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Point networks for special subspaces of Rκ

by

Ziqin Feng (Auburn, AL) and Paul Gartside (Pittsburgh, PA)

Abstract. Uniform characterizations of certain special subspaces of products of lines
are presented. The characterizations all involve a collection of subsets (base, almost sub-
base, network or point network) organized by a directed set. New characterizations of
Eberlein, Talagrand and Gul’ko compacta follow.

Introduction. The purpose of this paper is to give uniform characteri-
zations of certain special subspaces of products of lines that arise in analysis.
The characterizations all involve two objects: first an order, and second a
collection of subsets of the space ‘organized’ by the order. For the collection
of subsets we take bases, almost subbases, networks and, most importantly,
point networks. As a result we derive some new (and re-derive some old)
characterizations of Eberlein, Gul’ko and Talagrand compacta. The char-
acterizations in terms of point networks yield new clean proofs that the
continuous image of a compact space which is Eberlein, Gul’ko or Tala-
grand has the same respective property. Rudin’s original proof [BRW] that
the continuous image of an Eberlein compact space is Eberlein compact is
widely acknowledged to be involved. (The referee notes that a non-trivial
bridge from the definition of Eberlein still relies on the Amir–Lindenstrauss
theorem [AL].)

An important connection between topology and functional analysis was
made by Gruenhage [G] when he characterized Eberlein compacta as be-
ing those compacta X such that X2 \ ∆ is σ-metacompact. Order theory
was added to the mix by Garćıa, Oncina and Orihuela [GOO] when they
characterized Gul’ko and Talagrand compacta in a similar fashion. Let P
be a directed set and X a space (all spaces are assumed to be Tychonoff,
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unless otherwise stated). A collection C of subsets of X is P -point finite if
C =

⋃
{Cp : p ∈ P} where (i) if p ≤ p′ then Cp ⊆ Cp′ , and (ii) each Cp is

point finite. Then X is P -metacompact if every open cover has a P -point
finite open refinement. The results of Gruenhage and of Garćıa et al. can
then be phrased: a compact space X is (i) Eberlein, (ii) Talagrand, or (iii)
Gul’ko if and only if X2\∆ is, respectively, (i)′ N-metacompact, (ii)′ K(ωω)-
metacompact, or (iii)′ K(M)-metacompact for some separable metrizable
space M . Here K(M) is the set of all compact subsets of M ordered by re-
verse inclusion. (The second author and Morgan have introduced and studied
P -paracompact and P -metrizable spaces (see [FGM, GM1]). A typical result
is that if X is compact and X2 \∆ is P -paracompact, where P is a K(M),
or more generally of calibre (ω1, ω), then X is metrizable. A directed set has
calibre (ω1, ω) if every uncountable subset contains an infinite unbounded
subset.)

We define a space X to be P -Eberlein compact if it is compact and X2\∆
is (P × N)-metacompact. In this terminology ‘1-Eberlein compact’ (and
‘N-Eberlein compact’) is equivalent to ‘Eberlein compact’, while ‘K(ωω)-
Eberlein compact’ is ‘Talagrand compact’, and a space is ‘Gul’ko com-
pact’ if and only if it is ‘K(M)-Eberlain compact’ for some K(M), where
M is separable metrizable (see [GMa] for more on the order structure of
K(M)’s).

In Section 1 we develop a cycle of implications which results in the char-
acterization of P -Eberlein compacta—for completely arbitrary P—in terms
of almost subbases, bases, networks and point networks. These specialize,
when taking P = N, P = K(ωω) and P = K(M), to characterizations of
Eberlein, Talagrand and Gul’ko compacta—some known, some new. The
cycle starts with a topological characterization of certain function spaces
via P -point finite almost subbases. From these almost subbases we extract
a base. This base has a more complex order property (P -additively Noethe-
rian) than the corresponding almost subbase. We generalize from bases to
(expandable) networks, and then to point networks. Next we show that point
networks (with certain order properties) are pleasantly stable under finite
products, subspaces and perfect images. We also show that spaces with a
point network, with suitable order conditions, are P -metacompact. This al-
lows us to complete the cycle—given a compact space X with a P -additively
Noetherian point network, we deduce that X2 \ ∆ is P -metacompact (in
other words, is P -Eberlein compact), and modify the argument of Garćıa
et al. to show that such an X embeds in a suitable function space, namely
one with a P -point finite almost subbase.

Attempting to characterize Corson compacta in similar terms (via a base,
network etc.) we note that much of the above cycle works when ‘compact’ is
weakened to ‘Lindelöf’. Unfortunately the relevant order conditions are not
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(necessarily) productive, and so characterizations can only be obtained by
putting conditions on X2 rather than X. We also explain why, even though
our results hold for all directed sets P , when P is calibre (ω1, ω) then P -
Eberlein compact spaces are Corson compact, but when P is not calibre
(ω1, ω) then any compact space of weight no more than ω1 is P -Eberlein
compact. It follows that ‘P -Eberlein compact for P calibre (ω1, ω)’ form an
interesting class of Corson compacts naturally extending the familiar classes
of Eberlein, Talagrand and Gul’ko compacta. The second author and Morgan
[GM2] have shown that there is a wide variety of directed sets with calibre
(ω1, ω) which are not of the form K(M) for some separable metrizable M .
In particular it is shown that arbitrary Σ-products of K(M)’s have calibre
(ω1, ω).

As noted above, in our cycle of results in Section 1 the move from ‘al-
most subbase’ to ‘base’ results in an increase of complexity in the relevant
order condition. We see no way of avoiding this increase in general, but, in
Section 2, we show how to reduce the complexity of the associated networks
and point networks in certain cases. These results give new characteriza-
tions of Gul’ko and Talagrand compacta in terms of small networks and
point networks. We conclude with a brief discussion of the results in [GOO]
pertaining to networks for Gul’ko and Talagrand compacta, explaining that
there is a critical error in those results, and the authors of that paper have
withdrawn their claim to characterizing Talagrand and Gul’ko compacta in
terms of networks.

Partial order preliminaries. All our partially ordered sets, P , will be
directed (given p, q in P there is an r in P such that r ≥ p and r ≥ q). It
turns out that what is important about our directed sets happens cofinally.
So we compare directed sets P and Q via the Tukey order. A map φ : P → Q
is a Tukey quotient if φ is order-preserving and φ(P ) is cofinal in Q. Write
P ≥T Q if there is a Tukey quotient of P to Q. Then P and Q are Tukey
equivalent, denoted P =T Q, if P ≥T Q and Q ≥T P . We note that P ≥T
P × N unless P is countably directed (every countable subset of P has an
upper bound).

The results in the first section of this paper apply to all directed sets P .
In the second section we improve the characterizations obtained in the first
part by using specific properties of the partial orders associated with Eber-
lein, Talagrand and Gul’ko compacta—respectively: the natural numbers, N,
the product order on NN, and the set of compact subsets, K(M), ordered
by inclusion, of a separable metrizable space M . It is now well-known that
K(NN) =T NN ≥T N ≥T 1; for compact M , K(M) =T 1; for locally com-
pact separable metrizable M , K(M) ≥T N; and for any non-locally compact
separable metrizable M , we have K(M) ≥T K(NN).
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As stated above, given a directed set P , a collection C of subsets of a
space X is said to be P -ordered if we can write C =

⋃
{Cp : p ∈ P} so that

p ≤ p′ implies Cp ⊆ Cp′ . Observe that if φ is a Tukey quotient from Q to P ,
then C is also a Q-ordered cover; indeed, we can write C =

⋃
{C′q : q ∈ Q}

where C′q = Cφ(q). Further, if Q is a property that a collection of subsets of X
might have, then we say that the collection C is P -Q if it can be P -ordered
as C =

⋃
{Cp : p ∈ P} so that every subcollection Cp has property Q.

Topological preliminaries. Our topological notation is standard (see
[E] for example) except we introduce the following uniform method for deal-
ing with compactness and the Lindelöf property. Let κ be a cardinal. We
say that a space Y is <κ-compact if every open cover of Y has a subcover of
size <κ. Then ‘<ℵ0-compact’ is standard compactness and ‘<ℵ1-compact’ is
the Lindelöf property. Other less well known terms (such as ‘almost subbase’
and ‘point network’) will be defined below when it becomes appropriate. As
mentioned above, all spaces are assumed to be Tychonoff.

1. Almost subbases, bases, networks and point networks

Almost subbases. Almost subbases were introduced by Dimov [D1]
who used them to characterize the subspaces of Eberlein compacta. We
say that a family α of subsets of a space X is an almost subbase of X,
with respect to a family {fV : X → [0, 1]}V ∈α of continuous functions, if
V = f−1V (0, 1] for V ∈ α and the family α∪{X \f−1V [1/n, 1] : V ∈ α, n ∈ N}
is a subbase of X. An almost subbase of X is a family α for which such
a family of functions exists. In constructing these functions the following
lemma is helpful.

Lemma 1.1 ([D1]). Let (Cn)∞n=1 be a sequence of zero sets such that for
each n there exists a cozero set Un with Cn ⊆ Un ⊆ Cn+1. Then there exists
a continuous function f : X → [0, 1] such that Cn = f−1[1/n, 1] for n ∈ N.

A family α of subsets of a space X is F -separating if whenever x and y
are distinct points in X then there is a V in α such that x is in V but y is
not in V , or vice versa (y ∈ V but x /∈ V ). A given almost subbase need not
be F -separating. The next lemma allows us to find one which is—and to do
so in a manner which respects order.

Lemma 1.2. Let α be a P -point-<κ almost subbase of X with respect to
{fV }V ∈α. Then:

(a) The family α′ = {f−1V (r, 1] : V ∈ α, r ∈ Q ∩ [0, 1]} is F -separating
and is a (P × N)-point-<κ almost subbase of X.

