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On Lusternik—Schnirelmann category of SO(10)
by

Norio Iwase (Fukuoka), Kai Kikuchi
and Toshiyuki Miyauchi (Fukuoka)

Abstract. Let G be a compact connected Lie group and p : E — XA be a prin-
cipal G-bundle with a characteristic map a : A — G, where A = YA, for some Ap.
Let {K; —» Fi-1 — F; | 1 <4 < m} with Fp = {x}, Fi = YKy and F, ~ G be a
cone-decomposition of G of length m and F{ = YK| C Fiy with K{ C K; which satisfy
F,F{ C F;11 up to homotopy for all i. Then cat(E) < m + 1, under suitable condi-
tions, which is used to determine cat(SO(10)). A similar result was obtained by Kono
and the first author (2007) to determine cat(Spin(9)), but that result could not yield
cat(E) <m + 1.

1. Introduction. Throughout the paper, we work in the homotopy cat-
egory of based CW-complexes, and often identify a map with its homotopy
class.

The Lusternik—Schnirelmann category of a connected space X, denoted
by cat(X), is the least integer m such that there is an open covering
{Ui |0 <i<n} of X with each U; contractible in X. If no such integer
exists, we write cat(X) = oo. Let R be a commutative ring with unit. The
cup-length of X with respect to R, denoted by cup(X; R), is the supremum
of all non-negative integers k such that there is a non-zero k-fold cup product
in the ordinary reduced cohomology H*(X; R).

In 1967, Ganea [3] introduced a strong category Cat(X) by modifying
Fox’s strong category (see Fox [2]), which is characterized as follows: for a
connected space X, Cat(X) is 0 if X is contractible and, otherwise, is equal
to the smallest integer n such that there is a series of cofibre sequences
{K; » F;_1 — F; | 1 <i < m} with Fy = {x} and F,, ~ X (a cone-

2010 Mathematics Subject Classification: Primary 55M30; Secondary 55Q25, 55R10,
57T10, 57T15.

Key words and phrases: Lusternik—Schnirelmann category, special orthogonal groups, Hopf
invariant, principal bundle.

Received 14 March 2013; revised 28 October 2013, 29 May 2015 and 11 November 2015.
Published online 10 June 2016.

DOI: 10.4064/fm678-11-2015 [201] © Instytut Matematyczny PAN, 2016



202 N. Iwase et al.

decomposition of length m). Cat(X) is often called the cone-length of X.
The following theorem is well-known.

THEOREM 1.1 (Ganea [3]). cup(X; R) < cat(X) < Cat(X).

In 1968, Berstein and Hilton [I] gave a criterion for cat(Cy) = 2 in terms
of their Hopf invariant Hy(f) € [X X, XY +2XY ] foramap f: YX — XY,
where A * B denotes the join of the spaces A and B. In addition, its higher
version H,, was used to disprove the Ganea conjecture (see Iwase [0, [§]).

We summarize here known L-S categories of special orthogonal groups:
since SO(2) = S, SO(3) = RP? and SO(4) = RP3? x S3, we know that

cat(SO(2)) =1, cat(SO(3)) =3, cat(SO(4))=4.
In 1999, James and Singhof [12] gave the first non-trivial result:
cat(SO(5)) = 8.

In 2005, Mimura, Nishimoto and the first author [II] gave an alternative
proof of cat(SO(5)) = 8 and determined cat(SO(n)) up ton = 9:

cat(SO(6)) =9, cat(SO(7)) = 11, cat(SO(8)) = 12, cat(SO(9)) = 20.

Let G — E — XA be a principal bundle with a characteristic map
a: A — G, where A is a suspension space and G is a connected compact
Lie group with a cone-decomposition of length m, i.e., there is a series of
cofibre sequences {K; — F;_1 — F; | 1 <i <m} with Fy = {%}, F ~ YK,
and F,, ~ G. Then the multiplication of G is, up to homotopy, a map u :
F,, x F,, = F,,, since G ~ F,,. The main result of this paper is as follows.

THEOREM 1.2. Let F| = XK, where K| is a connected subspace of
Ky such that Fy is simply-connected, and let plp,p : Fi x F| — Fpy be
compressible into Fiy1 C Fp, as pi1 : Fy x F{ — Fiy1, 1 <i < m, so that
M%}l’Fi—MF{ ~ pi—1,1 m Fipq1. Then the following three conditions together
imply cat(E) < m+ 1:

(1) « is compressible into Fy,

(2) Hi(a) =0 in [A, QF] x 2F]],

(3) Ky = S with m, £ > 3.

REMARK. Under the conditions in Theorem [9, Theorem 0.8] does
not imply cat(E) < m+ 1, but only cat(E) < m+ 2, since its key lemma [0
Lemma 1.1] cannot properly manage the case when ima C F}.

Theorem yields the following result on the L-S category of SO(10).
THEOREM [5.1] cat(SO(10)) = cup(SO(10);Fy) = 21.

All the results on cat(SO(n)) with n < 10 support the following “folklore
conjecture”.

CONJECTURE 1. cat(SO(n)) = cup(SO(n);Fa).
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Let us explain the method we employ in this paper. To study L-S cate-
gory, we must understand Ganea’s criterion of L-S category as a basic idea,
given in terms of a fibre-cofibre construction in [3]: Let X be a connected
space. Then there is a fibre sequence F,, X — G, X — X, natural with re-
spect to X, such that cat(X) < n if and only if the fibration G, X — X has
a cross-section.

However, four years before [3], a more understandable description of the
fibre sequence F,(X) — G, (X) — X was already published by Stasheff [15]:
following [0} [7, [§], we may replace the inclusion F,, X — G, X with the fi-
bration p?X : "1 QX — P"2X associated with the A.-structure of 22X,
the based loop space of X in the sense of Stasheff, where E"t12X has the
homotopy type of (£2X)*™+1 the n+1-fold join of 2X, and P"N2X satisfies
PYOX =%, P'OX = XX and P*02X ~ X. Let 1% : P"QX — P"0QX
be the canonical inclusion, for m < n, and eX : P*£2X ~ X be the nat-
ural equivalence. Then the fibration G, X — X may be replaced with the
map eX = eX o L{L)fo : PP2X — X, where ef : ¥02X — X equals the
evaluation.

Thus, we may restate Ganea’s criterion as follows: Let X be a connected
space. Then cat(X) < nifand onlyif e : P"2X — X has a right homotopy
inverse. That is why we use As-structures to determine L-S category.

In this paper, instead of using [9, Lemma 1.1], we show Proposition
and Lemmas [3.3] [4-4] This is a key process to obtain Theorem [I.2] In Sec-
tions [2| and [3, we construct a structure map associated to a given cone-de-
composition. In Section [4, we introduce a map \ from Fm+1 =P" x YQF]
to P™t1QF,,, which is the main tool to construct a complex D with
Cat(D) < m + 1 dominating FE. Finally, in Section We prove Theorem

2. Structure map associated with cone-decomposition. In this
section, we generalize the following well-known fact to the case of filtered
spaces and maps.

FAacT 2.1. Let K% A< C(a) and L 5B C(b) be cofibre sequences
with canonical copairings v : C(a) — C(a)V XK and v : C(b) — C(b)V XL.
If there are maps f: A — B and f°: K — L such that foa =bo f9, then
they induce a map f': C(a) — C(b) satisfying (f'V X fO)ov=10o f.

