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Sphere equivalence, Property H, and Banach expanders

by

Qingjin Cheng (Xiamen)

Abstract. We study the uniform classification of the unit spheres of general Banach
sequence spaces. In particular, we obtain some interesting applications involving Property
H introduced by Kasparov and Yu, and Banach expanders.

1. Introduction. Motivated by recent work [6, 14, 21], we study the
sphere equivalence between Banach spaces and give its applications involving
Property H introduced by Kasparov and Yu [14], and Banach expanders.

Let (M,d) and (M ′, d′) be metric spaces and let f : M → M ′ be any
map. The modulus of continuity of f is the function ωf : [0,∞) → [0,∞]
defined by

(1.1) ωf (t) = sup{d′(f(x), f(y)) : x, y ∈M and d(x, y) ≤ t}.
The map f is said to be uniformly continuous if limt→+0 ωf (t) = 0, and a
uniform homeomorphism if f is a bijection and f and f−1 are both uniformly
continuous. The metric spacesM andM ′ are called uniformly homeomorphic
provided there is a uniform homeomorphism between them.

In particular, Banach spaces X and Y are called sphere uniformly hom-
eomorphic or sphere equivalent, written X ∼S Y , if there exists a uniform
homeomorphism between the unit spheres S(X) and S(Y ). We write [X]S
for the sphere equivalence class of X (see [21]).

Concerning the uniform classification of the unit spheres of infinite-
dimensional Banach spaces (see [2, Chapter 9]), the earliest result involves
the so-called Mazur map, first used by Mazur in 1929 [19]. Recall that the
Mazur map Mp,q from lp to lq (1 ≤ p, q <∞), defined by

Mp,q(aj) = (sign(aj)|aj |p/q),
is a uniform homeomorphism between the unit spheres of these spaces. Thus
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the unit spheres of lp spaces, 1 ≤ p < ∞, are uniformly homeomorphic
to the unit sphere of l2. Therefore the Mazur map provides the uniform
classification of the unit spheres of the classical sequence spaces lp for 1 ≤
p <∞.

Theorem 1.1 (Mazur). lp ∈ [l2]S for all 1 ≤ p <∞.
Our first aim is to generalize the classification to a wider class of Banach

spaces, namely to Banach sequence spaces.

Theorem 1.2. For any Banach spaces X,Y if X ∼S Y then lp(Y ) ∈
[l2(X)]S for all 1 ≤ p <∞.

In fact, we obtain a more general result (Theorem 2.6). In [22, Theo-
rem 3.1], Nahum established a connection between uniform classification of
Banach spaces and that of their unit spheres.

Theorem 1.3 (Nahum). Assume that the Banach spaces X and Y are
uniformly homeomorphic. Then X ⊕ R ∼S Y ⊕ R.

Theorem 1.2 together with Nahum’s theorem gives the following uniform
classification of spheres.

Theorem 1.4. Assume that the Banach spaces X and Y are uniformly
homeomorphic. Then lp(Y ) ∈ [l2(X)]S for all 1 ≤ p <∞.

We review previous work in this direction. Let X and Y be Banach
spaces with X ∼S Y . Firstly, [2, Lemma 9.9] showed that lp(X) ∼S lp(Y )
for p = 2, but the proof is still valid for all 1 ≤ p <∞ (see also Mimura [21,
Proposition 3.9]). In particular, Mimura established quantitatively sharp
estimates for this result (see Remark 2.7 below for details). On the other
hand, for 1 < p, q < ∞ he further proved by complex interpolation that
lp(X) ∼S lq(X) when X is uniformly convex (see [21, Theorem 3.8]). But
the technique used there does not cover the case p = 1 (or q = 1) and the
uniform convexity assumption of X cannot be removed. Thus Theorem 1.2
improves and extends the previous work (in the qualitative sense of sphere
equivalence). This will be treated in Section 2.

Sections 3 and 4 provide applications of the sphere equivalence results
obtained in Section 2, which is our second aim in this paper.

In particular, our focus in Section 3 is on Property H, a new property
of Banach spaces introduced by Kasparov and Yu [14] to study the Novikov
conjecture. They proved that any discrete group which is coarsely embed-
dable into a Banach space with Property H satisfies the strong Novikov
conjecture [14]. More recently, Chen, Wang and Yu [6] proved that any dis-
crete metric space with bounded geometry which is coarsely embeddable
into a Banach space with Property H satisfies the coarse Novikov conjec-
ture. In Section 3 we mainly prove a basic permanence result for Property H
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(Theorem 3.6), which seems to be particularly interesting in this field. For
example, this result together with the work in [4, 5, 7] implies another
permanence result: if two discrete groups are coarsely embeddable into a
Property H Banach space, then so is their free product. We also give some
simple remarks on this result.

In Section 4 we combine Theorem 1.1 with Mimura’s results to establish
the stability in p of (X, p)-anders, which improves and extends Mimura’s
main results of [21].

Our notation and terminology for Banach spaces are standard, as may
be found for example in [16] and [17]. All Banach spaces throughout the
paper are supposed to be real.