(b) Given a subspace A of X, the family {V ∩A, V ∈ α} is a P -point-<κ
almost subbase of A with respect to {fV |A}V ∈α.
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Proof. Part (b) is clear. For (a) note that α = {f−1V (0, 1] : V ∈ α}, so α
is a subset of α′. Hence α′ is an almost subbase. It is straightforward to check
(and observed in [D2]) that α′ is F -separating. We know α can be P -ordered,
say as α =

⋃
{αp : p ∈ P}, where every αp is point-<κ. Fix an enumeration

{qn}n∈N of [0, 1] ∩ Q. For p in P and n in N, set α′p,n = {f−1V (qi, 1] : i =
1, . . . , n, V ∈ αp}. It is clear that α′ =

⋃
{α′p,n : (p, n) ∈ P × N}, and

α′p,n ⊆ α′p′,n′ when (p, n) ≤ (p′, n′). So we have a (P × N)-ordering of α′.

Further, for a fixed p, we know that α′p is point-<κ. So for a fixed i the
collection {fV (qi, 1] : V ∈ αp} is also point-<κ. Hence, for any p in P and n
in N, α′p,n is point-<κ, as a finite union of point-<κ collections.

Almost subbases characterize embeddings. For any free filter F
on an infinite set X, write X(F) for the space with underlying set X ∪ {∗},
and topology where the points of X are isolated and neighborhoods of ∗
are {∗} ∪ U for U in F . We allow the possibility that F = P(X), in which
case X(F) has the discrete topology. Write A(κ) for the case X = κ, an
infinite cardinal, and F = {κ \ F : F is a finite subset of κ}. It is the
one-point compactification of a discrete space of size κ. Write L(κ) for the
case X = κ and F = {κ \ C : C is a countable subset of κ}. It is the
one-point Lindelöfication of a discrete space of size κ.

Recall that for any space X, Cp(X) is the subspace of RX consisting
of all continuous f : X → R. When X = X(F), write Cp(X, ∗) for all
continuous f : X → R such that f(∗) = 0. It is easy to check that Cp(X(F))
and Cp(X(F), ∗) are homeomorphic. Then it is clear that the standard Σ-
product of κ many lines, ΣRκ, is homeomorphic to Cp(L(κ)), while the
standard Σ∗-product of κ many lines is homeomorphic to Cp(A(κ)). By
definition a compact space is Corson compact if and only if it embeds in some
Σ-product, and so if and only if it embeds in some Cp(L(κ)). It is well known
that a compact space is Eberlein compact if and only if it embeds in someΣ∗-
product, and so if and only if it embeds in some Cp(A(κ)). Mercourakis [M]
and Sokolov [S] have shown that a compact space is Talagrand (respectively,
Gul’ko) compact if and only if it embeds in some Cp(X(F)) where X(F)
has an NN-ordered cover by compact sets (respectively, where X(F) has a
K(M)-ordered compact cover for some separable metrizable space M). Note
that if K is a compact subset of X(F) and f ∈ Cp(X(F)) then f�K is in
c0(K), where c0(K) has the pointwise topology.

Theorem 1.3. Let P be a directed set and κ an infinite cardinal.

(1) Every space Y which embeds in some Cp(X(F)) where X(F) has a
P -ordered cover by <κ-compact sets has a (P ×N)-point-<κ almost
subbase.
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(2) Every space Y with a P -point-<κ almost subbase embeds in some
Cp(X(F)) where X(F) has a (P ×N)-ordered cover by <κ-compact
sets.

If P is not countably directed then ‘P ×N’ can be replaced simply by ‘P ’
in both (1) and (2).

Proof. For claim (1) suppose C = {Cp : p ∈ P} is a P -ordered cover of
X(F) by <κ-compact sets. By Lemma 1.2 it will then suffice to show that
Cp(X(F), ∗) has a (P × N)-point-<κ almost subbase.

Let B = {Bn : n ∈ N} be a countable base of R \ {0} consisting of open
intervals such that Bn ⊆ R\ [−1/n, 1/n]. For points x1, . . . , xm in X(F) and
subsets S1, . . . , Sm of R, let O(x1, . . . , xm;S1, . . . , Sm) = {f ∈ Cp(X(F), ∗) :
f(xi) ∈ Si for i = 1, . . . ,m}. Then O(x1, . . . , xm;S1, . . . , Sm) is a cozero set
(resp. a zero set) in Cp(X(p), ∗) if all the intervals Si are open (resp. closed)
in R.

For any p ∈ P and n ∈ N, define Op,n = {O(x1, . . . , xm;S1, . . . , Sm) :
xi ∈ Cp and each Si is either one of B1, . . . , Bn or (−∞,−1/j) or (1/j,∞)
for j = 1, . . . , n}. Note that if (p, n) and (p′, n′) are in P × N and (p, n) ≤
(p′, n′) (that is, p ≤ p′ and n ≤ n′) then Op,n ⊆ Op′,n′ . We will verify that
every family Op,n is point-<κ, and hence O =

⋃
{Op,n : p ∈ P and n ∈ N}

is (P × N)-point-<κ.
Suppose, for contradiction, Op,n is not point-<κ for some p ∈ P and

n ∈ N, in other words there is an f ∈ Cp(X(F), ∗) and {Oβ : β < κ} ⊆ Op,n
such that f ∈ Oβ for each β < κ. Since κ ≥ ℵ0, there must be a κ-sized subset
{xγ : γ < κ} ⊆ Cp such that f(xγ) ∈ B for some B from either B1, . . . , Bn,
or (−∞,−1/j) or (1/j,∞) with j = 1, . . . , n. Hence |f(xγ)| > 1/n for each
γ < κ, which contradicts the fact that Cp is <κ-compact.

We now show that O is an almost subbase of Cp(X(F), ∗). Take any V =
O(x1, . . . , xm;S1, . . . , Sm) in O, and represent each Si = (ai, bi) as a union of
a family of intervals Si,n = [ai + 1/n, bi− 1/n] (where −∞+ 1/n = −∞ and
∞− 1/n =∞). Clearly, Si,n ⊆ Un ⊆ Si,n+1 for some open interval Un, and
hence by Lemma 1.1 there exists a continuous function fV on Cp(X(F), ∗),
with values in [0, 1], such that f−1V [1/n, 1] = O(x1, . . . , xm;S1,n, . . . , Sm,n)
for all n ∈ N.

Let us verify that O ∪ {Cp(X(F), ∗) \ f−1V [1/n, 1] : V ∈ O, n ∈ N}
is a subbase of Cp(X(F), ∗). Take any f ∈ Cp(X(F), ∗) and basic open
neighborhood of f , namely, O(x1, . . . , xk : I1, . . . , Ik) with I1, . . . , Ik being
open intervals. Then there exists p ∈ P such that x1, . . . , xk ∈ Cp. Relist the
points {x1, . . . , xk} as {x1, . . . , x`1} ∪ {y1, . . . , y`2} such that f(xi) 6= 0 for
i = 1, . . . , `1 and f(yi) = 0 for i = 1, . . . , `2. Relist the intervals I1, . . . , Ik
as I1, . . . , I`1 and Î1, . . . , Î`2 so that f(xi) ∈ Ii and 0 = f(yj) ∈ Î` for
i = 1, . . . , `1 and j = 1, . . . , `2.
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Choose N large enough that: (i) there exist Bi1 , . . . , Bi`1 ∈ {B1, . . . , BN}
with xj ∈ Bij ⊆ Ij for j = 1, . . . , `1; and (ii) R \ ((−∞,−1/N − 1/N ] ∪
[1/N+1/N,∞)) ⊆ Îj for j = 1, . . . , `2. Let V = O(x1, . . . , x`1 ;Bi1 , . . . , Bi`1 ),
Vj = O(yj ; (1/N,∞)) for j = 1, . . . , `2 and Vj = O(yj ; (−∞,−1/N)) for
j = `2 + 1, . . . , 2`2. Then we see that f ∈ V ∩

⋂
{Cp(X(F)) \ f−1Vj [1/N, 1] :

j = 1, . . . , 2`2} ⊆ O(x1, . . . , xk; I1, . . . , Ik), as required.

For claim (2) suppose Y is a space with a P -point-<κ almost subbase.
Let Q = P ×N. By Lemma 1.2 there is an F -separating Q-point-<κ almost
subbase for Y , say α =

⋃
{αq : q ∈ Q}, with respect to {fV }V ∈α. We show

Y can be embedded in a Cp(X(F)) where X(F) has a (Q × N)-ordered
compact cover. Since N =T N× N, we see that Q× N =T P × N. So X(F)
has a (P × N)-ordered compact cover, as desired.

For any n ∈ N and V ∈ α there is a continuous function aVn : Y → [0, 1]
with aVn (y) = 1 for y ∈ f−1V [1/n, 1], and aVn (y) = 0 for y /∈ f−1V (1/(n+ 1), 1].

By Lemma 1.1, we can assume that aVn (x) 6= 1 for all x /∈ f−1V [1/n, 1]. Let
X = {aVn : n ∈ N and V ∈ α}. Let Cq,n = {aVi : i ≤ n and V ∈ αq} for
n ∈ N and q ∈ Q. Then we can see that if (q, n) ≤ (q′, n′), then Cq,n ⊆ Cq′,n′ .
Define a collection F of subsets of X by F ∈ F if and only if Cq,n \ F has
cardinality <κ for each q ∈ Q and n ∈ N. For each q ∈ Q and n ∈ N, we
can see that Cq,n is a <κ-compact subset of X(F). Also, we can see that:
(i) if F1 and F2 are in F , then Cq,n \ (F1 ∩ F2) = (Cq,n \ F1) ∪ (Cq,n \ F2)
also has cardinality < κ for each q and n, in other words, F1 ∩ F2 is in F ;
and (ii) if F1 ∈ F and F1 ⊆ F2, then Cq,n \ F2 has size <κ for each q, n,
so F2 is in F . The space X(F) evidently has a (Q × N)-ordered cover,
{Cq,n : q ∈ Q, n ∈ N}, of <κ-compact sets. It remains to show that Y can
be embedded in Cp(X(F)).