DEFINITION 2.2. A space X with a series of subspaces {X,,;n > 0},
() =XoCX1C- CXnC Xps1 C---CX,

is said to be filtered by {X,;n > 0} and denoted by (X, {X,}). We also
denote by zfm : X — X5, m < n, the canonical inclusion.
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DEFINITION 2.3. Let X and Y be spaces filtered by {X,,} and {Y,,},
respectively. A map f: X — Y is a filtered map if f(X,) C Y, for all n.

PROPOSITION 2.4. Let X and Y be filtered by {X,,} and {Y,}, respec-
tively, and f: X —Y be a filtered map. If {X,} is a cone—decg)gnposition

Zn—l,n

of X, i.e. there is a series of cofibre sequences { K, LN Xn1 <= Xn |
n > 1} with Xo = %, then there exist families { f,, : X,, — P"2Y,, | n > 0}
and {f2: K, — E"QY, | n > 0} of maps such that:

(1) The following diagram is commutative:

L S S
I

o ) fo NP
Pty

E"QY, — > P”_lﬁYnCT) PrQY, ——=Y,
pn—rll Ln—TIL,n enn

(2) Denote by f] = (P”*19i5_17n o fu1) UC(fO) : X,, — P"QY,, the

induced map from the commutativity of the left square in (1). Then

the middle square in (1) with f, replaced with f] is commutative.

The difference of f, and f is given by a map 55 YK, - P"l0Y,

composed with the inclusion L;?Xin . PPLQY, — PPY,, n > 1.

Proof. First of all, we set fo = %, the trivial map.

Next, we use induction on n > 1. When n = 1, we set f0 = ad(f|x,)
and f1 = Y ad(f|x,) = f{ to obtain the commutative diagram

K ——sx— YK,

A N . flx,
bEY fo f1
QYl —k —> ZQY1CT> Y1
€1
Then (1) is clear, and (2) is trivial in this case.
When n = k > 1, suppose we have already obtained {f;} and {f’} for
i < k, which satisfy conditions (1) and (2).
Firstly, we define f,g : K, — E*QY}, as follows: The homotopy class of a
map Pkilﬂiky_lyk o fk,l o hy : K1, — P*~102Y}, can be described as

hio (PP710200 1 0 fron) € [Ki, Yi] with PP10i) 4o froy € (X1, 3]

in the following ladder of exact sequences induced from the fibre sequence
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EFQY. — P10V, — Yi:

QY Yy,

Py Pty €p_
(X1, E*QY] — : (X1, PPV . [(Xk—1, Y]
hi hi, hy,
QY R
k—
(K}, E* Y] (K, P*~10Y;] (K, Y]

Since we know that the naturality of e,il at Z implies 6?1 1oPk’_1Qi§71 i
= ii:l’k o ekyf’ll, that the induction hypothesis implies e?fll ofro1 = flx.,
and that the naturality of zf Lk at Z implies i{—ug oflx, , = flx,© Zi(—uw

. Yieo1 7 .
we obtain e (Pk Isz 1k,ofk 1) = z{_lkoek'ﬁll o fi—1 = flx, OZ?—l,k €
[Xk—1, Yx]. On the other hand since K, — Xj;_1 < X}, is a cofibre sequence,
we get
k—1 - X
ek 1, (hi (P iy 1k°fk 1)) = [flx, 0 ip—1,5 © ha] = 0.
Thus we have ek 1, (Pk- 1sz 1k © fk 10 hg) = 0, and there exists a map

f9: Ky — E*QY} such that pm’k L) = PPl | o fiey © hy, which
implies the commutativity of the left square in (1).

Secondly, let f : X} — PkQY}, be the map induced from the commuta-
tivity of the left square in (1). By the induction hypothesis, we have

X Y, Yo QY k-1 )Y ;
(T—1)"(eg" o fr) = [e o fh o Lkl = et oy o P Y20y g0 fra

. Yiec1  § . . «
= [szl,koeklill o fr—1] = [Zkfl,kof‘kaJ = [f\XkOqu,k] = (22(71,1@) (flxp)-
By a standard argument of homotopy theory applied to the cofibre se-
quence K — Xj—1 — X (see Hilton [5] or Oda [I13]), there is a map

5. XK, — Yy such that

flx. = Vv, o (e o fi v o) o,
where Vy : Y VY — Y denotes the folding map for a space Y and vy, :
X — Xy vV YK}, denotes the canonical copairing.

Let 6] = 11% o Ead(éf’o) : DKy, — S0V, — PF10Y,. Since e* =
e}k/’C L0 LiQZ |» we have 5f’0 = e1 o Zad(éfo) = ek L © 5f Hence, the map
fr = Vprgy, o (f, V L;?Y’fk o 6f) o vy, satisfies condition (2).

Thirdly, by using the above homotopy relations, we obtain

Flxy = Vo (et o fi Vet 0 6f) ouy

Y, v, Yo f
ext o Vpioy, o (fiV ik od]) ok = efF o fi.

This implies the commutativity of the right triangle in (1).
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Finally, since v is a copairing, we have
5 5 X X X
prlol/kOlkil’k = 1Xkozk71,k = Zk*l,k and proovy Ozkfl,k = qOZkfl,k = *,
where prqi : X V YK, — X and pro : X V XK — Y K. are the first and

second projections, respectively. Then

s x oy, X
froii_1p = Vproy, o (fe Vi 140 ) oy o o1k

v, k—10);Y ;
_fkozk 1k = Y- 'kaP Q2if_1 1 ° fr-1,
which implies the commutativity of the middle square in (1). This completes
the induction step for n = k, and we obtain the proposition for all n. =

COROLLARY 2.4.1. Let v, : P"2Y, — P"(2Y,V X E"(Y, be the canon-
ical copairing. If K, is a co-H-space, then the following diagram is commu-
tative:

Xn
fn i lfnvzfﬁ
POy, —2 PRQY, v SERQY,
P'r Let P and E denote P™(2Y, and E™(2Y,, respectlvely By Propo-
2.4|2

sition ), the difference of fn and f] is given by Lf}fin o 5n, and hence

Xn VYK,

(o VED ovn ={(Vpo (fiViuli, 060) ovn) VEf} ouy

n—1,mn

= (VP\/le)O(f,;L\/LQX" oé,{vﬂfg)o(yn\/lg;(n)oyn.

n—1n

Since K, is a co-H-space, we have the following homotopy relations:
vp=Tov, and (v,Vlgk,)ov,=(1lx, Vv,)ouvy,
where v, : YK, — YK,V YK, is the comultiplication and where T :
YK,V YK, — YK,V YK, is the switching map. Hence
(anng) ovy, =(VpVligg)o (f;z\/L“Qz/" o5£\/2f2) o(lx, Vun) o,

n—1,n

= (VpVigg)o (fLV (i o6l v i) o(lx, VT ouvy,) o,

n—1,n
= (VpVigg) o {fr VT o (Sf)V il 06])} o (va V 15K, ) o vn

n—1,n
= (VpVisg)o(Ap VT o {(fLVEF)ov, Vi o6} ou,,

where T" : YEV P — PV Y E is the switching map. Then we can easily see
that (Vp V1gg)o (1pVT') = Vpysg oinyp, where, for any space Y, we
denote by inyp : Y <— Y V XJE the first inclusion. Hence

(fn\/Efg)oyn:vagEoingEo{(ff]\/Efg)oyn\/bny” odf}oyn

n—1,n
= Vpvrp o {(fiV Ef)) ovn Vingg o 17, 061} o vy

Here, since the copairing 7, is associated to the cofibre sequence

.QYn
n 1I,n

Py, P" (Y, — YE"2Y,,

nln
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we have the following equality up to homotopy:
Dot =ingp oM L PPTLOY, < PUOY, < PUOY, V ZE"QY,.

n—1ln — n—1lmn *

Then, by Theorem
(fn\/ZfS) oy, = VPVEEo{(f,’l\/ng)oyn\/ﬁHOLQY" oé,{}oun

n—1n

~ / ~ Y,
=VpysEo© (Vn o fn VU, o [,ni’ll’n o 57{) o Vp

:ﬁnono(fé\/Lfﬁvnoég)oyn =10,0 fn. =

3. Cone-decomposition associated with projective spaces. Let
G be a compact Lie group of dimension ¢ with a cone-decomposition of
length m, that is, there is a series of cofibre sequences

(3.1) (K M Fiy — Fy 1< <m)

with Fy = {x} and F,, ~ G. We also denote by zl 1 ¢ Fie1 = I the
canonical inclusion and by qi_lyi . F;, — F;/F,_; = YK, its successive
quotient.

