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Muckenhoupt–Wheeden conjectures in higher dimensions

by

Alberto Criado (Bilbao) and Fernando Soria (Madrid)

Abstract. In recent work by Reguera and Thiele (2012) and by Reguera and Scurry
(2013), two conjectures about joint weighted estimates for Calderón–Zygmund operators
and the Hardy–Littlewood maximal function were refuted in the one-dimensional case.
One of the key ingredients for these results is the construction of weights for which the
value of the Hilbert transform is substantially bigger than that of the maximal function. In
this work, we show that a similar construction is possible for classical Calderón–Zygmund
operators in higher dimensions. This allows us to fully disprove the conjectures.

1. Introduction and statements of results. In this paper we will
study joint weighted estimates for the Hardy–Littlewood maximal operator
and classical Calderón–Zygmund operators. We consider the non-centered
Hardy–Littlewood maximal operator over cubes, defined for a locally inte-
grable function f as

Mf(x) = sup
x∈Q⊂Q

�

Q

|f(y)| dy,

where Q denotes the family of all cubes with sides parallel to the coordi-
nate axes in Rd. We will also consider classical Calderón–Zygmund singular
integral operators, whose action on a smooth function f is defined by

Tf(x) = p.v.
�

Rd
K(x, y)f(y) dy.

Here the kernel K has the form

(1.1) K(x, y) =
Ω(x− y)

|x− y|d
,

with Ω a homogeneous function of degree 0 such that Ω ∈ C1(Sd−1) and	
Sd−1 Ω(x) dσd−1(x) = 0. The Hilbert transform in one dimension and the
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Riesz transforms in higher dimensions are examples of such operators. We
may also consider more general Calderón–Zygmund operators. In fact, our
arguments work well for operators with variable kernels K satisfying stan-
dard size and regularity conditions. We will not pursue here these general-
izations. Instead, we will make some comments on how to extend our results
to this more general setting.

In this context, a weight simply means a non-negative, locally integrable
function w : Rn → [0,∞]. Such a w can be interpreted as the density of an
absolutely continuous measure. This measure is usually denoted by the same
letter as its density. That is, if w is a weight in Rn, then for a measurable
E ⊂ Rn one writes w(E) =

	
E w(x) dx and for f a measurable function we

say that f ∈ Lp(w) if ‖f‖Lp(w) = (
	
|f |pw)1/p <∞.

In the 1970’s B. Muckenhoupt and R. Wheeden among other authors
began the study of weighted inequalities for maximal, Calderón–Zygmund
and other operators. They defined the Ap class as the collection of weights
w satisfying

(1.2) sup
Q∈Q

�

Q

w(y) dy
( �
Q

w(y)−p
′/p dy

)p/p′
<∞

if 1 < p <∞, or

(1.3) Mw(x) ≤ Cw(x) a.e. x,

with C > 0 independent of x if p = 1. It is well known that w ∈ Ap is
equivalent to M being bounded on Lp(w) if p > 1, and to M being weakly
bounded on L1(w) if p = 1. It is also known that (1.2) and (1.3) are sufficient
too for the same kind of estimates of a Calderón–Zygmund operator, but
only necessary in the sense that if all the d Riesz transforms are weakly
bounded on Lp(w), then w ∈ Ap, for 1 ≤ p < ∞. In the one-dimensional
case this means in particular that the Hilbert transform is weakly bounded
on Lp(w) if and only if w ∈ Ap, for 1 ≤ p <∞. For a more complete account
of these facts see [13] and [14].

The situation is more complicated when one considers norm estimates
with two weights. A pair of weights (u, v) is in the Ap class if

(1.4) sup
Q∈Q

�

Q

v(y) dy
( �
Q

u(y)1−p
′
dy
)1/p′

<∞

for p > 1, and in A1 if

(1.5) Mv(x) ≤ Cu(x) a.e. x,

with C > 0 independent of x. These conditions are equivalent to the mapping
M : Lp(u)→ Lp,∞(v) being bounded for 1 ≤ p <∞, and necessary for the
strong boundedness M : Lp(u) → Lp(v) if p > 1, but not sufficient for it.
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The continuity of M from Lp(u) to Lp(v) was, nevertheless, characterized
by E. Sawyer [25] to be equivalent to

�

Q

M(χQv
1−p′)pu ≤ C

�

Q

v1−p
′
<∞

for all Q ∈ Q. In the one-weight setting some of the norm estimates for
Calderón–Zygmund operators were shown to be equivalent to the ones forM .
This suggested that similar connections might be found in the two-weight
setting. B. Muckenhoupt, R. Wheeden and others proposed several of them.
For many years they could not be confirmed or refuted and became known
as Muckenhoupt–Wheeden conjectures.

Perhaps the most famous one originates in a result by C. Fefferman and
E. M. Stein [12] showing that there is an absolute constant such that for
any weight w one has

(1.6) w({x ∈ Rd : Mf(x) > λ}) ≤ C

λ

�
f(x)Mw(x) dx.

To Muckenhoupt and Wheeden is attributed the conjecture that the same
two-weight inequality should be true for a Calderón–Zygmund operator.