We define a mapping H : Y → Cp(X(F)) by H(y)(aVn ) = aVn (y) for
each y ∈ Y . Since αq is point-<κ for each q ∈ Q, H(y)(aVn ) 6= 0 only at
<κ many aVn for each q ∈ Q and n ∈ N. So H(y) is continuous on the
space X(F) for each y ∈ Y . Hence H is a well-defined map from Y into
Cp(X(F)).

We will show that the mapping H is injective, continuous, and open
onto its image. We take distinct y1, y2 ∈ Y . Since α is F -separating (after
interchanging y1 and y2 if necessary) there exists a V ∈ α such that y1 ∈ V
and y2 /∈ V . Then there exists N ∈ N such that y1 ∈ f−1V [1/N, 1], and
H(y1) 6= H(y2) because H(y1)(a

V
N ) = 1 while H(y2)(a

V
N ) = 0. Thus H is

injective.

Choose a set {I1, . . . , Ik} of open intervals in the real line R. The set
O = O(aV1n1

, . . . , aVknk ; I1, . . . , Ik) is a basic open neighborhood of Cp(X(F)).

Then H−1(O) =
⋂
{(aVini)

−1(Ii) : i = 1, . . . , k}. By the continuity of aVini for
i = 1, . . . , k, H−1(O) is an open subset of Y . Therefore, H is continuous.
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Since H is injective and α is an almost subbase, to show H is onto its
image it is enough to show that H(V ) and H(Y \ f−1V [1/n, 1]) are open for
every V ∈ α and n ∈ N. By the definition of H, we can see that for each
n ∈ N, V ∈ α and y ∈ Y we have H(y)(aVn ) > 0⇔ aVn (y) > 0, and hence

(?) y ∈ f−1V (1/(n+ 1), 1] ⊂ V,

while H(y)(aVn ) < 1⇔ aVn (y) < 1 and thus

(∗) y /∈ f−1V [1/n, 1].

Take any y ∈ H(V ). Let y = H−1(y). Choose N with y ∈ f−1V [1/N, 1].
Then aVN (y) = 1. Let W = O(aVN ; (1/2,+∞)) ∩ H(Y ), which is open in
H(Y ). For each z ∈ W , let z = H−1(z). We see that H(z)(aVN ) > 1/2, so
z ∈ V by (?). Hence H(z) ∈ H(V ). Therefore, y ∈ W ⊆ H(V ). So H(V ) is
an open set in H(Y ).

Finally, take any y ∈ H(Y \ f−1V [1/n, 1]). Let y = H−1(y), and note
aVn (y) < 1. Let W = O(aVn−1; (−∞, 1))∩H(Y ), which is also open in H(Y ).

For each z ∈ W , let z = H−1(z). We see that H(z)(aVn ) < 1, and so
z /∈ f−1V (1/(n + 1), 1] by (∗). Hence H(z) ∈ H(Y \ f−1V [1/n, 1]). Therefore,

y ∈W ⊆ H(X \ f−1V [1/n, 1]). So H(X \ f−1V [1/n, 1]) is also open in H(Y ).

Almost subbases give bases. Let C be a family of sets. For any x,
write (C)x = {C ∈ C : x ∈ C}. The collection C is said to be <κ-Noetherian
if every subcollection of C which is well-ordered by ⊆ has cardinality <κ. The
family is said to be additively <κ-Noetherian if the collection of all unions
of members of the family is <κ-Noetherian. We extend the notation to say
that C is κ-Noetherian (resp. additively κ-Noetherian) if C is <κ+-Noetherian
(resp. additively <κ+-Noetherian). Instead of (additively) <ℵ0-Noetherian
we simply say (additively) Noetherian.

Lemma 1.4. Let C be a family of sets. The following are equivalent:

(1) C is additively <κ-Noetherian,
(2) the collection of all <κ-unions of members of C is <κ-Noetherian,
(3) every ≥κ-subcollection, say C2, of C contains a κ-sized subcollection
C1 with a <κ-sized subcollection C0 such that

⋃
C0 ⊇

⋃
C1,

(4) it is not possible to find, for all α < κ, sets Cα from C and points xα
such that for all β < α < κ the point xα is in Cα but not in Cβ.

Proof. It is easy to verify that (1)⇒(2).

(2)⇒(3). Take any subcollection C2 of C of size at least κ. Take any
(exactly) κ-sized subcollection C1 = {Cα : α < κ} of C2. For each α in κ, let
Ĉα =

⋃
{Cβ : β ≤ α}. Then each Ĉα is a <κ-union of elements of C, and

if α′ < α then Ĉα′ ⊆ Ĉα. So by (2), there must be an α0 such that for all
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α ≥ α0 we have Ĉα0 = Ĉα. Thus C0 = {Cβ : β ≤ α0} is a <κ-subcollection
of C1 such that

⋃
C0 ⊇

⋃
C1, as required for (3).

¬(4)⇒¬(3). We know that there is a family {(Cα, xα) : α ∈ κ} of ele-
ments of C and points as in the statement of (4). Let C2 = {Cα : α ∈ κ}.
Take any κ-sized subcollection C1 of C2. Write C1 = {Cα : α ∈ S1} where S1
is some κ-sized subset of κ. For any κ-sized subset S0 of S1, pick an α0 in
S1 such that α0 > maxS0. Then xα0 /∈

⋃
{Cβ : β ∈ S0}. Thus the negation

of (3) holds.

¬(1)⇒¬(4). Suppose we have a κ-sized subfamily C1 of C which is well-
ordered by (strict) inclusion. By transfinite induction we can easily find,
for each α < κ, a Cα in C1 such that Dα = Cα \

⋃
{Cβ : β < α} 6= ∅.

Picking xα ∈ Dα for each α in κ yields the sets Cα and points xα required
to negate (4).

Theorem 1.5. Every productively <κ-compact space with a P -point-<κ
almost subbase has a (P × N)-point additively <κ-Noetherian base.

Proof. Let X be a productively <κ-compact space which has a P -point-
<κ almost subbase α with respect to {fV }V ∈α. So α =

⋃
{αp : p ∈ P}

where each αp is point-<κ, αp ⊆ αp′ if p ≤ p′, and the collection S =
α ∪ {X \ f−1V [1/n, 1] : V ∈ α, n ∈ N} is a subbase for X. Let B be the
base for X consisting of all finite non-empty intersections of members of S.
Then naturally we write B =

⋃
{Bp,m : m ∈ N and p ∈ P} where B is

Bp,m if and only if B =
⋂k1
i=1 V

′
i ∩

⋂k2
j=1(X \ f

−1
Vj

[1/nj , 1]) where k1, k2 ∈ N,

each k1, k2, nj ≤ m, and each V ′i and Vj is in αp. Clearly B is (P × N)-
ordered.

We show that Bp,m is point additively <κ-Noetherian. To this end, fix
x in X and any ≥κ-sized subset B′ of (Bp,m)x. Take any subcollection B1
with exactly κ many elements. Since αp is point-<κ, we can suppose there
is a fixed finite subset α′ of (αp)x and a fixed k ∈ N such that every B in B
has the form B =

⋂
α′ ∩

⋂k
i=1(X \ A(B, i)), where each A(B, i) is a closed

set of the form f−1V [1/n, 1] for some n and V in αp.

Since X is productively <κ-compact, the space Xk is <κ-compact. We
will show there is a <κ-sized collection B0 contained in B1 such that

⋃
B0 ⊇⋃

B1, thereby verifying that Bp,m satisfies claim (3) of the preceding lemma.

By definition of Bp,m, the collection {A(B, i) : B ∈ B1} is point-<κ

for each i = 1, . . . , k. Then C = {
∏k
i=1A(B, i) : B ∈ B1} is a point-<κ

family of closed subsets in Xk. Since B1 has cardinality κ, so does C, hence
it must have empty intersection. By <κ-compactness of Xk, C cannot have
the κ-Intersection Property. So there is a <κ-sized subcollection C0 of C with⋂
C0 = ∅. For each C ∈ C0, choose BC from B1 such that C =

∏k
i=1A(BC , i).

Then let B0 = {BC : C ∈ C0}. Hence B0 has cardinality < κ.
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Take any y in some element of B1, say

B′ =
⋂
α′ ∩

k⋂
i=1

(X \A(B′, i)).

Then the vector (x1, . . . , xk) with xi = y for each i = 1, . . . , k is not in C?

for some C? ∈ C0. Hence y /∈ A(BC? , i) for each i = 1, . . . , k, and so we have
y ∈ BC? . Thus

⋃
B0 ⊇

⋃
B1, as required.

Expandable networks and point networks. Let X be a space. An
expandable network for X is a collection N of pairs (N,V ) of subsets of X,
where N ⊆ V and V is open, such that if a point x of X is in an open set U
then there is an element (N,V ) of N such that x ∈ N ⊆ U . Clearly if N is
an expandable network for X, then N ′ = {N : (N,V ) ∈ N} is a (standard)
network for X, and if N ′ is a network, then N = {(N,X) : N ∈ N ′} is an
expandable network. The interest in expandable networks (as with almost
subbases) comes when they are structured as a P -Q family.

Extending our previous notation and definition, let P be a family of pairs
of subsets of a set X; then for any x, write (P)x = {(P1, P2) ∈ P : x ∈ P2},
and we say that P is point-<κ if for every x in X the set (P)x has size <κ.
Dow, Junnila and Pelant [DJP] showed that a compact space is Eberlein
compact if and only if it has an ω-point finite expandable network.

Point networks are the natural local version of expandable networks.
A point network (respectively, strong point network) for X is a collection
W = {W(x) : x ∈ X} where each W(x) is a collection of subsets of X
containing x such that whenever x ∈ U , U open, then there is an open
V with x ∈ V ⊆ U such that, whenever y ∈ V then x ∈ W ⊆ U (re-
spectively, x ∈ W ⊆ V ) for some W ∈ W(y). We note that we can take
U and V to be basic. Point networks are also known as ‘condition (F)’,
and as the ‘Collins–Roscoe structuring mechanism’ after the authors who
introduced them [CR]. The term ‘point network’ was suggested by Gruen-
hage.

