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De Lellis–Topping type inequalities for f-Laplacians

by

Guangyue Huang (Xinxiang) and Fanqi Zeng (Shanghai)

Abstract. We establish an integral geometric inequality on a closed Riemannian
manifold with ∞-Bakry–Émery Ricci curvature bounded from below. We also obtain sim-
ilar inequalities for Riemannian manifolds with totally geodesic boundary. In particular,
our results generalize those of Wu (2014) for the ∞-Bakry–Émery Ricci curvature.

1. Introduction. Let (M, g) be an n-dimensional smooth Riemannian
manifold with n ≥ 3 and f be a C2 function on M . We denote by ∇, ∆ and
∇2 the gradient, Laplacian and Hessian operator on M with respect to g,
respectively. Ric and R denote the Ricci curvature and the scalar curvature,
respectively. We let

(1.1) Ricf = Ric +∇2f

stand for the Bakry–Émery Ricci curvature which is also called the ∞-
Bakry–Émery Ricci curvature, i.e., the m =∞ case of the m-Bakry–Émery
Ricci curvature defined by

(1.2) Ricmf = Ricf −
1

m− n
∇f ⊗∇f

with m ≥ n a constant, and m = n if and only if f is a constant. We define
the f -Laplacian

∆f := ef div(e−f∇) = ∆−∇f∇,

which is a self-adjoint operator with respect to the L2(M) inner product:
�

M

u∆fve
−fdvg = −

�

M

∇u∇ve−fdvg =
�

M

v∆fue
−fdvg, ∀u, v ∈ C∞0 (M),

where dvg is the volume form on M .
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An n-dimensional Riemannian manifold (M, g) is said to be Einstein if
its traceless Ricci tensor Ric−(R/n)g is identically zero. The classical Schur
lemma states that the scalar curvature of an Einstein manifold of dimen-
sion n ≥ 3 must be constant. Recently, De Lellis and Topping [DT] (and
independently Andrews, cf. [CLN, Corollary B. 20]) proved the following
almost-Schur lemma:

Theorem 1.1 ([DT]). If (M, g) is a closed Riemannian manifold of
dimension n ≥ 3 with non-negative Ricci curvature, then

(1.3)
�

M

(R−R)2 dvg ≤
4n(n− 1)

(n− 2)2

�

M

∣∣∣∣Ric− R

n
g

∣∣∣∣2 dvg,
or equivalently,

(1.4)
�

M

∣∣∣∣Ric− R

n
g

∣∣∣∣2 dvg ≤ n2

(n− 2)2

�

M

∣∣∣∣Ric− R

n
g

∣∣∣∣2 dvg,
where R denotes the average of R over M . Moreover, equality holds in (1.3)
or (1.4) if and only if M is Einstein.

Generalizing De Lellis and Topping’s results, Cheng [C] proved an almost-
Schur lemma for closed manifolds without assuming the non-negativity of
the Ricci curvature. That is, he obtained a similar inequality with the co-
efficient depending not only on the lower bound of the Ricci curvature but
also on the value of the first non-zero eigenvalue of the Laplace operator.
In the case of dimension n = 3, 4, Ge and Wang [GW1, GW2] proved that
Theorem 1.1 holds under the weaker condition of non-negative scalar cur-
vature. However, as pointed out by De Lellis and Topping [DT], the co-
efficient in (1.3) is optimal and the non-negativity of the Ricci curvature
cannot be removed when n ≥ 5. For the recent research in this direction,
see [GW1, B, H, CZ, K, GWX, P] and the references therein.

