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Higher Mahler measure of an n-variable family
by

MATILDE N. LALIN and JEAN-SEBASTIEN LECHASSEUR (Montreal)

1. Introduction. For k a positive integer, the k-higher Mahler measure
of a non-zero, n-variable, rational function P(zy,...,x,) € C(z1,...,2zy) is
given by

1
. -Slogk |P(e2 0 . e2™0n)| df) - - - db,.

0
We observe that the case k = 1 recovers the formula for the “classical”
Mahler measure. This function, originally defined as a height on polynomi-
als, has attracted considerable interest in the last decades due to its con-
nection to special values of the Riemann zeta function, and of L-functions
associated to objects of arithmetic significance such as elliptic curves as well
as special values of polylogarithms and other special functions. Part of such
phenomena have been explained in terms of Beilinson’s conjectures via rela-
tionships with regulators by Deninger [Den97] (see also the crucial articles
by Boyd [Boy97] and Rodriguez-Villegas [R-V97]).

Higher (and multiple) Mahler measures were originally defined in [KLOOS]
and subsequently studied by several authors [Sas10l [BS11, [LS11, BBSW12|
BS12, [Sas12| Bis14, BM14]. A related object, the Zeta Mahler measure,
was first studied by Akatsuka [Aka09]. As remarked by Deninger, higher
Mahler measures are expected to yield different regulators from the ones
that appear in the case of the usual Mahler measure, and they may reveal
a more complicated structure at the level of periods (see [Lall0] for more
details).

In order to continue this program of understanding periods that arise
from higher Mahler measure, an essential component is to generate examples

my(P(z1,...,2,)) =

O ey =

2010 Mathematics Subject Classification: Primary 11R06; Secondary 11M06, 11R09.
Key words and phrases: Mahler measure, higher Mahler measure, special values of ((s)
and Dirichlet L-functions, polylogarithms.

Received 17 March 2015; revised 13 February 2016.

Published online 13 June 2016.

DOI: 10.4064/228111-3-2016 [1] © Instytut Matematyczny PAN, 2016



2 M. N. Lalin and J.-S. Lechasseur
of formulas for higher Mahler measure involving special functions that can

be easily expressed as periods, such as polylogarithms. In the present work
we consider the family of rational functions in C(x1, ..., xy, 2) given by

1—x 11—z,
R = .

Let ((s) be the Riemann zeta function and L(x_4,s) be the Dirichlet
L-function in the character of conductor 4, defined, for Re(s) > 1, as

1
2o
[ee) Xﬁ
=1

Sl = {(3) nodd

((s

):
):

L(x_4,s
0 if n even.

We also consider the functions

(1.1) Loy (01, .oy wi)
= }: (=1)"™Lip,,. e (1) w1, (1) ™ wpy),

(Tl,...,Tm)E{O,l}m

given by combinations of multiple polylogarithms (of length m), defined for
positive integers n; by

) _ w{1 - w%”
L1n1,...,nm (wla cen 7wm) = E n1 N,
]1 .. -]m

0<j1<-<Jm

The series above is absolutely convergent for |w;| < 1 and n,, > 1.

Finally, for aq,...,a, € C, consider
1 if £ =0,
SZ(Ql,...,(Im): Z ail'”aié 1f0<€§m)
1< <iyg
0 if m< /.

We prove the following result.

THEOREM 1.1. Forn > 1, we have

" snon(22,42,. ., (2n —2)2) /22
mg(Ray) = hz:l d (@n = 1§! J) <7r> Ay (h),
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where

A(h) = (2h+ ks — 1)!(1 _ 22h1+k>g(2h SENEEUTE ﬁ

k/2—1<n<k—2

X > (2h = D)!Le, . en20n(L, ..., 1)
(51,...,671)6{1,2}”
#{i:e;=2}=k—n—2

2 (LR 1
+ Z 2k—n—j

=1 ! (k—j)/2—1<n<k—j—2

X > (2h 45 — D)'Le,. en22nii(1,. ., 1).

(€1,-y6n)E{1,2}™
#{i:e,=2}=k—j—n—2

.