If Q is a property that can be reasonably applied to a family of subsets
of a space then we say a space X has a Q (strong) point network if it has
a (strong) point network W such that for each W(x) the property Q holds.
Let W be a (strong) point network for a space X. We can further structure
the (strong) point network W analogously to P -Q expandable networks.
Formally, let P be a directed set, and Q be as above. We say that W for
X is a P -Q (strong) point network if for each point x in X we can write
W(x) =

⋃
p∈P Wp(x), where every Wp(x) has property Q, if p ≤ p′ then

Wp(x) ⊆ Wp′(x), and if some point x is in an open set U , then there is an
open set V = V (x, U) containing x and contained in U and a p = p(x, U)
from P such that if y ∈ V then there is a W ∈ Wp(y) such that x ∈W ⊆ U
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(respectively, x ∈ W ⊆ V ). Note that a ‘1-Q (strong) point network’ is
exactly the same as a ‘Q (strong) point network’ from above.

Bases which give expandable networks, give strong point net-
works. The proof of the next lemma demonstrating how P -Q bases give
P -Q expandable networks can safely be left to the reader.

Lemma 1.6. Let B be a base for a space X. Then N = {(B,B) : B ∈ B}
is an expandable network for X. Further, if B =

⋃
p∈P Bp, where Bp ⊆ Bp′ if

p ≤ p′, and each Bp has an order or cardinality property Q, then N =
⋃
pNp,

Np ⊆ Np′ if p ≤ p′, and each Np has property Q. Thus a space with a P -Q
base has a P -Q expandable network.

Now we show that P -Q expandable networks give P -Q strong point
networks. It should be evident that a P -Q strong point network is a P -Q
point network.

Lemma 1.7. Suppose a space X has a P -Q expandable network N , say
N =

⋃
p∈P Np, where Np ⊆ Np′ if p ≤ p′, and each Np has property Q.

Then W = {W(x) : x ∈ X}, where for each x the space W(x) =
⋃
pWp(x)

with Wp(x) = {{x} ∪ N : (N,V ) ∈ Np and x ∈ V } is a P -Q strong point
network for X.

Proof. Fix x in X and p ≤ p′ from P . We verify Wp(x) ⊆ Wp′(x). Take
any W from Wp(x). Then W = {x} ∪ N for some (N,V ) in Np such that
x ∈ V . Since (N,V ) ∈ Np and Np ⊆ Np′ , we see that W = {x} ∪ N is in
Wp′(x).

Now take any open set U containing a point x. Since N =
⋃
{Np : p ∈ P}

is an expandable point network, there is a p = p(x, U) such that x ∈ N ⊆ U
for some (N,V ′) in Np. Let V (x, U) = V ′∩U , and note x ∈ V ⊆ U . Take any
y in V . Then, as V ⊆ V ′, by definition, W = {y}∪N is a member ofWp(y),
and since y ∈ V , x ∈ N ⊆ U and N ⊆ V ′, we clearly have x ∈W ⊆ V .

Combining the previous two lemmas we know that if a spaceX has a P -Q
base B =

⋃
{Bp : p ∈ P} then it has a P -Q strong network. Indeed, we can

take W = {W(x) : x ∈ X} where W(x) =
⋃
p∈P Wp(x) and Wp(x) = (Bp)x.

Stability of point networks. Let Q be a property that can be rea-
sonably applied to families of subsets of a topological space. We say that Q
is hereditary if whenever A is a subspace of X and C is a family of subsets
of X satisfying Q, then their traces onto A, CA = {C ∩ A : C ∈ C}, form a
family of subsets of A also satisfying Q. We say that Q is (finitely) produc-
tive if whenever C is a family of subsets of X satisfying Q and C′ is a family
of subsets of Y satisfying Q, then the collection of subsets of X × Y given
by {C × C ′ : C ∈ C, C ′ ∈ C′} satisfies Q. Finally we say Q is preserved by
images if whenever C is a collection of subsets of a space X which satisfies Q,
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and f is a continuous map of X into a space Y , then f(C) = {f(C) : C ∈ C}
has Q in Y .

The next proposition is straightforward. Note for claim (2) that for any
directed set P we have P ≥T P × P , which is why the natural (P × P )-Q
(strong) point network for X × Y is in fact a P -Q (strong) point network.

Proposition 1.8.

(1) Let Q be hereditary. If a space X has a P -Q (strong) point network,
then so does every subspace of X.

(2) Let Q be productive. If spaces X and Y have a P -Q (strong) point
network, then X × Y also has a P -Q (strong) point network.

Invariance under maps requires a little more work.

Proposition 1.9. Let κ be an infinite cardinal. Let f : X → Y be a
closed surjection with <κ-compact fibers. Let P be a <κ-directed set, and Q
be a property preserved by taking images. Then Y has a P -Q point network
provided that X has a P -Q point network.

Proof. Let W(x) =
⋃
pWp(x) be a P -Q point network of X. For each

y ∈ Y , pick xy ∈ f−1(y). Then for each p in P define Wp(y) = {f(W ) :
W ∈ Wp(xy)}, and note it has property Q. Set W(y) =

⋃
pWp(y) and

WY = {W(y) : y ∈ Y }.
We verify that WY is a P -Q point network of Y . Take y ∈ U where

U is an open subset in Y . By the definition of P -Q point network, for any
x ∈ f−1(y), there exist V (x, f−1(U)) and p(x, f−1(U)) such that, for any x̂ ∈
V (x, f−1(U)), there exists W ∈ Wp(x,f−1(U))(x̂) such that x ∈ W ⊆ U . By

hypothesis, f−1(y) is <κ-compact. Hence, there is a τ < κ such that for each
α < τ there exists xα ∈ f−1(y) such that f−1(y) ⊆

⋃
α<τ V (xα, f

−1(U)).
Since, by hypothesis, P is <κ-directed and τ < κ, we can pick p̂ = p̂(y, U)
satisfying p̂ ≥ p(xα, f

−1(U)) for α < τ . As f is a closed mapping, we can
pick V̂ = V (y, U) such that f−1(y) ⊆ f−1(V̂ ) ⊆

⋃
α<τ V (xα, f

−1(U)).

Take any ŷ ∈ V̂ . Then xŷ ∈ f−1(V̂ ) ⊆
⋃
α<τ V (xα, f

−1(U)). Hence xŷ ∈
V (xα, f

−1(U)) for some α. Therefore, there exists W ∈ Wp(xα,f−1(U))(xŷ)

such that xα ∈ W ⊆ f−1(U). So we have W ∈ Wp̂(xŷ) and y = f(xα) ∈
f(W ) ⊆ U where f(W ) ∈ Wp̂(ŷ).

Lemma 1.10. For any cardinal κ:

(1) the property Q = ‘<κ’ (has size strictly less than κ) is hereditary,
productive and preserved by images,

(2) the property Q = ‘additively <κ-Noetherian’ is hereditary and pre-
served by images, while

(3) the property Q = ‘additively Noetherian’ is productive.
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Proof. Claim (1) is immediate, as is the fact that additively <κ-Noe-
therian is hereditary. Claim (3) was established by Nyikos [N]. We indicate
why additively <κ-Noetherian is preserved by images.

Fix spaces X and Y , a collection C of subsets of X, and a map f of X
into Y . Applying clause (4) of Lemma 1.4 it is simple to see that if f(C) is
not additively <κ-Noetherian then neither is C.

Recall that in this paper all partial orders P are directed (in other words,
<ℵ0-directed), and note that the trivial partial order 1 is (trivially!) <κ-
directed for all κ. Thus we deduce:

Corollary 1.11.

(1) If f : X → Y is a closed surjection and X has a Q point network
then so does Y , whenever Q is closed under images.

(2) If f : X → Y is a perfect surjection and X has a P -additively
<κ-Noetherian point network then so does Y .

(3) If f : X → Y is a perfect surjection and X has a P -finite point
network then so does Y .

Covering properties from point networks. A space is said to be
P -meta-<κ-compact if every open cover has a P -point-<κ open refinement.
Let us abbreviate ‘P -meta-<ℵ0-compact’ to ‘P -metacompact’. Note that a
space is metacompact if and only if it is 1-metacompact, σ-metacompact if
and only if it is N-metacompact, and is meta-Lindelöf if and only if it is
1-meta-<ℵ1-compact.

Theorem 1.12. If a space has a P -additively <κ-Noetherian point net-
work then it is P -meta-<κ-compact.

Proof. Let W = {W(x) : x ∈ X}, where W(x) =
⋃
p∈P Wp(x), each

Wp(x) is <κ-additively Noetherian, if p ≤ q then Wp(x) ⊆ Wq(x), and this
whole structure is a point network for X.

We showX is P -meta-<κ-compact. To this end take any open cover ofX,
say U = {Uα : α < τ}. For each α and p ∈ P define Vα,p =

⋃
{V (x, Uα) :

x ∈ Uα \
⋃
{Uβ : β < α}, p(x, Uα) = p}. Set V≤p = {Vα,p′ : α < τ, p′ ≤ p}

and V =
⋃
p∈P V≤p.

Then V clearly is an open refinement of U . It is also clear that if p ≤ q
then V≤p ⊆ V≤q. So it remains to show that each V≤p is point-<κ. Suppose
not. Then there is a point y in X such that for each γ < κ, y is in some
V (xγ , Uαγ ), where xγ ∈ Uαγ \

⋃
{Uβ : β < αγ}, p(xγ , Uαγ ) = pγ ≤ p and

δ < γ implies αδ < αγ . Hence, for each γ < κ, there is a Wγ in Wpγ (y)
⊆ Wp(y) such that xγ ∈ Wγ ⊆ Uαγ . Thus, for each δ < γ < κ we see
that xγ ∈ Wγ , but xγ /∈ Uαδ ⊇ Wδ. But by Lemma 1.4(4) this explicitly
contradicts the fact that Wp(y) is <κ-additively Noetherian.
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From Proposition 1.8 and Lemma 1.10 we deduce:

Corollary 1.13.

