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On Erb’s uncertainty principle

by

Hubert Klaja (Québec)

Abstract. We improve a result of Erb, concerning an uncertainty principle for or-
thogonal polynomials. The proof uses numerical range and a decomposition of some mul-
tiplication operators as a difference of orthogonal projections.

1. Introduction. The aim of this paper is to improve a result of Erb
[Erb13] about an uncertainty principle for orthogonal polynomials. The un-
certainty principle asserts that a non-zero function and its Fourier transform
cannot be simultaneously small. There exist many mathematical interpre-
tations of this assertion (see [HJ94]). One way to quantify this statement
is to use the notion of annihilating pairs (see Definition 2.1). Slepian and
Pollak [SP61] proved that a non-zero function f ∈ L2(R) and its Fourier
transform cannot be both supported on intervals. Using numerical range,
Lenard [Len72] proved that a non-zero function and its Fourier transform
cannot have their support in some bounded measurable sets at the same
time. Amrein and Berthier [AB77] also proved a similar result for sets of fi-
nite Lebesgue measure. Nazarov [Naz93] gave an explicit upper bound on the
annihilating constant, and Jaming [Jam07] generalized this result in L2(Rd).
We invite the reader to consult the survey of Folland and Sitaram [FS97]. In
[Kla14] some new connections between numerical range of orthogonal pro-
jections and uncertainty principles were obtained. For some background on
numerical range, we refer the reader to [GR97].

In 2013, Erb [Erb13] found an analogue to Slepian and Pollak’s uncer-
tainty principle in the context of orthogonal polynomials. We will recall the
results of Erb and briefly explain how they are related to the numerical
range of some operators. Let ω : [−1, 1] → [0,∞[ be a positive weight such

2010 Mathematics Subject Classification: Primary 47A12, 42C02; Secondary 47B38,
42A52.
Key words and phrases: orthogonal polynomials, annihilating pairs, strong annihilating
pairs, uncertainty principle, numerical range, difference of orthogonal projections.
Received 12 March 2015; revised 8 February 2016 and 9 March 2016.
Published online 18 April 2016.

DOI: 10.4064/sm8241-3-2016 [7] c© Instytut Matematyczny PAN, 2016



8 H. Klaja

that supp(ω) = [−1, 1] and for every n ∈ N,
�

[−1,1]

xnω(x) dx <∞.

We consider the Hilbert space L2([−1, 1], ω) with the inner product

〈f, g〉 =
�

[−1,1]

f(x)g(x)ω(x) dx.

Denote by {pl}∞l=0 the family of orthogonal polynomials with positive leading
coefficient such that pl is of degree l and is normalized (i.e. ‖pl‖ = 1). Those
polynomials satisfy a three-term recurrence relationship

bl+1pl+1(x) = (x− al)pl(x)− blpl−1(x).

We say that the weight ω belongs to the Nevai classM(0, 1) if limn→∞ an = 0
and limn→∞ bn = 1/2. We say that ω belongs to the Nevai subclassM∗(0, 1)
if ω ∈ M(0, 1), supp(ω) = [−1, 1] and

∑
n∈N |an| + |bn − 1/2| < ∞. Let

f ∈ L2([−1, 1], ω) and define

ε(f) = 〈Mxf, f〉 =
�

[−1,1]

x|f(x)|2ω(x) dx.

If ‖f‖ = 1, then ε(f) can be interpreted as the location of the average of
the L2 mass of f . Denote by Πm

n the orthogonal projection on the subspace
span{pl : m ≤ l ≤ n}. In [Erb13], Erb was interested in the following set:

Wε,Πm
n

= {(ε(f), ‖Πm
n f‖2) : f ∈ L2([−1, 1], ω), ‖f‖ = 1}.