2. Sphere equivalence. In this section, we first introduce the con-
cept of “r-Hölder extension” for 0 < r < ∞ and then extend the Odell
and Schlumprecht theorem [23, Proposition 2.9]. Finally making use of
the extension theorem and the proof method of [2, Lemma 9.9], we ob-
tain several results on uniform classification of spheres in Banach sequence
spaces.

2.1. r-Hölder extension. Recall the following uniform homeomor-
phism extension theorem due to Odell and Schlumprecht [23].

Theorem 2.1 (Odell and Schlumprecht). Let X and Y be Banach spaces
and let f : S(X) → S(Y ) be a uniform homeomorphism. The canonical

extension f̃ of f is defined by f̃(x) = ‖x‖f(x/‖x‖) if x 6= 0 and f̃(0) = 0.

Then f̃ : B(X)→ B(Y ) is also a uniform homeomorphism and

ω
f̃
(t) ≤ max{t+ ωf (2

√
t), t+ 2t1/4} for t > 0.

Motivated by the theorem of Odell and Schlumprecht, we introduce the
following definition.

Definition 2.2. Assume that X and Y are Banach spaces and f is
a map between their unit spheres. For any r > 0 we define the r-Hölder
extension f̃r of f by f̃r(x) = ‖x‖rf(x/‖x‖) if x 6= 0 and f̃r(0) = 0.

Our current goal is to extend the Odell and Schlumprecht theorem but
first we need the following lemma. For completeness, we give proofs of some
known results which are used in our proof.

Lemma 2.3 ([19]). Let x ≥ y ≥ 0 and p ≥ 0. Then

xp − yp ≤ max{(x− y)p, pxp−1(x− y)}.

Proof. We assume that y > 0; the case of y = 0 is trivial. Let

f(t) = (1 + t)p − (1 + tp).
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Then f ′(t) = p[(1 + t)p−1 − tp−1] and so f ′(t) ≤ 0 for t ≥ 0 and 0 ≤ p ≤ 1.
This gives (1+ t)p− tp ≤ 1. Replacing t by (x− y)/y in the above inequality
yields xp − yp ≤ (x − y)p. If p > 1, then using the Mean Value Theorem,
one can find ξ ∈ (y, x) such that

xp − yp = pξp−1(x− y) ≤ pxp−1(x− y).

Theorem 2.4. Let X,Y be Banach spaces and let f : S(X)→ S(Y ) be

a map. For 0 < r <∞ let f̃r : X → Y be the r-Hölder extension of f.

(i) If f is injective (resp. surjective) and uniformly continuous then

f̃r : B(X)→ B(Y ) is injective (resp. surjective) and uniformly con-
tinuous, and

(2.1) ω
f̃r

(t) ≤ max{tr + 2tr/4, tr + ωf (2
√
t), rt+ 2tr/4, rt+ ωf (2

√
t)},

0 ≤ t ≤ 1.

(ii) If f is a uniform homeomorphism then so is f̃r : B(X)→ B(Y ).

Proof. (i) Clearly, f̃r is injective (resp. surjective) if f is injective (resp.
surjective). Suppose that f is uniformly continuous. Let x1, x2 ∈ B(X) with
‖x1 − x2‖ = δ (0 ≤ δ < 1), ‖x1‖ = α1, ‖x2‖ = α2 and α1 ≥ α2. Then

‖f̃r(x1)− f̃r(x2)‖ =

∥∥∥∥αr1f( x1
‖x1‖

)
− αr2f

(
x2
‖x2‖

)∥∥∥∥
=

∥∥∥∥(αr1 − αr2)f
(

x1
‖x1‖

)
− αr2

(
f

(
x2
‖x2‖

)
− f

(
x1
‖x1‖

))∥∥∥∥
≤ (αr1 − αr2) + αr2

∥∥∥∥f( x1
‖x1‖

)
− f

(
x2
‖x2‖

)∥∥∥∥.
The first term on the right-hand side is bounded by max{rδ, δr} from Lem-
ma 2.3, and we claim that the second one is bounded by max{2δr/4, ωf (2

√
δ)}.

Indeed, ifα2 < δ1/4, then the right-hand side above is bounded by max{rδ, δr}
+ 2δr/4. Otherwise∥∥∥∥x1α1

− x2
α2

∥∥∥∥ =
1

α1α2
‖α2x1 − α1x2‖

≤ 1

α1α2

(
α1‖x1 − x2‖+ α1 − α2

)
≤ δ

α2
+

δ

α1α2
≤ 2δ

α1α2
≤ 2δ√

δ
= 2
√
δ.

Thus ∥∥∥∥f( x1
‖x1‖

)
− f

(
x2
‖x2‖

)∥∥∥∥ ≤ wf (2
√
δ).

Therefore, we finally get (2.1)

(ii) This follows directly from (i) and from f̃r
−1

(y) = ‖y‖1/rf−1(y/‖y‖).
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Let {Mj}j∈N and {M ′j}j∈N be sequences of metric spaces and let fj :
Mj → M ′j be a map. The sequence {fj}j∈N is said to be equi-uniformly
continuous if for every ε > 0 there is a δ > 0 such that for all j ∈ N, if
x, y ∈Mj and dMj (x, y) < δ then dM ′j (fj(x), fj(y)) < ε. This is equivalent to

saying that the function ω : [0,∞)→ [0,∞] satisfies limt→+0 ω(t) = 0 where
ω(t) = sup{ωfj (t) : j ∈ N}. Furthermore the sequence {fj}j∈N is called
equi-uniformly homeomorphic if every fj is a bijection and the sequences
{fj}j∈N and {f−1j }j∈N are equi-uniformly continuous.