For n >0, we have

Sn_n(12,32, on —1)2) /2 !
(Bai) =Z T B DD (2) T ),

™

where

Bi(h) == (2h + k)!L(x-4,2h + k + 1)
1
k+1
+ (_1) ! Z 2k—n—1

k/2—1<n<k—2

x > i(2h) Loy en2oni1(1, ..o 1,4,9)
(€1,-.y6n)E{1,2}™
#{i:e;=2}=k—n—
k— 2 k+]+1k| 1
+ Z 9k—n—j
j=1 (k—j)/2—1<n<k—j—2
X Z 2‘(2h‘*’j)!ﬁel,...,571,2,2h-‘,-j-|-1(17"- >1>i7i)'

(€1,.,6n)€{1,2}"
#{i:e;=2}=k—j—n—2

For the sake of clarity, we record here the case of k = 2:
1

Bg(h) = (2h + 2)!L(X_4, 2h + 3) - i(2h)!£2’2h+1 (i, Z)

The case of k = 1 clearly yields formulas that only depend on ((s),
L(x—4,s) and powers of 7. This is equivalent to saying that all the terms
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can be expressed in terms of polylogarithms of length one. There is another
case in which we can prove a similar formula.

COROLLARY 1.2. The previous result includes the following particular
case:

3172 28 32_. (/1

4
+ Q(log2 2)(log® 2 — 7%,
where all the terms are products of polylogarithms of length one.

Our method of proof of Theorem [1.1| relies on the ideas of [Lal06a] com-
bined with key properties of the Zeta Mahler function constructed by Akat-
suka [Aka(9].

The same method yields a formula for a simpler polynomial. Let

L 1'1—1 l’m—l
Qm(‘rla""xm)'_ <$1+1> <:L,m_|_1>'

We can express the higher Mahler measure of this family in terms of rational
combinations of powers of . More precisely, we obtain the following result.

PROPOSITION 1.3. Forn > 1, we have

m2k(Q2n)

ok = Sn—h(227427 sy (20— 2)2) (—1)k+h+1 2h (62k+2h
= E 24(2 —1)B .
T P (2n —1)! 2(k+h) ( ) Batisn)

Forn >0, we have

n

m o Sn— 232 n — 1)2
Moy (Q2n+1) = (2) > o= n(1%,3 (72n);(2 1))

(=1)"*" By .
h=0

In addition, for k>0 and m > 1,

Mo 41(Qm) = 0.

In the above expressions, B, and FE,, are the Bernoulli and Euler num-
bers respectively. Formulas for m(Q1) were found in [BBSWI12].

It is not necessary to use the method of [Lal06a] to find formulas for
my(Qm). By using simple properties of the higher Mahler measure of a
product of polynomials with different variables, we get alternative expres-
sions for the same formulas. By comparing with the results of Proposition
we obtain the following identities between Bernoulli and Euler numbers
which generalize some results of [Lal06a, Appendix].
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COROLLARY 1.4.

i sn-n(22,42,...,(2n — 2)?) (=1)"*! o2k-+2h
(2n —1)! 2(k+h)

2k
- Z (2]'1, >E2jl o Bagy,

sy 2]
it tien=k  £Jm

(2%F2" — 1) By
h=1

and
" s, n(12,32,,(2n — 1)?) L

2k

29
Jittieny1=k » SJ2n+1

The present article is organized as follows. In Section [2] we recall previous
results on the classical Mahler measure of R, as well as similar results for
other rational functions, obtained in [Lal06al. We outline the general method
of proof in Section [3] In Section [4 we discuss some properties of the Zeta
Mahler measure. Sections [5] and [f] treat certain technical simplifications of
the integrals involved. We discuss properties of polylogarithms in Section [7]
and we present the final details of the proofs in Section [8| Some technical
results were already part of [Lal06a] but we include them for the sake of
completeness.

2. Description of similar results for Mahler measure. In this
section we present the previous results that were obtained with this method
for the classical Mahler measure.

