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De Lellis—Topping type inequalities for f-Laplacians
by

GUANGYUE HuaNG (Xinxiang) and FANQI ZENG (Shanghai)

Abstract. We establish an integral geometric inequality on a closed Riemannian
manifold with oo-Bakryfliﬁmery Ricci curvature bounded from below. We also obtain sim-
ilar inequalities for Riemannian manifolds with totally geodesic boundary. In particular,
our results generalize those of Wu (2014) for the oo—Bakrnymery Ricci curvature.

1. Introduction. Let (M, g) be an n-dimensional smooth Riemannian
manifold with n > 3 and f be a C? function on M. We denote by V, A and
V? the gradient, Laplacian and Hessian operator on M with respect to g,
respectively. Ric and R denote the Ricci curvature and the scalar curvature,
respectively. We let

(1.1) Ric; = Ric + V?f

stand for the Bakrnymery Ricci curvature which is also called the oo-
Bakry-Emery Ricci curvature, i.e., the m = oo case of the m-Bakry—Emery
Ricci curvature defined by

1
1.2 ic™ = Ricy — ———
(1.2) Ricf" = Ricy m_an®Vf

with m > n a constant, and m = n if and only if f is a constant. We define
the f-Laplacian
Ap =€l div(e V) = A - VfV,
which is a self-adjoint operator with respect to the L?(M) inner product:
S uAfve*fdvg =— S Vque*fdvg = S vAfue*fdvg, Yu,v € C§° (M),
M M M
where dv, is the volume form on M.
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An n-dimensional Riemannian manifold (M, g) is said to be Einstein if
its traceless Ricci tensor Ric— (R/n)g is identically zero. The classical Schur
lemma states that the scalar curvature of an Einstein manifold of dimen-
sion n > 3 must be constant. Recently, De Lellis and Topping [DT] (and
independently Andrews, cf. [CLN, Corollary B. 20]) proved the following
almost-Schur lemma:

TueoreM 1.1 (|[DT]). If (M,g) is a closed Riemannian manifold of
dimension n > 3 with non-negative Ricci curvature, then

2

— dn(n —1) . R
2

(13) S (R — R) d'l)g S W S Ric — Eg d’l}g,

M M
or equivalently,

. R n? . R |?

(14) S ‘RIC — Eg d’Ug S m S ‘R,IC — Eg d’l}g,

M M

where R denotes the average of R over M. Moreover, equality holds in (1.3
or (1.4)) if and only if M is Einstein.

Generalizing De Lellis and Topping’s results, Cheng [C] proved an almost-
Schur lemma for closed manifolds without assuming the non-negativity of
the Ricci curvature. That is, he obtained a similar inequality with the co-
efficient depending not only on the lower bound of the Ricci curvature but
also on the value of the first non-zero eigenvalue of the Laplace operator.
In the case of dimension n = 3,4, Ge and Wang [GW1], [GW2] proved that
Theorem 1.1 holds under the weaker condition of non-negative scalar cur-
vature. However, as pointed out by De Lellis and Topping [DT], the co-
efficient in (|1.3]) is optimal and the non-negativity of the Ricci curvature
cannot be removed when n > 5. For the recent research in this direction,
see [GWT], Bl Hl [CZ, K| [GWX| [P] and the references therein.

Recently, Wu [W] established an integral geometric inequality under the
assumption that the m—Bakry—Emery Ricci curvature is bounded from be-
low. More precisely, he proved

THEOREM 1.2 ([W]). If (M,g) is a closed Riemannian manifold of di-
mension n >3 and f is a C*(M) function with Ric}" > —L_|Vf[2, then

(15) (VNP = NP)2efdy,
M
4(m —n+1)(m —n — 2)?
(m —n)3 S

< tr Rlcrfn 2 _m-—n+4
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where
—n—1 —n—1
Tf = R4 2—Af - TR,
— m-—n
Nt = eiﬁfT}”, W?;L = S N}"e‘f dvg/ S e/ dvg.
M M
Moreover, equality holds in (1.5)) if and only if
L6 Ric™ tr Riclf' 0
(1.6) 1Cf+m—n—29_ .