The following result follows immediately from Theorem 2.4.

Lemma 2.5. Let {Xj}j∈N and {Yj}j∈N be sequences of Banach spaces
and let 0 < r < ∞. Assume that the sequence {fj : S(Xj) → S(Yj)}j∈N
of maps is equi-uniformly continuous (resp. equi-uniformly homeomorphic).

Then the sequence {f̃j,r : B(Xj) → B(Yj)}j∈N is also equi-uniformly con-

tinuous (resp. equi-uniformly homeomorphic), where f̃j,r is the r-Hölder ex-
tension of fj.

2.2. Uniform classification of spheres for Banach sequence
spaces. Let 1 ≤ p < ∞ and let {Xn}∞n=1 be a sequence of Banach spaces.
The lp-sum of Xn is defined as follows:( ∞∑

n=1

Xn

)
lp

=
{

(xn) : xn ∈ Xn,

∞∑
n=1

‖xn‖p <∞
}
, ‖x‖p=

( ∞∑
n=1

‖xn‖p
)1/p

.

In the special case when Xn = X is a constant sequence we will write
lp(X) = (

∑∞
n=1Xn)lp . It is well-known that lp is linearly isometric to lp(lp)

and these Banach sequence spaces contain the classical Banach sequence
spaces as closed subspaces.

Now we turn to the uniform classification of spheres for general Banach
sequence spaces.

Theorem 2.6. Let {Xj}∞j=1 and {Yj}∞j=1 be sequences of Banach spaces.
Assume that the sequence {fj : S(Xj)→ S(Yj)}∞j=1 of maps is equi-uniformly
continuous (resp. equi-uniformly homeomorphic). Then for any 1 ≤ p, q
<∞, the map

Fp,q :
( ∞∑
j=1

Xj

)
lp
→
( ∞∑
j=1

Yj

)
lq
, (xj)j 7→ (f̃j,p/q(xj))j ,

is uniformly continuous (resp. uniformly homeomorphic) between the unit

spheres. Here f̃j,p/q is the p/q-Hölder extension of fj.

Proof. Since the sequence {fj : S(Xj) → S(Yj)}∞j=1 is equi-uniformly
continuous, it follows from Lemma 2.5 that the p/q-Hölder extension se-

quence {f̃j,p/q : B(Xj)→ B(Yj)}j∈N is also equi-uniformly continuous. This
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implies that for each ε > 0 we can pick η > 0 such that 2qηp/2 < ε and for
all j ∈ N, if xj , yj ∈ B(Xj) and ‖xj−yj‖ ≤

√
η, then ‖f̃j,p/q(xj)− f̃j,p/q(yj)‖

≤ ε.
Suppose that x=(xn), y=(yn) ∈ (

∑∞
j=1Xj)lp are such that

∑∞
n=1 ‖xn‖p

= 1,
∑∞

n=1 ‖yn‖p = 1 and ‖x− y‖p =
∑∞

n=1 ‖xn − yn‖p ≤ ηp. Let

Ω = {j ∈ N : ‖xj − yj‖ ≤
√
ηmax{‖xj‖, ‖yj‖}.

Set λj = max{‖xj‖, ‖yj‖}. Then

‖Fp,q(x)− Fp,q(y)‖q

=
∑
j∈Ω
‖f̃j,p/q(xj)− f̃j,p/q(yj)‖q +

∑
j /∈Ω

‖f̃j,p/q(xj)− f̃j,p/q(yj)‖q.

Note that for λ > 0 and x ∈ Xj , f̃j,p/q(λx) = λp/qf̃j,p/q(x) and∑
j∈Ω
‖f̃j,p/q(xj)− f̃j,p/q(yj)‖q =

∑
j∈Ω

∥∥∥∥λp/qj

[
f̃j,p/q

(
xj
λj

)
− f̃j,p/q

(
yj
λj

)]∥∥∥∥q
≤
∑
j∈Ω

εqλpj ≤
∑
j∈Ω

εq(‖xj‖p + ‖yj‖p) ≤ 2εq.

On the other hand, by our hypothesis,∑
j /∈Ω

2qλpj ≤ 2qη−p/2
∑
j /∈Ω

‖xj − yj‖p ≤ 2qη−p/2‖x− y‖p ≤ 2qηp/2 < ε,

and so∑
j /∈Ω

‖f̃j,p/q(xj)− f̃j,p/q(yj)‖q ≤
∑
j /∈Ω

(‖f̃j,p/q(xj)‖+ ‖f̃j,p/q(yj)‖)q

=
∑
j /∈Ω

(‖xj‖p/q + ‖yj‖p/q)q

≤
∑
j /∈Ω

2q max{‖xj‖, ‖yj‖}p ≤ ε.