THEOREM 2.1 ([Lal06al]). Forn > 1,

n

S 2 2... n — 2 2h
m(fy,) = Y e B2 (2) ),

£ (2n — 1)
where
Ay(h) = (2h)! <1 _ 22hl+1> C(2h +1).
Forn >0,
n 2 92 2 2h+1
lnn) = 3 sn-h(l,3 ol @n 1)) (i) Bi(h),
where

Bi(h) :== (2h + 1)!L(x—4,2h + 2).
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In addition, similar results were proved in [Lal06a] for other rational
functions by the same method. Let

1—.’1}1 1—$m
m yereyddmy sy Y, = (1 1 )
Spn (21 T, T, Y, 2) = ( +x)z—|—<1+x1> < >( +v)

Ton(21, - T,y T, Y)

=14 (0 b PR T (! 1= %
T 1+ 2 1+ x,, 14z 1+zm v
THEOREM 2.2 ([Lal06a)]). Forn > 1,
" s, n(22,42, ... (2n — 2)2) /2 22
m(Son) = » d ( ) )<> Ci(h),

IERY]
P (2n —1)! ™
where
h 1)h=¢ 2h—2¢
Z( > By (20 +2) <1 225+3>C(2e+3)
=1
Forn >0
snon(12,3%. (20 —1)%) (27
mn . D ’
m(S2n+1) Z 2n)‘ - 1(h)
h=0
where
h
2h +1 —1)’1_[ 2h—20
U 5 20+ 3)1L(x_4,20 + 4).
Forn>1,
10g2 - Snfh(227427"~7(2n_2)2) 2 2
T5,) = — ’
where
h
@2n)! 1 ah-1_ (20 (=DM
&u(h) =51 = gy SRR+ 1)+ ; (2 20 2h
B 1
X BQ(h—Z)ﬂ-2h 26(%)! <1 - 22£+1>C(2£ +1).
Forn >0,
_log2  \Nsen(22 42, (20— 2)) (2)\ P
m(Toni1) = 5 + Z @n + 1) - Fi(h),

h=1
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h+2)!
Sk (1_ 22i+3>§(2h+3)

2 2
+ ”2 (2h)! (1 - inﬂ)é“(?h +1)

h
2, ( )h 41
z=1 20 4h
_ 1
X BQ(h,E)ﬂ'2h+2 26(26)‘ (1 - 22e+1><(2£ + 1)

We remark that some of the above formulas differ in presentation from
[Lal06a] as they have been simplified by using recent results of [LL].

3. The general method. Here we describe the general structure of the
proof of Theorem based on the ideas of [Lal06a].

Let P, € C(z) be such that its coefficients are rational functions in a
parameter ¢ € C. By making the change of variables a = (i;%) e (iz;})
we can view the rational function P, as a new rational function in n + 1

variables, Pe C(x1,...,Tn, z). Thus, the k-higher Mahler measure of Pis

- 1 k dx dml dxn
my(P) = (@)t S |P| = e

- T X Tn
1 1 ko dx\ dry dx
(2mi) (27i) 7 xr ) 11 T,
1 dxrq dz,
— Poajry japy) 2. 20
where my, (P(xlq)m(znfl)) is a function of x1, ..., x,. By making the change
zq+1 xn+1

of variables x; = % followed by y; = tan(6;/2), the integral above equals

U s

1

(271-)” S e S Ink(l in tan(91/2)~~tan(9n/2)) d91 e den
L 1 dy1 dyn
== | | me(Pogs .y
G —Soo _Soo (P y")nyrl yZ + 1

Assume that the function of a given by my(P,) is even, that is, my(P,) =
my(P_,) (this happens if, for instance, my(P,) only depends on |a|). Then
the same can be said of the integrand above, and the previous expression
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equals
2" T T dyl dyn
Z Voo mu (P,
ﬂ-n(s) (S] k( Y1 yn)y%_l_l y%+1
2" °S° OSO » ):z:l diy Zodis  dp-1dip—1  din
[ pp— PN mk_ ’L’nin — — — cen = — — —
my CESE RS A R
where we have set z; = ngl y;- This change of variables is motivated

by the goal of recovering a term of the form my(P,) inside the integral.
Indeed, if we further assume that my(P,) depends only on |a|, we find that
my(Pirg,,) = mg(Pz,)- .

Now choose P, = z + a. Then P = R,. As we will see in Section
my(P,) is a function of |a|. This implies
(3.1) mp(R,) =

o0 o

2m S S (Z 3 ) .@1 d.@l .@2 d.@g -i'n—l d@n—l d.i'n
s Mg n) .9 ~2 RS ) ~9 )
n
™ 0 0 xq +1 T5 + xq Th_1 + To_o T + Th_1

Thus, if we have a good expression for mg(z + x), then under favorable
circumstances we may obtain a good expression for my(Ry,).