In particular, letting m — oo in ([1.5]) yields the following inequality for
the co-Bakry—Emery Ricci curvature:

THEOREM 1.3 ([W]). If (M,g) is a closed Riemannian manifold of di-
mension n > 3 and f is a C*(M) function with Ricy > 0, then

(1.7) (17 —Ty)?e™F dvg < 4 | [RicyPe ™ duy,
M M
where

Ty:=R+2Af - |V, Tj:=| Tfe_fd”g/ | e dv,.
M M

Moreover, equality holds in (1.7) if and only if Ricy = 0.

In this paper, we are interested in manifolds without the assumption of
non-negative oo-Bakry—Emery Ricci curvature. More precisely, we prove

THEOREM 1.4. If (M,g) is a closed Riemannian manifold of dimension
n >3 and f is a C*(M) function, then

— K
(1.8) V(Nf = Np)2e ! duy < 4(1 + ) | IRicy — Agl*e™ du,
M Y
where 11 denotes the first non-zero eigenvalue of the f-Laplacian Ay on M,

K is a non-negative constant such that the oo—Bakrnymery Ricci curvature
Ricy satisfies Ricy > —K, and X > —K s a real constant. Here

Ny = R+2Af = |Vf2+2)f, Ny= | Nyeldvy [ § e av,
M M
Moreover, equality holds in (L.8) if and only if Ricy = Ag.

Our second result is that the conclusion of Theorem [[.4] holds for mani-
folds with totally geodesic boundary:

THEOREM 1.5. Suppose (M,g) is a compact Riemannian manifold of
dimension n > 3 with totally geodesic boundary OM, and f is a C*(M)
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function. If f satisfies the Dirichlet boundary condition or the Neumann
boundary condition, then

— K
(1.9) S (N; — Np)2e ' dv, < 4(1 + ) S [Ric — Ag|?e™ dvy,
M SV

where &1 denotes the first non-zero Neumann eigenvalue of Ay on M, K
is a non-negative constant such that Ricy > —K, and A\ > —K s a real
constant.

Moreover, equality holds in (1.9) if and only if Ricy = Ag.

REMARK 1.1. In particular, Theorem reduces to Theorem by
letting K’ = A = 0. Therefore, our results generalize those of Wu [W] for the
oo-Bakry—Emery Ricci curvature.

2. Proof of Theorem [1.4]

LEMMA 2.1. Suppose (M, g) is a closed Riemannian manifold of dimen-
sionn >3 and f is a C2(M) function. For any vector field X on M,

(2.1) — (X, VNpe™ dvg = | (Ricy — Mg, Lxg)e 7 duy,
M M

where Ny = R+ 2Af — |[Vf|2 +2)f.

Proof. Take a local orthonormal frame {e;}1<i<, on M. Then X = X'e;.
Noticing that the tensor Ricy — Ag is symmetric, we have

(2.2) S (Ricy — Ag, Lxg)e ™ dv, =2 S (Ricy,; — Agi) ) VI Xe ! du,

M M
= -2 S XiVj[(Rinij — Agij)e ] dv,
M
= — [ (X, V(R+2Af — |Vf* + 2\f))e ™ du,,
M

where we have used the contracted second Bianchi identity 2VJ R;; = V'R
and the Ricci identity V7 fi; = V;(Af) + Rijf7. »

Proof of Theorem[1.4, We let u: M — R be the unique solution to
Apu= Ny — Ff,

(2.3) S uef dvg = 0.
M

Choosing X = Vu and using ([2.3)), we obtain
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(2.4) — (X, VNp)e T dvy = — §<vu V(N; — Np)e ™ du,
M
= S Nf—Nf Ajue” fdvg
M
S Nf — Nf d’Ug.

On the other hand, by letting X = Vu and using the Cauchy inequality, we
get

(2.5) S (Ricy — Ag, Lxg)e ™ dv, = 2 S (Ricy — A g, V2u)e™ dv,
M M

1/2 1/2
2( S IRic; — Ag|%e™f dvg> ( S |V2u|?e=f dvg> .

M M

Integrating the Bochner formula for u (for the elementary proof, see [LL [LI]),
(2.6) fAf|Vu\2 |V2u|? + (Vu, VApu) + Ricp(Vau, Vau),

and applying the Stokes formula, we obtain

(2.7) S \V2ul|?e dv, = S(Afu)Qe*f dvg — S Ricy(Vu, Vu)e™ dv,

M M M
< [(Arw)? + K|Vul’le 7 du,.
M

Here we have used Ricy > —K.
Let 71 denote the first non-zero eigenvalue of Ay on M, i.e.,

Vol?e d
mzinf{gM‘ ole vg:<p§é0and Scpe_fdvgzo}.