Thus ‖Fp,q(x)− Fp,q(y)‖q ≤ 2εq + ε ≤ 3ε.
Now, assume that the sequence {f−1j,p/q : S(Yj) → S(Xj)}j∈N is also

equi-uniformly continuous. It is easy to see that F−1p,q = Fq,p, and therefore

the same calculation for F−1p,q shows that F−1p,q is again uniformly continuous

on the unit sphere of (
∑∞

j=1 Yj)lq .

Remark 2.7. For p = q and Xj = X (j = 1, 2, . . .) in Theorem 2.6(i),
Mimura [21, Proposition 3.9] established quantitatively sharp estimates of
the modulus of continuity of Fp,p in the sense of order estimations. More
precisely, he proved that if the original map f from S(X) to S(Y ) is α-Hölder
continuous for some α ∈ (0, 1], then so is the map Fp,p in Theorem 2.6(i)
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from S(lp(X)) to S(lp(Y )). However, applying our proof of Theorem 2.6(i),
we do not get such quantitative estimates when 1 ≤ p 6= q <∞.

As corollaries of Theorem 2.6, we obtain several results on uniform clas-
sification of spheres for general Banach sequence spaces.

Corollary 2.8. Let {Xn}n∈N be a sequence of Banach spaces and 1 ≤
p <∞. Then (

∑
n∈NXn)lp ∈ [(

∑
n∈NXn)l2 ]S.

Corollary 2.9. For any Banach spaces X,Y and 1 ≤ p < ∞, if
X ∼S Y then lp(Y ) ∈ [l2(X)]S.

Theorem 2.10. Assume that the Banach spaces X and Y are uniformly
homeomorphic. Then lp(Y ) ∈ [l2(X)]S for all 1 ≤ p <∞.

Proof. By [22, Theorem 3.1], X ⊕ R ∼S Y ⊕ R. Again, according to
Corollary 2.8, lp(X ⊕ R) ∼S lq(Y ⊕ R). Note that lp(X ⊕ R) and lq(Y ⊕ R)
are linearly isomorphic to lp(X) and lq(Y ), respectively.

3. Sphere equivalence and Property H. A map f from a metric
space M to another metric space M ′ is said to be a coarse embedding [9] (also
referred to as uniform embedding in the literature, e.g., in [3, 4, 5, 7, 9, 10])
if

(i) ωf (t) <∞ for each t > 0, and
(ii) there exists a non-decreasing function ρ on [0,∞) with limr→∞ ρ(r)

=∞ such that

ρ(d(x, y)) ≤ d(f(x), f(y)) ≤ ωf (d(x, y)) for all x, y ∈M .

Gromov [9] suggested using coarse embeddings of a discrete group into
a Hilbert space or even into a certain Banach space as a tool for working
on such well-known conjectures as the Novikov conjecture and the Baum–
Connes conjecture. Yu [27] proved the coarse Baum–Connes conjecture (re-
spectively the strong Novikov conjecture) for discrete metric spaces with
bounded geometry (respectively discrete groups) which are coarsely embed-
dable into a Hilbert space. Recall that a discrete metric space M is said to
have bounded geometry if for any r > 0 there is N(r) > 0 such that any
ball of radius r in M contains at most N(r) elements. Later on, Kasparov
and Yu [13] proved the coarse Novikov conjecture for discrete metric spaces
with bounded geometry which are coarsely embeddable into a uniformly
convex Banach space. On the other hand, people have already found some
expanders which are not coarsely embeddable into Hilbert spaces and uni-
formly convex spaces (see [10, 15, 20]). So far, no counterexample to the
coarse Novikov conjecture has been found.

Recently, Kasparov and Yu [14] introduced a new geometric property
of Banach spaces, called Property H, and proved the strong Novikov con-
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jecture for discrete groups which are coarsely embeddable into Property H
Banach spaces. Still more recently, Chen, Wang and Yu [6] proved the coarse
Novikov conjecture for discrete metric spaces with bounded geometry which
are coarsely embeddable into Property H Banach spaces.

3.1. The definition of Property H. For convenience, we start with
a notion defined in [12]. A paving of a (separable) Banach space X is a se-
quence E1 ⊂ E2 ⊂ · · · of finite-dimensional subspaces of X whose union
is dense in X. Now we can define Property H by using the above no-
tion.

Definition 3.1 ([6, 14]). A Banach space X is said to have Property H
if there exist pavings {En}∞n=1 of X and {Fn}∞n=1 of l2 and a uniformly
continuous map f : S(X)→ S(l2) such that the restriction of f to S(En) is
a homeomorphism onto S(Fn) for all n ∈ N.

Remark 3.2. (i) By the definition above, Property H of a Banach space
X automatically implies the separability of X. Therefore we will omit men-
tioning the separability of a Banach space when we consider its Property H.

(ii) Let the Banach space X, the sequences of finite-dimensional sub-
spaces {En} and {Fn}, and the map f be as in Definition 3.1. By a standard
topological argument, existence of f ensures that dimEn = dimFn for all
n ∈ N. Later we call f a paving map between X and l2 (associated with
{En} and {Fn}). Thus a paving map is always (finite-)dimension preserving
with respect to some chosen paving sequence, which is an important differ-
ence from a general uniformly continuous map or even a general uniform
homeomorphism between unit spheres.