LEMMA 3.1. If K,, = S with m,¢ > 3, then:

(1) (E™QF,,, E"QF,,_1) is an {-connected pair.
(2) There exists an {-connected map ¢g : P = P"QF,, 1 UCS"! —

P™F,, extending the inclusion P™QF,, 1 — P™QF,,.
Proof Let g : §g — E™QF,_1, qp : §p — P™ 'QF,,_ and
: §r — Fn,_1 be homotopy fibres of 1nclu81on maps E™ i

Pm 1sz 1m and ik 1.m» respectively, which fit in with the following
commutative diagram of fibre sequences. Thus we obtain a fibre sequence

SE — §p — SF:

SE Sp SF

qE lQP qr
QFp_1 Fm—1
p m—1

m—1 €
E"QF, 1 P 10F, 4

m m—1 .
E QZ77L 1,m i\P .le 1,m Zf‘n_ 1,m
p;(YZLFm Fm

E™QF,, P I0F,, UL

Firstly, since the pair (F,, Fyn—1) is (¢ — 1)-connected, (£2F,,, 2F,,—1)
is (¢ — 2)-connected and (E™QF,,, E™QF,,_1) is ({ + m — 3)-connected.
Therefore, §r is (¢ — 2)-connected and §g is (¢ + m — 4)-connected. We
remark that g is at least (¢ — 1)-connected, since m > 3, Then, by the
homotopy exact sequence for the fibre sequence §g — §p — Sr,

m(Fp) 2 m(Fr), k<L-1,

m—1,m>
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and hence §p is (¢ — 2)-connected. Thus §p is 1-connected, since ¢ > 3. By
a general version of the Blakers—Massey Theorem (see [4, Corollary 16.27],
for example) and the hypothesis that K,, = S*~1, it follows that

To-1(§p) Z w1 (FF) 2 mo(Fy From1) 2 mo(ZK) 2 mo(SY) 2 Z.
Thus, §p has the following homology decomposition, up to homotopy:
Fp=(S"1v Sy v .8 U (cells in dimension > £+ 1).
Secondly, P™" 'QF,,_; Ugp CFp is described as the homotopy pushout
of gp : Fp — P™10QF,, 1 and the trivial map * : §p — {*}. Then we
obtain
P 10QF,, 1 x P"10QF,
UP™IOF,, x {x}

(3:2) op HPB [

P 10F,

P 0QF, 1 Uy, CFp —

P I0F, x P"'\QF,

(see [6, Lemma 2.1], for example, with (X, A) = (P 1QF,,, P" 10QF,, 1),
(Y,B) = (P '2F,,,{*}) and Z = P™~1(2F,,), where we denote by A the
diagonal map. Thus, there is a map

¢p: P"I0F,, 1 U, C(§) — P 10F,,
the left down arrow in diagram (3.2)). On the other hand, by the proof of
[0, Lemma 2.1], the subspace P lQF, , Cc P"1QF, 4 Ugp C8p can be
described as the pullback of A above and the inclusion map

Pt x1: P I0F, xP" 'QF, < P" 'QF, 1 xP" 1QF,,

m—1,m
and hence we obtain

op|pm-10p, , = P02k : P"IQE, | — PMTIQE,,.

m—1,m

Thirdly, the homotopy fibre §% of ¢p is the homotopy pullback of the
inclusion

P 0QF, 1 x PP QF,UP™ I 0QF,, x {x} — P™"QF,, x P"0QF,
and the trivial map {*} — P 1QF,, x P""1QF,,. Then we obtain

projy

Spx QPR —= P™I0F,

HPO

projy

3r 3
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(see [6, Lemma 2.1], for example, with (X, A) = (P 1QF,,, P" 'QF,, 1),
(Y,B) = (P '0QF,,{*}) and Z = {x}). Hence §% has the homotopy
type of the join §p * 2P™ 1QF,, which is (¢ — 1)-connected. Thus ¢p is
¢-connected.

Finally, let g5 = qp|ge—1 : S™! — P™ 1QF,, 1. Then the inclusion
j:P™"IQF, Ugs cst1 — pr-lQF., Ugp CSp is f-connected, since

P 0F, 1 Uy, CFp
= P 0F,, 1 Uy CS* 1 U (cells in dimension > £+ 1).
Then the composition ¢g = ¢poj : (P 1 2F,_1 Uy CS*™1, P 10QF,, )
— (P™"10QF,,, P"'(2F,, 1) of f-connected maps is again /-connected.

Since m > 3, the pair (E™§2F,,, E™{2F,,_1) is {-connected, which im-
plies (1). Thus, the inclusion

P 0QF, UC(E™NF,,_) — P™"'QF, UC(E™NF,,)
is f-connected, and we obtain an /-connected map

¢s: P"QF,, UCS" = P"I0F, U, CS1 U r 1 C(E™ Q1)

m—1

— P"I\QF, UC(E™QF,, 1) < P" 'QF,, UC(E™QF,,) = P"QF,,
which implies (2). This completes the proof of Lemma "

From now on, we assume K,, = S‘~! with m, ¢ > 3. Thus, by Lemma
we may assume that P = P™(QF,, 1 U CSt1 ¢ pPmQF,, is such that
(P™QF,,, P") is ¢-connected. In this section, we define cone-decompositions
of F, x F{, P and P x X (2F].

Firstly, we give a cone-decomposition of F}, x F} of length m + 1:

(3.3) {7 " prl G P 1<i<mt 1) with Fl = Fp x F,
here K" L mll and w," L (1 <i<m+1) are defined by
KM =K VK], FM={}, w"=x: K" "
KM = KV (K + K}), F™ =F_1 x {x}UF,_y x F],

i—1

w™ g, =inclo (h; x ) : K; — Fy_y = F_y x {x} ¢ F/™/

m,1 r 1> 2,
w; ’ |Ki—1*Ki = [XZ—lvElKi]
Ki1# K, = F 1 x {x}UF;_o x YK}, = F"™;
here K11 = {x}, incl is the canonical inclusion and [x;, X1x/]" is the

relative Whitehead product of the characteristic map x; : (CK;, K;) —
(F3, Fi—1) and the suspension of the identity map Y1/ : YK — YKj.
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Secondly, a cone-decomposition of P of length m is

QFm_l — {*} — E.QFm_l,
EiQF,,_1 — P1QF,, 1 < PIQF,,_,, 1<i<m,

E™QF, 1V K, — P YQF, 1 < P™.
Finally, a cone-decomposition of P! x Y2F] of length m + 1 is

