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Abstract. Our purpose is to apply suitable maximum principles in order to obtain
Bernstein type properties for two-sided hypersurfaces immersed with constant mean cur-
vature in a Killing warped product Mn ×ρ R, whose curvature of the base Mn satisfies
certain constraints and whose warping function ρ is concave on Mn. For this, we study
situations in which these hypersurfaces are supposed to be either parabolic, stochasti-
cally complete or, in a more general setting, L1-Liouville. Rigidity results related to entire
Killing graphs constructed over the base of the ambient space are also given.

1. Introduction. Killing vector fields are important objects which have
been widely used in order to understand the geometry of submanifolds and,
more particularly, of hypersurfaces immersed in Riemannian spaces. Aĺıas,
Dajczer and Ripoll [ADR] extended the classical Bernstein theorem [B] to
the context of complete minimal surfaces in Riemannian spaces of nonneg-
ative Ricci curvature carrying a Killing vector field. This was done under
the assumption that the sign of the angle function between the global Gauss
mapping and the Killing vector field remains unchanged along the surface.
Afterwards, Dajczer, Hinojosa and de Lira [DHL] defined a notion of Killing
graph in a class of Riemannian manifolds endowed with a Killing vector field
and solved the corresponding Dirichlet problem for prescribed mean curva-
ture under a hypothesis involving the domain data and the Ricci curvature
of the ambient space. More recently, Dajczer and de Lira [DL] showed that
an entire Killing graph of constant mean curvature lying inside a slab must
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be a totally geodesic slice, under certain restrictions on the curvature of the
ambient space. To prove their Bernstein type result, they used as the main
ingredient the Omori–Yau maximum principle for the Laplacian in the sense
of Pigola, Rigoli and Setti [PRS2].

In the particular case of a Riemannian product Mn × R, it was shown
by Rosenberg, Schulze and Spruck [RSS] that if the Ricci curvature of the
base Mn is nonnegative and its sectional curvature is bounded from below,
then any entire minimal graph over Mn with nonnegative height function
must be a slice. This extends the celebrated theorem by Bombieri, De Giorgi
and Miranda [BGM] concerning entire minimal hypersurfaces in Euclidean
space. In [LLP], the second and third authors jointly with Parente studied
two-sided complete hypersurfaces immersed in Mn × R, whose base is also
supposed to have sectional curvature bounded from below. In this setting,
they extended a technique developed in [LP] obtaining sufficient conditions
for a hypersurface to be a slice of the ambient space, provided that its angle
function has suitable behavior.

We recall that a hypersurface is said to be two-sided if its normal bundle
is trivial, that is, there exists on it a globally defined unit normal vector
field.

Here, assuming constraints similar to [DL] on the curvature of Mn and
supposing that the warping function ρ is concave on Mn, our purpose is to
investigate Bernstein type properties of two-sided hypersurfaces immersed
with constant mean curvature in a Killing warped product Mn ×ρ R.

In Section 2 we recall some basic facts concerning two-sided hypersur-
faces immersed in Mn×ρR. In Section 3 we establish our first Bernstein type
results concerning parabolic two-sided hypersurfaces (Theorems 3.1 and 3.3
and Corollaries 3.5 and 3.6). In particular, under some restrictions on the
warping function and assuming that the base of the ambient space has a
pole, we use a well known result due to Khas’minskii [K] to show that the
immersed hypersurface is, in fact, parabolic (Theorem 3.7).

In Section 4 we consider a weaker case in which the immersed hypersur-
face is shown to be stochastically complete, and we apply the weak Omori–
Yau maximum principle to obtain another Bernstein type theorem (Theo-
rem 4.2). We also treat the more general setting where the hypersurface is
just supposed to be L1-Liouville (Theorem 4.5). Moreover, we discuss the
case in which the two-sided hypersurface is an entire Killing graph con-
structed over the base of the ambient space (Corollaries 3.8 and 4.4).