Let us list some Banach spaces that are known to have Property H
[6, 14]. The lp space has Property H for any 1 ≤ p < ∞. Indeed, let En
and Fn be the subspaces of lp and l2 respectively consisting of all sequences
whose coordinates are zero after the nth place. Then {En}n∈N and {Fn}n∈N
obviously pave lp and l2, respectively. The Mazur map

Mp,2(α1, . . . , αk, . . .) = (α1|α1|p/2−1, . . . , αk|αk|p/2−1, . . .)
is the desired paving map. Similarly, the Banach space of all Schatten
p-class operators on a separable Hilbert space has Property H. By using
[2, Lemma 9.5 and Corollary 9.6], one can also prove that uniformly convex
Banach spaces with an unconditional basis have Property H. In particular,
this implies that the classical Lp-space has Property H for all 1 < p <∞.

We will next use the Mazur map to show that a paving map is not
always (finite-)dimension preserving, which implies that we need to choose
the paving sequence carefully when we hope to prove that a Banach space
has Property H.
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Example 3.3. In the unit sphere S(l1) of l1, take a sequence {xj}j∈N
such that the only nonzero coordinates of xj are 1/4 and 3/4 at the jth
and (j + 1)th place, respectively. Set Vn = [x1, . . . , xn]. Then V1 ⊂ V2 ⊂ · · ·
and dimVn = n. Here [A] denotes the closed linear span of a subset A in a
Banach space. We claim that the Mazur map between S(l1) and S(l2) does
not preserve the dimensions of Vn. More precisely, we will prove that for any
n > 1,

dim[M1,2(S(Vn))] ≥ n+ 1.

To show this claim, let

yn+1 =
1

n
(x1 + · · ·+ xn) =

1

n

(
1

4
, 1, . . . , 1,

3

4
, 0, . . .

)
∈ S(l1).

Then M1,2(x1),M1,2(x2), . . . ,M1,2(xn),M1,2(yn+1) are n + 1 linearly inde-
pendent vectors contained in S(l2). Indeed,



M1,2(x1)

M1,2(x2)
...

M1,2(xn)

M1,2(yn+1)


=



1
2

√
3
2 0 0 · · · 0 0 0 · · ·

0 1
2

√
3
2 0 · · · 0 0 0 · · ·

0 0 1
2

√
3
2 · · · 0 0 0 · · ·

0 0 0 1
2 · · · 0 0 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1

2

√
3
2 0 · · ·

1
2
√
n

1√
n

1√
n

1√
n
· · · 1√

n

√
3

2
√
n

0 · · ·


.

Denote the first n+ 1 columns of the matrix above by An+1. By calculating
its determinant, we have

|An+1| = L

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
√

3 0 0 · · · 0 0

0 1
√

3 0 · · · 0 0

0 0 1
√

3 · · · 0 0

0 0 0 1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1

√
3

1 0 0 0 · · · 0
√

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= L(

√
3 + (−

√
3)n) 6= 0 (n > 1).

Here L = 1
2n+1

1√
n

(
1− 2

1+
√
3

)
.

3.2. The stability of Property H. In this section we mainly aim to
provide a permanence result for Property H, which may be viewed as an
analogue of the well-known Day theorem [8].
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Theorem 3.4 (Day’s theorem). For every 1 < p < ∞ the Banach
sequence space (

∑
⊕En)lp is uniformly convex provided that the sequence

{En}n∈N has a common modulus of convexity. In particular, lp(X) is uni-
formly convex whenever X is uniformly convex.

We first introduce the following definition.

Definition 3.5. We say that a sequence {Xj}j∈N of real Banach spaces
has uniform Property H or equi-Property H provided that for every j the
space Xj has Property H and we can choose a corresponding paving map
fj between Xj and l2 such that the sequence {fj : S(Xj) → S(l2)}j∈N is
equi-uniformly continuous.

Theorem 3.6. Let {Xj}j∈N be a sequence of real Banach spaces. If
{Xj}j∈N has equi-Property H then (

∑∞
j=1Xj)lp has Property H for all 1 ≤

p <∞. In particular, lp(X) has Property H whenever X does.

Proof. For every j, we choose pavings {V j
n }n∈N of Xj , {W j

n}n∈N of l2
and the paving map fj such that the sequence {fj : S(Xj) → S(l2)}j∈N is
equi-uniformly continuous.

Define Fp,2 : (
∑
Xj)lp → (

∑
l2)l2 by

Fp,2(x1, x2, . . .) = (f̃1,p/2(x1), f̃2,p/2(x2), . . .)

for (x1, x2, . . .) ∈ (
∑
Xj)lp . Here f̃j,p/2 is the aforementioned p/2-Hölder

extension of fj .
Take

Vn = (V 1
n + V 2

n + · · ·+ V n
n + 0 + · · · )lp ,

Wn = (W 1
n +W 2

n + · · ·+Wn
n + 0 + · · · )l2 .