4. Zeta Mahler measure. In this section we discuss the Zeta Mahler
measure, an object that is closely related to higher Mahler measure and that
will allow us to compute my(z + a) for any a € C.

DEFINITION 4.1. Let P € C(z1,...,x,) be a non-zero rational function.
Its Zeta Mahler measure is defined by
1 dxq dx,
Z(s,P):=—\|P R
(5:P) 1= (g | 1P coml 2802
REMARK 4.2. It is not hard to see that
d*Z(s, P) 1 A dry  dwv,
Bk | o= iy ) O P )| S S = ()

The simplest possible case of Zeta Mahler measure was computed by
Akatsuka.

THEOREM 4.3 (Akatsuka [Aka09]). Let a € C with |a| # 1. Then
Fi(—s/2,—5/2;1;|a|? ‘ 1
Z(s,z—l—a): 2 1( 8/7 5/7 7‘a|) ) Zf|a|< )
la|® - oF1(—s/2,—5s/2;1;]a|™%) if |a| > 1,
where, for |t| <1,

Fi(a, B;v:t) = (W) 12
o nZ:O (M n!
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denotes the hypergeometric series, and
1, n =0,
(a)p ==
ala+1)---(a+n—-1), n>1,
is the Pochhammer symbol.

Formulas for my(z + a) can be derived from Z(s,z + a) by means of
Remark We proceed to compute some derivatives of Z(s, z + a).

LEMMA 4.4. Lett € C with |t| <1 and set

o0 2 n
Gils) = 2Fi(=8/2,=s/2; 1;t) = Z<_2S> (;!)2'

Then
G¢(0) =1, GQ(O) =0.

Proof. Indeed, setting s = 0 we obtain (—s/ 2) 0 unless n = 0 and in
that case (—s/2)o = 1. This implies that G¢(0) =
Differentiating G¢(s), we obtain

w-22(3),3) 5

n=1

If we now set s = 0, we see that each term in the sum equals 0 and therefore

Gi(0) = 0. u

Akatsuka [Aka09] found a formula for my(z+a) for |a| < 1. This formula
can be easily adapted to the case of general a € C.

THEOREM 4.5. Let

ijTL
Ly )W) == Y .

Then for |a| <1 and k > 2,

1
mk(z—i—a) = (—1)kk' Z W Z L(el,...,en,2)<‘a’2)'

k/2—1<n<k-2 (€1,.-6n)€{1,2}"
#{i:e,=2}=k—n—2

For|a|>1 and k > 2,

1
my(z+a) = log" |a+2( ) 1) (k—)! Z 92(k—j—n—1)

(k=) /2—1<n<k—j—2

X Z (logj |a|)L(el,...,en,2)(|a"_2)’

(€15e.€n)E{1,2}™
#{ire,=2}=k—j—n—2
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Proof. The case of |a| < 1 is [Aka09 Theorem 7]. It is proved by observ-
ing that

de(s,Z—l-a) (k)
dsk o0 G|a|2( )

Akatsuka applies the eighth formula of [OZ01l p. 485] for « = § and z =0
in order to deduce the result.

For |a| > 1 we have, by Theorem
Z(s,z +a) = |a]*G|q-2(s).

Z(s,z+a) =Gp(s), mg(z+a)=

Thus, by Lemma
d*Z(s,z + a)
dsk

k—

~ log*[a| + (k) log? [af)(—1)* 9 (k — j)!

J=0 J

k .
(=) = =5 (%) o i H 0

s=0 =0

M

1 -2
8 92(k—j—n—1) Z L(€1,~..,en,2)(|a’ )s
(k—j)/2—1<n<k—j—2 (€1,ren)E{1,2}7

#{ire;=2}=k—j—n—2
and the result follows.
Finally, the case |a| = 1 is considered in the third formula of [KLOOS§|
p. 273]. It is not hard to see that both formulas above remain true for
la|]=1. =

5. Integral simplification. In this section we discuss how to simplify
the integral in . To do so, we define certain polynomials and prove a
recurrence relation for them. We then use these polynomials to compute a
certain family of integrals.