After identifying R2 with C we can see that Wε,Πm
n

is a numerical range.
Indeed, if f ∈ L2([−1, 1], ω) is such that ‖f‖ = 1, we have

ε(f) + i‖Πm
n f‖2 = 〈Mxf, f〉+ i〈Πm

n f,Π
m
n f〉 = 〈Mxf, f〉+ i〈(Πm

n )∗Πm
n f, f〉

= 〈Mxf, f〉+ i〈(Πm
n )2f, f〉 = 〈Mxf, f〉+ i〈Πm

n f, f〉
= 〈(Mx + iΠm

n )f, f〉.

Therefore Wε,Πm
n

= W (Mx + iΠm
n ). Write

xmn,max = supσ(Πm
n MxΠ

m
n ) and xmn,min = inf σ(Πm

n MxΠ
m
n ).

We set

γ1 : [xmn,max, 1]→ R, x 7→ 1

2
+

1

2
(xxmn,max + (1− x2)1/2(1− (xmn,max)2)1/2),

and

γ2 : [−1, xmn,min]→ R, x 7→ 1

2
+

1

2
(xxmn,min + (1− x2)1/2(1− (xmn,min)2)1/2).
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Denote

A =

{
(x, y) ∈ [−1, 1]× [0, 1] : y <

1− x
1− xmn,max

, y <
1 + x

1 + xmn,min

}
,

C1 = {(x, y) ∈ [−1, 1]× [0, 1] : x ∈ ]xmn,max, 1[, y > γ1(x)},
C2 = {(x, y) ∈ [−1, 1]× [0, 1] : x ∈ ]− 1, xmn,min[, y > γ2(x)}.

Now we can state Erb’s result [Erb13].

Theorem 1.1 ([Erb13]). Let ω ∈M∗(0, 1). Then

A ⊂W (Mx + iΠm
n ) ⊂ [−1, 1]× [0, 1] \ (C1 ∪ C2).

This uncertainty principle says that if a function has the average of its
L2 mass too close to 1, it cannot be well approximated by the polynomials
generated by pn, . . . , pm. The same phenomenon appears also at −1.

The goal of this paper is to generalize Erb’s result (see Theorem 4.3).
We will remove the condition that ω must belong to the Nevai subclass.
Moreover we will replace the orthogonal projection Πm

n on the subspace
generated by the polynomials pn, . . . , pm with the orthogonal projection Π
onto a subspace generated by finitely many arbitrary continuous functions.
We will also replace multiplication by the independent variable Mx with
multiplication by a continuous odd function Mφ.

In order to prove the main result, we need some information on the
numerical range of Mφ + iΠ. The idea is to write Mφ as a difference of
orthogonal projections P − Q. Then we will prove that (P,Π) and (Q,Π)
are strong annihilating pairs. As we will use numerical range, it will be easy
to transfer those uncertainty principles to (Mφ, Π).

The paper is organized as follows. In Section 2, we recall some results
that we will need. In Section 3, we write Mφ as a difference of orthogonal
projections. In Section 4, we prove the main result (Theorem 4.3).

2. Preliminaries. In this section we recall the results that we will need.
First we introduce the notion of annihilating pairs.
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Definition 2.1. Let P,Q ∈ B(H) be orthogonal projections. We say
that (P,Q) is an annihilating pair (a-pair) if RanP ∩ RanQ = {0}.

Definition 2.2. Let P,Q ∈ B(H) be orthogonal projections. We say
that (P,Q) is a strong annihilating pair (strong a-pair) if there exists a
constant C > 0 such that for every f ∈ H, we have

‖f‖2 ≤ C
(
‖(I − P )f‖2 + ‖(I −Q)f‖2

)
.

It is easy to see that a strong a-pair is an a-pair, but in general the
converse is not true. However, it is true under some additional assumptions.

Definition 2.3. Let P,Q ∈ B(H) be orthogonal projections. We say
that (P,Q) is a compact pair if PQ is a compact operator.

Lemma 2.4. Let P,Q ∈ B(H) be orthogonal projections. If (P,Q) is an
a-pair and a compact pair, then (P,Q) is a strong a-pair.

The following theorem is a direct corollary of a result of Lenard [Len72]
and can also be found in [HJ94].