§o e doy i
We have
(2.8) S \Vul>e™ dv, = S ul jue duy
M M
= S u(Ny — Ny)e™f dv,
M

1/2

IN

(Fuet ang) (0~ W72 )
M M

|Vul2e=f dvg\ /2 I 1/2
< (SM p” g (S(Nf—Nf)% fdvg> :
M
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Thus
(2.9) | IVulPe ™ dvy < — S(Nf—Nf) 7 dv,.
M Y;
Substituting (2.9) into (2.7) and noting that K > 0 gives
K .
(2.10) | IV2uPe 7 du, < <1 + > | (Nf = Np)?e ™ dy.
M 7y

Combining (2.4) with ( and - 2.10]) yields (|1.8]

Next, we con81der the case of equality in . Obviously, if Ricy = Ag,
then equality holds. Conversely, if equality holds, we claim that © = 0. Thus
Ny —Ny=Apu=0o0n M and so Ricy = Ag on M.

To the contrary, suppose u is not identically zero. By the proof of ,
the following assertions must hold:

(1) (Ricy + Kg)(Vu, Vu) = 0;

(2) Ricy — Ag and V?u are linearly dependent;
(3) wand Ny — Ny are linearly dependent;
(4) $3r (Vul? = u)e dug = 0.
By (1) and the assumption that Ricy + Kg > 0, we have
(2.11) (Ricy + Kg)(Vu,-) = 0.
By (3), there exists a constant b such that Ny — Ny = bu. Then by (4),
S \Vul?e T dv, = — S ulpuedv, = — S u(Ny — Ny)e fdv,
M M M
= — S bu2e_fdvg = S n1u2e_fdvg,
M M
and
(2.12) b=-m, Ny—N;=-nu.

By non-triviality of u, Ricy —Ag and V2u must be non-trivial. [If Ric F=Ag,
then u= —n%(Nf — Ny) =0.If V2u =0, by (2.4) and (2.5) we deduce that
Ny — Ny = 0 on M, which contradicts the non-triviality of u.] So we can
suppose there exists a non-zero constant p such that

(2.13) n(Ricy — Ag) = V3u.
By the Ricci identity and (2.13)), we have
(2.14) 0= V(Asu) — div(Vu) + Ricy(Vu, )

= V(Asu) — p divy(Ricy — Ag) + Ricy(Vu, -).

A direct calculation yields

1
(2.15) divy(Rics — Ag) = 5 V.
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Hence, inserting into , we get

VNy — %MVNJ: + ig(VNf, ) =0.
Then
(2.16) (1+f§—;ﬂ)yvzvf12 = 0.

If u # 2(1+ K/m), then VN§ = 0 and hence Ny = N, u = 0. So we must
have 1 = 2(1 4+ K/m1). Then (2.13) turns into

K
(2.17) 2 <1 + 77) (Ric; — \g) = V.
1
Combining (2.11) with (2.17)) we infer
K
(Vi) = <214+ 2+ Ng(Tu)
1

which we can rewrite as

2 K
(2.18) v |V;| - 2(1 + n> (K +\)Vu.
1

Fix zp € M and let 7y : [0,00) — M be the solution of 4(t) = —Vu(~y(t))
with 7(0) = zg. Consider a(t) = u(y(t)). Then o/(t) = —|Vu(y(t))|? and,
by @19,

o' (t) = —4(1 - i) (K + \)|Vul?.

Since A + K > 0, we have o’(t) < 0, hence « is a bounded nonincreasing
concave function on [0, 00) and therefore it must be constant. We conclude
that —|Vu(zo)]? = o/(0) = 0. The arbitrariness of zo implies that u is
constant, which completes the proof.

From Theorem we have the following corollary.

COROLLARY 2.2. Suppose (M,g) is a closed Riemannian manifold of
dimension n > 3 and f is a C*>(M) function. Then

(2.19) S (Ny — Np)2e dvy, < Ok S Rics — Ag|?e™ dvy,
M M

where K is a non-negative constant such that Ricy > —K, A > —K is a
real constant, d denotes the diameter of M, and Cy k4 is a constant only
depending on n, K, d.