DEFINITION 5.1. Let A, (z) € Q[z] be defined by

exT -1 Tm

R(T;z) = — = Z Am(x)m

sinT
m>0

Thus, Ag(x) = z, A1(z) = 22/2, As(z) = 23/3 + /3, etc.

LEMMA 5.2. The polynomials A, (z) satisfy the recurrence

L 1 R : m+1
j>1lodd




Higher Mahler measure 11

Proof. By writing sinT' = %, we obtain

iT _ —iT
T 1= <e2;)R(T;x).
In other words,
i pmm Z (_1)(j*1)/2TJ'
m)! J!

m>1 ’ j>00dd

The result is obtained by comparing the coefficient of 7% on both sides. =

REMARK 5.3. More properties of A,,(z) can be found in [Lal06a, Ap-
pendix]. For instance,

m—+1 o omdl—
Am<I):—MZBh< n )(2h 1 1)th +1 h,

where the B,, are the Bernoulli numbers.

We will eventually compute a certain integral. For this, we need the
following auxiliary result.

LEMMA 5.4. For0< 8 <1,
OSO 2P dx m(a®~t — b
(

5.2 =
(5-2) z? +a?)(z? + %) 2(b2 — a2) cos ﬂ

Proof. We decompose the integrand into partial fractions:

(5.3) OSO 2P dx _OSO 1 - 1 28 dx
' o (@ +a®)(2? + ) B o\z®+a?  z?+b? ) (b —a®)

By integrating over a well-chosen contour (see [AhI79, p. 159, Section 5.3]),
we obtain

T 2Pd 1 g -1
zF dx T a
(S) 2 4a2 1-— 2mﬁ2mZRes{x2 —|—a2} ,8

2 cos =
By inserting this in , the result follows. =

We will use the polynomials A,,(x) to compute certain integrals.

PROPOSITION 5.5. For m > 0,

T sloghrds _(m)" AR A ()
(22 +a?) (22 +0%)  \2 a? — 12 :
Proof. Let
T 28 dx
f(ﬁ) = (S) (112+(12)(:E2—|—b2)'
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As the integral converges for 0 < < 3, the function is well-defined and
continuous in this interval. We differentiate m times and obtain

T zlog™xdx
f(m)(l):S 20 2V (2 L B2
o (@% +a?)(z? +b%)

Lemma, implies, for 0 < 8 < 1,
T3 m(aP~t — P
By differentiating m times, we obtain

m ()
Z <m>f(mj)(ﬁ) (cos ﬂ-f) ! = ﬁ(aﬁfl log™a — pp-1 log™ b).

=0 N7

We now take the limit as 8 — 1 to obtain

m

> (e (M) e (7)< g ls™)

j=1lodd

Changing m to m + 1, isolating the term f("™) (1), and dividing by 5(m+1)
yields

(m) S Gz (mE LY o yn (T
Fm (1) = 3 <1>ﬁ42( | )f””L”(U<>
m+1j>1odd J 2

log" ' a — log™ b
(m +1)(a® - 1?)
For m = 0 the above equation becomes

1) = g1y = OB A lom"b _ 7 An(2E5) - o (2522)
FO) = f(1) = 25 G082 )4

The rest of the proof proceeds by induction, using the recurrence for A,, ()

that was proved in Lemma .

By Proposition we can write the integral in (3.1)) as a sum of simpler
integrals. For instance, for n = 2, we have

_r
2

o0 o0
dz dz
| § el 22) L E
00 I
T < .%'1dx1
Smk Z+i’2)<§ ) >
0 0 (x1+x2
00 2log &2
(T A .
:Smk z+x2)(2 (7% AQ) 12 )>daz2
0 T2~
o] 2log Z2 o0
“ Y —x R dx
= (S)mk z+1:2)<2 £§—1>d$2: (S)mk(qux)logxe_l.
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Analogously, for n = 3, we obtain

00 00 00 n 3a A ga A
SSSIHk(Z—l-i?g) l‘ldl’l iL‘QdiL'Q dl’g
S 341 23 + 23 23 + 23
9 00 oo
T dz 1 9 dz

More generally, we can always reduce the computation to a sum of inte-
grals of the form

S my(z 4 z) log? 1z 2d7x for n even,
x —_—
(5.4) 9 ]
2h o
(S) mg(z + z) log™" x o for n odd.