Conjecture 1. For each classical Calderón–Zygmund operator T , there
exists a constant C > 0 such that for every weight w one has

(1.7) w({x ∈ Rd : |Tf(x)| > λ}) ≤ C

λ

�
|f(x)|Mw(x) dx

for all λ > 0 and f ∈ L1(Mw).

The question was extended to more general operators and the conjecture
was shown to be true for some square functions in [2], but false for fractional
integral operators in [1]. The closest approach, on the positive side, for
Calderón–Zygmund operators is due to C. Pérez, who showed in [19] that
(1.7) is true if M is replaced by the iterated operator M2 or even by the
operator ML(logL)ε with any ε > 0. Later, C. Pérez and D. Cruz-Uribe [7]
used the extrapolation technique to show that if (1.7) holds for a sublinear
operator T , then

(1.8)
�
|Tf(x)|pw(x) dx ≤ C

�
|f(x)|p

(
Mw(x)

w(x)

)p
w(x) dx,

for all p > 1. This necessary condition was disproved by M. C. Reguera and
C. Thiele [24] for p = 2, thus showing the conjecture to be false. They gave
a counterexample in the one-dimensional case, that is, when T is the Hilbert
transform. The construction was based on a simplification of the technique
used by M. C. Reguera [22] in order to refute the corresponding assertion
in the dyadic setting.
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Our first result shows that Conjecture 1 is false for all classical Calde-
rón–Zygmund operators.

Theorem 1. Let T be a Calderón–Zygmund operator with an associated
kernel satisfying (1.1). Then for each N > 0 there is a weight w, a function
f ∈ L1(Mw) and a constant λ > 0 such that

(1.9) w({|Tf | > λ}) ≥ N

λ

�
|f |Mw.

D. Cruz-Uribe, C. Pérez and J. M. Martell [5] considered another conjec-
ture relating two-weight estimates for the maximal operator and Calderón–
Zygmund operators. This conjecture is also attributed to Muckenhoupt and
Wheeden and its precise statement is the following.

Conjecture 2. Let T be a Calderón–Zygmund operator as above. Then

M : Lp(u)→ Lp(v)

M : Lp
′
(v1−p

′
)→ Lp

′
(u1−p

′
)

}
⇒ T : Lp(u)→ Lp(v).

Remark. To simplify the notation, the symbol ‘S : X → Y ’ will always
mean that the operator S maps the elements of the space X into elements
of Y in a continuous way. This notation has already been used in the state-
ment of the above conjecture.

The motivation for the second condition on M is the following. A simple
duality argument shows that since T is an essentially self-adjoint operator,
T : Lp(u)→ Lp(v) is equivalent to T : Lp

′
(v1−p

′
)→ Lp

′
(u1−p

′
).

This conjecture was refuted by M. C. Reguera and J. Scurry [23] for the
Hilbert transform. Their counterexample is based on the one that disproved
Conjecture 1 in [24]. We show that the conjecture is false for every classical
Calderón–Zygmund operator.

Theorem 2. Fix 1 < p < ∞, and let T be a Calderón–Zygmund oper-
ator as in Theorem 1. Then one can construct weights u and v such that
M : Lp(u) → Lp(v) and M : Lp

′
(v1−p

′
) → Lp

′
(u1−p

′
) but there exists an

f ∈ Lp(u) such that ‖Tf‖Lp(v) =∞.

One important observation is that while an Ap weight is a.e. positive, the
previous results have no assumptions on the support of the weight. In fact,
one of the key ingredients in the proofs in [24] and [23] is to consider weights
with sparse support. At this point, it is not known whether Conjecture 2
holds for a.e. positive weights. In [23] it is shown that in the one-dimensional
setting the weights considered there do not preserve the equivalence of the
boundedness of M and H on weighted Lp. We will extend this by showing
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that, unlike for a.e. positive weights, in this setting the boundedness of M
on Lp(w) does not imply the same result for Calderón–Zygmund operators.

Theorem 3. Let T be a Calderón–Zygmund operator. Then there exist
a weight u and a function f ∈ Lp(u) such that M is bounded on Lp(u) but
‖Tf‖Lp(u) =∞.

In order that the questions we are treating make sense, for w a weight
vanishing in some set of positive Lebesgue measure, we will define Lp(w)
as the space of measurable functions f such that supp f ⊂ suppw and
‖f‖Lp(w) <∞ (1).

Although our work does not make any contribution to them, for com-
pleteness we briefly comment on some other important Muckenhoupt–
Wheeden conjectures. Conjecture 2 had a weak version asserting that
M : Lp

′
(v1−p

′
)→ Lp

′
(u1−p

′
) implies T : Lp(u)→ Lp,∞(v) for T a Calderón–

Zygmund operator. This has been shown to be false for the Hilbert transform
by D. Cruz-Uribe, A. Reznikov and A. Volberg [10]. By duality, Conjec-
ture 1 implied this last conjecture. Thus, the argument in [10] also refutes
the one-dimensional case of Conjecture 1 in an indirect way.

Finally, we mention a still open conjecture. It asserts that replacing the
Lp or L1−p′ integrability requirement in (1.4) by a slightly stronger one in
the sense of Orlicz integrals will be enough to guarantee the Lp boundedness
of Calderón–Zygmund operators. This is known as the bump conjecture
and only partial results on it have been obtained so far. For more details
see [3–10,16–21,27].

