Z, as 1 + 5ε > (1 + 2ε)2 for small
ε > 0.

Define the number α0 > 0 so that

mu
p([x, y]u ∩ Z)

mu
p([x, y]u)

= 2α0.

Since Zn ∩ [x, y]u ↑ Z ∩ [x, y]u, there is n0 ∈ N, such that if n ≥ n0, then

mu
p([x, y]u ∩ Zn) = αn ·mu

p([x, y]u)

with αn > α0. Thus, for n ≥ n0 we have

‖fnx− fny‖ > Q
�

[x,y]u∩Zn

‖Dfn(z)‖ dmu
p(z)(4.5)

> Q(1 + 2ε)2nenλ
u
Amu

p([x, y]u ∩ Zn)

> α0Q
2(1 + 2ε)2nenλ

u
A‖x− y‖.

The inequalities (4.4) and (4.5) give a contradiction.
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