Recently, Wu [W] established an integral geometric inequality under the
assumption that the m-Bakry–Émery Ricci curvature is bounded from be-
low. More precisely, he proved

Theorem 1.2 ([W]). If (M, g) is a closed Riemannian manifold of di-
mension n ≥ 3 and f is a C2(M) function with Ricmf ≥ 1

m−n |∇f |
2, then

(1.5)
�

M

(Nm
f −N

m
f )2e−f dvg

≤ 4(m− n+ 1)(m− n− 2)2

(m− n)3

�

M

∣∣∣∣Ricmf +
tr Ricmf
m− n− 2

g

∣∣∣∣2e−m−n+4
m−n

f dvg,



De Lellis–Topping type inequalities for f-Laplacians 191

where

Tmf := R+ 2
m− n− 1

m− n
∆f − m− n− 1

m− n
|∇f |2,

Nm
f := e−

2
m−n

fTmf , N
m
f :=

�

M

Nm
f e
−f dvg

/ �

M

e−f dvg.

Moreover, equality holds in (1.5) if and only if

(1.6) Ricmf +
tr Ricmf
m− n− 2

g = 0.

In particular, letting m→∞ in (1.5) yields the following inequality for
the ∞-Bakry–Émery Ricci curvature:

Theorem 1.3 ([W]). If (M, g) is a closed Riemannian manifold of di-
mension n ≥ 3 and f is a C2(M) function with Ricf ≥ 0, then

(1.7)
�

M

(Tf − T f )2e−f dvg ≤ 4
�

M

|Ricf |2e−f dvg,

where

Tf := R+ 2∆f − |∇f |2, T f :=
�

M

Tfe
−fdvg

/ �

M

e−fdvg.

Moreover, equality holds in (1.7) if and only if Ricf = 0.

In this paper, we are interested in manifolds without the assumption of
non-negative ∞-Bakry–Émery Ricci curvature. More precisely, we prove

Theorem 1.4. If (M, g) is a closed Riemannian manifold of dimension
n ≥ 3 and f is a C2(M) function, then

(1.8)
�

M

(Nf −Nf )2e−f dvg ≤ 4

(
1 +

K

η1

) �

M

|Ricf − λg|2e−f dvg,

where η1 denotes the first non-zero eigenvalue of the f -Laplacian ∆f on M ,

K is a non-negative constant such that the ∞-Bakry–Émery Ricci curvature
Ricf satisfies Ricf ≥ −K, and λ ≥ −K is a real constant. Here

Nf = R+ 2∆f − |∇f |2 + 2λf, Nf =
�

M

Nfe
−f dvg

/ �

M

e−f dvg.

Moreover, equality holds in (1.8) if and only if Ricf = λg.

Our second result is that the conclusion of Theorem 1.4 holds for mani-
folds with totally geodesic boundary:

Theorem 1.5. Suppose (M, g) is a compact Riemannian manifold of
dimension n ≥ 3 with totally geodesic boundary ∂M , and f is a C2(M)
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function. If f satisfies the Dirichlet boundary condition or the Neumann
boundary condition, then

(1.9)
�

M

(Nf −Nf )2e−f dvg ≤ 4

(
1 +

K

ξ1

) �

M

|Ricf − λg|2e−f dvg,

where ξ1 denotes the first non-zero Neumann eigenvalue of ∆f on M , K
is a non-negative constant such that Ricf ≥ −K, and λ ≥ −K is a real
constant.

Moreover, equality holds in (1.9) if and only if Ricf = λg.

Remark 1.1. In particular, Theorem 1.4 reduces to Theorem 1.3 by
letting K = λ = 0. Therefore, our results generalize those of Wu [W] for the
∞-Bakry–Émery Ricci curvature.

2. Proof of Theorem 1.4

Lemma 2.1. Suppose (M, g) is a closed Riemannian manifold of dimen-
sion n ≥ 3 and f is a C2(M) function. For any vector field X on M ,

(2.1) −
�

M

〈X,∇Nf 〉e−f dvg =
�

M

〈Ricf − λg, LXg〉e−f dvg,

where Nf = R+ 2∆f − |∇f |2 + 2λf .