The rest of the paper is organized as follows. In Section 2 we prove
Theorems 1–3 assuming the existence of some weights with certain specific
properties. Section 3 is devoted to the construction of such weights. As
usual, C and c will denote positive constants that may have different values
at different occurrences. Also, given two quantities A,B > 0, by writing
A . B we mean that there exists a constant C > 0, which may depend on
the dimension but is otherwise independent of the main parameters involved,
such that A ≤ CB. We define A & B in the obvious way and we write A ∼ B
if both A . B and A & B.

2. Proofs of the theorems. The proofs of the three theorems stated
in the previous section are based on the construction of weights satisfying
a local A1 property but allowing large values under the action of a given
Calderón–Zygmund operator.

(1) In a similar fashion, the expression wα(x) for negative α is set to be zero at the
points x where w(x) = 0.
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Proposition 1. Let T be a Calderón–Zygmund operator with an asso-
ciated kernel satisfying (1.1). Then, for each sufficiently large N ∈ N, there
exists a weight wN such that if we denote DN := suppwN ⊂ [0, 1]d then both

wN ≥ 1 and MwN . wN on DN and |TwN | & NwN on some D̂N ⊂ DN

with |D̂N | ∼ |DN | and wN (D̂N ) ∼ wN (DN ) = 1.

The conclusion MwN . wN on the support of wN is what makes wN an
A1 weight in a local sense. We will first prove Theorems 1–3 assuming that
Proposition 1 is true, leaving its proof for the next section.

Proof of Theorem 1. Let T ∗ be the adjoint operator of T . Note that T
is an essentially self-adjoint operator, as T ∗f(x) = Tf(−x). Given N > 0
consider the weight wN associated to T ∗ from Proposition 1. Taking f =
wNT

∗wN/(MwN )2, we have

�
Tf wN =

�
f T ∗wN =

� ∣∣∣∣T ∗wNMwN

∣∣∣∣2wN(2.1)

& N2wN (D̂N ) & N2 > 0.

Letting F be the non-increasing rearrangement of |Tf | with respect to wN
in Rd, we also have

� ∣∣∣∣T ∗wNMwN

∣∣∣∣2wN =
�
Tf wN ≤

�
|Tf |wN(2.2)

=

wN (Rd)�

0

F (t) dt

≤
1�

0

dt

t1/2
sup
s>0

s1/2F (s)

= 2 sup
λ>0

λwN ({|Tf | > λ})1/2

≤ 3λ0wN ({|Tf | > λ0})1/2

for some λ0. Combined with (2.1), this yields

(2.3)

(� ∣∣∣∣T ∗wNMwN

∣∣∣∣2wN)1/2

.
1

N

� ∣∣∣∣T ∗wNMwN

∣∣∣∣2wN
.

1

N
λ0wN ({|Tf | > λ0})1/2.

Now we define E = {|Tf | > λ0} and w = χEwN . Using Hölder’s inequality
and (2.3) we have
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�
|f |Mw =

� wNT ∗wN
(MwN )2

Mw

≤
(� ∣∣∣∣T ∗wNMwN

∣∣∣∣2wN)1/2(� ∣∣∣∣ Mw

MwN

∣∣∣∣2wN)1/2

.
λ0
N
wN (E),

where the last inequality is a consequence of the following lemma.

Lemma 1. There exists a constant C > 0 such that for all weights v and
all measurable sets E ⊂ Rn one has

(2.4)

(� ∣∣∣∣M(χEv)

Mv

∣∣∣∣2v)1/2

≤ Cv(E)1/2.

Proof. Given a weight v we define the operator Sv for f ∈ L1
loc(v) as

Svf(x) =
M(fv)(x)

Mv(x)
.

We will prove indeed a stronger result: for all p > 1,
�
|Svf |pv ≤ C

�
|f |pv.

Since M(fv) ≤ ‖f‖L∞(v)Mv, the operator Sv is bounded on L∞(v) with
operator norm 1. By interpolation, the result is proved if we show that Sv
is of weak type L1(v) with a constant independent of v. Since it makes no

essential difference, we will check it for S̃vf = M̃(fv)/M̃v, where M̃ denotes

the centered maximal operator. Let f ∈ L1(v) and 0 < λ < 1. If S̃vf(x) > λ,
there exists Rx > 0 such that

�

Q(x,Rx)

|f |v > λM̃v(x) ≥ λ
�

Q(x,Rx)

v > 0,

where by Q(x,R) we mean the cube in Q of edge length R and centered
at x. This implies that

v(Q(x,Rx)) ≤ 1

λ

�

Q(x,Rx)

|f |v.

Observe that the cubes Q(x,Rx) with x ∈ Aλ := {x ∈ Rd : S̃f(x) > λ} are
a Besicovitch cover of Aλ. By the Besicovitch Covering Theorem (see [15])
there is a subcover by cubes Q(x,Rx), with x ∈ A? ⊂ Aλ, such that each
x ∈ Rd belongs to at most bd cubes of the subcover, where bd is a number
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that only depends on the dimension. Then we have

v(Aλ) ≤ v
( ⋃
x∈A?