(1) For any κ, a space with a P -additively <κ-Noetherian point network
is hereditarily P -meta-<κ-compact.

(2) A finite product of spaces each with a P -additively Noetherian point
network is (hereditarily) P -metacompact.

For compacta, off-diagonal covering properties give almost sub-
bases. For a compact space X we have shown that if X has a suitable al-
most subbase then it is hereditarily P -meta-<κ-compact for some directed
set P and infinite cardinal κ. We now attempt to close the loop and prove:

Theorem 1.14. Let X be a compact space. If X2 \ ∆ is P -meta-<κ-
compact then X has a (P × N)-point-<κ almost subbase.

The proof is essentially the same as that given by Garćıa et al. [GOO] for
the case when P = K(M), which in turn was a straightforward extension of
Gruenhage’s original argument for the P = N case. Consequently, we only
sketch the proof for general directed sets P . We start with a lemma which
is the P -analogue of [GOO, Proposition 23].

Lemma 1.15. Let X be a P -meta-<κ-compact, locally compact space,
and let B be a basis for X. Then X has a subcover B′ ⊆ B such that {B :
B ∈ B′} is a P -point-<κ family.

The proof of this lemma is identical to that of [GOO, Proposition 8]; it
suffices to replace references in that argument of ‘point finite’ with ‘point-
<κ’ and ‘K ∈ K(M)’ with ‘p ∈ P ’, as nothing specific about the partial
order of set inclusion on K(M) is used.

Our Theorem 1.14 is essentially the content of the part ‘(ii) implies (i)’
of [GOO, Theorem 24]. We follow their argument making the necessary
adjustments.

Proof of Theorem 1.14. Since X2 \∆ is P -meta-<κ-compact, applying
Lemma 1.15 to B = {U × V : U, V are cozero subsets of X such that
U ∩ V = ∅} and tidying, we obtain a cover P = {Uγ × Vγ : γ ∈ A} of
X2 \ ∆ with the following properties: (a) Uγ and Vγ are cozero sets of X,
(b) Uγ ∩ Vγ = ∅, (c) {Uγ × Vγ : γ ∈ A} is P -point-<κ, and (d) if U × V is
in P then so is V × U .

Suppose X = {pα : α < µ} where µ = d(X) (the minimal size of a dense
set of X). Set, for each α < µ, Xα = {pβ : β < α} and Uα = {

⋂
γ∈F Uγ :

F ⊆ A and {Vγ : γ ∈ F} is a finite minimal cover of Xα}.
Note that Uα covers X \ Xα. Then the family U =

⋃
{Uβ : β < µ} is

T0-separating as in [G, Theorem 2.2, Claim 2]. Since the elements of U are
cozero sets, and X is compact, we deduce that U is an almost subbase for X.
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It remains to show that U is a (P × N)-point-<κ family. Well, we know
that A =

⋃
{Ap : p ∈ P} where Ap ⊆ Aq whenever p ≤ q and each family

{Uγ × Vγ : γ ∈ Ap} is point-<κ.
Fix p in P and n in N. For any α, let Upα,n be all members of Uα whose

index set F has size ≤n and is contained in Ap. Let Upn =
⋃
{Upα,n : α < µ}.

Then U =
⋃
{Upn : p ∈ P, n ∈ N} and clearly if p ≤ p′, n ≤ n′ then Upn ⊆ Up

′

n′ .
To complete the proof we will show that Upn is point-<κ. Suppose, for

a contradiction, that for some point x in X and each ρ < κ there are
βρ < µ and sets Fρ ⊆ Ap such that |Fρ| ≤ n, x ∈

⋂
{Uγ : γ ∈ Fρ},

Xβρ ⊆
⋃
{Vγ : γ ∈ Fρ} and Fρ 6= Fσ if ρ 6= σ. Tidying we can assume

βρ ≤ βσ if ρ ≤ σ.
Since for every ρ < κ we have |Fρ| ≤ n and all the Fρ’s are different,

we may assume that {Fρ : ρ < κ} form a ∆-system with root R. Pick
y ∈ Xβ0 \

⋃
{Vγ : γ ∈ R}. Then for each ρ there is a δ(ρ) ∈ Fρ \ R with

y ∈ Vδ(ρ). But then (x, y) ∈
⋂
{Uδ(ρ) × Vδ(ρ) : ρ < κ} and, for all ρ, δ(ρ) is

in Ap, which contradicts {Uγ × Vγ : γ ∈ Ap} being point-<κ.

Characterizations and an application. Recall that a directed set is
not countably directed (every countable subset has an upper bound) if and
only if P ≥T N. In particular N ≥T N × N. Hence if P is not countably
directed then P =T P × Nn for every n in N. Applying this fact and 1.3,
1.5, 1.6, 1.7, 1.13, and 1.14, we establish the equivalence of claims (1) and
(2) of the following theorem, and then the implications (2)⇒(3), (3)⇒(4),
(4)⇒(5), (6)⇒(0) and (0)⇒(2) ((5)⇒(6) being trivial).

Theorem 1.16. Let X be compact. Let P be a directed set which is not
countably directed. Then the following are equivalent:

(0) X is P -Eberlein compact,
(1) X embeds in a Cp(X(F)) where X(F) has a P -ordered compact

cover,
(2) X has a P -point finite almost subbase,
(3) X has a P -point additively Noetherian base,
(4) X has a P -point additively Noetherian expandable network,
(5) X has a P -additively Noetherian strong point network,
(6) X has a P -additively Noetherian point network.

Essentially, only one directed set P is not covered by the above theorem.
To see this take any countably directed P and suppose (1) above holds. Since
P is countably directed, any countable subset of X(F) must be contained
in one of the elements of the P -ordered compact cover provided by (1). It
follows that X(F) is countably compact. As X(F) is paracompact, we see
that X(F) is compact. So we might as well take P = 1, and observe that
X(F) = A(κ) for some κ. Let us deal with this remaining case of P = 1.
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Theorem 1.17. Let X be compact. Then the following are equivalent:

(0) X is Eberlein compact,
(1) X embeds in a Cp(A(κ)),
(2) X has an N-point finite almost subbase,
(3) X has an N-point additively Noetherian base,
(4) X has an N-point additively Noetherian expandable network,
(5) X has an N-additively Noetherian strong point network,
(6) X has an N-additively Noetherian point network.

Proof. The equivalence of (0) and (1)—taking the definition of an Eber-
lein compact space to be one homeomorphic to a weakly compact sub-
space of a Banach space—is due to [AL]. Taking P = 1 and recalling that
N ≥T N × N, by the same argument as above, we have (1)⇒(2), (2)⇒(3),
(3)⇒(4), (4)⇒(5), (5)⇒(6), and (6)⇒(2). Theorem 1.3 tells us that X em-
beds in a Cp(X(F)) where X(F) is σ-compact (has an N-ordered compact
cover). But it is well-known and not difficult to verify that Cp(X(F)) is
then homeomorphic (not linearly) to a subspace of some Cp(A(κ)). So we
get back to (1).

In addition to Amir and Lindenstrauss’ proof of the equivalence of (0)
and (1) in Theorem 1.17, we should also mention that the equivalence of (1)
and (2) is essentially Rosenthal’s theorem [R], and Junnila [J] established
equivalence of (2) and (3).

For completeness we also highlight the cases of Theorem 1.16 for P = NN

and P = K(M) for some separable metrizable M .

Theorem 1.18. Let X be compact. Then the following are equivalent:

(0) X is Talagrand compact,
(1) X embeds in a Cp(X(F)) where X(F) has an NN-ordered compact

cover,
(2) X has an NN-point finite almost subbase,
(3) X has an NN-point additively Noetherian base,
(4) X has an NN-point additively Noetherian expandable network,
(5) X has an NN-additively Noetherian strong point network,
(6) X has an NN-additively Noetherian point network.

The equivalence of (0) and (1) above is due to [M, S].

Theorem 1.19. Let X be compact. Then the following are equivalent:

(0) X is Gul’ko compact,
(1) X embeds in a Cp(X(F)) where X(F) has a K(M)-ordered compact

cover for some non-compact, separable metrizable M .

Further, for a fixed non-compact, separable metrizable space M , the following
are equivalent:
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(2) X has a K(M)-point finite almost subbase,
(3) X has a K(M)-point additively Noetherian base,
(4) X has a K(M)-point additively Noetherian expandable network,
(5) X has a K(M)-additively Noetherian strong point network,
(6) X has a K(M)-additively Noetherian point network.

The equivalence of (0) and (1) above is again due to [M, S]. We observe
that, for a separable metrizable space M , the ordered set K(M) is countably
directed if and only if M is compact (in which case K(M) =T 1).

The equivalence of condition (6) with the others in the theorems above
has a pleasant application. Recall that P -additively Noetherian networks
are preserved by perfect images (Corollary 1.11) to deduce:

Theorem 1.20. Let X be compact. Let P be a directed set which is
either not countably directed or P =T 1. If X satisfies any of the equivalent
conditions of Theorem 1.16, and Y is a continuous image of X, then Y
satisfies the same conditions.

Corollary 1.21. A continuous image of an Eberlein (respectively, Ta-
lagrand or Gul’ko) compact space is again Eberlein (respectively, Talagrand
or Gul’ko).

We note there is nothing new about this result, but emphasize the uni-
form nature of the proofs for Eberlein, Talagrand and Gul’ko compacta, and
mention again the simplicity of the proof in contrast to Rudin’s argument
for Eberlein compacta.

A Corson counter-example and theorem. All of the ingredients
used in the proof of Theorem 1.16 remain true when we replace ‘compact’
with ‘<κ-compact’ and ‘finite’ with ‘<κ’. Except one. In Lemma 1.10(3) we
only assert the productivity of ‘additively Noetherian’ and not the produc-
tivity of ‘additively <κ-Noetherian’ for uncountable κ.