Proof. When Ricy > —K, Futaki, Li and Li [FLL|] proved a lower bound
for the first non-zero eigenvalue n;:
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7.[.2
2.20 n1 > sup {48 1-s },
(2:20) Bt S

where d denotes the diameter of M. Obviously, we can make the right hand
side of ([2.20]) positive by choosing s small enough. Therefore, inserting ([2.20))
into (|1.8) completes the proof of Corollary

3. Proof of Theorem Let u : M — R be the unique solution to
{Afu:Nfo in M,

(3.1)
ou/dv =0 on OM,

where Ju/0v is the normal derivative of u with respect to the metric g.
Using the Stokes formula and the Cauchy inequality, we obtain

(32) [Ny =Np?e T dvg = | (Apu)(Ny — Ny)e™ do,
M M

0
Vu, VNp)e ™ dvg + | (N —Nf)a—:je—f dA,
oM

Vu, VNp)e ™ dvg + 2 S [Rics(Vu,v) — A\g(Vu,v)]e ™ dA,
oM

=2 S Ric; — A g, VZu)e ™ du,

M

— S(
M
= — [ (Vu, VNp)e ™ dv,
M
_ S(
M

< 2(]\84 |Ricy — Ag|%e! dvg>1/2<]§/[|v2u\26f dvg>1/2,

where in the last equality we have used [CN, Lemma 2.10] and the fact that
f satisfies the Dirichlet boundary condition or Neumann boundary condi-
tion.

Recall the Bochner formula:

1
(3.3) iAf\qu = |V2ul? + (Vu, VAsu) + Ricp(Vu, Vu).
Note that
1 o ¢ 1o d|Vul®
(3.4) 3 S A¢|Vul“e ™ dvg = 2a§w ~a, © dvy =0,

M

where the last equality follows from [CN, Lemma 2.10] which says that
O|Vu|?/ov = 0 if Ou/Ov = 0 and (M, g) has totally geodesic boundary.

Combining (3.3) and (3.4) gives
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35) | Ve du,
M
= — S (Vu, VApu)ye™ dvy — S Ricy(Vu, Vu)e™ dv,
M M
= — S (Afu)%e_f dvg + S(Afu)2e_f dvg — S Ric(Vu, Vu)e ™ du,
oM v M M
< S [(Agu)* + K |Vul2le™ du,.

M

Here we have used Ricy > —K.
Let &1 denote the first non-zero Neumann eigenvalue of Ay on M, i.e.,

20—f
flzinf{SM|Vw| ¢ dvg :w§é0and&f:0onc‘)M}.

§1p 02e 7 duy 0
We have
(3.6) S \Vaul?e™ dv, = S ugZefdAg - S ul pue™ dv,
M oM M
= - S u(Ny — Ny)e™ dv,
M
B 1/2 N 1/2
< <Su26 fdvg> (S(Nf—Nf)Qe fdvg>
M M
§op [Vul?e™f dvg>1/2 Yy 1/2
< Ny — Np)?e fdug) .
< ( & (]\84( r=Np) g>
Thus
1 .
(3.7) S \Vul?e™ dv, < 2 S (N; — Nyp)2e ™ du,.

M M
Substituting (3.7)) into (3.5) and noting that K > 0 gives

(3.8) | IV2ul?e™ dvy < (1 + K> | (Np = Np)2e7 du,.
M S/
Combining and yields (1.9)

Next, we consider the case of equality in . Obviously, if Ricy = Ag,
then equality holds. Conversely, if equality holds, we claim that u = 0. Thus
Ny —Nf=Aspu=0o0n M and so Ricy = A\g on M.

To the contrary, suppose u is not identically zero. By the proof of ,
the following assertions must hold:
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(1) (Ricy + Kg)(Vu, Vu) = 0;

2) Ricy — Ag and V2u are linearly dependent;
f f—

(3) w and Ny — Ny are linearly dependent;

() §yy([Vul? — &1u2)e~dv, = 0,

Using similar arguments to those for Theorem [I.4] (see also [HJ), we complete
the proof of Theorem .
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