Q(x,Rx)
)
≤
∑
x∈A?

v(Q(x,Rx))

≤ 1

λ

∑
x∈A?

�

Q(x,Rx)

|f |v ≤ bd
λ

�
|f |v.

This proves the lemma, and hence Theorem 1 too.

Proof of Theorem 3. We use the same ‘gliding hump’ argument as in [23].
Let z ∈ Rd be a unitary vector. We define w :=

∑∞
N=N0

w̃N , where w̃N (x) =

wN (x−3Nz) and wN are the weights described in Proposition 1, starting at
some N0 large. We also define g :=

∑∞
N=N0

N−εχQN with QN = [0, 1]d+3Nz

and 1/p < ε < 1. Finally, we take u = w1−p and f = gw.

First, we check that f ∈ Lp(u):

�
|f |pu =

�
gpw =

∞∑
N=N0

�

QN

1

N εp
wN (x− 3Nz) dx =

∞∑
N=N0

1

N εp
<∞.

Next, we see that Tf 6∈ Lp(u). In order to do so, we write ‖Tf‖Lp(u) as( ∞∑
N=N0

�

QN

∣∣∣∣ 1

N ε
Tw̃N (x) +

∑
J 6=N

1

Jε
Tw̃J(x)

∣∣∣∣pw̃N (x)1−p dx

)1/p

.

By the triangle inequality this is greater than or equal to A−B, where

A =

( ∞∑
N=N0

�

QN

∣∣∣∣ 1

N ε
Tw̃N (x)

∣∣∣∣pw̃N (x)1−p dx

)1/p

,

B =

( ∞∑
N=N0

�

QN

∣∣∣∣∑
J 6=N

1

Jε
Tw̃J(x)

∣∣∣∣pw̃N (x)1−p dx

)1/p

.

We will see that A = ∞ and B < ∞. We begin with B. If x ∈ QN and
J 6= N we have

|Tw̃J(x)| ≤
�

QJ

|K(x− y)|wJ(y − 3Jz) dy

.
�

RJ

1

|3N − 3J |d
wJ(y − 3Jz) dy

.
1

max{3N , 3J}d
wJ([0, 1]d) ≤ 1

3dN/23dJ/2
.

Here we have used the fact that for y ∈ QJ and J 6= N one has |x − y| ∼
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|3N − 3J | ∼ 3N + 3J . Hence,

Bp .
∞∑

N=N0

�

QN

∣∣∣∣∑
J 6=N

1

Jε
1

3dN/23dJ/2

∣∣∣∣pwN (x− 3Nz)1−p dx

≤
∞∑

N=N0

∣∣∣∣∑
J 6=N

1

Jε
1

3dN/23dJ/2

∣∣∣∣p <∞.
Now we proceed with A. Using an obvious change of variables in the inte-
gration, and the property that |TwN | ≥ CNwN in D̂N , we obtain

Ap =
∞∑

N=N0

1

N εp

�

[0,1]d

|TwN (x)|pwN (x)1−p dx

≥
∞∑

N=N0

1

N εp

�

D̂N

|TwN (x)|pwN (x)1−p dx

&
∞∑

N=N0

Np

N εp

�

D̂N

wN (x) dx &
∑
N=N0

Np(1−ε) =∞.

It remains to prove that M is bounded on Lp(u). Since it makes no

essential difference we will prove it for the centered maximal operator M̃
again. We define Qw = {Q ∈ Q : w(Q) > 0}. For f ∈ Lp(u) and Q ∈ Qw we
have

1

|Q|

�
|f | = w(Q)

|Q|
1

w(Q)

�

Q

|fw−1|w.

This implies that

M̃f ≤ M̃wM̃w(fw−1),

where M̃w is the centered maximal operator associated to w defined by

M̃wg(x) = sup
R>0, w(Q(x,R))>0

1

w(Q(x,R))

�

Q(x,R)

|g|w.

It is easy to check that for x ∈ QN one has Mw(x) ∼ MwN (x − 3Nz) .
wN (x− 3Nz) = w(x), that is,

(2.5) Mw ∼ w in suppw.

Hence, since the same is true for M̃ , we have�
[M̃f ]pw1−p ≤

�
[M̃w]p[M̃w(fw−1)]pw1−p .

�
[M̃w(fw−1)]pw.

A well-known consequence of the Besicovitch Covering Theorem is that M̃w

is bounded on Lp(w). This, together with the observation that f ∈ Lp(w1−p)
if and only if fw−1 ∈ Lp(w), finishes the proof.
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We now present the proof of Theorem 2. As we will see, everything
reduces to the same arguments used in the proof of Theorem 3.

Proof of Theorem 2. At this point we assume that the reader is familiar
with the notation and the circle of ideas surrounding the proof of Theorem 3.
Taking again w(x) =

∑∞
N=N0

wN (x − 3Nz) we consider the weights u =
(Mw/w)pw and w. In view of (2.5), we have u ∼ w in W = suppw, which
reduces the problem to the one-weight setting. The reason to choose these
weights is that in this way we also disprove the necessary condition (1.8).