Finally, we point out that most of our results do not require geodesic
completeness of the base Mn of the ambient space. More precisely, these
results are meaningful when Mn is either incomplete or n-dimensional with
n ≥ 3.
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2. Killing warped products. Let M
n+1

be an (n + 1)-dimensional
Riemannian manifold endowed with a Killing vector field Y . Suppose that
the distribution orthogonal to Y is of constant rank and integrable. Given

an integral leaf Mn of that distribution, let Ψ : I ×Mn → M
n+1

be the

flow generated by Y with initial values in M
n+1

, where I is the maximal
interval of definition. Without loss of generality, in what follows we assume
I = R.

In this setting, M
n+1

can be regarded as the Killing warped product
Mn ×ρ R, that is, the product manifold Mn ×R endowed with the warping
metric

(2.1) 〈 , 〉 = π∗M (〈 , 〉M ) + (ρ ◦ πM )2π∗R(dt2),

where πM and πR denote the canonical projections from Mn ×R onto each
factor, 〈 , 〉M is the induced Riemannian metric on the base Mn, and the
warping function ρ ∈ C∞ is ρ = |Y | > 0.

Throughout this work, we will deal with hypersurfaces ψ : Σn →M
n+1

immersed in a Killing warped product M
n+1

= Mn ×ρ R and which are
two-sided. This means that there is a globally defined unit normal vector
field N . In this setting, we will consider two particular smooth functions
on Σn: the (vertical) height function h = (πR)|Σ and the angle function
Θ = 〈N,Y 〉.

For a two-sided hypersurface Σn with constant mean curvature in
Mn ×ρ R, from [BCE, Proposition 2.12] (see also [FR, Proposition 1] and
[ADR, Proposition 6]) we have

(2.2) ∆Θ = −
(
Ric(N,N) + |A|2

)
Θ,

where Ric denotes the Ricci tensor of M
n+1

and |A| stands for the Hilbert–
Schmidt norm of the shape operator A of Σn with respect to N . According
to [BCE, Proposition 2.9] (see also [MPR, Lemma 1]), formula (2.2) means
that Θ is a Jacobi function, that is, it lies in the kernel of the stability
operator L = ∆+ Ric(N,N) + |A|2.

We close this section by observing that the Killing vector field Y de-
termines in Mn ×ρ R a codimension one foliation by totally geodesic slices
Mn × {t}, t ∈ R. In general, the slices are not the only totally geodesic
hypersurfaces in Killing warped products. For instance, if Γ is a geodesic of
the hyperbolic plane H2, the cylinder Γ × R is totally geodesic in H2 × R.
So, a hypersurface being totally geodesic is strictly weaker than being a
slice in general. Motivated by this fact, in the next section we establish
some results which guarantee that (open pieces of) slices are the only to-
tally geodesic hypersurfaces in Mn×ρR, under certain curvature constraints
on Mn.
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3. Parabolic hypersurfaces in Mn ×ρ R. Now, we present our first
Bernstein type result concerning parabolic two-sided hypersurface immersed
in a Killing warped product. For this, we recall that a Riemannian manifold
without boundary Σn is said to be parabolic when the only superharmonic
functions on Σn bounded from below are the constant ones.

Theorem 3.1. Let M
n+1

= Mn ×ρ R be a Killing warped product with
Ricci curvature of Mn satisfying RicM ≥ −κ for some constant κ > 0, and

with concave warping function ρ. Let ψ : Σn → M
n+1

be a parabolic two-
sided hypersurface with constant mean curvature and with angle function Θ
having strict sign (i.e. either Θ > 0 everywhere or Θ < 0 everywhere). If

(3.1) |∇h|2 ≤ α

κ(n− 1)ρ2
|A|2

for some constant 0 ≤ α < 1, then Σn is contained in a slice. If in addition

Σn is complete, then Mn is complete, Σn is a slice and M
n+1

= Mn×R is
a product space.