(34) {E; 2 F > F1<i<m+1} with Ep.q=P"x S0QF,
where Eiﬂ, F, and W;it1, 0 <4 < m, are defined by
Bl =QF, vV QF, Fy={x}, u=x:F — k,
(Eiy1 = ET\QF,, 1 V{E'QF,, 1« QF]},
Fy = P'QF,, 1 x {x}UP10F,, | x XQF],
Py 1<i<m—1,
Wit1|pieiop,  ETQF, | 2 PIQF,, | x {x} C F},
( Wi1lpior, _«or = X 1oar]": E'QF,_1 x QF — I,
(B = {E"QF,, 1V K} V{E™ 'QF,, 1% QF!},
o1 =PIQF, ) x {x} U P 20QF,, | x LQF],
o g or e EMQE 1\ Ky 255 PI0E, 1 x {5} C Ept,

3>

=5

— [ . -1 / n
ml|Em=10F,_10F] = Xm_1; Leop]" t BT QF 1+ QF] — Fpa,

~

Epmi1 = {E™QF,,_ 1V Kp,} x QF!,
Ep =P x {x} UP" '\QF,, | x 0QF!,

P ! - F .
[ Wm+1 = [Xon» IEQF{]T By = P

Qmel
m—1

here ply : E™Q2F,, (VK — P™" ' QF, 1 is given by ps|gmor,,_, =
and ps|k,, = ¢, and X is a relative homeomorphism given by
{xé :(CE'QF,,_1,E'QF,,_1) = (P'QF,_1,P7'QF,, 1), 1<i<m,
Xo : (CE 'Y = (P, PP\ QF, 1), E' = E™QF,_1 \ K.

1 1 1 A7 r
From now on, we denote by L:-n’ : Fim’ — Ffjl and 7; : F; — Fj41 the
canonical inclusions. Let us denote 1, = 1g, : Fpy = Fpp,.

DEFINITION 3.2. The identity 1,, is filtered with respect to the filtration
x = Fy C Fy C -+ C Fp,. Then by Proposition for f = 1,,, we obtain
op = (1), : F; — P'QF; for 1 < i < m, and (1m)9 o EjQFj for
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1<j<m. Let g; = (/1777)9 K — EjQFj for 1 < j < m. We also obtain
g =ad(lg) : K| — QXK]| = Q2F] and o' = X¢' : F] — YQF].
Since K,, and F), are of dimension £ — 1 and /¢, respectively, we may
assume that the images of ¢,, and o, are in E™2F,,,_; and P, respectively.
LEMMA 3.3. Let v, : Fi™' — FU"'W R K™ and iy, : Fy, — FyVZ Ky, be
the canonical copairings for 1 < k < m+1, and a%’l = O X {*}Uopm—1 X0 :
Ml F,,. Then the following diagram is commutative:

1 wzil 1 ol 1 V:Zil 1
m, m, m m, m, m,
Kerl Fm Ferl Ferl v ZKerl
igm*g’ lgfnl’l lamxa’ iamxa’\/ﬂgm*g’
£ dmar A im g Dmi1 o .
Em+1 Fm Ferl Ferl \ ZJE‘erl

To prove Lemma [3.3] we need the following propositions.

PROPOSITION 3.4. Let K % A< C(a) and L 5% B C(b) be cofibre
sequences, and let v : C(a) — C(a)V YK, v, : C(b) — C(b) V XL and
v=uv(a,b): C(a)xC(b) = C(a)xC(b)VEK * L be the canonical copairings.

(1) v is given by the following composition, natural with respect to g, h:

C(a) x C(b)
Y Cla) x C(b) U Cla)x XL U XK xC(b) U XK xXL
C(a) C(b) YZKVIL

2y Cla)x C(W)VEK x SL/(EKVEL) 5 Cla) x C(b)V Z(K +L),

where @ is given by Ployxxr = Proji, Plsrxce) = pProjy and
D|srxyr = (collapsing) : YK x YL - YK x YL/(YKVXL).

SExC(b) |Cla)xCAb) a)xCb)

Vg XV P

C(a)xC(b)

Y(K+L)

W

LKXEL | C(a)SL

t

Fig. 1

(2) Let K’ LA C(d') and L' LIy RN C(b') be cofibre sequences
and v = v(d,b) : C(d) x C(V') — C(d) x C(V) v X(K' = L"). If
fOrK K, f:A—= A, ¢": L L and g: B — B satisfy
foa=aof0and gob=1V 04" then (f,f°) and (g,49°) induce
f':Cla) = C(d) and ¢' : C(b) — C(V') as in Theorem [2.1], which
satisfy v o (f' x g') = (f' x ¢ VI(fOxg°)ov : Cla) x C(b) —
Cla)x C)VvX(K' * L.
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Proof. Let us recall the definition of C'(h) for h : X — Z and related
spaces:
CX = ([0,1] x X) I {x}/~, (0,2) ~%; C(h)=ZUCX/~, 1 Nz~ h(z),
CapX={threCX|[t<1/2}=CX,
Csip2(h) ={thnx e C(h)|t>1/2}, (t,x)€[0,1] x X.
Firstly, we define a homeomorphism
G:(C(K*L),K*L)~ (CK xCL,CK x LUK x CL)

by a(t A (sAx,y)) = ((ts) Nz, t Ay) and &(t A (z,s ANy)) = (LA x, (ts) Ny)
for (z,y) € K x L and s,t € [0,1] (see Figure [2).

C(K+L CKxCL
(K*L) __CExL -
CKxL \
&
AL : KxCL
/ et 5 ]
IN(K*L) &(3A(K*L))
Fig. 2

Since C([xa; xp]) = C(a) x BUAXC(b)Uly, ,C(K*L) and C(a)xC(b) =
(C(a) x BU A x C(b)) Uy, x,) CK x CL, & induces a homeomorphism
a : C([xa,xs]) = C(a) x C(b). Thus the canonical copairing v is given
by

C(a) x C(b) a(C<yy2(K + L))
a({Carpp(Kx L)}) — a({1/2} x (K + L))’

Since we can easily see that a(C<;/o(K*L))/a({1/2} x (K*L)) ~ X (K *L)
and C(a) x C(b )/a({cgl/z(K*L)}) C(a) x C(b)/CcrjoK x Ccypol, v is

given as

v: Ca) x C(b) —

C(a) x C(b)
Ccy/2K X CcypoL
Since C<;/9X is contractible, the inclusion (C(a), {*}) x (C(b), {*}) —
(C(a),C<q/2K) x (C(b),C<q/2L) is homotopy equivalence, and so is the
inclusion C'(a) x {*} U {x} x C(b) = C(a) x C<1/2L U Ccy /9K x C(b).
Hence, the following collapsing map is a homotopy equivalence:
Ca) x C<1j2L U CcypK x C(b) R C>1/9(a) C>1/2(b)
Cc1oK x CcypnL {1/2} x K =~ {1/2} x L
~ C(a) Vv C(b).

v:C(a) x C(b) — VvV X(K xL).
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Finally, since C<; 9K x C<y /oL = a({C<y /(K xL)}), by taking pushout
of this collapsing with the inclusion
C<1/2K X C(b) C(a) X C(b)
C(a) x C L = — ,
(@) x Caye CcipK x Oyl a({C<yo(K * L)})
we obtain a homotopy equivalence
Cla)xC(b) | C>1/2(a) C>1/2(b)
o({Cap(B DY) {12} x K~ {1/2yx L

Therefore, v is homotopic to the map U given by

~ C(a) x C(b).

v(sANz,tA\y)
(shz,tANy) € %/12/}252 X ?;2/12/}2x(l27 s,t>1/2,
) ntAy) e{x }xﬁz/gf@, s<1/2,t>1/2,
| sne e G s, s> 1/2,t<1/2,
L (s A2) A (EAY) € Tl A finfsr, st <1/2,

which coincides with ®o (v, xv}) which implies (1). As (2) is clear by concrete
definitions of these maps, we obtain the proposition. =