We give here an example of a compact space which shows that no ana-
logue of Theorems 1.17, 1.18 or 1.19 holds for Corson compact spaces. Thus
the request from [GOO] for a network characterization of Corson compacta
remains unfulfilled. Noting that a compact space X is Corson compact if
and only if it embeds in some Cp(L(κ)), and L(κ) has a 1-ordered cover
by <ℵ1-compact sets, we see that the weakest conjecture is that a com-
pact space is Corson if and only if it has a point additively ℵ0-Noetherian
base.

Example 1.22. Let X be the Double Arrow space. Then X is compact,
has a (point) additively ℵ0-Noetherian base but is not Corson compact.

Proof. The Double Arrow space X is hereditarily separable but non-
metrizable, so far from Corson compact. It is also hereditarily Lindelöf. Let



244 Z. Q. Feng and P. Gartside

B be the collection of all open subsets of X. It is a base for X. The hereditary
Lindelöf property immediately shows that condition (3) of Lemma 1.4 holds
for B with κ = ℵ1, so B is additively ℵ0-Noetherian, and a fortiori B is point
additively ℵ0-Noetherian.

Of course, since Corson compactness is evidently finitely productive, we
can bypass the problem by looking at the square of a space rather than the
space itself.

Theorem 1.23. Let X be compact. Then the following are equivalent:

(0) X is Corson compact (i.e. X embeds in a Σ-product of lines),
(1) X has a point countable almost subbase,
(2) X2 has a point additively ℵ0-Noetherian base,
(3) X2 has a point additively ℵ0-Noetherian expandable network,
(4) X2 has a point additively ℵ0-Noetherian strong point network,
(5) X2 has a point additively ℵ0-Noetherian point network.

Why calibre (ω1, ω) is critical. Theorem 1.16 applies to all directed
sets P which are not countably directed (and Theorem 1.17 essentially cov-
ers all the remaining directed sets). A natural question is: for which P is
Theorem 1.16 ‘interesting’? It is striking that this admittedly vague ques-
tion has a clear answer: Theorem 1.16 is interesting if and only if P has
calibre (ω1, ω).

A directed set P has calibre (κ+, κ) if for every κ+-sized subcollection A
of P there is a κ-sized subset A0 of A which has an upper bound in P . We
note that K(M) (and hence NN =T K(NN)) has calibre (ω1, ω). Informally,
the following theorem says that in the case when P does not have calibre
(ω1, ω) then far too many spaces satisfy the conditions of Theorem 1.16 for
it to be of interest. But—provided we agree that Corson compacta are ‘nice’,
and surely we do—the next result also says that when P does have calibre
(ω1, ω) then compact spaces satisfying the conditions of Theorem 1.16 are
‘nice’.

Theorem 1.24. Let P be a directed set.

(1) If P is not calibre (ω1, ω) then every space of weight ≤ ω1 has a P -
point finite base (and hence a P -point finite almost subbase, a P -point
additively Noetherian base/expandable network, and a P -additively
Noetherian (strong) point network).

(2) If P has calibre (ω1, ω) and X is a compact space with a P -finite ad-
ditively Noetherian point network (or a P -point finite almost subbase
et cetera) then X is Corson compact.

Proof (1). Take any space X with weight no more than ω1. Fix a base
B for X where |B| ≤ ω1. List B, with repeats if necessary, as B = {Bα :
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α < ω1}. Then writing B =
⋃
{BF : F ∈ [ω1]

<ω} where BF = {Bα : α ∈ F}
demonstrates that X has a [ω1]

<ω-(point) finite base.

But recall that a directed set P does not have calibre (ω1, ω) if and only
if P ≥T [ω1]

<ω. Hence if P does not have calibre (ω1, ω) then every space of
weight ≤ ω1 has a P -point finite base, as claimed.

To prove the second claim we will use the following lemma of independent
interest.

Lemma 1.25. Let P be a directed set with calibre (κ+, κ), and let C =
{Cp : p ∈ P} be a P -ordered collection.

(a) If each Cp has size <κ, then
⋃
C has size ≤κ.

(b) If each Cp is additively <κ-Noetherian, then
⋃
C is additively ≤κ-

Noetherian.

Proof. First suppose, for a contradiction, that
⋃
C has size >κ but each

Cp has size <κ. Then by transfinite induction we can find, for every α < κ+,
points xα and pα from P such that Cα ∈ Cpα but Cα /∈ Cpβ for any β < α.
By calibre (κ+, κ) applied to {pα : α < κ+}, there is a κ-sized subset S0
of κ+ and a p0 in P such that p0 is an upper bound of {pα : α ∈ S0}. But
now we see that for every α in S0 the element Cα is in Cpα , which is a subset
of Cp0 , and so Cp0 must have size at least κ, contradicting our assumption
on the size of the Cp’s.

To prove (b), suppose, for a contradiction, that
⋃
C is not additively

≤κ-Noetherian. By Lemma 1.4(4), we can find, for all α < κ+, sets Cα
from

⋃
C and xα such that for all β < α < κ+ the point xα is in Cα

but not in Cβ. For each α < κ+, we choose pα ∈ P such that Cα ∈ Cpα .
Similarly, by calibre (κ+, κ) applied to {pα : α < κ+}, there is a κ-sized
subset S0 of κ+ and a p0 in P such that p0 is an upper bound of {pα :
α ∈ S0}. But now we see that, for every α in S0, the element xα is in Cpα ,
which is a subset of Cp0 , and also, for all α, β ∈ S0 with β < α, the
point xα is in Cα but not in Cβ. Applying Lemma 1.4(4) again, we de-
duce Cp0 is not additively <κ-Noetherian, contradicting our assumption on
the Cp’s.

Proof of Theorem 1.24(2). Suppose P has calibre (ω1, ω), and X is a
compact space with a P -additively Noetherian point network. Then Z =
X2 also has a P -additively Noetherian point network, say W = {W(z) :
z ∈ Z} where W(z) =

⋃
{Wp(z) : p ∈ P}. So for each z in Z we see

W(z) is a P -ordered collection of additively Noetherian sets, and hence,
by Lemma 1.25, is ℵ0-additively Noetherian. Hence Z = X2 is hereditarily
meta-Lindelöf. And a compact space is Corson compact if and only if its
square is hereditarily meta-Lindelöf.
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2. Constructing small expandable networks, and point networks

The problem. Our key theorem (Theorem 1.16) states that for a com-
pact space X and directed set P ≥T N, the space X has a P -point finite
almost subbase if and only if it has a P -point additively Noetherian base
(or expandable network), if and only if it has a P -additively Noetherian
(strong) point network. There is an asymmetry here between the situa-
tion with almost subbases compared with bases, expandable networks and
(strong) point networks. While finite families are additively Noetherian, the
converse is not true. The natural problem is whether every compact space
with a P -point finite almost subbase has a P -point finite base or expandable
network, and a P -finite (strong) point network.

The problem has a negative solution for the ‘base’ version. Any space
with an N-point finite base (or even point countable base) is clearly first
countable. But A(ω1) has an N-point finite almost subbase but is not first
countable. In this section we give solutions to the remaining parts of the
problem, which, while incomplete, cover the most important cases (when
P = N, NN or K(M)).

We first show that, provided P has calibre (κ+, κ), a space has a P -
point-<κ expandable network if and only if it has a P -point-<κ strong point
network. So only two questions remain. For general directed sets P it is not
clear to the authors that having a P -point finite almost subbase implies the
existence of a P -point finite expandable network (or even a point network).
But the partial orders motivating us, namely N, NN and K(M), are not
only partial orders but also have natural topologies (discrete, product and
Vietoris, respectively), which interact nicely with their orders. So we briefly
move away from point networks structured by a partial order, and look at
point networks structured by a topological space. We then discuss topo-
logical directed sets, and their connection with topological point networks.
These preliminaries combine in the proof of the main result of this section,
Theorem 2.7, which says that, for suitable topological directed sets P (in-
cluding our motivating examples), every space with a P -point finite almost
subbase has a (P × N)-point finite expandable network.

Strong point networks give expandable networks

Theorem 2.1. Let X be a space. Let P be a directed set with calibre
(κ+, κ). Then the following are equivalent:

(1) X has a P -point-<κ expandable network,
(2) X has a P -<κ strong point network.

Proof. (1)⇒(2). This is an instance of Lemma 1.7 (and does not require
the calibre restriction on P ).
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(2)⇒(1). By hypothesis X has a P -<κ strong point network W =
{W(x) : x ∈ X}, so we can write W(x) =

⋃
p∈P Wp(x) for each x, where

every Wp has size <κ, if p ≤ p′ then Wp(x) ⊆ Wp′(x), and if a point x is
in an open set U , then there is an open set V = V (x, U) containing x and
contained in U , and a p = p(x, U) in P such that whenever y ∈ V then there
is a W in Wp(y) with x ∈W ⊆ V .

We construct by transfinite induction for all α ∈ κ+, p in P and points
x of X: collections Aα and Aα,≤p of pairs of points and open neighbor-
hoods, subsets Xα of X and closed subsets Cxα of X as follows. Let Cxα =
{y : ∃(y, V ) ∈

⋃
β<αAβ, x ∈ V }, Xα = {x : x ∈ Cxα}, Aα be a maximal sub-

collection of {(x, V (x,X\Cxα)) : x /∈ Xα} such that if (x1, V1) and (x2, V2) are
in the collection then either x1 /∈ V2 or x2 /∈ V1, and Aα,≤p = {(x, V ) ∈ Aα :
p(x,X \ Cxα) ≤ p}. (Note: Cx0 = ∅, X0 = ∅ et cetera.) Let A≤p =

⋃
αAα,≤p

and A =
⋃
pA≤p.

Now set Np = {(V ∩W,V ) : there is (x′, V ) ∈ A≤p and W ∈ Wp(x
′)}

and let N =
⋃
pNp. Clearly, if p ≤ q then Np ⊆ Nq. We will show that N is

an expandable network, and each Np is point-<κ.