We claim that:

(i) {Vn}n∈N and {Wn}n∈N pave (
∑
Xj)lp and (

∑
l2)l2 = l2, respec-

tively;
(ii) Fp,2 is uniformly continuous between the unit spheres of (

∑
Xj)lp

and (
∑
l2)l2 ; and

(iii) the restricted map Fp,2 : S(Vn) → S(Wn) is a homeomorphism for
every n ∈ N.

This means that (
∑
Xj)lp has Property H.

Now we prove the three assertions above.
(i) Obviously, Vn is an increasing sequence of finite-dimensional sub-

spaces of X. Furthermore
⋃
n∈N Vn is dense in (

∑
Xj)lp . Indeed, for every

ε > 0 and x = (xj) ∈ (
∑
Xj)lp , choose xn0 = (x1, . . . , xn0 , 0, . . .) such

that ‖x − xn0‖ < ε/2. For every j ∈ {1, . . . , n0} the density of
⋃∞
n=1 V

j
n

in Xj implies that there is nj ∈ N such that dist(xj , V
j
nj ) < ε/(2n0). Set
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N0 = max1≤j≤n0 nj . Then dist(xn0 , VN0) < ε/2 where VN0 = (V 1
N0

+ · · · +
V N0
N0

+ 0 + · · · )lp . Thus

dist(x, VN0) ≤ ‖x− xn0‖+ dist(xn0 , VN0) ≤ ε.
(ii) This follows directly from Theorem 2.6, since the sequence {fj :

S(Xj)→ S(l2)}j is equi-uniformly continuous.
(iii) To prove this item, it suffices to note that given an n ∈ N, the restric-

tion of Fp,2 to S(Vn) is a bijection onto S(Wn). Indeed, by the hypothesis

and by Theorem 2.4 the component f̃j,p/2 of Fp,2 is a homeomorphism from

B(V j
n ) onto B(W j

n) for all j = 1, . . . , n; and obviously

F−1p,2 (w1
n, . . . , w

n
n, 0, . . .) = (f̃−11,p/2(w

1
n), . . . , f̃−1n,p/2(w

n
n), 0, . . .) ∈ S(Vn)

for every (w1
n, . . . , w

n
n, 0, . . .) ∈ S(Wn).

In contrast to Theorem 3.6, Brown and Guentner [3] proved that for each
discrete metric space A with bounded geometry there is a sequence {pn} with
pn > 1 and pn →∞ such that A is coarsely embeddable into (

∑
lpn)l2 . This

result was strengthened in [1] and [24]. (Observe that (
∑
lpn)l2 has trivial

cotype.) The following question naturally arises:

Question 3.7. Does (
∑
lpn)l2 have Property H for some sequence{pn}n∈N

with pn > 1 and pn →∞?

According to [3] and by recent work in [6, 14], the positive answer to this
question will imply the (strong, coarse) Novikov conjecture for all discrete
groups with bounded geometry.

In the following, we give several simple remarks concerning the above
question.

Remark 3.8. (i) For any sequence {pn}n∈N as in Question 3.7, although
the sequence {Mpn,2}n∈N of Mazur maps ensures that lpn has Property H for
all n, this sequence is not equi-uniformly continuous. Indeed, it is well-known
that

(3.1) c‖x− y‖p/q ≤ ‖Mp,q(x)−Mp,q(y)‖ ≤ p

q
‖x− y‖

for all x, y ∈ S(lp) and p > q, and the opposite inequalities hold if p < q
(note that M−1p,q = Mq,p), where the constant c depends only on p/q. See
more details in [2, Chapter 9].

(ii) It is also an open question whether c0 has Property H. By recent work
[6, 14], the positive answer to this question will imply the (coarse, strong)
Novikov conjecture for all discrete groups since every discrete group admits a
coarse embedding into c0. In fact, we do not even know whether there exists
a uniformly continuous injective map from some trivial cotype Banach space
(respectively, c0) sphere to the l2 sphere. Recall that a Banach space X has
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trivial cotype if it contains uniformly isomorphic copies of {ln∞}n. Here ln∞
denotes Rn equipped with the l∞ norm.

(iii) Since the sequence {lpn}n∈N has equi-Property H for every bounded
sequence {pn}n∈N with pn ≥ 1, by Theorem 3.6 we immediately obtain a
positive result.

Theorem 3.9. For any bounded sequence {pn}n∈N with pn ≥ 1 and for
all 1 ≤ p <∞, the sequence space (

∑∞
n=1 lpn)lp has Property H.

3.3. Coarse embeddings of free products. We conclude this sec-
tion with a direct application of Theorem 3.6. It is usually of interest to
find permanence properties of the class of discrete groups that are coarsely
embeddable into a certain type of Banach spaces. In particular, it is shown
in [4] that if two countable discrete groups A and B are coarsely embed-
dable into a Hilbert space, then so is their free product A ∗ B. This has
been generalized to the uniformly convex case by applying Day’s theorem
(see [5]). We shall prove an analogous result for coarse embeddability into
Property H Banach spaces:

Theorem 3.10. Let A and B be countable discrete groups, and let Γ =
A ∗B be their free product. If A and B are coarsely embeddable into Prop-
erty H Banach spaces, then so is Γ .