Theorem 2.5. Let P,Q ∈ B(H) be orthogonal projections. Suppose that
(P,Q) is an a-pair and a compact pair. Denote xM = supσ(PQP ) and let

γ : [xM , 1]→ R,

x 7→ 1

2

(
1 + (2x− 1)(2xM − 1) + 4

√
(1− x)x

√
(1− xM )xM

)
.

Then

W (P + iQ) ⊂ {x+ iy : 0 ≤ x ≤ 1, 0 ≤ y ≤ min{1, γ(x)}}.

1 + ixM

xM + i

W (P + iQ)

0 1

1 + ii

Fig. 2

3. Difference of orthogonal projections. Let φ : [−1, 1] → [−1, 1]
be an odd function. In this section, we will write the operator Mφ as a
difference of orthogonal projections. Denote Pos = L2([0, 1], ω) and Neg =
L2([−1, 0], ω). Let Ψ : [0, 1] → T be a measurable function. We define an
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operator VΨ : Pos → Neg by setting, for every h ∈ Pos and almost every
x ∈ [−1, 0],

VΨh(x) = h(−x)

√
ω(−x)

ω(x)
Ψ(−x).

The operator VΨ is well defined because Ψ is bounded and measurable. For
every h̃ ∈ Neg and almost every x ∈ [0, 1] we have

V ∗Ψ h̃(x) = h̃(−x)

√
ω(−x)

ω(x)
Ψ(x).

So for almost every x ∈ [−1, 0],

VΨV
∗
Ψ (h)(x) = h(x)

√
w(x)

w(−x)

√
ω(−x)

ω(x)
Ψ(−x)Ψ(−x) = h(x).

Therefore VΨV
∗
Ψ = INeg. In the same way, we can prove that V ∗Ψ VΨ = IPos .

Moreover for every h ∈ Pos we have

‖VΨh‖2Neg =
�

[−1,0]

|h(−x)

√
w(−x)

w(x)
Ψ(−x)|2w(x) dx

=
�

[−1,0]

|h(−x)|2w(−x) dx = ‖h‖2Pos .

So VΨ is a surjective isometry, and V ∗Ψ is also a surjective isometry. In H =
Pos ⊕Neg we define the orthogonal projections PΨ and QΨ by the formulas

PΨ =
1

2

 M1+φ M√
1−φ2V

∗
Ψ

VΨM√1−φ2 VΨM1−φV
∗
Ψ

 ,

QΨ =
1

2

 M1−φ M√
1−φ2V

∗
Ψ

VΨM√1−φ2 VΨM1+φV
∗
Ψ

 .

The operators PΨ and QΨ are indeed orthogonal projections, because they
satisfy P 2

Ψ = PΨ = P ∗Ψ and Q2
Ψ = QΨ = Q∗Ψ . As φ is odd, the following

diagram is commutative:

Neg

V ∗
Ψ
��

Mφ // Neg

Pos
−Mφ // Pos

VΨ

OO

Therefore

Mφ =

(
Mφ 0

0 −VΨMφV
∗
Ψ

)
= PΨ −QΨ .
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We will now prove thatRan(PΨ ) is the subspace of all functions inL2([−1,1],ω)
such that there exists h ∈ Pos such that

PPosf = M√1+φh and PNegf = VΨM√1−φh.

Denote this subspace by EΨ . First we will prove that Ran(PΨ ) ⊂ Eψ. Let
gPos ∈ Pos and gNeg ∈ Neg . Denote g = gPos ⊕ gNeg . We have

PPosPΨg =
1

2

(
M1+φ(gPos) +M√

1−φ2V
∗
Ψ (gNeg)

)
=

1

2
M√1+φ

(
M√1+φgPos +M√1−φV

∗
Ψ (gNeg)

)
.

Let h = 1
2(M√1+φgPos +M√1−φV

∗
Ψ (gNeg)). Then PPosPΨg = M√1+φh. In the

same way, we get

PNegPΨg =
1

2

(
VΨM√1−φ2(gPos) + VΨM1−φV

∗
Ψ (gNeg)

)
=

1

2
VΨM√1−φ

(
M√1+φ(gPos) +M√1−φV

∗
Ψ (gNeg)

)
= VΨM√1−φh.