Fix p. Observe that Np is point-<κ provided A≤p is point-<κ, in the
sense that for any point y the set (A≤p)y := {(x′, V ) ∈ A≤p : y ∈ V } has
size <κ. To establish A≤p point-<κ we define an injection from (A≤p)y into
Wp(y), which we know has size <κ. Take any (x′, V ) in (A≤p)y. So y ∈ V ,
and by definition of a P -ordered strong point network there is a W(x′,V ) in
Wp(y) such that x′ ∈W(x′,V ) ⊆ V .

Let us show that (x′, V ) 7→W(x′,V ) is the desired injection. Well, suppose
(x1, V1) and (x2, V2) are in (A≤p)y. Let Wi = W(xi,Vi) for i = 1, 2. Two
cases arise. Suppose first both pairs are in some Aα,≤p. Without loss of
generality we can suppose x1 /∈ V2. This gives W1 6⊆ W2, and in particular
W1 6= W2. Now suppose (x1, V1) ∈ Aα,≤p and (x2, V2) ∈ Aβ,≤p where α < β.
If W1 = W2 then x2 ∈ V1 and x1 ∈ V2. But this leads to a contradiction
because x2 ∈ V1 = V (x1, X \ Cx1α ) and Cx2β ⊇ {z : there is (z, V ) ∈ Aα and

x2 ∈ V } 3 x1, so x1 /∈ V (x2, X \ Cx2β ) = V2. Thus W1 6= W2 in the second
case as well as the first, and our map is indeed injective.

It remains to show that N is an expandable network. To this end take
any point x in an open set U . We will show that x is in some Xα. If so
then, by definition of Xα and Cxα, the neighborhood V (x, U) of x must meet
{x′ : ∃(x′, V ) ∈

⋃
β<αAβ, x ∈ V }, and there is a point x′ in V (x, U), an

element p0, and (x′, V ) in Aα,≤p0 with x ∈ V . Let p be an upper bound of
p0 and p(x, U). Then (x′, V ) is in A≤p and there is a W inWp(x

′) such that
x ∈W ⊆ U . Now x ∈W ∩ V ⊆ U and (W ∩ V, V ) is in Np, as desired.

Suppose, for a contradiction, that for all α < κ+ the point x is not in Xα.
Then for all α the point x is not in Cxα. As Aα is a maximal subcollection



248 Z. Q. Feng and P. Gartside

of {(x′, V (x′, X \ Cx′α ) : x′ /∈ Cx′α }, there must be a pair (x′, V ) in Aα such
that x ∈ V . However A =

⋃
pA≤p, and for each p in P the set (A≤p)x has

size < κ, so recalling that P has calibre (κ+, κ), applying Lemma 1.25 we
see that there can only be ≤ κ many Aα containing a pair (x′, V ) such that
x ∈ V , a contradiction.

Corollary 2.2.

• (P = N, κ = ℵ0) A space has a σ-point finite expandable network if
and only if it has a σ-finite strong point network.
• (P = K(M), κ = ℵ0) A space has a K(M)-point finite expandable

network if and only if it has a K(M)-finite strong point network.
• (P = NN, κ = ℵ0) A space has an NN-point finite expandable network

if and only if it has an NN-finite strong point network.
• (P = 1, κ = ℵ1) A space has a point countable expandable network if

and only if it has a countable strong point network.

Topological point networks. Let X be a space. Given a space Z and
property Q, we sayW = {W(x) : x ∈ X} is a Z-Q (strong) point network (in
the topological sense) if for each x in X we can write W(x) =

⋃
z∈ZWz(x),

and:

(1) if x is in an open U , then there is an open V = V (x, U) containing x
and contained in U , and a z = z(x, U) in Z such that if y ∈ V then
there is a W in Wz(y) such that x ∈ W ⊆ U (respectively, W ⊆ V
for the strong version),

(2) for all x and z there is an open T around z such that WT (x) =⋃
{Wz′(x) : z′ ∈ T} has Q.

Lemma 2.3. Let a space X have a Z-finite (strong) point network where
Z is a space with P -ordered compact cover. Then X has a P -finite (strong)
point network.

Proof. Let W = {W(x) : x ∈ X} where W(x) =
⋃
z∈ZWz(x) is as in

the definition of a Z-finite (strong) point network, and let Z =
⋃
p∈P Kp be

a P -ordered compact cover of Z. Fix x in X. For each z in Z fix the open
set Tz given by condition (1). Fix p in P . As Kp is compact, some finite
subcollection of {Tz : z ∈ Z} covers Kp. By condition (2) we see thatWKp(x)
is finite (as a subset of a finite union of finite sets). Let Ŵ = {Ŵ(x) : x ∈ X}
where Ŵ(x) =

⋃
p Ŵp(x) and Ŵp(x) = WKp(x). We have just shown that

each Ŵp(x) is finite, and then it is easy to check Ŵ is the desired P -finite
(strong) point network.

Topological directed sets. Topological point networks are relevant
here because the directed sets we are most interested in carry natural topolo-
gies which interact with the order. We call a directed set with a topology a
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topological directed set. Any directed set becomes topological with the dis-
crete topology. More usefully, NN with the product topology and any K(M)
with the Vietoris topology (where M is separable metrizable) are separable
metrizable topological directed sets in which all down sets are compact and
every convergent sequence has an upper bound.

In the next two lemmas we see how the topology of a topological directed
set can influence the order, and vice versa.

Lemma 2.4. Let P be a topological directed set which is sequential, has
countable extent, and every convergent sequence has an upper bound. Then
P has calibre (ω1, ω).

Proof. Take any uncountable subset S of P . Since P has countable extent
and is sequential, S is not a closed discrete subset, so there is a sequence on S
converging to some p in P which is in the closure of S \ {p}. By hypothesis
on P , this infinite sequence has an upper bound. Thus some infinite subset
of S has an upper bound, as required for calibre (ω1, ω) to hold.

Lemma 2.5. Let P be a topological directed set which is first countable,
and every convergent sequence has an upper bound. Let C be a P -finite col-
lection of subsets of a space X. Then for any p ∈ P there exists an open
neighborhood T of p such that

⋃
{Cq : q ∈ T} is finite.

Proof. Fix p in P . Since P is first countable we can fix {Bn : n ∈ N} a
local base at p. Suppose, for contradiction, that for any open neighborhood
T of p the set

⋃
{Cq : q ∈ T} is infinite. Then for each n, we can find pn ∈ Bn

and Cn ∈ Cpn \ {Ci : i < n}. Note that the sequence {pn : n ∈ N} converges
to p. By hypothesis, there is p0 ∈ P such that pn ≤ p0 for all n. Since C
is P -ordered, {Cn : n ∈ N} is an infinite subcollection of Cp0 , which is a
contradiction.

Now we connect topological directed sets and the topological point net-
works of the previous section.

Lemma 2.6. Let P be a topological directed set in which down sets are
compact. Then if a space X has a P -finite (strong) point network in the
topological sense then it also has a P -finite (strong) point network in the
order sense.

Proof. Since the down sets are compact and P =
⋃
p∈P (↓p), the space

P has a P -ordered compact cover, so we can apply Lemma 2.3.

Some almost subbases give small expandable networks

Theorem 2.7. Let P be a topological directed set which is separable
metrizable, down sets are compact and every convergent sequence has an
upper bound. If a space X has a P -point finite almost subbase then it has a
(P × N)-point finite expandable network.
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Proof. Let B be a countable base for P . Give Q = [B]<ω the discrete
topology, and order it by ⊆. Note that P×N×Q is a topological directed set
(with product partial order and topology) with the same properties hypoth-
esized for P . We will show that X has a (P×N×Q)-finite topological strong
point network. Then, by Lemma 2.6, X has a (P ×N×Q)-finite strong point
network (in the order sense). Lemma 2.4 permits us to apply Theorem 2.1,
and, after noting that P × N×Q =T P × N, the proof is complete.

Let α =
⋃
{αp : p ∈ P} be an almost subbase for X, with respect to

{fV }V ∈α, where each αp is point finite and αp ⊆ αp′ if p ≤ p′. We assume,
without loss of generality, that each αp is closed under finite intersections.
For any S ⊆ P write αS =

⋃
{αp : p ∈ S}. Fix an enumeration of B. Because

P has the relevant order and topological properties, we know (Lemma 2.5)
that for every p in P and x in X there is a B in B containing p such that
(αB)x is finite. Let B(p, x) be the first member in the enumeration of B such
that p ∈ B(p, x) and (αB(p,x))x is finite.

Fix x ∈ X. Fix p ∈ P , m ∈ N and B0 in Q. Let Wp,m,B0(x) be all (finite)
intersections of:

(i) A ∈ (αB(p,x))x,

(ii) sets of the form A \ f−1A′ [1/n, 1] where A and A′ are in (αB(p,x))x,

n ≤ m and x /∈ f−1A′ [1/n, 1], and
(iii) WB,x = X \

⋃
{A ∈ αB : x /∈ A} for B in B0.

Note that Wp,m,B0(x) is finite. Let W(x) =
⋃
{Wp,m,B0(x) : p ∈ P, m ∈ N

and B0 ∈ Q}.
We show that W = {W(x) : x ∈ X} is a (P × N×Q)-finite topological

strong point network. To do so we need to check (1) and (2) in the definition.

For (1): Take any point x in an open set T . Since α∪ {X \ f−1A [1/n, 1] :
A ∈ α} is a subbase and P is directed, there is a p0 ∈ P , M ∈ N,
A0 ∈ αp0 , A1, . . . , Ak in αp0 , n1, . . . , nk ≤ M such that x ∈ A0 ∩

⋂k
i=1(X \

f−1Ai [1/ni, 1]) ⊆ T .

Let p(x, T ) = (p0,M, {B(p0, x)}) and V = V (x, T ) =
⋂

(αB(p0,x))x ∩⋂k
i=1(X \ f

−1
Ai

[1/ni, 1]). Then x is in V , which is open, and V ⊆ T .