Proof. From [O, Corollary 7.43] we get

Ric(N,N) = Ric(N∗, N∗) + Ric(N⊥, N⊥)(3.2)

= RicM (N∗, N∗)− 1

ρ
HessM ρ(N∗, N∗)− 〈N⊥, N⊥〉∆Mρ

ρ

= RicM (N∗, N∗)− 1

ρ
HessM ρ(N∗, N∗)−Θ2∆Mρ

ρ3
,

where N∗ and N⊥ are the orthogonal projections of N onto Mn and R,
respectively, and HessM and ∆M are the Hessian and the Laplacian on Mn.

Consequently, from (3.2) and (2.2) we obtain

(3.3) ∆Θ = −
(

RicM (N∗, N∗)− 1

ρ
HessM ρ(N∗, N∗)−Θ2∆Mρ

ρ3
+ |A|2

)
Θ.

On the other hand, denoting by ( )> the tangential component of a vector

field in X(M
n+1

) along Σn, we have

(3.4) ∇h =
1

ρ2
Y >.

Moreover,

(3.5) N∗ = N − 1

ρ2
ΘY.

Hence, from (3.4) and (3.5) it is not difficult to verify that

(3.6) |∇h|2 =
1

ρ2
|N∗|2M .
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We also note that since we are assuming that Θ has strict sign, for an
appropriate choice of N we can suppose Θ > 0 on Σn. Since ρ is assumed
to be concave, and taking into account our constraint on RicM , from (3.3)
and (3.6) we get

(3.7) ∆Θ ≤
(
κ(n− 1)ρ2|∇h|2 − |A|2

)
Θ.

Using hypothesis (3.1), from (3.7) we obtain

(3.8) ∆Θ ≤ (α− 1)|A|2Θ.
Hence, Θ is a positive superharmonic function on Σn, and since we are
assuming that Σn is parabolic, Θ must be constant on Σn. So, returning
to (3.8), we see that Σ is totally geodesic. Therefore, hypothesis (3.1) ensures

that h is constant on Σn, that is, Σn is contained in a slice of M
n+1

. If
moreover Σ is complete, we infer that Mn is also complete, Σ is a slice of

M
n+1

, and since in this case Θ = ρ, we conclude that ρ is constant on Mn.

Remark 3.2. We recall that a constant mean curvature hypersurface
Σn is said to be stable when its stability operator L is nonpositive. As a
consequence of [MPR, Corollary 1], if the angle function Θ of a stable com-
plete parabolic hypersurface Σn with constant mean curvature in Mn×ρR is
bounded, then either Θ is identically zero, or it never vanishes on Σn. Hence,
removing in Theorem 3.1 the hypothesis that Θ has strict sign and assum-
ing that Σn is a stable complete parabolic hypersurface with Θ bounded,
we will conclude that Σn is either a vertical cylinder, when Θ is identically
zero, or a slice, when Θ does not vanish. This also applies to other results
along this section.

Theorem 3.3. Let M
n+1

= Mn ×ρ R be a Killing warped product with

RicM nonnegative and with ρ concave. Let ψ : Σn → M
n+1

be a parabolic
two-sided hypersurface with constant mean curvature and with angle function
Θ of strict sign. Then Σn is totally geodesic. If moreover RicM is strictly

positive, then Σn is contained in a slice of M
n+1

. If in addition Σn is

complete, then Mn is complete, Σn is a slice and M
n+1

= Mn × R is a
product space.

Proof. Since ρ is concave and RicM ≥ 0, from (3.3) we find that (for an
appropriate choice of N) Θ is a positive function on Σn such that

(3.9) ∆Θ ≤ −
(
RicM (N∗, N∗) + |A|2

)
Θ ≤ 0.