It is easy to see that for an essentially self-adjoint operator T , the fol-
lowing inequalities are equivalent:

‖Tf‖Lp(w) . ‖f‖Lp(u),(2.6)

‖T (fu1−p
′
)‖Lp(w) . ‖f‖Lp(u1−p′ ),

‖T (fw)‖Lp′ (u1−p′ ) . ‖f‖Lp′ (w).(2.7)

Instead of (2.6) we will disprove (2.7). Taking again g =
∑∞

N=N0
N−εχQN

with 1/p < ε < 1, we have g ∈ Lp′(w). On the other hand,

‖T (gw)‖p
′

Lp′ (u1−p′ )
=

�
|T (gw)|p′ w

(Mw)p′
≥

�
|T (gw)|p′w1−p′ ,

and this last quantity was shown to be infinite in the proof of Theorem 3,
except that the roles of p and p′ were interchanged.

To prove M : Lp(u)→ Lp(v) is easy. For f ∈ Lp(u), using the Fefferman–
Stein inequality (1.6) and (2.5), we have

‖Mf‖pLp(v) =
�
|Mf |pw .

�
|f |pMw .

�
|f |pw

≤
�
|f |p

(
Mw

w

)p
w = ‖f‖pLp(v).

We finish by showing that M : Lp
′
(v1−p

′
) → Lp

′
(u1−p

′
). In much the same

way as before, for f ∈ Lp′(w1−p′) we have

‖Mf‖p
′

Lp′ (u1−p′ )
=

�
|Mf |p′ w

(Mw)p′
≤

�
|Mf |p′w1−p′ .

�
|f |p′w1−p′ ,

where the last inequality was obtained in the proof of Theorem 3 for p
instead of p′.

3. The construction of the weights. The construction of the weights
wN in Proposition 1 is an extension to higher dimensions of the one by
M. C. Reguera and C. Thiele [24], which in turn was a simplification of the
construction by M. C. Reguera [22]. The argument is long and involves some
technicalities.
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Proof of Proposition 1. First we will give the basics of the construction
of the weight wN and of the sets DN and D̂N . Then we will proceed to
estimate MwN on DN and TwN on D̂N , and we will complete the details
of the construction of wN so that the conclusion is reached.

The triadic decomposition. For k ∈ Z, we say that Q is a triadic
cube of the kth generation in Rn if Q has edge length 3−k and its vertices
are points of the grid 3−kZn. For any cube Q = Q(x,R) we define its triadic

middle child as Q̂ = Q(x,R/3). For k = 0, 1, . . . we will define a family Tk of
triadic cubes of the (Nk)th generation, with N ∈ N fixed. We define these
families inductively. We begin with T0 = {[0, 1]d}. Once Tk is determined,
for each Q ∈ Tk we select a family Tk+1(Q) of triadic subcubes so that

Tk+1(Q) ⊂ {triadic Q′ ⊂ Q̂ : |Q′| = 3−Nd|Q|} and ]Tk+1(Q) = A ∼ 3(N−1)d,
with A ∈ N a fixed number depending neither on Q nor on k. The exact
way of selecting these cubes will be explained later. Then we take Tk+1 =⋃
Q∈Tk Tk+1(Q).

For each Q ∈ Tk we consider a triadic cube J(Q) contained in Q such that
|J(Q)| = |Q′| = 3−Nd(k+1) for any Q′ ∈ Tk+1. We will choose J(Q) having

disjoint interior from Q̂ but contiguous to it, in the sense that their bound-
aries intersect. In particular, the elements of the family {J(Q)}Q∈⋃∞k=0 Tk are
all disjoint. Moreover, if N ≥ 3 and Q0 ∈ Tk0 for some k0, then

(3.1) dist
(
J(Q0),

[ ∞⋃
k=0

⋃
Q∈Tk

J(Q)
]
\ J(Q0)

)
≥ `

3
− `

3N
≥ `

4

with ` = |J(Q0)|1/d.

The construction of the weight. We define a weight wN supported
in

DN =

∞⋃
k=0

⋃
Q∈Tk

J(Q)

so that wN is constant over each J(Q) and if x ∈ J(Q) with Q ∈ Tk one has

(3.2) αk = wN (x) =
wN (J(Q))

|J(Q)|
=
wN (Q′)

|Q′|
for any Q′ ∈ Tk+1. In this way,

wN (x) =

∞∑
k=0

αk
∑
Q∈Tk

χJ(Q).

Observe that for Q ∈ Tk,

wN (Q) = wN (J(Q)) + wN (Q̂) = wN (J(Q)) +
∑

Q′∈Tk+1(Q)

wN (Q′).
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Using (3.2), we can rewrite the previous formula as

αk−1|Q| = αk|J(Q)|+ αk ]Tk+1(Q) |J(Q)| = αk|J(Q)|+ αkA|J(Q)|,
obtaining

αk
αk−1

=
3Nd

1 +A
=: a.

Hence, αk = akα0 for a certain α0 and

wN ([0, 1]d) =

∞∑
k=0

∑
Q∈Tk

wN (J(Q)) = α0

∞∑
k=0

]Tk |J(Q)|ak

= α0

∞∑
k=0

Ak3−Nd(k+1)ak = α03
−Nd

∞∑
k=0

(
A

1 +A

)k
= α03

−Nd(1 +A) = α0/a.