Proof. Take a local orthonormal frame {ei}1≤i≤n on M . Then X = Xiei.
Noticing that the tensor Ricf − λg is symmetric, we have

(2.2)
�

M

〈Ricf − λg, LXg〉e−f dvg = 2
�

M

(Ricf ij − λgij)∇
jXie−f dvg

= − 2
�

M

Xi∇j [(Ricf ij − λgij)e
−f ] dvg

= −
�

M

〈X,∇(R+ 2∆f − |∇f |2 + 2λf)〉e−f dvg,

where we have used the contracted second Bianchi identity 2∇jRij = ∇iR
and the Ricci identity ∇jfij = ∇i(∆f) +Rijf

j .

Proof of Theorem 1.4. We let u : M → R be the unique solution to

(2.3)

∆fu = Nf −Nf ,�

M

ue−f dvg = 0.

Choosing X = ∇u and using (2.3), we obtain
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−
�

M

〈X,∇Nf 〉e−f dvg = −
�

M

〈∇u,∇(Nf −Nf )〉e−f dvg(2.4)

=
�

M

(Nf −Nf )∆fue
−f dvg

=
�

M

(Nf −Nf )2e−f dvg.

On the other hand, by letting X = ∇u and using the Cauchy inequality, we
get

(2.5)
�

M

〈Ricf − λg, LXg〉e−f dvg = 2
�

M

〈Ricf − λ g,∇2u〉e−f dvg

≤ 2

( �

M

|Ricf − λg|2e−f dvg
)1/2( �

M

|∇2u|2e−f dvg
)1/2

.

Integrating the Bochner formula for u (for the elementary proof, see [L, LI]),

(2.6)
1

2
∆f |∇u|2 = |∇2u|2 + 〈∇u,∇∆fu〉+ Ricf (∇u,∇u),

and applying the Stokes formula, we obtain
�

M

|∇2u|2e−f dvg =
�

M

(∆fu)2e−f dvg −
�

M

Ricf (∇u,∇u)e−f dvg(2.7)

≤
�

M

[(∆fu)2 +K|∇u|2]e−f dvg.

Here we have used Ricf ≥ −K.

Let η1 denote the first non-zero eigenvalue of ∆f on M , i.e.,

η1 = inf

{	
M |∇ϕ|

2e−f dvg	
M ϕ2e−f dvg

: ϕ 6≡ 0 and
�

M

ϕe−f dvg = 0

}
.

We have�

M

|∇u|2e−f dvg = −
�

M

u∆fue
−f dvg(2.8)

= −
�

M

u(Nf −Nf )e−f dvg

≤
( �

M

u2e−f dvg

)1/2( �

M

(Nf −Nf )2e−f dvg

)1/2
≤
(	

M |∇u|
2e−f dvg

η1

)1/2( �

M

(Nf −Nf )2e−f dvg

)1/2
.



194 G. Y. Huang and F. Q. Zeng

Thus

(2.9)
�

M

|∇u|2e−f dvg ≤
1

η1

�

M

(Nf −Nf )2e−f dvg.

Substituting (2.9) into (2.7) and noting that K ≥ 0 gives

(2.10)
�

M

|∇2u|2e−f dvg ≤
(

1 +
K

η1

) �

M

(Nf −Nf )2e−f dvg.

Combining (2.4) with (2.5) and (2.10) yields (1.8).
Next, we consider the case of equality in (1.8). Obviously, if Ricf = λg,

then equality holds. Conversely, if equality holds, we claim that u ≡ 0. Thus
Nf −Nf = ∆fu = 0 on M and so Ricf = λg on M .

To the contrary, suppose u is not identically zero. By the proof of (1.8),
the following assertions must hold:

(1) (Ricf +Kg)(∇u,∇u) = 0;
(2) Ricf − λg and ∇2u are linearly dependent;
(3) u and Nf −Nf are linearly dependent;
(4)

	
M (|∇u|2 − η1u2)e−f dvg = 0.

By (1) and the assumption that Ricf +Kg ≥ 0, we have

(2.11) (Ricf +Kg)(∇u, ·) = 0.