Thus, the parabolicity of Σn ensures that Θ is constant on Σn. So, return-
ing to (3.9) we have |A| ≡ 0, that is, Σn is totally geodesic. Moreover,
RicM (N∗, N∗) = 0 on Σn. Assuming that RicM > 0, we conclude that
N∗ vanishes identically on Σn, which means that Σ is contained in a slice

of M
n+1

. If in addition Σ is complete, as in the last part of the proof of
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Theorem 3.1 we find that Mn is complete, Σ is a slice of M
n+1

and ρ is
constant.

Remark 3.4. From the geometric point of view, parabolicity of a com-
plete manifold is tightly related to the growth rate of the volume of geodesic
balls. For instance, in [G2, Theorem 7.5], Grigor’yan showed that a sufficient
criterion for Σn to be parabolic is that it is geodesically complete and, for
some origin o ∈ Σn,

vol(∂Br(o))
−1 /∈ L1(Σ).

Here, Br(o) denotes the geodesic ball of Σn centered at o and of radius r > 0
and L1(Σ) stands for the space of Lebesgue integrable functions on Σn.

Furthermore, according to Cheng and Yau [CY] (see also [G2, Corollary
7.4] or [CM, Proposition 1.37]), the parabolicity of a complete manifold is
also guaranteed if we assume the stronger condition that it has quadratic
area growth, which means that

vol(Br) = O(r2) as r →∞.
In particular, parabolicity holds if Σn has finite volume. Hence, the conclu-
sions in Theorems 3.1 and 3.3 can be obtained if we assume that Σn has
either finite volume or quadratic area growth.

On the other hand, Cao and Zhuo [CZ] proved that every n-dimensional
gradient shrinking Ricci soliton has vol(Br) ≤ Crn for some positive con-
stant C. We recall that a Riemannian manifold (Σn, g) is called a gradient
shrinking Ricci soliton if there exist f ∈ C∞(Σ) and a positive constant λ
satisfying

Ric + Hess f = λg.

Hence, all 2-dimensional gradient shrinking Ricci solitons are parabolic.

Taking into account Remark 3.4, from Theorem 3.3 we obtain

Corollary 3.5. Let M
3

= S2 ×ρ R be a Killing warped product with ρ

concave. Let ψ : Σ2 → M
3

be a complete two-sided surface with constant
mean curvature and with angle function Θ of strict sign. If (Σ2,∇h) is a

gradient shrinking Ricci soliton, then Σ2 is isometric to S2 and M
3

= S2×R.

From a classical result due to Ahlfors [A] and Blanc–Fiala–Huber [H],
a complete surface of nonnegative Gaussian curvature is parabolic. So, tak-
ing into account this result jointly with [ADR, Proposition 8], it is not
difficult to see that we can reason as in the proof of Theorem 3.3 to get

Corollary 3.6. Let M
3

= M2 ×ρ R be a Killing warped product with

nonnegative Gaussian curvature KM and with ρ concave. Let ψ : Σ2 →M
3

be a complete two-sided surface with constant mean curvature, nonnegative
Gaussian curvature and angle function Θ of strict sign. Then Σ2 is totally
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geodesic. If in addition KM (q) > 0 at some q ∈ Σ2, then M2 is complete,

Σ2 is a slice and M
3

= M2 × R is a product space.

In our next Bernstein type theorem, we will use a well known criterion
due to Khas’minskii [K] to show that the immersed hypersurface is, in fact,
parabolic.

Theorem 3.7. Let M
n+1

= Mn ×ρ R be a Killing warped product with
ρ concave and whose base Mn is complete noncompact with a pole and with

nonnegative sectional curvature KM . Let ψ : Σn → M
n+1

be a two-sided
hypersurface with constant mean curvature H. Suppose that the projection
πM is proper when restricted to Σn and that the angle function Θ has strict
sign. If

(3.10)
∂ ln ρ

∂%M
≤ −

(
1

%M
+ |H|

)
off a compact set, where %M is the distance function on Mn measured from
a fixed pole, then Σn is totally geodesic. If moreover KM is strictly positive
on Σn, then Σn is contained in a slice. If in addition Σn is complete, then

Σn is a slice and M
n+1

= Mn × R is a product space.