So PΨg ∈ EΨ and therefore Ran(PΨ ) ⊂ EΨ .
Now we will prove that EΨ ⊂ Ran(PΨ ). Let g ∈ EΨ , and let h ∈ Pos be

such that PPosg = M√1+φh and PNegg = VΨM√1−φh. We have

PΨg =
1

2

 M1+φ M√
1−φ2V

∗
Ψ

VΨM√1−φ2 VΨM1−φV
∗
Ψ

( M√1−φh

VΨM√1−φh

)

=
1

2

(
M√1+φM1+φh+M√1+φM1−φh

VΨM√1−φM1+φh+ VΨM√1−φM1−φh

)

=

(
M√1+φh

VΨM√1−φh

)
= g.

Therefore g ∈ Ran(PΨ ) and EΨ ⊂ Ran(PΨ ). We have just proved the fol-
lowing lemma.

Lemma 3.1. Let φ : [−1, 1] → [−1, 1] be an odd function and let Ψ :
[0, 1] → T be measurable. Then there exist orthogonal projections PΨ and
QΨ such that Mφ = PΨ −QΨ and Ran(PΨ ) = EΨ .

The fact that Ψ is measurable and of modulus one is what makes VΨ well
defined and gives the isometry between Pos and Neg .

Definition 3.2. Denote by NC (ω) the set of all measurable function
Ψ : [0, 1] → T such that for every open subset I ⊂ [0, 1] and every g :
[0, 1]→ C such that for almost every x ∈ [0, 1], g(x)

√
ω(−x) =

√
ω(x)Ψ(x),

the restriction of g to I is discontinuous.
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This class of functions is not empty. If we want to exhibit an element of
NC(1), we have to find a “highly discontinuous” function. The first candi-
date that comes to mind is exp(i1Q(x)). However for almost every x ∈ [0, 1],
exp(i1Q(x)) = 1. As 1 is continuous, exp(i1Q(x)) /∈ NC (1). The best strat-
egy to build a function in NC(1) is to create “a lot of jumps” in order
to break the continuity, without any possibility to recover it by modifying
the function on a set of measure zero. Let φ : N → Q ∩ [0, 1] be a bijec-
tion. Denote by δa the Dirac mass at a and let µ =

∑
n∈N 2−kδφ(k). Let

f(x) =
	
[0,1] 1[0,x](t) dµ(t). Then exp(if) ∈ NC (1).

Lemma 3.3. Suppose that φ : [−1, 1] → [−1, 1] is odd, continuous on
[−1, 1], and such that −1 < φ(x) < 1 for every x ∈ ]−1, 1[. Let Ψ ∈ NC (ω).
If f ∈ RanPΨ , then either f = 0 or f is discontinuous.

Proof. We will prove the lemma by contradiction. Suppose that there
exists f ∈ RanPΨ such that f is a non-zero continuous function. According
to Lemma 3.1, there exists a function h ∈ Pos such that for almost every
x ∈ [0, 1] we have

f(x) =
√

1 + φ(x)h(x),

f(−x) =
√

1− φ(x)h(x)

√
ω(x)

ω(−x)
Ψ(x).

As
√

1 + φ(x) does not vanish on [0, 1[, for almost every x ∈ [0, 1] we have

h(x) =
f(x)√

1 + φ(x)
,

and thus

f(−x) =

√
1− φ(x)√
1 + φ(x)

f(x)

√
ω(x)

ω(−x)
Ψ(x).

As f is continuous, the set {x ∈ [−1, 1] : f(x) 6= 0} is open. Moreover f is
non-zero, so at least one of the following two assertions is true:

(1) m({x ∈ [0, 1] : f(x) 6= 0}) 6= 0,
(2) m({x ∈ [−1, 0] : f(x) 6= 0}) 6= 0.