Proof. Let fA : A→ XA and fB : B → XB be coarse embeddings, where
XA and XB have Property H. Then much as in the proofs of [4, Theorem]
and [5, Theorem], we can construct a coarse embedding F : Γ → XΓ , where

XΓ =
(∑
WA

XA

)
l2
⊕
(∑
WB

XB

)
l2
,

where WA (resp. WB) denotes the set of those elements of Γ whose expres-
sion as a reduced word begins with A (resp. B) with {e} = WA ∩WB. By
Theorem 3.6, XΓ also has Property H.

4. Sphere equivalence and Banach expanders. Expanders are im-
portant examples of spaces which are not coarsely embeddable into “nice”
Banach spaces. For example, Lafforgue [15] showed that there is a family of
expanders which is not coarsely embedded into any uniformly convex Ba-
nach space. Recently Mendel and Naor [20] introduced the nonlinear spectral
gap on general metric spaces and studied that notion in detail. In partic-
ular, they constructed a “super-expander” that does not coarsely embed
into any uniformly convex Banach space, which is another construction of
such graphs, entirely different from Lafforgue’s. More recently, Mimura [21]
specialized the concept of the nonlinear spectral gap to the Banach space
setting and introduced and studied “(X, p)-anders for a sequence of finite
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graphs” to attack the following open problem: Are any expanders automat-
ically (X, p)-anders for all X of nontrivial cotype and for all p ∈ [1,∞)?

In this section, we combine Theorem 2.6 with Mimura’s [21, Theorem 4.1]
to show directly that having (X, p)-anders is stable under varying the expo-
nent p over [1,∞).

Let us recall some notation and concepts used in [21]. Let G = (V,E)
be a finite connected undirected graph (here V is the set of vertices and
E is the set of oriented edges), possibly with multiple edges and self-loops.
Then G can be regarded as a metric space equipped with the path metric
dG (namely, the distance dG(v, w) between two vertices v and w in V is the
shortest length of a path connecting v and w, and we set dG(v, v) = 0). The
diameter of G (diam(G)) is the largest distance of vertices in G. Let ∆(G)
denote the maximal degree of G. Assume that (X, p) is a pair of a Banach
space X and an exponent p.

Definition 4.1. The Banach spectral gap is defined as follows: the
(X, p)-spectral gap of G, denoted by λ1(G;X, p), is

(4.1) λ1(G;X, p) =
1

2
inf

f :V→X

∑
v∈V

∑
e=(v,w)∈E ‖f(w)− f(v)‖p∑
v∈V ‖f(v)−m(f)‖p

.

Here, m(f) =
∑

v∈V f(v)/|V | and f runs over all nonconstant maps.

Definition 4.2 (Banach expanders). A sequence {Gn}n∈N of finite con-
nected graphs is called a family of (X, p)-anders if

(i) supn∆(Gn) <∞;
(ii) limn→∞ diam(Gn) =∞; and

(iii) infn λ1(Gn;X, p) > 0.

Let us mention several known results:

(i) The existence of (X, p)-anders for some fixed p implies poor embed-
dability into X: if {Gn}n is a sequence of (X, p)-anders for some p,
then there is no family of coarse embeddings of Gn, n ∈ N, into X
with common ρ and ω.

(ii) For all 1 ≤ p < ∞, (X, p)-anders are (classical) expanders (see
[11, 18, 21, 25]).

(iii) Pisier [26] showed that expanders are (X, 2)-anders for uniformly
curved Banach spaces X.

Let us recall the notion of uniformly curved Banach spaces.

Definition 4.3 (Pisier [26]). A Banach space X is said to be uniformly
curved [26] if limε→+0DX(ε)= 0, where DX(ε) denotes the infimum of D ∈
(0,∞) such that for every n ∈ N, every matrix T = (tij)i,j ∈ Mn(R) with

‖T‖Ln2 (R)→Ln2 (R) ≤ ε and ‖abs(T )‖Ln2 (R)→Ln2 (R) ≤ 1,
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where abs(T ) = (|tij |)i,j is the entrywise absolute value matrix of T , satisfies

‖T ⊗ IX‖Ln2 (X)→Ln2 (X) ≤ D.

We also need the following definitions.

Definition 4.4 ([21]). Let X,Y be Banach spaces and p, q ∈ [1,∞). Let
Ω be an at most countable set. For a map φ : S(lp(Ω,X))→ S(lq(Ω, Y )), we
say that φ is Sym(Ω)-equivariant if φ ◦ σX,p = σY,q ◦φ for any σ ∈ Sym(Ω).
Here for a Banach space E and r ∈ [1,∞), the symbol σE,r denotes the
isometry σE,r on lr(Ω,E) induced by σ, namely, (σE,rξ)(a) := ξ(σ−1(a)) for
ξ ∈ lr(Ω,E) and a ∈ Ω; and Sym(Ω) is the group of all permutations on Ω,
including those of infinite support.

In this section, let Γ be a finitely generated group, S 63 e be a symmetric
finite generating set, and H be a subgroup of Γ of finite index.

Definition 4.5 ([21]). Let Γ,H, S be as above.