Proof. We just need to prove that, under these conditions, the immersion
is parabolic. For this, we will use a result due to Khas’minskii [K] (see
also [G2, Corollary 5.4]): if there exists on Σn a superharmonic function ξ
outside a compact K ⊂ Σn such that ξ(x) → ∞ as x → ∞, then Σn is
parabolic.

So, let the geodesic distance on Mn measured from a fixed pole o ∈ M
be denoted by %M (x) = dM (x, o) for x ∈Mn. Let us also denote by ∇, ∇M

and ∇ the Levi-Civita connections of M
n+1

, Mn and Σn, respectively, and,
slightly abusing the notation, let %M stand for the composition %M ◦πM ◦ψ.
In this setting, we have

(3.11) ∇%M = ∇%M − 〈∇%M , N〉N.

For v, w ∈ TΣ, it follows that

〈∇v∇%M , w〉 = 〈∇v∇%M , w〉(3.12)

= 〈∇v(∇%M − 〈∇%M , N〉N), w〉
= 〈∇v∇%M , w〉 − 〈∇v〈∇%M , N〉N,w〉
= 〈∇v∇%M , w〉 − 〈∇vN,w〉〈∇%M , N〉
= 〈∇v∇%M , w〉+ 〈Av,w〉〈∇%M , N〉.

Considering polar coordinates (%M , θ) on Mn, we have
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∇%M =
∑
γ,η

gγη
∂%M
∂xγ

∂

∂xη
= ∂%M ,

that is, ∇%M ∈ TM .

Now, we note that

〈∇v∇%M , w〉 = 〈∇(πM )∗v∇%M , (πM )∗w〉+ 〈∇(πM )∗v∇%M , (πR)∗w〉(3.13)

+ 〈∇(πR)∗v∇%M , (πM )∗w〉+ 〈∇(πR)∗v∇%M , (πR)∗w〉.

Looking at each term above, we have

〈∇(πM )∗v∇%M , (πR)∗w〉 = 〈∇(πR)∗v∇%M , (πM )∗w〉 = 0,

〈∇(πR)∗v∇%M , (πR)∗w〉 = ρ · ∂%M (ρ)〈(πR)∗v, (πR)∗w〉R,

and for the first term we get

〈∇(πM )∗v∇%M , (πM )∗w〉 = 〈(πM )∗(∇(πM )∗v∇%M ), (πM )∗w〉M
= 〈∇M(πM )∗v

∂%M , (πM )∗w〉M
= 〈∇M(πM )∗v⊥

∂%M , (πM )∗w
⊥〉M

+ 〈∇M(πM )∗v⊥
∂%M , 〈(πM )∗w, ∂%M 〉∂%M 〉M

+ 〈∇M〈(πM )∗v,∂%M 〉∂%M
∂%M , (πM )∗w

⊥〉M
+ 〈∇M〈(πM )∗v,∂%M 〉∂%M

∂%M , 〈(πM )∗w, ∂%M 〉∂%M 〉M .

From the above expression, using the fact that ∂%M is a Killing vector field,
so in particular ∇M∂%M ∂%M = 0, we obtain

〈∇M(πM )∗v⊥
∂%M , 〈(πM )∗w, ∂%M 〉∂%M 〉M = 〈∇M〈(πM )∗v,∂%M 〉∂%M

∂%M , (πM )∗w
⊥〉M

= 〈∇M〈(πM )∗v,∂%M 〉∂%M
∂%M , 〈(πM )∗w, ∂%M 〉∂%M 〉M = 0.