PROPOSITION 3.5. Let vy, : Fy, — Fy VYK, be the canonical copairing
1 1 1 1
and T : ;:HUF/ (YK, xFl)\/ZK:Z_’H — (ngrl\/EKnTH)UF{ (YK, x F})
be an appropriate homeomorphism. Then

1 1
T o ((Vm X 1F1’) V 1ZK::‘+11) O’/Zlﬂ = (I/;rgj'_l U IEKmXFl’) o (Vm X 1F1’)

Proof. First, Proposition implies the commutative diagram

m,1
1

F, x F! m Fp X FLV X (K« K})

VleF{ 1
By x F Upy SKo < F! Lpxvy  Fo X F Upy YK, X F{ Up,, F x YK
U XKy x 5K
Now @ goes through (Fy, X F| Upy YKy X F{)U XK, x SK7/{*} x YK as

G : (Fy x F{ Up; SKp x F{ Up,, Frn x SK{) U XK, x YK]

LK, x 2K

@l
1

P B % FIV (K % K1),



214 N. Iwase et al.

SKnXF{| FnxF{

"W

YK, XK Fr x S K M E(Km*K7)

@’ SKnxFl| FoxFl | P
3 |
m W,
SKnxSK, [ {+}xSK]

Fig. 3

where @' and pr’ are given by

/ / / .
Y\ ppxrr =1p,xr,  Plek,xr = lsk,xr, P |p,xsK; = Proji,

YK,, x YK/
P’ , = (collapsing) : Y K,, x YK, —» =——2 " ~"1
|Z'Km><EK1 ( O apsmg) m 1 {*} « EKi ’
P x it = 1pxrts  PU|SK,, xF = Projs,
YKn x XK

P Sk, x oK1 /{}x oK1 = (collapsing) : — X (K x K7).

{*} x XK

Since there is a natural homotopy equivalence h : Y K,,, x YK /{*} x Y K| ~

YEKm V X(Kp + K1) such that |k, «(«} = L5k, P’ can be decomposed
as

/ / /
pr = pry © pry,
where pr(, and pr| are given by
/ | _ 1 / _ 1 / _ h
PIo| P x F{ = L oy x FY s Pl"o’EKme{ = LEKmxF» Pfo|2Kmx2K;/{*}x2K1 =1,

/ _ / _ : / _
b1y |meF1’ = 1F,,L><F1’7 pry |EK,,L><F1’ =DProjg;, b1y |E(K,,L*K{) = 12(Km*Kg)-

Hence @ = pr’ o ¢’ = pr o pr{,o &', and prj o @ is given by

pro 0 ¥\ pwrt = Lp,urr, P00 Y sk, xr = Lok, xFis

prg o |k, x oK1 = Projy,

pry o ¥l sk, x vk = (vetraction) : YKy, x YK| — YKy, V 2 (K * K7),
and so prj o @ o (1, X v1) is given by
prg 0 ' o (L X v1)|px ) = Li, <y

pryo @ o (1, x Vi)|sK,xF = Vi XKy X F| = YKy, x F{ VX (Ky, * KY),
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/

pr
YK xF|| FpxF! FpuxF|

>
=
=
ESKnxEK/{*}xZK]

/ /
w SKnxFl| FnxF| pr/_»
—
—
i ;—E(Km*K{)

Fig. 4

where 1/ is the canonical copairing. Thus we obtain a commutative diagram

Vm X1 g
1

(3.5) FMl =F,xF

m,1 /
ll/erl llmeF{UV

Fo X F{ N XKy, # K| < Fpy X F{ Upy (S Ky X F}) V SKp % K}

Fpy X F{ Upy (YK, X FY)

Therefore

m,1
ov

TlO((l/mX].Fll)\/l 'm+1

srmy)

=T 0o ((Vm X 1F1’) V 1EK$LF11) opo (1an$411 Ul//) o (Vm X 1F1’)

Let us denote by py : Fpily Upy (XK x F{) Upy (S K x F{) v XK —

m
Fanl Upr (YK x F) V EK;L”ﬁl the map pinching the second YK, x F]
to Ff, by ps : Foily Upy (8K x FY) v SKL) Uy (8K x Ff) —
(F::fl \Y EK:;LL&I) Up EK:Z;II the map pinching the first YK, x F] to
one point, by vy : YK, - YK, V X' K,,, the canonical comultiplication and
by Ty : YK, V X K, = Y K,, V Y K,, the switching map. It is then easy to

check that

Tio ((vm X 1) V Lyema Yo vty

=Tiopyo ((Vm X lFll) U 12Km><F1’ V lsz*Ki) o (lF:nnjrll U V/) o (I/m X 1F1’)
=p3o (1F$7+11 ur'u Ly, <) © (1p:;,+11 U(To x 1g))

o ((Um X 1p) Ulsk,, xry) © (Um X 1py).
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Using (1g, V1) o vy = (v V 13k,,) © vy, and Ty o vy = 1 from the
assumption that K, is a co-H-space together with F;fjl = F,, x F{, we
have

1
Ty o ((vm X 1py) V 12K:n”j:1) oy

=p3o0 (1F$7+11 UV U sk, xr) 0 (1FZ‘;11 U (To x 1x))

o (1F$J,r11 U (vo X 1gy)) o (Vm X 1pr)
=p3o0 (1F$¢1 uv u lyg,xry) © (Lr, V vo) X 1pr)) o (Um X 1py)
=p3o0 (1F$¢1 urv u Lk, xry) © (Vm V 1sK,,) X 1) o (U X 1 ).

Using diagram ({3.5)) yields
m,1 1
Tio((vm X 1p) V IZK:n”f Yoy = (v U Ly, xr) © (Vm X Lpy).
This completes the proof of Proposition .
Proof of Lemma[3.3. The commutativity of the left square follows from

[14, Proposition 2.9], and the middle square is clearly commutative.

So we are left to show (om X 'V Xgm xg')o yn";il = U410 (o X o).
Recall that o, = 1,,, by Proposition 1) for f = 1,,. On the other hand,
by Proposition (2), we have o, = Vpmop, o ((1m)), V L,ﬁfim o8km) oy,
and hence

m,1

(om X 'V Xgm*g')o A
= {(Vemar, o (Im)h, V (1275 0 65) 0 vin) X 0"V Egpn % g'} o v,

m—1,m

1

= (Vprar, X leop Vigg )

o {((Lm ) X 0" ) U (1427 1y 0 6m) X 0") V Zgm 9}
o ((Um x 1F1’) v 12K$,+11) °© Vnn;il
= (Vprar, X lsor Vigg )

0Ty 0 {((Lm) X 0"V Egm x ¢") U (1275, 0 637) x o)} o Ty

m

o ((Vm x 1F1’) v 12K$j: )OVmJila

where T) : FJy Upy (DK x F) v SK b= (E +1 Vv EK,’;;jl) Upy
(UK x F}) and Ty : (Fig1 V EEpmi1) Usor Ernt1 — (P Usor Frni)

\% EEmH are appropriate homeomorphisms. Then by Proposition
Proposition [3.4(2) and the definitions of (1)), and o/, we proceed as
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follows:

(om X o'V Xgm*4g) OV:Zil

= (Vprar, X leor Vigg )
o Ty o {((Ln)}y X 0"V Egm 5 g') U (1277, 0 57) x o)}
o (Vi U lor,xry) © (Um X 1gy)
= (Vpmor, X leop Vigs +1) oTs
o {((Lm)y X 0"V Zgi % g') o v ) U (a7 0 6307) X 07)} 0 (v X L),
= (Vemar, X 1vorm Vigg | )oTh
o {11 0 (Ll X 0)) U (4275 1, 0 85 x ')} 0 (i x L)
= (Vemar, X 1vopm VVysp )oTs
o {mt1 0 ((Iim)y, x 0') Uir o ((¢ {;iFT?m 5}nm) x a')} o (vm % lF’)-
Hereiq : Fm+1 — Fm+1\/EEm+1 is the first inclusion and T} : (Fm+1\/EEm+1)

Usnr (Fong1 V XEmy1) = (Fon Usor Fni1) V XEn 1V XEp 1 is an
appropriate homeomorphism. Thus

m,1

(om X 0"V Xgm xg')ovyy
= (Vemar, X 1vopm VVysp )oTs
0 (Um41 U Dmy1) o {((1m)p, X 0') U ((Lrglj?,m 0 0m) X 0’)} o (v X 1F1’)
= U1 0 {Vpmar, o ((Im)p V (57 0 65m)) 0 vm x 0’}
= Umy1 0 (opm x o).