6. Coefficient formulas. In this section, we find the coefficients that
allow us to express the integral from as a linear combination of integrals
from (5.4). Let ¢(a) be a function that depends on |a|. Eventually we will
have ¢(a) = my(P,), where P, is a rational function such that mg(P,) =
my(Py) (for instance, we could take P, = z + a). In what follows, it is
assumed that ¢(a) is such that all the integrals converge.

DEFINITION 6.1. Forn > 1and 0 < h <n—1,let a, ) € Q be defined by

xr dLU Lon— dﬂl‘ d(E
2n 2n L2n—1 2n—1 1
6.1 -\ oz e

( ) [S) §) ( 1> Z%n 1 w%n—l x%n ‘/E% 'I%

— [e.e]

_ - T 2h—1
= ;an,hl <2> S ¢(x)log T 571

0

For n >0 and 0 < h <n, let b, € Q be defined by

T 7 T dx Top, AT dx
2n+1 2n+1 2n 2n 1
62) |- o) -
§) (S) ad, o +1 a3, +a3,., 2+ ad

2n—2h 0

B = T on  dx
= hgobn,h(2> S o(z)log™ x oL

0

LEMMA 6.2. We have the following identities:

(6.3) D bpna® = anp-1(Asno1(x) = Agpa (i),
h=0 h=1
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n+1

(6.4) Z ni1p1z" Z bp,nAzn(x

where the A, () are the polynomials given in Definition .

Proof. By making the change of variables z; = y;x2,41 for i =1

i =Y =1,...,2n,
we have
OSOOSoqb(xl) Tont1dony1  Tondron  dx
0 0 Lon+1 +1 $§n + x%nJrl J?% + x%
oo o0
_ dTant1 Yon dYon Yon—1dYy2n—1 dyr
_S"'S¢(ylx2n+1) 2 2 2 ) 2"
o0 Topr T 1 Yo +1 Y3 1 t¥2, ¥+ U3
dzon
We now ignore the variable xg,, 11 and apply (6.1] . 1)) where S o(y1 m2n+1) 72 ++11
is a function depending on y;. The above equals

n —
g aph—1 <2> S S d(y12ons1) 5 log?" !
h=1

Yy ———-
00 2n+1+1 y%_l

We set x = y122,4+1 and rename y = y;. We obtain

n T 2n—2h 00 00 yd:z: b1 dy
Z<2) [ o) L2
h=1

2, .2 © Yo7
0o ety Y 1
By applying (6.2)), we conclude that

(6.5 ) bun <2> | é(z)log™ = — i
h=0 0
n 2n—2h 00 00
7r Sh—1 dy dz
= Z Gp h—1 <> S S gb(x)ylog Y— D) 2"
h=1 2 00 y -lat+y
By Proposition with a = x and b = ¢, we obtain

o0

S ylogtydy <7T>2hA2h—1<210gm) Agp— 1()
o WP+ —1)

2 2?2 +1
Thus, (6.5) equals

}é On,h—1 (g) B OSO é() <A2h1 (2 l(;g:z> — Azhl(i)> _dz

0 2 4+1

This equality is true for any choice of ¢(z), and therefore (6.3) must hold.
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Analogously, we can prove that

ntl 2n+2-2n % de
2h—1
(6.6) E Ap41,h—1 ( ) (S) ¢(z) log T
2n—2h 00 00
T dy dx
SN lo .
hEO ,h<2> (S](S)qb( x)ylog? yy T
By Proposition with a =z and b =1,
OSO ylothydy B E 2h+1 AQh(Qlc;rga:) o A2h(0)
(> +a2) (> +1)  \2 22 —1 '

Thus, the right-hand side of becomes

n 2n+1 o0
Z s 2logx dx
h=0 P <2> S gb(x)A%( m > -1

0

By inserting this in (6.6]), we obtain (6.4) by the same argument that was
used to obtain (6.3)). =

We now prove a result that will be key in finding formulas for a,p,
and by, p,.

LEMMA 6.3. We have the following identities:
(6.7)  2n(—1)’s,_p(2%,4%,...,(2n — 2)%)

_Z <2€—1>S”—h(12332""7(2n_1)2)’
(6.8)  (2n+1)(=1)'s,_ e(l2 3., 2n-1)?%)

_ Z (2’” 1)%_,1(22742,...,(2@2).