By (3), there exists a constant b such that Nf −Nf = bu. Then by (4),�

M

|∇u|2e−fdvg = −
�

M

u∆fue
−fdvg = −

�

M

u(Nf −Nf )e−fdvg

= −
�

M

bu2e−fdvg =
�

M

η1u
2e−fdvg,

and

(2.12) b = −η1, Nf −Nf = −η1u.
By non-triviality of u, Ricf −λg and ∇2u must be non-trivial. [If Ricf = λg,
then u = − 1

η1
(Nf −Nf ) = 0. If ∇2u = 0, by (2.4) and (2.5) we deduce that

Nf − Nf = 0 on M , which contradicts the non-triviality of u.] So we can
suppose there exists a non-zero constant µ such that

(2.13) µ(Ricf − λg) = ∇2u.

By the Ricci identity and (2.13), we have

0 = ∇(∆fu)− divf (∇2u) + Ricf (∇u, ·)(2.14)

= ∇(∆fu)− µ divf (Ricf − λg) + Ricf (∇u, ·).
A direct calculation yields

(2.15) divf (Ricf − λg) =
1

2
∇Nf .
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Hence, inserting (2.15) into (2.14), we get

∇Nf −
1

2
µ∇Nf +

K

η1
g(∇Nf , ·) = 0.

Then

(2.16)

(
1 +

K

η1
− 1

2
µ

)
|∇Nf |2 = 0.

If µ 6= 2(1 +K/η1), then ∇Nf = 0 and hence Nf = Nf , u = 0. So we must
have µ = 2(1 +K/η1). Then (2.13) turns into

(2.17) 2

(
1 +

K

η1

)
(Ricf − λg) = ∇2u.

Combining (2.11) with (2.17) we infer

∇2u(∇u, ·) = −2

(
1 +

K

η1

)
(K + λ)g(∇u, ·),

which we can rewrite as

(2.18) ∇|∇u|
2

2
= −2

(
1 +

K

η1

)
(K + λ)∇u.

Fix x0 ∈M and let γ : [0,∞)→M be the solution of γ̇(t) = −∇u(γ(t))
with γ(0) = x0. Consider α(t) = u(γ(t)). Then α′(t) = −|∇u(γ(t))|2 and,
by (2.18),

α′′(t) = −4

(
1 +

K

η1

)
(K + λ)|∇u|2.

Since λ + K ≥ 0, we have α′′(t) ≤ 0, hence α is a bounded nonincreasing
concave function on [0,∞) and therefore it must be constant. We conclude
that −|∇u(x0)|2 = α′(0) = 0. The arbitrariness of x0 implies that u is
constant, which completes the proof.

From Theorem 1.4, we have the following corollary.

Corollary 2.2. Suppose (M, g) is a closed Riemannian manifold of
dimension n ≥ 3 and f is a C2(M) function. Then

(2.19)
�

M

(Nf −Nf )2e−f dvg ≤ Cn,K,d
�

M

|Ricf − λg|2e−f dvg,

where K is a non-negative constant such that Ricf ≥ −K, λ ≥ −K is a
real constant, d denotes the diameter of M , and Cn,K,d is a constant only
depending on n,K, d.

Proof. When Ricf ≥ −K, Futaki, Li and Li [FLL] proved a lower bound
for the first non-zero eigenvalue η1:
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(2.20) η1 ≥ sup
s∈(0,1)

{
4s(1− s) π2

d2 − sK

}
,

where d denotes the diameter of M . Obviously, we can make the right hand
side of (2.20) positive by choosing s small enough. Therefore, inserting (2.20)
into (1.8) completes the proof of Corollary 2.2.

3. Proof of Theorem 1.5. Let u : M → R be the unique solution to

(3.1)

{
∆fu = Nf −Nf in M ,

∂u/∂ν = 0 on ∂M ,

where ∂u/∂ν is the normal derivative of u with respect to the metric g.