(1) LetλΓ,H,X,p be the quasi-regular representation ofΓ on lp(Γ/H, lp(X)),
namely, for γ ∈ Γ and ξ ∈ lp(Γ/H, lp(X)), λΓ,H,X,p(γ)ξ(xH) := ξ(γ−1xH).
Then lp(Γ/H, lp(X)) decomposes into Γ -representation spaces

lp(Γ/H, lp(X)) = lp(Γ/H, lp(X))λΓ,H,X,p(Γ ) ⊕ lp,0(Γ/H, lp(X)).

Here the first summand is the space of λΓ,H,X,p(Γ )-invariant vectors, and
the second is the space of “zero-sum” functions,

lp,0(Γ/H, lp(X)) :=
{
ξ ∈ lp(Γ/H, lp(X)) :

∑
v∈Γ/H

ξ(v) = 0
}
.

We use the same symbol λΓ,H,X,p for the restriction to lp,0(Γ/H, lp(X)).

(2) The p-displacement constant on X with respect to Γ,H and S, writ-
ten κX,p(Γ,H, S), is defined as

κX,p(Γ,H, S) := inf
06=ξ∈lp,0(Γ/H,lp(X))

sup
s∈S

‖λΓ,H,X,p(s)ξ − ξ‖
‖ξ‖

.

The following lemma plays a fundamental role in [21]; it relates the p-
displacement constant on X to the (X, p)-spectral gap for a Schreier graph.

Lemma 4.6 ([21]). Let G be a Schreier graph with respect to Γ , H and
S and let (X, p) be a pair as above. Then

κX,p(Γ,H, S)p ≤ λ1(G;X, p) ≤ |S|
2
κX,p(Γ,H, S)p.

We now extend [21, Proposition 4.2].

Proposition 4.7. Let X ∼S Y and let f : S(X) → S(Y ) be a uniform
homeomorphism. Let Γ be a finitely generated group, S 63 e be a symmetric
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finite subset, and H be a subgroup of Γ of finite index. Then for any p, q ∈
[1,∞),

κX,p(Γ,H, S) ≥ δ−11

(
1

2
δ−12

(
1

2

)
κY,q(Γ,H, S)

)
,

where δ1 = ωFp,q , δ2 = ωF−1
p,q

and Fp,q : lp(X)→ lq(Y ), (xj)j 7→ (f̃p/q(xj))j,

where f̃p/q is the aforementioned p/q-Hölder extension of f .

Proof. We consider the quasi-regular representations λΓ,H,X,p and
λΓ,H,Y,q of Γ on lp(Γ/H, lp(X)) and lq(Γ/H, lq(Y )), respectively. Note that
lp(Γ/H, lp(X)) is linearly isometric to lp(X). We may regard Fp,q as

Fp,q : S(lp(Γ/H, lp(X)))→ S(lq(Γ/H, lq(Y ))),

which is Sym(Γ/H)-equivariant (by construction) and is uniformly hom-
eomorphic by Theorem 2.6. Choose any ξ ∈ S(lp,0(Γ/H, lp(X))) and set
η =: Fp,q(ξ) ∈ S(lq(Γ/H, lq(Y ))). Then continue the proof as in [21, Propo-
sition 4.2].

Theorem 4.8. Let X ∼S Y and let f : S(X) → S(Y ) be a uniform
homeomorphism. Let G = (V,E) be a finite graph. Then for any p, q ∈
[1,∞),

λ1(G;X, p) ≥ 1

2

{
δ−11

(
1

2

(
2

∆(G)

)1/q

δ−12

(
1

2

)
λ
1/q
1 (G;Y, q)

)}p
.

Here δi (i = 1, 2) and Fp,q are defined as in Proposition 4.7.

Proof. If G is a Schreier graph with respect to Γ,H and S then Propo-
sition 4.7 and Lemma 4.6 end the proof. For general finite graphs, use the
Gross trick of Mimura [21, Section 4.2] to reduce the argument to the pre-
vious case.

From Theorem 4.8 we immediately obtain the following stability results.

Theorem 4.9. Let X,Y be Banach spaces.

(i) If X ∼S Y , then for any p, q ∈ [1,∞) and any sequence {Gn}n∈N
of graphs, {Gn}n∈N is a family of (X, p)-anders if and only if it is a
family of (Y, q)-anders.

(ii) In particular, for any sequence {Gn}n∈N of graphs, {Gn}n∈N is a
family of (X, p)-anders for some p ∈ [1,∞) if and only if it is so for
all p ∈ [1,∞).

Corollary 4.10. For a Banach space X sphere equivalent to a uni-
formly curved Banach space and for all p ∈ [1,∞), any expanders are auto-
matically (X, p)-anders.

Obviously, these results improve and extend Mimura’s main results in [21]
(e.g., [21, Theorems A and B, Corollary C]). In particular, Theorem 4.9(ii)
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settles a natural question of whether the property of having (X, p)-anders for
a sequence of finite connected graphs of uniformly bounded degrees depends
on the exponent p ∈ [1,∞).
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[18] J. Matoušek, Expander graphs in pure and applied mathematics, Israel J. Math. 102
(1997), 189–197.
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