We take α0 = a so that wN is a probability measure and wN ≥ a > 1 in DN ,
as stated.

Controlling the maximal function. We prove here that MwN ≤
CwN in DN , with a constant C independent of N . Fix x ∈ J(Q) with
Q ∈ Tk and take an arbitrary cube R containing x. We want to show that

wN (R)

|R|
≤ Cw(x).

If |R|1/d < 1
4 |J(Q)|1/d, then R ∩DN = R ∩ J(Q) from (3.1). This says that

w is constant in R ∩ J(Q) and the result is obvious. If, on the contrary,
|R|1/d ≥ 1

4 |J(Q)|1/d and we consider

A = {triadic Q′ : Q′ ∩R 6= ∅, |Q′| = |J(Q)|},
then

∑
Q′∈A |Q′| ≤ 9d|R|. We claim that if L ⊂ [0, 1]d is a triadic cube with

size |L| = |J(Q)| then

(3.3) wN (L) ≤ αk|L|.
Using this, one has

wN (R)

|R|
≤ 1

|R|
∑
Q′∈A

wN (Q′) ≤ αk
|R|

∑
Q′∈A

|Q′| ≤ 9dwN (x).

The proof of (3.3) is easy. We have three possible situations:

(i) L ∩DN = ∅, and there is nothing to show.
(ii) L ⊂ J(Q0) for some Q0 ∈ Tj with j ≤ k. In this case wN is constant

in L with value αj . Since αj ≤ αk, the result follows immediately.
(iii) L = Q′ for some Q′ ∈ Tk+1. Here we have directly wN (L) = αk|L|

by definition.
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Splitting TwN into ‘continuous’ and ‘discrete’ pieces. Taking,

with a slight abuse of notation, D̂N :=
⋃∞
k=0

⋃
Q∈Tk Ĵ(Q), we want to prove

that |TwN | ≥ CNwN in D̂N .

Let x ∈ Ĵ(Q) with Q ∈ Tk. Then

TwN (x) =
�

Qc

K(x, y)wN (y) dy +
�

Q\J(Q)

K(x, y)wN (y) dy

+ p.v.
�

J(Q)

K(x, y)wN (y) dy = I + II + III .

We further split I and II into a ‘continuous’ and a ‘discrete’ part. Denoting
by cR the center of a cube R, we have

I =
∑

L triadic
|L|=|Q|, L 6=Q

�

L

K(x, y)wN (y) dy

=
∑

L triadic
|L|=|Q|, L 6=Q

K(cQ, cL)wN (L) dy

+
∑

L triadic
|L|=|Q|, L 6=Q

�

L

(
K(x, y)−K(cQ, cL)

)
wN (y) dy

= I1 + I2,

and

II =
∑

L∈Tk+1(Q)

�

L

K(x, y)wN (y) dy

=
∑

L∈Tk+1(Q)

K(cJ(Q), cL)wN (L) dy

+
∑

L∈Tk+1(Q)

�

L

(
K(x, y)−K(cJ(Q), cL)

)
wN (y) dy

= II 1 + II 2.

First, we will show that the ‘continuous’ parts I2, II 2 and III are ‘small’
in the sense that |I2|+ |II 2|+ |III | . wN (x). Then we will show that II 1 is
much bigger than wN by showing that |II 1| & NwN (x). Although we will not
have any control on I1, we will construct J(Q) and Tk+1(Q) so that II 1 has
the same sign as I1. In this way, we will have |I1 + II 1| ≥ |II 1| & NwN (x).
At that point we will get

|TwN (x)| ≥ |I1 + II 1| − |I2 + II 2 + III | ≥ (cN − C)wN (x) & NwN (x)

for sufficiently large N . This will prove the result.
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The ‘continuous’ pieces. We recall the well-known fact (see [26] for
instance) that our hypotheses on K imply the following estimates: there
exist δ, η > 0 such that

(3.4) |K(x, y)−K(x, ȳ)| ≤ C |y − ȳ|δ

|x− y|d+δ

if |x− y| > (1 + η)|y − ȳ|, and

(3.5) |K(x, y)−K(x̄, y)| ≤ C |x− x̄|
δ

|x− y|d+δ

if |x − y| > (1 + η)|x − x̄|. These estimates give rise to the so called
δ-Calderón–Zygmund kernels. Although in our case we have δ = 1, it is
worth observing that this part of the construction works for these more
general kernels too.

When estimating I2, first we use the fact that x ∈ Q̂ and y ∈ L̂ to deduce

|x− y| ∼ |x− cL| ∼ |cQ − cL|,

and as a consequence

(3.6) |K(x, y)−K(cQ, cL)|
≤ |K(x, y)−K(x, cL)|+ |K(x, cL)−K(cQ, cL)|

.
|x− cQ|δ

|x− y|d+δ
+
|y − cL|δ

|x− y|d+δ
.

|Q|δ/d

|y − x|d+δ
.

Hence,

|I2| . |Q|δ/d
∑
|L|=|Q|

[0,1]n⊃L6=Q

�

L

wN (y)

|x− y|d+δ
dy

≤ |Q|δ/d
�

|x−y|>|Q|1/δ/4

wN (y)

|x− y|d+δ
dy .MwN (x).