Therefore (3.13) gives

〈∇v∇%M , w〉 = 〈∇M(πM )∗v⊥
∂%M , (πM )∗w

⊥〉M + ρ
∂ρ

∂%M
〈(πR)∗v, (πR)∗w〉R.

Inserting this in (3.12) and taking the trace, we obtain

∆%M =
n∑
j=1

〈∇M
(πM )∗e⊥j

∂%M , (πM )∗e
⊥
j 〉M(3.14)

+ ρ
∂ρ

∂%M

n∑
j=1

〈(πR)∗ej , (πR)∗ej〉R + nH〈∇%M , N〉.

So, applying the Hessian comparison theorem and taking into account that
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from (2.1) one has
n∑
j=1

〈(πR)∗ej , (πR)∗ej〉R ≤
n

ρ2
,

from (3.14) we get

(3.15) ∆%M ≤ n
(

1

%M
+
∂ ln ρ

∂%M
+ |H|

)
.

Thus, taking into account hypothesis (3.10), from (3.15) we conclude that
%M is superharmonic outside a compact set, and since the projection πM
is proper when restricted to Σn, we deduce that %M (x) → ∞ as x → ∞.
Hence, by Khas’minskii’s result, Σn is parabolic. Therefore, since KM ≥ 0
and ρ is concave, the result follows from Theorem 3.3.

Let M
n+1

= Mn ×ρ R be a Killing warped product and let Ψ : R×Mn

→ M
n+1

be the flow generated by the Killing vector field Y . Fix an in-
tegral hypersurface Mn of the orthogonal distribution. According to [DL],
the entire Killing graph Σ(u) associated to a function u ∈ C∞(M) is the
hypersurface defined as

Σ(u) = {Ψ(u(x), x) : x ∈Mn}.

From the metric (2.1) on the ambient space, we see that Σ(u) induces
on the base Mn the metric

〈 , 〉 = 〈 , 〉M + ρ2du2.

Thus, denoting by Du the gradient of u with respect to the metric of Mn,
by a straightforward computation we verify that

(3.16) N =
1

ρ
√

1 + ρ2|Du|2M
(Y − ρ2Ψ∗(Du))

gives an orientation on Σ(u) such that

(3.17) Θ =
ρ√

1 + ρ2|Du|2M
> 0.

Taking into account (3.17) and the fact that the projection πM is proper
when restricted to an entire Killing graph, from Theorem 3.7 we obtain

Corollary 3.8. Let M
n+1

= Mn ×ρ R be a Killing warped product
with ρ concave and whose base Mn is complete noncompact with nonnegative
sectional curvature. Let Σ(u) be the entire Killing graph of a function u ∈
C∞(M), with constant mean curvature. If inequality (3.10) holds, then Σ(u)

is a slice and M
n+1

= Mn × R is a product space.
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4. Stochastic completeness and L1-Liouville property inMn×ρR.
A Riemannian manifold Σn is said to be stochastically complete if, for some
(and hence all) (x, t) ∈ Σ× (0,∞), the heat kernel p(x, y, t) of the Laplace–
Beltrami operator ∆ has the conservation property

(4.1)
�

Σ

p(x, y, t) dµ(y) = 1.

From the probabilistic viewpoint, stochastic completeness is the property of
a stochastic process to have infinite life time. For the Brownian motion on a
manifold, the conservation property (4.1) means that the total probability
of the particle to be found in the state space is constantly equal to one
(cf. [E, G2, S]).

Any parabolic manifold is stochastically complete, but the converse is
not true. For example, all Euclidean spaces Rn (with Euclidean measure) are
stochastically complete, whereas Rn is parabolic if and only if n ∈ {1, 2}. On
the other hand, Pigola, Rigoli and Setti showed that stochastic completeness
turns out to be equivalent to the validity of a weak form of the Omori–Yau
maximum principle (see [PRS1, Theorem 1.1] or [PRS2, Theorem 3.1]):

Lemma 4.1. A Riemannian manifold Σn is stochastically complete if
and only if for every u ∈ C2(Σ) satisfying infΣ u > −∞, there exists a
sequence {pj} ⊂ Σn such that

lim
j
u(pj) = inf

Σ
u and lim inf

j
∆u(pj) ≥ 0.