Using the Stokes formula and the Cauchy inequality, we obtain

(3.2)
�

M

(Nf −Nf )2e−f dvg =
�

M

(∆fu)(Nf −Nf )e−f dvg

= −
�

M

〈∇u,∇Nf 〉e−f dvg +
�

∂M

(Nf −Nf )
∂u

∂ν
e−fdAg

= −
�

M

〈∇u,∇Nf 〉e−f dvg

= −
�

M

〈∇u,∇Nf 〉e−f dvg + 2
�

∂M

[Ricf (∇u, ν)− λg(∇u, ν)]e−fdAg

= 2
�

M

〈Ricf − λ g,∇2u〉e−f dvg

≤ 2
( �

M

|Ricf − λg|2e−f dvg
)1/2( �

M

|∇2u|2e−f dvg
)1/2

,

where in the last equality we have used [CN, Lemma 2.10] and the fact that
f satisfies the Dirichlet boundary condition or Neumann boundary condi-
tion.

Recall the Bochner formula:

(3.3)
1

2
∆f |∇u|2 = |∇2u|2 + 〈∇u,∇∆fu〉+ Ricf (∇u,∇u).

Note that

(3.4)
1

2

�

M

∆f |∇u|2e−f dvg =
1

2

�

∂M

∂|∇u|2

∂ν
e−f dvg = 0,

where the last equality follows from [CN, Lemma 2.10] which says that
∂|∇u|2/∂ν = 0 if ∂u/∂ν = 0 and (M, g) has totally geodesic boundary.
Combining (3.3) and (3.4) gives
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(3.5)
�

M

|∇2u|2e−f dvg

= −
�

M

〈∇u,∇∆fu〉e−f dvg −
�

M

Ricf (∇u,∇u)e−f dvg

= −
�

∂M

(∆fu)
∂u

∂ν
e−f dvg +

�

M

(∆fu)2e−f dvg −
�

M

Ricf (∇u,∇u)e−f dvg

≤
�

M

[(∆fu)2 +K|∇u|2]e−f dvg.

Here we have used Ricf ≥ −K.

Let ξ1 denote the first non-zero Neumann eigenvalue of ∆f on M , i.e.,

ξ1 = inf

{	
M |∇ψ|

2e−f dvg	
M ψ2e−f dvg

: ψ 6≡ 0 and
∂ψ

∂ν
= 0 on ∂M

}
.

We have
�

M

|∇u|2e−f dvg =
�

∂M

u
∂u

∂ν
e−fdAg −

�

M

u∆fue
−f dvg(3.6)

= −
�

M

u(Nf −Nf )e−f dvg

≤
( �

M

u2e−f dvg

)1/2( �

M

(Nf −Nf )2e−f dvg

)1/2
≤
(	

M |∇u|
2e−f dvg

ξ1

)1/2( �

M

(Nf −Nf )2e−f dvg

)1/2
.

Thus

(3.7)
�

M

|∇u|2e−f dvg ≤
1

ξ1

�

M

(Nf −Nf )2e−f dvg.

Substituting (3.7) into (3.5) and noting that K ≥ 0 gives

(3.8)
�

M

|∇2u|2e−f dvg ≤
(

1 +
K

ξ1

) �

M

(Nf −Nf )2e−f dvg.

Combining (3.2) and (3.8) yields (1.9)

Next, we consider the case of equality in (1.9). Obviously, if Ricf = λg,
then equality holds. Conversely, if equality holds, we claim that u ≡ 0. Thus
Nf −Nf = ∆fu = 0 on M and so Ricf = λg on M .

To the contrary, suppose u is not identically zero. By the proof of (1.9),
the following assertions must hold:
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(1) (Ricf +Kg)(∇u,∇u) = 0;
(2) Ricf − λg and ∇2u are linearly dependent;
(3) u and Nf −Nf are linearly dependent;

(4)
	
M (|∇u|2 − ξ1u2)e−fdvg = 0.

Using similar arguments to those for Theorem 1.4 (see also [H]), we complete
the proof of Theorem 1.5.
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