The last inequality follows from the fact that x 7→ |x|−d−δ is a radially
decreasing function and

�

|x−y|>|Q|1/δ/4

1

|x− y|d+δ
dy = |Sd−1|d−1

∞�

|Q|1/d/4

1

t1+δ
dt ∼ 1

|Q|δ/d

(see [26]).

We estimate II 2 in a similar way. Since J(Q) is not contained in Q̂, for
x ∈ J(Q), y ∈ L ∈ Tk+1(Q) and vJ(Q) ∈ J(Q) to be determined later one
has

|x− y| ∼ |x− cL| ∼ |vJ(Q) − cL|,
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and

|K(x, y)−K(vJ(Q), cL)| ≤ |K(x, y)−K(x, cL)|+ |K(x, cL)−K(vJ(Q), cL)|

.
|J(Q)|δ/d

|y − x|d+δ
.

Then reasoning as before we obtain again

|II 2| . |J(Q)|δ/d
∑

L∈Tk+1(Q)

�

L

wN (y)

|x− y|d+δ
dy

≤ |J(Q)|δ/d
�

|x−y|>|J(Q)|1/δ/3

wN (y)

|x− y|d+δ
dy .MwN (x).

In order to bound III , we use the fact that wN is constant over J(Q) and

the cancellation property of K on E = {y : |x− y| < |Ĵ(Q)|1/d} to obtain

III = wN (x) p.v.
�

J(Q)

Ω(x− y)

|x− y|d
dy(3.7)

= wN (x)
�

J(Q)\E

Ω(x− y)

|x− y|d
dy.

Hence

|III | ≤ wN (x)
�

J(Q)\E

‖Ω‖L∞

|Ĵ(Q)|
dy . wN (x).

Remark. Observe that in none of the above estimates have we needed
a precise description of the families Tk+1(Q) and the cubes J(Q). The only
information we have used so far is that each Q′ ∈ Tk+1(Q) is a triadic sub-

cube of Q̂ of size 3−Nd(k+1) and that J(Q) is of the same size and ‘touches’ Q̂
from the outside.

Another important observation is that for Q ∈ Tk, the term I1 = I1(Q)
does not depend on the triadic cubes of the next generation. In particular,
I1(Q) is independent of Ti for all i > k. This is consistent with the inductive
process that we use in order to define the weights wN .

The ‘discrete’ pieces in a simpler case: Riesz transforms. To get
some intuition of the construction, we will first consider a concrete example.
Assume that T is a Riesz transform, that is, T = Rj for some j ∈ {1, . . . , d},
where

Rjf(x) = cd p.v.
�

Rn

xj − yj
|x− y|d+1

f(y) dy,

and cd is a normalizing constant depending on the dimension. In this case,
given Q ∈ Tk we choose Tk+1(Q) to consist of all the triadic subcubes of Q̂
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of size 3−Nd|Q|. We take J(Q) to be a triadic cube of size 3−N(k+1)d con-

tiguous to Q̂ so that their boundaries only share a point, hence a vertex.
For x ∈ Rd, we denote by xj its jth coordinate. Now, if I1 ≥ 0 we place
J(Q) so that minx∈J(Q) xj ≥ max

x∈Q̂ xj , and if I1 ≤ 0 we require instead

maxx∈J(Q) xj ≥ min
x∈Q̂ xj . This makes the signs of I1 and II 1 coincide.

Calling

T ik+1(Q) = {L ∈ Tk+1(Q) : |(cL)j − (cJ(Q))j | = |cL − cJ(Q)|∞ = 3−N(k+1)i},
and taking vJ(Q) = cJ(Q), we have

|II 1| &
∑

L∈Tk+1(Q)

|(cL)j − (cJ(Q))j |
|cL − cJ(Q)|d+1

∞
wN (L)

= ak+1|J(Q)|
3N−1∑
i=1

∑
L∈T ik+1(Q)

1

|cL − cJ(Q)|d∞

= wN (x)|J(Q)|
3N−1∑
i=1

id−1

(3−N(k+1)i)d
= wN (x)

3N−1∑
i=1

1

i
& NwN (x).

Observe also that in this case A = 3(N−1)d, and therefore

a =
3Nd

1 +A
∼ 3d.

Finishing the construction of the measure for a general oper-
ator. We will now explain how we choose J(Q) and Tk+1(Q) so that II 1

behaves the way we need when T is a general Calderón–Zygmund operator.
This choice will depend on T .

Since Ω is a continuous function over the sphere with null integral, there
exist λ, r > 0 and two points z+ and z− in the sphere such that Ω(y) > λ
for any y ∈ B+ = B(z+, r) ∩ Sd−1, and Ω(y) < −λ for any y ∈ B− =
B(z−, r) ∩ Sd−1. We define the cones

U+ = {tx : t > 0, x ∈ B+}, U− = {tx : t > 0, x ∈ B−}.
Using a rotation if necessary, we can assume that from each coordinate axis
we have the same distance to z+ and to z−. This is equivalent to saying that
|(z+)i| = |(z−)i| 6= 0 for all i = 1, . . . , d, or that z+ = τz−, where τ is the
d× d matrix

τ =

(
δi,j

sign(z−)i
sign(z+)j

)
i,j=1,...,d

=


±1 0 · · · 0

0 ±1 · · · 0
...