This completes the proof of Lemma .

4. Proof of Theorem In the fibre sequence G — E — YA,
by the James—Whitehead decomposition (see Whitehead [17, VII. Theorem
(1.15)]), the total space E has the homotopy type of the space GU, G x CA,
where

v:Gx AN axa G

Since G ~ F,, and, by condition (1) of Theorem « is compressible
into FY{, we see that

1
¥ Gx A~ Fpyx A 2" BLXFl € FpxFy C FpyxFp ~ GxG Y G ~ F,
and FE is the homotopy pushout of the sequence

£ &L x A B x Fl g
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We construct spaces and maps such that the homotopy pushout of these
maps dominates E. Let e/ = efl : QYF) — F| and 04 = Yad(1la) :
A — YA, since A is a suspended space. By condition (2) of Theorem [1.2
we have Hj(a) =0 in [A, 2F] « 2F]], which immediately implies

(4.1) ocoa=XYad(a)=€oo4: A— XOQF].

By condition (3) of Theorem we have K, = S*~! with m,¢ > 3, and so
(P™QF,,, P is {-connected by Lemma

PROPOSITION 4.1. The following diagram is commutative:

1p, Xa Bm,1

F, o F.xA F,, x F] F,
Lﬁiz"ﬂoaml omml omxo/l lbﬁmloom
PR, <2 P 50A X f PHOF,,
6fnﬁli elm Xefl elim Xe’l lefr‘ﬂl
Fpe—" Fox A S R R M R

where ¢ = Lﬁﬁlﬂ opry and x = lpm x Y.

Proof. The upper left square is clearly commutative. The equality efm =

651711 o Lfﬁg '+, implies that the lower left square is commutative. The equal-

ity ao e‘f‘ = ¢’ 0 X2 implies the commutativity of the lower middle square.

The commutativity of the upper middle square is obtained by (4.1]). Propo-
sition [2.4(2) for f = 1., and the fact that €’ o 0’ = 1/ imply that the right
rectangle is commutative. m

DEFINITION 4.2. X\ = i1 0 {efm x '} : Byt — Fpy X Fi — Fp,.

Then A is a well-defined filtered map with respect to the filtration (13.4))
of Fi+1 and the trivial filtration ((Fy,); = Fy, for all i) of F,,, where
{efm x eV (F) = {ekafl X * U egf{l x €'}(F},) C Frp_1 x F| for 0<k <m,
and {efm x e'}(Fp,) = {elm x % Uef{’fll X €'} (F) C Fy x {x} UFp_1 X F}
for k = m.

DEFINITION 4.3. By Proposition 2.4] for f = A, we obtain a series of
maps \; : F, — PFQF,, 0 <k <m+ 1.

By the hypothesis of Theorem we have pp1 : F, X F{ — Fjy, for
k <m, and pip 1 : Fiy X F] — Fp,, both of which are restrictions of p.

LEMMA 4.4. There is a map X : Epp1 — P™P0QF,, which fits in with
the following commutative diagram obtained by dividing the right square of
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the diagram in Proposition by \ into upper and lower squares.

E, " Fax A2 g x P Ry
L£F$+1°UMJ( UWXUA\L Umxgli i‘ﬁﬁnﬂwm
PO, <2 P SOA X s F o — 2 prtlgp,
efiﬁli elim Xefl elm Xe’l leiﬁrl
E, P Fpx A2 B x FL LR

Proof. Let u?’l =1, Uptg—1,1: Fl;n’l = F x {x}UFy_1 X F| — Fy, O‘ZL’I
=0 X *x Uop_1 X o : F,:n’ll — P*OF, x {x} U P*10QF, | x YQF] and
gk = PRQig, xx UPF1Qi0 | X 1ggp, 0 <k <m.

Firstly, we show the following by induction on k& < m:

NF, k. F m,l _ QF N . m,l | m,l k+1
(4.2) o P iy oogopy =yt oo ooyt By — PYTQF,.

The case k = 0 is clear, since both maps are constant maps. Assume
that (4.2) holds for some k. By Proposition [2.4(1) for f = 1,,, the diagram

Pk QT PkiT
[og® k,k+1 k+1,m—1
F, —= P*OF, "5 PFOF, (€ - PEQF,, 4
P QF QF,,_1
Y k41 l,:’k,kJrl Lot
Ok+1 PkHQikFH 1
k+1 m— k+1
Fiqq PQFy —————— P"QF,

is commutative for k + 1 < m, and hence

. m,1 m,1

Jk+10 011 Ol

_ k+1 H:F -F ko F -F /
= (P ik 11 m—10°Okt10 Zk,kJrl) x xU (P ik 100k © Zk—l,k) X O

RFm—1 ko F N2Fm—1 k. F /
(tppts © P8y 00k) X U (41" 0 PPy, 0 0k-1) X0

~ . m,1
=1k OojJko0o .

By Proposition (1) for f = A\, we have S\kﬂ ol = L,?frl o A\, and hence

N . m,1 m,l _ 3 ~ . m,l _  0QF, 3 . m,1
Ak+1 0 Jk+1 0031 Ol = A1 © L © Ji, © 0, —Lk’kzlo/\ko]koak .

Then, by Proposition 1) for f = 1,, and the induction hypothesis,
71 \ Y 71
() (Arg1 0 Jrg100477)
QFm ko F 1 k I -F 1
= [y o P02y, 0 0p 0 pp ] =[P +1sz+17m O Oky10lg g1 Oty ]

. k+1-F m,1 m,1y _ ¢ m,I\x/pk+1:F m,1
= [P i1 m © Tka1 O g 0t | = (o) (PP 820341 1y © Okg1 © i)
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By a standard argument of homotopy theory applied to the cofibre sequence

m,1 m,1 . .
w1 — = Fk+1, we obtain the difference map g1 : 2Kk+1 —

k+1 m,1 k+1 ) F m,1
P F,, of )\k+1 °jg+100,; and P szH’m O Tk110 fyiy, K+1 <m
k+1 ) F m,1
(4.3) P70y 4 0 Ok © iy

= Vprtigr, © (Aes1 0 k1 0 0psy V Opa1) © vy
Then, by Proposition [2.4(1) for f =\, we have