Suppose that (1) is satisfied (the other case can be handled in the same
way). Denote I = {x ∈ ]0, 1[ : f(x) 6= 0}. Then I is an open set. Moreover,
for almost every x ∈ I,

f(−x)

f(x)

√
1 + φ(x)√
1− φ(x)

√
ω(−x) =

√
ω(x)Ψ(x).

This contradicts Ψ ∈ NC (ω).

We summarize this section in the following corollary.
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Corollary 3.4. Suppose that φ : [−1, 1] → [−1, 1] is odd, continuous
on [−1, 1] and such that −1 < φ(x) < 1 for every x ∈ ]−1, 1[. Then there
exist orthogonal projections P and Q such that Mφ = P −Q and RanP does
not contain any non-zero continuous function.

Proof. Take a function Ψ ∈ NC(ω) and apply Lemma 3.3.

The readers interested in pairs of orthogonal projections and differences
of orthogonal projections can consult [Hal69] and [Dav58].

4. Proof of the main result. Now we are ready to prove the main
theorem. First we will take care of what happens around 1+ i. The situation
around −1 + i can be handled in a similar way. Let xM ∈ [0, 1]. Denote

γxM : [xM , 1]→ R,

x 7→ 1

2

(
1 + (2x− 1)(2xM − 1) + 4

√
(1− x)x

√
(1− xM )xM

)
.

Theorem 4.1. Let φ : [−1, 1] → [−1, 1] be odd, continuous on [−1, 1],
and such that −1 < φ(x) < 1 for every x ∈ ]−1, 1[. Let Π be the orthog-
onal projection on a subspace of L2([−1, 1], ω) generated by finitely many
continuous functions. Denote xM = infΨ∈NC (ω) supσ(PΨΠPΨ ). Then

W (Mφ + iΠ) ⊂ {x+ iy : −1 ≤ x ≤ 1, 0 ≤ y ≤ min{1, γxM (x)}}.

Proof. Let Ψ ∈ NC (ω). According to the last section, there exist orthog-
onal projections PΨ and QΨ such that Mφ = PΨ −QΨ and the range of PΨ
contains no non-zero continuous function, i.e. RanPΨ ∩ RanΠ = {0}. In
other words (Pψ, Π) is an a-pair. As Π is a finite rank projection, ΠPΨ is a
compact operator. So (Pψ, Π) is a compact a-pair. We have

W (Mφ + iΠ) = W (P −Q+ iΠ) ⊂W (−Q) +W (P + iΠ).

Denote xΨ = supσ(PΨΠPΨ ). Then by using Theorem 2.5, we get

W (Mφ + iΠ) ⊂
{
x+ iy : −1 ≤ x ≤ 1, 0 ≤ y ≤ min{1, γxΨ (x)}

}
.

The theorem follows by taking the infimum over all functions in NC (ω).

In a similar way, we can prove the following theorem.

Theorem 4.2. Let φ : [−1, 1] → [−1, 1] be odd, continuous on [−1, 1],
and such that −1 < φ(x) < 1 for every x ∈ ]−1, 1[. Let Π be the orthog-
onal projection on a subspace of L2([−1, 1], w) generated by finitely many
continuous functions. Denote xm = infΨ∈NC (ω) supσ(QΨΠQΨ ). Then

W (Mφ + iΠ) ⊂
{
x+ iy : −1 ≤ x ≤ 1, 0 ≤ y ≤ min{1, γxm(−x)}

}
.

Now we can state the main result which is just the combination of The-
orems 4.1 and 4.2.
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Theorem 4.3. Let φ : [−1, 1] → [−1, 1] be odd, continuous on [−1, 1]
and such that −1 < φ(x) < 1 for every x ∈ ]−1, 1[. Let Π be the orthog-
onal projection on a subspace of L2([−1, 1], w) generated by finitely many
continuous functions. Denote xM = infΨ∈NC (ω) supσ(PΨΠPΨ ) and xm =
infΨ∈NC (ω) supσ(QΨΠQΨ ). Then

W (Mφ + iΠ) ⊂
{
x+ iy : −1 ≤ x ≤ 1, 0 ≤ y ≤ min{1, γxM (x), γxm(−x)}

}
.