...
. . .

...

0 0 · · · ±1

.
Note that also U+ = τU−.
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For a Q ∈ Tk we denote by v+ (respectively, v−) the only vertex of Q̂
such that the half-line s+ ≡ v+ + tz+ (respectively, s− ≡ v−+ tz−) for t > 0

intersects the interior of Q̂. If I1 ≥ 0 we will choose v = vJ(Q) := v+, z = z+
and U = U+. On the other hand, if I1 ≤ 0 we choose v = vJ(Q) := v−,
z = z− and U = U−. Now we take J(Q) to be the only triadic cube of

size 3−Nd|Q| such that the boundaries of J(Q) and of Q̂ intersect only at v.
Once this is done we take

Tk+1(Q) = {triadic R ⊂ Q̂ : |R| = 3−Nd|Q|, cR ∈ v + U}.
The construction guarantees that A = ]Tk+1(Q) ∼ 3(N−1)d is independent
of k and Q, as required before.

Q ∈ Tk

J(Q)

Q̂

v

v + U

The cubes in Tk+1(Q) are the triadic subcubes of

Q̂ whose size equals that of J(Q)

and whose centers are in the cone v + U.

Estimating the ‘discrete’ pieces. Since cL ∈W for all L ∈ Tk+1(Q),
we have

|II 1| =
∣∣∣ ∑
L∈Tk+1(Q)

K(v, cL)wN (L)
∣∣∣ ≥ λak+1|J(Q)|

∑
L∈Tk+1(Q)

1

|cL − v|d
.

We want to find a lower estimate for the last sum. We could use an
argument similar to the one for the Riesz transforms but we will use a more
direct one. For a positive integer i we define

Γi = {x ∈ v + U ∩ Q̂ : 3i−1 · 3−N(k+1) < |x− v| ≤ 3i · 3−N(k+1)}.
We also define

T ik+1(Q) = {R ∈ Tk+1(Q) : cR ∈ Γi}.
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J(Q)

Q̂

v

v + U

T i+1
k+1 (Q)

T i
k+1(Q)

Now we choose N large enough to make J(Q) very small compared
to ΓbN/2c, so that the measure of Γi is comparable to the sum of the measures

of the cubes in T ik+1 for bN/2c ≤ i ≤ N − 1, that is,

|Γi| ∼
∑

R∈T ik+1(Q)

|R| = ]T ik+1(Q) |J(Q)|.

Note that |J(Q)| = 3−Nd(k+1) and |Γi| = β(3d(i−N(k+1))− 3d(i−1−N(k+1))) =
2β · 3d(i−1−N(k+1)) for a certain β > 0 that depends on the opening of
the cone U . The previous choice of N is possible since the quotient of the
measures of ΓbN/2c and J(Q) is of the order of 3dN/2. The conclusion is that

for bN/2c ≤ i ≤ N − 1 one has ]T ik+1(Q) ∼ 3di and as a consequence

|II 1| ≥ λwN (x)|J(Q)|
N−1∑

i=bN/2c

∑
L∈T ik+1(Q)

1

|cL − v|d

& λwN (x)|J(Q)|
N−1∑

i=bN/2c

]T ik+1(Q)

|3i · 3−N(k+1)|d
& λNwN (x).

This finishes the proof of Proposition 1.

4. Final remarks

Variable kernels. We point out that most of the arguments of the
previous proof also work if K is a variable Calderón–Zygmund kernel with
the standard size conditions. Thus, a similar construction is possible for such
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kernels if in addition they have a suitable distribution of signs so that one
can find cones defining Tk+1(Q) as before.

Counterexamples for condition (1.8). It is implicit in the proof
of Theorem 1 that the weights wN together with the functions fN =
wNT

∗wN/(MwN )2 give counterexamples for the condition (1.8) established
by C. Pérez and D. Cruz-Uribe. As already pointed out in [23] the selec-
tion of u and v in the proof of Theorem 2 gives again counterexamples for
(1.8). The point in the given proof of Theorem 1 is to produce an explicit
counterexample for Conjecture 1.

Local Ap weights. These weights share some of the properties of the
usual Muckenhoupt Ap weights. For example, it is easy to see that condi-
tions (1.3) and (1.2), satisfied on the support of the weight, are equivalent
to the weak boundedness of M on weighted Lp. However, there are some im-
portant differences too. One of them is the non-existence of a reverse Hölder
inequality for local weights. In fact, we have the following

Lemma 2. Let w be the local A1 weight defined in the proofs of Theorems
2 and 3. Then w1+ε is not locally integrable whenever ε > 0.

Proof. Observe that for each N ,

�

QN

w1+ε =
�

DN

w1+ε
N =

∞∑
k=0

(
3Nd

1 +A

)(k+1)(1+ε)

Ak3−Nd(k+1)

=
1

A

∞∑
k=0

(
3εNdA

(1 +A)1+ε

)k+1

.

Since A ≤ 3(N−1)d, by taking N large so that 3εNdA/(1 +A)1+ε > 1, we see
that the series diverges to ∞. This shows that w1+ε /∈ L1

loc(Rd).
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