F, 3 Fm—1 Fn—1 /
€p1 © Akl = Hm—1,10 {ek+1 X * U ey x €'},
and hence, by the commutative diagram
o . PiQZ‘szfl . efM71
F,—— P'QF,———— P'(2F,,_1 Fon1

fori =k, k+1<m — 1, we obtain

m,1

1 ! . m,1
X €} 0 Jkt1 003y = Ul

Frn—1 Fop—
{ep 1! x xUey

1 1. . .
where /" . F™7 < E7P" is the canonical inclusion. Thus
k+1 k1
F, N . m,l m,1 _ .F m,1
€1 © kg1 O k1 © Op ) = Hm—1,1 0 by = Uy 1m © Mgty
F Frt1 F, k+1 0 F m,1
= liky1m © Cpin ©Okt1 0 Nk+1 = e, o PP 21 4 © Okt1 © s
and hence, by (4.3] ,
- F m,l F, 3 . m,1 F; m,1
Gkt 1m © M1 = Vi, © (€571 © Mgt © Jig1 © 030y V€l 0 0ky1) 0 vy
_ 3 m,1 F m,1
= VE, © (e 1,m © i1 V €Y1 © Okt1) © Vg
Using [13, Theorem 2. 7( )] and the multiplication ¢ on G ~ F,, we see

that ekF;"l 0 011 ° EK 1 — F}, is null-homotopic. Hence by a standard

argument of homotopy theory applied to the fibre sequence EFt20QF,, —

PF0QF, — F,,, we get a lift Oyr - YK™ o EMTIQF, of 844 as

k+1
QF, o QF, QF, _ :
Pryi” © 5k+1 = dk11, K+ 1 < m. Since Uit 1kae O Pagi’ = *, We obtain

NF, _ 2F, Fom / _
U1 k42 © Okl = Ui kg0 © Py © Opyq = * and

2Fm )\ ; m,1 m,1
U1 k42 © VPErigr, © (Aks1 © Jet1 © 03 V k1) 0 vy

QF, 1 . m,1 m,1
= Vprt20p, © (G4 1o © Ak+1 0 Jht1 0 0 [y V k) o vy

NF,, N . m,1
= L+l k42 © Ak41 0 Jkt1 0 Op
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and hence, by (4.3] E,

QF, QF
Upt1 k42 © P Qlkﬂ m © Ok+10 Nk+1 L1 k42 © )‘k+1 O Jk+10 Uk+1

This completes the proof of the induction step and we obtain (4.2) for k& < m.
Secondly, we show that

(4.4) L??LFm-‘,—l O Oy © U 1= L{fﬁ+l 0 A © Uz’l.
By Proposition ( ) for f = 1,,, we obtain

opoil += thFft o Pt_IQz'f_Lt ooy for t=m-—-1,m.
Hence

ol ol = ((omoik 4 m) X *U (Om-10 ifn—2,m—1) x o)

— NF m m—1
—(/,m_L oP 0iF
Qmel
m—2m—1 o

m— lmoam—l)x*

P Qsz 9.m—10 Om— 1) X o
. . m,1
=tm—-19Jm-10° O'mfl‘

By Proposition (1) for f = A, we obtain Aim © i1 = Lglj’” 0 Am—1 and

1m
(Lﬁ’ll)*(j\ oo™y = [5\ oo™lo szl] = [5\ 0 Im—1 O jm_1 0 szl]
=[ flE?fm 0 Am—10 jm—1 0 o] = [Lr?iwf,m P02l Lm © Om—10 4]
= [om O iip1,m © My 1] = (1) (om © i)

using (4.2)) for k = m—1. Thus by a standard argument of homotopy theory
apphed to the coﬁbre sequence K 1 F,, — Fj41, we obtain a difference
map 0, : Km — PMOF,, of Ay ool m.i" and 0, © Ll ml,

(4.5) Om ot = Vpmop, o (Am oo™V 8,) 0™l

By Proposition 2.4(1) for f = A,

efm o Ny oot = il o {elm x « Ue "X e Yo (om XK Uay_1xa')=pmh
and hence, by (4.5)),

1 = Vi, 0(hm o Ao Vel 06, ) ov ! = Vi, o (ul Vel 06 )oriiL.

m
Thus efm o §,, = *. Then, by a standard argument of homotopy theory
applied to the fibre sequence E™QF,, — P™QF,, — F,,, we obtain
a lift &« YK — E™PLQF, which satisfies 6,, = p2Fm o §/ . Since

Lgﬁ;’; 1opQFm = %, we have L;ZF’" 0 0 gl*;;”_s_lopQFmoé’ = %. Then
by (4 , we obtain as follows:
QF, QF, 3 1 1
bm,m+1 © 9m © /’Lm = lymt1 © VPmQE,, © (Am 0o Vém) o vy,
QF, 1 1_ 0OF 3 1
:va‘HQFmO( mm+1 )‘ oo';';;‘ \/*)OI/,:Z’ _Lm,r:LnJrlo)‘m 77‘2 .
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Finally, we construct a map A m+1 — PHLQF,, By Prop081tlon.

for f = 1,,, we have Umohl;fl’m —Zﬁ}j’?m Pm- Isz 1mO0m—1, and hence
m,1 __
(Om X ') o™t = (o0 x ') o (1, x xU ik 1m X 1pr)

= im0 (Om X *U Oy X ') =iy oo™t

Also by Proposition (1) for f =\, we get A1 0 im = ¢2F™ 0 A, and

m,m-+1

;\m+1 o (o xo')o Lm’l = 5\m+1 0 Iy O az’l = Lffj;?ﬂ 0 A, © az’l,
and hence, by (4.4)),
(i) A0 (om X 0')) = el 0 omo i = () (s ©m © fim)-

By a standard argument of homotopy theory applied to the cofibre sequence
Kl — Fit s FINLwe obtain Oy, 0 DK — P HLQF,, such that

m
(4.6) Lr(rilj;ﬁl 00 O fim,1 = V pm+igp,, © ()\erl 0 (0m X ')V dmy1)o Vmﬁrl'

To proceed further, let us consider the dashed map e : EEm+1 — XKML
induced from the commutativity of the lower left square in the diagram

m,1
m,1¢ Lm’ m,1 apr m,1
Jois L SK
\Lo:ﬁ L \LUmXOJ lﬂgm*g/
- im - qr -
Fm( Fm+1 EEm—l—l
\
J{ém \Lef:lm xe' \Lé
Fm,l( Pids ! Fm,l ap EKm,l
m m41 m

m—1 1

where the map é,, : Fm — Fﬂf is eFm X *x U eF "1 x €. Since é, oam
and (efm x €') o (0, x 0') are homotopy equivalences, so is € 0 Yg,, * g1
(see [4, Lemma 16.24]). We denote by h : XK1 — Y K™+ its homotopy
inverse. Then, by ,

NFm, 1 / m,1
b1 © Om © fm,1 = Vpmtigp, © (Am41 0 (0m X ') V dmy1) 0 v’y

= Vpmtigp,, © (j‘erl o (o X OJ) V Omt+10hoeoXgy * g/) ° V:Zil

= Vpntior, © (Amt1 Vom0 hoe)o ((om x o) V g xg') o vl
which, by Lemma [3.3] can be continued as
= Vpmiigp, © (Amt1 Vi1 0 h0&) 0 Dyt 0 (om X o).