This improves the result of Erb because now we can consider a weight ω
which is not in the Nevai subclass. This uncertainty principle is now avail-
able for continuous functions (and not just for some consecutive orthogonal
polynomials).

Remark 4.4. Let a = maxσ(ΠMφΠ), b = minσ(ΠMφΠ), c =
maxσ((I −Π)Mφ(I −Π)) and d = minσ((I −Π)Mφ(I −Π)). Recall that
ΠMφΠ is compact. Let xa ∈ Ran(Π) be such that ‖xa‖ = 1 and Mφxa =
axa. Then 〈(Mφ+ iΠ)xa, xa〉 = a+ i ∈W (Mφ+ iΠ). Let xc,n ∈ Ran(I−Π)
be such that ‖xc,n‖ = 1 for every n ∈ N, and limn→∞〈Mφxc,n, xc,n〉 = c.
Then

lim
n→∞

〈(Mφ + iΠ)xc,n, xc,n〉 = c ∈W (Mφ + iΠ).

In the same way, we see that b+ i ∈W (Mφ + iΠ) and d ∈W (Mφ + iΠ).

As the numerical range of an operator is always convex, W (Mφ + iΠ) is
convex and we have

conv{a+ i, b+ i, c, d} ⊂W (Mφ + iΠ).

Remark 4.5. Let k ≤ n ≤ M be positive integers, δ ∈ ]0, 1[ and A ∈
Mn,M (C) be an n by M matrix. We say that A has (k, δ) RIP (see [GJ11]
or [T]) if for every k-sparse vector x ∈ CM , we have

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2.
Denote by Pk the set of all orthogonal projections on k-sparse subspaces
of CM . Then A has (k, δ) RIP if and only if for every x ∈ CM and for every
P ∈ Pk,

(1− δ)‖Px‖2 ≤ ‖APx‖2 ≤ (1 + δ)‖Px‖2,
that is,

(1− δ)〈Px, Px〉 ≤ 〈A∗APx, Px〉 ≤ (1 + δ)〈Px, Px〉.
If Px = 0, this is obviously true. Suppose that Px 6= 0, and denote y =
Px/‖Px‖. Then ‖y‖ = 1, y ∈ Ran(P ) and

(1− δ)〈y, y〉 ≤ 〈A∗Ay, y〉 ≤ (1 + δ)〈y, y〉,
or equivalently

(1− δ)〈Py, y〉 ≤ 〈A∗Ay, y〉 ≤ (1 + δ)〈Py, y〉.
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Therefore, the matrix A ∈ Mn,M (C) has (k, δ) RIP if and only if for every
P ∈ Pk,
[i, (1− δ) + i[∩W (A∗A+ iP ) = ∅, ](1 + δ) + i, 2 + i] ∩W (A∗A+ iP ) = ∅.

Using the fact that the numerical range of a matrix is always closed, we
deduce that if for every P ∈ Pk, we have i /∈ W (A∗A + iP ) and 2 + i /∈
W (A∗A+ iP ), then there exists δ ∈ ]0, 1[ such that A has (k, δ) RIP.

Denote B = A∗A. Then B is selfadjoint, and therefore by the spectral
theorem, there exists a measure µ on R, a function Φ : R → R and a
surjective isometry U : CM → L2(R, µ) such that B = UMΦU

∗. Recall that
the numerical range is invariant under conjugation by a surjective isometry.
In this language, if for every P ∈ Pk, we have i /∈ W (MΦ + iUPU∗) and
2 + i /∈ W (MΦ + iUPU∗), then there exists δ ∈ ]0, 1[ such that A has (k, δ)
RIP.

Recall that Theorem 4.3 says that i /∈W (Mφ+I+ iΠ) = W (M1+φ+ iΠ)
and 2+ i /∈W (M1+φ+ iΠ) for the orthogonal projection Π on any subspace
of finite rank generated by finitely many continuous functions. Therefore we
can interpret Theorem 4.3 as an “infinite-dimensional” manifestation of a
uniform uncertainty principle.
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