Returning to our study of Bernstein type properties of hypersurfaces
immersed in a Killing warped product, we get the following

Theorem 4.2. Let M
n+1

= Mn×ρR be a Killing warped product with ρ
concave and Mn complete noncompact with a pole and having nonnegative

sectional curvature. Let ψ : Σn → M
n+1

be a two-sided hypersurface with
constant mean curvature H. Suppose that the projection πM is proper when
restricted to Σn and the angle function Θ is bounded away from zero. If, for
some positive constant λ,

(4.2)

∣∣∣∣∂ ln ρ

∂%M

∣∣∣∣ ≤ λ%M
off a compact set, where %M is the distance function on Mn measured from
a fixed pole, then Σn is minimal. If in addition n = 2 and Σ2 is complete,
then Σ2 is totally geodesic. If moreover the Gaussian curvature of Σ2 is

positive at some point of it, then M2 is complete and Σ2 is a slice of M
3
.

Proof. After an appropriate choice of N , we have Θ ≥ C > 0 for some
positive constant C. Moreover, using hypothesis (4.2) jointly with the Hes-
sian comparison theorem, it follows from (3.15) that ∆%M ≤ λ̃%M for some
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positive constant λ̃, where (as in the proof of Theorem 3.7) %M stands for
the composition %M ◦πM ◦ψ. Thus, we can apply another Khas’minskii cri-
terion [K] (see also [PRS2, Proposition 3.2]) to conclude that Σn is stochas-
tically complete. Consequently, Lemma 4.1 guarantees the existence of a
sequence {pk} ⊂ Σn such that

lim
j
Θ(pj) = inf

Σ
Θ and lim inf

j
∆Θ(pj) ≥ 0.

On the other hand, since ρ is a concave function, from (3.3) we have

∆Θ ≤ −(RicM (N∗, N∗) + |A|2)Θ.
Hence, since |A|2 = nH2 + n(n− 1)(H2 −H2), we get

0 ≤ lim inf
j

∆Θ(pj) ≤ − lim
j

(RicM (N∗, N∗) + |A|2)Θ(pj)

≤ − lim
j

(RicM (N∗, N∗) + nH2)Θ(pj) ≤ 0.

Consequently, since Θ ≥ C > 0 and RicM ≥ 0, we conclude that H = 0, that
is, Σn is minimal. Thus, if n = 2 and Σ2 is complete, we can apply [ADR,
Proposition 8] to finish the proof.

Remark 4.3. Considering the entire vertical graph

Σ2(u) = {(x, y, a ln y) : y > 0} ⊂ H2 × R, a ∈ R \ {0},
where the 2-dimensional hyperbolic space H2 = {(x, y) ∈ R2 : y > 0} is
endowed with the complete metric 〈 , 〉H2 = y−2(dx2 + dy2) and the smooth
function u : H2 → R is given by u(x, y) = a ln y, we see that Θ = 1/

√
1 + a2

and H = a/(2
√

1 + a2) (for more details, see [LLP, Example 10]). Hence,
Theorems 3.3 and 4.2 do not hold when the sectional curvature of the
base Mn is negative.

From Theorem 4.2 jointly with the half-space type theorem due to Rosen-
berg, Schulze and Spruck [RSS], already mentioned in our introduction, we
obtain the following

Corollary 4.4. Let M
n+1

= Mn × R where Mn is complete noncom-
pact with nonnegative sectional curvature. Let Σ(u) be the entire Killing
graph of a nonnegative function u ∈ C∞(M), with constant mean curva-
ture. If |u|C1(M) ≤ α for some positive constant α, then Σ(u) is a slice

of M
n+1

.