This suggests defining A by Vpmtiop, © (;\m+1 V Omi1 0 h0€) o Uy to
obtain

Lﬁi@ﬁrl 00 O fim1 = Ao (o x 0') 1 Fry x F{ — P"QF,,
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which gives the commutativity of the upper right square in Lemma[£.4] So it
remains to show the commutativity of the lower right square in Lemma
By Proposition 2.4(1) for f = X, we have

611:1711 0 Api10 (o x 0') = fm,1 © {eFm xe'}o(omxa)= Hm,1,

and hence, by the equalities e’ 1 © L;?lljn '100m = 1p, and (4.6),

Fm / m,1
fm,1 = €, OVPm+IQFm (A1 © (Om X 0')V ma1) 0 Vpy
m,1
= me o (fm,1 V em+1 0 Omi1) O Vp'iy-

Thus, ei’il 0 dppt1 = *. Therefore,

F, {_ F 3 A
e oA =¢€,"110Vpmitnp, © (Amt1V Omi10ho€) oy

=Vpg, o (ef{’lﬂ o 5\m+1 V %) 0 Uy = ef:{jrl o 5\m+1,
and hence, by Proposition 1) for f = A, we finally get

Fm

e, 10)\ ,umlo{emee} Fm+1—>Fm.-

L, . 7 .
Now we are ready to define a cone-decomposition { £, LNy 2 1 LN 2 vl
1 <k<m+1}of PI' x XA of length m + 1 by replacing F| with A in
the cone-decomposition of P/ x X 2F]. The series of cofibre sequences

QFm QFm

(EFQF, 20 prlgp, L PR 1<k <m+ 1)

gives a cone-decomposition of P™T10QF,, of length m + 1. Let D be the
homotopy pushout of ¢ = (2P o pry and Ao X = Ao (1pn x Y2a):

m,m-+1

P x XA 20X, PTtIQF,,

] |

P"H0OF,, D

We give a cone-decomposition of D as follows: Noim = Vpmiigp, ©
()\m+1 Vv (5m+1 0ho0€)o Uil 0l = )\m+1 0 Im, we may identify the restric-
tlon of \ on Fk with )\k, and hence \ o X is a filtered map up to hornotopy,

()\ox) forl < k < m. Since X‘F’ . _X‘FéOZk—l and

Zk;—l o wk, = %, we have

ero (Ao x)lp

, o) = e OAkOX|ﬁI; 0 iy o W},
-1

* = %,

By a standard argument of homotopy theory applied to the fibre sequence
EFQF,, — P*10QF,, — F,,, we have a lift xj, : E, — E*QF,, which fits in
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with the following commutative diagrams:

zr
k-1

Fy
l&k-loxip,;_l lxkox% (1<k<m),
QFm

Lk—1,k

EkQF, —= PF1QF, "5 PkOQF

cr

Tm F/

~1
wm+1

n nake
Em+1 Fm

m+1
(4.8) \Lfimﬂ ljxmoxﬁr/n ij\ox (k=m+1).
pSiFm L’r?LFWT+1
E™HIQF, " PMQF,, " P"IQF,
By definition of ¢, it is clear that there exists a map ¥y : EI’C — EFQF,,
which fits in with the commutative diagram

~/ zr

. ], . 1 .
1A Fy o€ Fy
(4.9) J/qpk l¢|ﬁ;€_1 J{%ﬁlg
QFm QFm
p lk—1,k

EFQF,, L pklgp MY pRop .

Let EkD be a homotopy pushout of k, and 1, and FkD be a homotopy
pushout of (Ao x)|z and ¢|z . Then using diagrams (4.7)-(4.9) and the
k k

universal property of homotopy pushouts, we obtain the following commu-
tative diagram whose front column E,? — FIQ 1 F,f) is a cofibre sequence:

E/
wr Kk
Jo
EfQFr, My By Govlyy B0
\
PF10F,, ol F EP” PF10F,,
oF / \ (/\OX)‘FI’C oF
Lk_{:’f/ i\ \ Lk_l"fk
PkQF,, F PkQF,,

D
FY

Thus we obtain a cone-decomposition {EP — FP | — FP |1 <k <m+1}
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of D of length m + 1, which immediately implies
cat(D) < Cat(D) <m + 1.

The homotopy pushout of the top and bottom rows in are G Uy,
G x CA. Also, since the dimensions of F,,, F; and A are less than or equal
to £, all compositions of columns in are homotopy equivalences. Thus,
the composite map D — GU, G x CA ~ E — D is a homotopy equivalence
(see [, Lemma 16.24], for example). Hence D dominates E, and we obtain

cat(F) < cat(D) < Cat(D) <m+ 1.

5. L-S category of SO(10). In this section, we determine cat(SO(10))
and prove Theorem

To give a lower bound of cat(SO(10)), let us recall the algebra structure
of the well-known cohomology algebra H*(SO(10);Fs):

H*(SO(10); Fy) = Fo[xy, x3, x5, 7, 0] / (210, 23, 22, 22, 22),
where xj is a generator in dimension k. Then by Theorem [I.1]
(5.1) 21 = cup(SO(10); F9) < cat(SO(10)).

On the other hand, to give the upper bound using Theorem we first
recall the cone-decomposition of Spin(7) in [10]:

x* C F{ = XCP? C F, C F{ C Fj C F} ~ Spin(T).

In [I1], the cone-decomposition of SO(9) is given by using the above filtra-
tion F] of Spin(7) together with the principal bundle Spin(7) — SO(9)
— RP'. Let €* be a k-cell in SO(9) corresponding to the k-cell in RP1?,
The cone-decomposition {F;} of SO(9) introduced in [I1] is

Fo = {*}

Fj =Fju (e1 x Fj_)U---U( " x F)ue

F5 =Fu(e x Fi)U'(ez X F3) U (e* x Fp) U (e* x F)ueé®
Fi+;:Fgu(e1 X FYU---U (e xﬁg)u(e”l X FHU---U (™ x Fyuet®

F15::F5'U(el X FL)U---U (e x Fé):U(ell X Fj)U---U(e" x F{)ue'
F15+j. =F,U(e' x F)u---U (et x F:s’) U x F)U---U (e x Fi_;)

Foo=FLU(e' x F)U---U(e'® x F) ~ S0(9)
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where 0 < ¢ < 10 and 0 < j < 5, which is given with a series of cofibre
sequences {K; — F;_; — F; | 1 <i<20}.

Secondly, a cofibre sequence S?*° — F; — FjUe?! (= F, ~ Spin(9))
in [10] induces a cofibre sequence Kog = S'* % §20 = §35 — Flg — Fyy.

Thirdly, since p/| FIxF| 18 compressible into Fj , for 1 < i < 5 by
[11l proof of Theorem 2.9], M|Fi><F1/ is compressible into F;1q for 1 <14 < 20,
where p and p/ are the multiplications of SO(9) and Spin(7), respectively.

Fourthly, let us consider two principal bundles p : SO(10) — S° and
p' 1 SU(5) — S, together with the commutative diagram

E(CP3<—> SU 4)—0sn so

$ A

o S C—>SO 10)

2’73 \ \
N O /\ ip
> g8 g9
The map « : S8 — SO(9) in the above diagram is the characteristic map
of p : SO(10) — S. By Steenrod [I6], a is homotopic in SO(9) to a map
o : S8 — SU(4), the characteristic map of p’ : SU(5) — S°. Further, by
Yokota [I8], the suspension Xv3 : S® — X CP3 of the canonical projection
3 : ST — CP3 is the attaching map of the top cell of XCP* c SU(5), which
is homotopic to o/. Therefore, the characteristic map « is compressible into
Y CP? C F}. Since « is homotopic to a suspension map to XCP? in SO(9),
we have Hi(a) = 0 € m3(2XCP? x 2XCP?) when « is regarded as a map
to XCP3.
Thus, finally by Theorem [1.2| with F| = XCP3, we obtain

(5.2) cat(SO(10)) <20+ 1 = 21.
Combining ([5.2]) with (5.1]), we obtain our desired result.
THEOREM 5.1. cat(SO(10)) = 21 = cup(SO(10); Fa).
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