Take any y in V . Then y is in (αB(p0,x))x, so (αB(p0,x))y ⊇ (αB(p0,x))x. It
follows that x ∈WB(p0,x),x ⊆WB(p0,x),y. Let V0 =

⋂
(αB(p0,x))x. Relabelling

if necessary, we can let V1 =
⋂p
i=1(A0 \ f−1Ai [1/ni, 1]) and V2 =

⋂k
i=p+1(X \

f−1Ai [1/ni, 1]), where y is in Ai for i ≤ p but y /∈ Ai for i > p. So V =

V0 ∩ V1 ∩ V2. Let W =
⋂

(αB(p0,x))x ∩
⋂p
i=1(A0 \ f−1Ai [1/ni, 1]) ∩WB(p0,x),y.

Then each element in this (finite) intersection is as required for W to be in
Wp(x,T )(y) =Wp0,M,{B(p0,x)}(y). Each element in the intersection contains x,
so x is in W .
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It remains to show that W is contained in V . Clearly W = V0 ∩ V1 ∩
WB(p0,x),y. So it suffices to see that WB(p0,x),y ⊆ V . But for i > p, as y /∈ Ai,
by definition we see that WB(p0,x),y ⊆ X \Ai and X \Ai ⊆ X \ f−1Ai [1/ni, 1].

Hence WB(p0,x),y ⊆
⋂k
i=p+1(X \ f

−1
Ai

[1/ni, 1]).

For (2): Fix (p,m,B0) in P×N×Q. We need to show that there is a neigh-
borhood T of it such thatWT (x) is finite. Indeed, we claimWB(p,x)×{(m,B0)}(x)
is finite. Take any p′ in B(p, x). Elements of Wp′,m,B0(x) are intersections of
three types. Those of type (iii) are exactly the same as inWp,m,B0(x). Those
of type (i) and (ii) come from A’s in (αB(p′,x))x. By definition, B(p′, x) is
either B(p,m) or occurs before it in the enumeration of B. Hence {B(p′, x) :
p′ ∈ B(p, x)} is finite. So there are only finitely many A’s going into types
(i) and (ii), and hence WB(p,x)×{(m,B0)}(x) is finite, as claimed.

Further characterizations

Theorem 2.8. Let X be compact. Let P be a topological directed set
which is separable metrizable, but not compact, down sets are compact, and
every convergent sequence has an upper bound. Then the following are equi-
valent:

(0) X is P -Eberlein compact,
(1) X has a P -point finite almost subbase,
(2) X has a P -point additively Noetherian base,
(3) X has a P -point finite expandable network,
(4) X has a P -finite strong point network,
(5) X has a P -finite point network.

Theorem 2.9. Let X be compact. Then the following are equivalent:

(0) X is Eberlein compact,
(1) X has an N-point finite almost subbase,
(2) X has an N-point finite expandable network,
(3) X has an N-finite point network.

As mentioned above, the equivalence of (0) and (2) is due to [DJP].

Theorem 2.10. Let X be compact. Then the following are equivalent:

(0) X is Talagrand compact,
(1) X has an NN-point finite almost subbase,
(2) X has an NN-point finite expandable network,
(3) X has an NN-finite point network.

Theorem 2.11. Let X be compact. Then the following are equivalent:

(0) X is Gul’ko compact,
(1) X has a K(M)-point finite almost subbase,
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(2) X has a K(M)-point finite expandable network,
(3) X has a K(M)-finite point network,

where in (1)–(3), M is some separable metrizable space.

At first glance the equivalence of (0) and (2) in the preceding two re-
sults are related to results of Garćıa, Oncina and Orihuela [GOO]. How-
ever Orihuela [O], on behalf of the authors of [GOO], has informed the
present authors that the definition of ‘index-M -point finite family’ (Def-
inition 13) needs to be modified by adding the following sentence: ‘with
IK1 ⊂ IK2 and ξ be the inclusion map whenever K1 ⊂ K2’ to condi-
tion (ii). With this change their solution, presented in [GOO], to a problem
of Gruenhage is correct. But it also means that the proof of Theorem 18
(which is used in their argument that every Gul’ko compact space has a
Σ-point-finite expandable network) is incorrect. On the other hand, with-
out this change Lemma 15 is false, and every space with network weight
no more than the continuum has a Σ-point finite expandable network. Ei-
ther way, no characterization of Gul’ko (or Talagrand) compacta in terms
of a network is obtained, and the authors of [GOO] have withdrawn this
claim.

Without compactness. Theorem 2.8 is stated for compact spaces.
However the implications (1)⇒(2), (3)⇔(4), and (4)⇒(5) hold for general
spaces. The authors do not know of an example when condition (5) does
not give condition (4). The following example gives a strong (non-compact)
counter-example to (3)⇒(2) with P = N.

Lemma 2.12. There is a countable space with a point finite expandable
network but no N-point additively Noetherian base.

Proof. Let Fω be the Fréchet fan. So Fω is obtained from ω× (ω+ 1) by
identifying the end points (m,ω) to a point ∗. LetN ={({(m,n)}, {(m,n)}) :
m,n ∈ ω} ∪ {({∗}, Fω)}. This can easily be checked to be a point finite
expandable network.

To complete the proof we show that ∗ has no N-additively Noetherian
base. If U is an open neighborhood of ∗ then define fU in ωω by fU (m) =
min{n : (m,n) ∈ U}. Conversely, if g ∈ ωω then define Ug = {(m,n) :
g(m) ≤ n} ∪ {∗} an open neighborhood of ∗. Suppose

⋃
{Bn : n ∈ N} is

a neighborhood base for ∗. We show there is an N such that BN is not
additively Noetherian. Observe that

⋃
{Fn : n ∈ N} where Fn = {fU :

U ∈ Bn} is a dominating family in (ωω,≤∗) (here ≤∗ is the mod-finite
order). So for some N we can see that FN is dominating in (ωω,≤∗). Let
B = BN and F = FN . Hence there is a subset G = {gα : α < b} of F such
that G is unbounded and gα <

∗ gβ if α < β, where b is the minimal size of an
unbounded family in (ωω,≤∗). Define, by recursion, a decreasing sequence
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(Sn)n∈ω of cofinal subsets of b such that, for all α ∈ Sn, gα(n) = kn for
some fixed kn. Define k in ωω by k(n) = kn. Set n0 = 0. As G is unbounded,
and S0 is cofinal in b, there is an α0 in S0 such that gα0 6≤∗ k. So, for
infinitely many n, k(n) < gα0(n). Let n1 be the first such n. Next choose
α1 ∈ Sn1 , α0 < α1. Then gα0 <∗ gα1 and gα1(n1) = k(n1) < gα0(n1).
And now choose n2 > n1 such that k(n2) < gα0(n2) < gα1(n2). Proceeding
inductively, we find a strictly increasing sequence (αi)i∈ω of ordinals and
(ni)i of integers such that, for every p ∈ ω, gαp(np) = k(np) < min{gαi(np) :
0 ≤ i < p} and (gαi)i is strictly increasing with respect to <∗. The gαi ’s are
in F , and hence of the form gαi = fUi for some Ui in B. So, by definition
of fUi , for each p, (np, gαp(np)) ∈ Up, but, since gαp(np) < min{gαi(np) :
0 ≤ i < p}, for i < p, we have (np, gαp(np)) /∈ Ui. From the last line
and Lemma 1.4(4), it follows that B = BN is not additively Noetherian, as
desired.

Our final example shows that for non-compact spaces condition (2) in
Theorem 2.8 does not imply (5), even with P = 1 in the hypothesis and
‘P of calibre (ω1, ω)’ in the conclusion.

Lemma 2.13. There is a space with point additively Noetherian base but
no countable point network, and hence no P -finite point network for any P
with calibre (ω1, ω).

Proof. Let X = {0, 1}ω1 . For any x ∈ X, a basic open neighborhood of x
is Bα(x) = {y : y(γ) = x(γ) for all γ < α} for α < ω1. Then B = {Bα(x) :
x ∈ X and α < ω1} is a base. Note that: (1) given any two elements of B,
either they have empty intersection or one is a subset of the other; (2) any
countable intersection of B is either empty or in B; and (3) any countable
subset of X is closed and discrete. For any x,y ∈ X, x ∈ Bα(y) implies
that Bα(x) = Bα(y). Therefore, for any x ∈ X, (B)x = {Bα(x)}. We can
see that (B)x ordered by reverse inclusion is order-isomorphic to ω1. So B is
point additively Noetherian.

Suppose, for a contradiction, that X has a countable point network,
W =

⋃
{W(x) : x ∈ X}. Also, for each x ∈ X and an open set U contain-

ing x, we have the corresponding V (x, U). We can assume that V (x, U) is
in B.

Pick x0 ∈ X, and let V0 = V (x0, X). If α is a successor, pick xα ∈ Vα−
and xα 6= xβ for all β < α, and also let Vα be a basic open neighborhood
of xα which is a subset of V (xα, Vα−) ∩ Bα(xα) \ {xβ : β < α}. If α is a
limit ordinal, pick xα ∈

⋂
{Vβ : β < α} with xα 6= xβ for all β < α, and let

Vα be a basic open neighborhood of xα which is a subset of V (xα,
⋂
{Vβ :

β < α}) ∩ Bα(xα) \ {xβ : β < α}. We get a transfinite sequence of points
{xα : α < ω1}, together with a decreasing transfinite sequence of basic open
sets {Vα : α < ω1}. Note that

⋂
{Vα : α < ω1} is not empty. Then there
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is a y ∈
⋂
{Vα : α < ω1}. For each α < ω1, there is a Wα ∈ W(y) such

that xα+1 ∈Wα ⊆ Vα. SinceW(y) is countable, there exists an uncountable
subset A of ω1 such that Wα is a fixed W for each α ∈ A. Since y ∈ Bα(xα),
we have Bα(xα) = Bα(y). Choose β ∈ A; then xβ+1 ∈ W . Since xβ+1 6= y
and A is uncountable, we can find γ ∈ A such that xβ+1 /∈ Bγ(y). However,
since y ∈ V (xγ+1, Vγ), we have W ⊆ Vγ , which is a subset of Bγ(y). This
contradicts the fact that xβ+1 /∈ Bγ(y).
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