According to the terminology due to Bessa, Pigola and Setti [BPS], a
smooth Riemannian manifold (Σn, g) is said to have the L1-Liouville prop-
erty (briefly,Σn is L1-Liouville) if every nonnegative superharmonic function
u ∈ L1(Σ) is constant. As observed by these authors, a stochastically com-
plete manifold is L1-Liouville. However, in general, an L1-Liouville manifold
may be stochastically incomplete (for details, see [BPS, Section 2]).
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Assuming that the immersed hypersurface is L1-Liouville, we get

Theorem 4.5. Let M
n+1

= Mn ×ρ R be a Killing warped product with

RicM ≥ −κ for some constant κ and with ρ concave. Let ψ : Σn →M
n+1

be
an L1-Liouville hypersurface with constant mean curvature and with angle
function Θ of strict sign and Θ ∈ L1(Σ).

(a) If κ = 0, then Σn is totally geodesic. If furthermore |∇h| ≤ α|A|β
for some positive constants α and β, and Σn is complete, then Σn

is a slice and M
n+1

= Mn×R is a product space with Mn compact.
(b) If κ > 0 and, for some constant 0 < α < 1,

(4.3) |∇h|2 ≤ α

κ(n− 1)ρ2
|A|2,

then Σn is contained in a slice of M
n+1

. If in addition Σn is com-

plete, then Σn is a slice and M
n+1

= Mn × R.

(c) If κ < 0, then Σn is contained in a slice of M
n+1

. If in addition

Σn is complete, then Σn is a slice and M
n+1

= Mn × R with Mn

compact.

Proof. In the set-up of (a), we have

(4.4) ∆Θ ≤ −(RicM (N∗, N∗) + |A|2)Θ ≤ 0.

Since Σ is L1-Liouville and (after an appropriate choice of N) Θ > 0, we
see that Θ is constant. Therefore, by (4.4),

0 = ∆Θ ≤ −(RicM (N∗, N∗) + |A|2)Θ ≤ 0.

So, Σn is totally geodesic. Since |∇h| ≤ α|A|β, we conclude that Σn is, in

fact, contained in a slice of M
n+1

. If moreover Σn is complete, then Σn is a
slice, and since Θ is constant, ρ is constant on Mn. Moreover, vol(Σ) <∞.
Therefore, [Y, Theorem 7] ensures that Σn is compact, and hence so is Mn.

In order to prove (b), we observe that (4.3) implies

∆Θ ≤ −(RicM (N∗, N∗) + |A|2)Θ
≤ (κ(n− 1)ρ2|∇h|2 − |A|2)Θ ≤ (α− 1)|A|2Θ ≤ 0.

Hence, we can reason as in the proof of (a). The proof of (c) is similar.

Remark 4.6. As observed by Bessa, Pigola and Setti [BPS], a result due
to Grigor’yan [G1] ensures that a Riemannian manifold Σn is L1-Liouville
if and only if for some (hence any) x ∈ Σn,

(4.5)
�

Σ

G(x, y) dµ(y) =∞.

Here G(x, y) stands for the Green kernel of Σn, which is defined as being
the minimal, positive, fundamental solution of −∆. When Σn is parabolic,
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we have G ≡ ∞, and (4.5) is trivially satisfied. However, in this case, one
already knows that positive superharmonic functions (without any further
restriction) must be constant.

Acknowledgements. The third author is partially supported by CNPq,
Brazil, grant 303977/2015-9. The authors would like to thank the referee for
reading the manuscript in great detail and for his/her valuable suggestions
and useful comments which improved the paper.

References

[A] L. V. Ahlfors, Sur le type d’une surface de Riemann, C. R. Acad. Sci. Paris 201
(1935), 30–32.
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E-mail: henrique@mat.ufcg.edu.br

Eudes L. de Lima
Campus Pau dos Ferros

Universidade Federal Rural do Semi-Árido
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