Proof. We multiply by 2% on both sides of and we sum over { =
1,...,n to obtain

2nan 0(22,42, ... (20— 2)%)(—1) 2

(=1
_ 2 o2 L \2).2¢
= g E <2€_1)5nh(1 35, 2n—1)%)x

By identifying the left-hand side with the corresponding polynomial and
reversing the sums on the right-hand side, we conclude that it suffices to
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prove that
n—1 n h
-\ 2 2 h 2 92 2@
2 =S (<1)hs, n (12,32, .., (20 — 1)? .
2n [(23)" %) = 31 b 2(5_0

The right-hand side equals

n

3 (1) s n(1%,32, ..., (20 — 1)2)5((95 F1)% — (2 —1)%)

h=1

= 5 (I -1 = @+ %) = [T - 1 = (e = 1))
- g(H(zj +a)(2] -2 —-x) - H(2J+x—2)(23 _x)>

By inspecting the common zeros in both products, we infer that the above
equals
1

S
|

((~2)(2n + ) — 2(2n — 2))

|8

n—1
((25)% = 2®) =20 [ [ ((2))" — 2?).
j=0

1

<.
I

This concludes the proof of (6.7)).
For we proceed analogously by multiplying each side by x
summing over £ =1,...,n:
n
2n+1)Y  sp(1%,3%,..., (20 — 1)%)(-1)%2* !
(=1

2041 and

Thus, it suffices to prove that

n

2n+1)x H 2j — 1) — z?)
7j=1

_ Z P n(22,42,. Zh: <2h+ 1> 2A+1

=1
The right-hand side equals

n

Z(_l)hsn—h(22, 42 .. (2n)2)%((x 1) (1)
h=0

—

= g(w +1) H((2j)2 —(z+1)%) = (@ - 1) JJ((25)* = (& - 1)2))

Jj=
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n

- (x—l—l ﬁ2]+1+95 )2 —1—x) — (x—l)H(2j—1+x)(2j+1—x)>
i j=1

n
=(2n+1+4+2z)+2n+1-2)) H (27 — 1)? — 2?)
7j=1

l\D\H

= @2n+ Dz [J((25 —1)* —a?),
j=1

and this concludes the proof of . "

REMARK 6.4. Mathew Rogers has remarked that the sequences under
consideration are related to Stirling numbers of the first kind via

Sn—h(22, 42, (27’L o 2 22n 2h Z h mS(m S(Qh—m).

We are now ready to compute the coefﬁments app and by, j from Defini-

tion
THEOREM 6.5. Forn > 1,

S o (@422 (2 4 (20— 2)2)
Y anpa =

(2n —1)! ’
and for n > 0,
Zn:b 2 (22 +12) (2?2 + 3%)--- (2% + (2n — 1)?)
mht = (2n)! '

In other words,
Snon_1(22,42,...,(2n — 2)?)
(2n —1)! ’
sn-n(12,32,...,(2n —1)?)
(2n)! '
Proof. We proceed by induction. By definition, when 2n + 1 = 1, we
have n =0 and

(6.9) Ap,p =

(6 10) bn,h =

o0

=boo | ¢(x)
0 0
Therefore, bgo = 1.
Analogously, when 2n = 2 we have n = 1. We have seen that

= | ¢(x) = a1 | ¢(@)
0 0

dx
2+ 1

log z dx
2 —1

log xz dx
2 -1

ydy dx
y2+1 $2+y2

J § @)
00
Thus a1,0 = 1 and the result holds for the first two cases.
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Now assume that for a fixed n > 1 and all 0 < h <n — 1 we have

5n—h—1(227 427 ) (2n — 2)2)
(2n —1)! ’

Qp.h =

We will prove that for all 0 < h < n,

sn_n(12,32,...,(2n —1)?)
(2n)! '

By Lemma 6.2} it suffices to show that

bn,h =

an R(12,3% . (2n —1)%)a?h
— 2n23n n(2%, ., (2n — 2)%) (Agp—1(2) — Agp_1(3)).

Taking m = 2h — 1 in (5.1]), we obtain

h—1
22h — Z(_l)j (2]'2—? 1> Aop—2j-1(z).

Jj=0

Multiplying by s,_,(12,32,...,(2n — 1)?) and summing over h, we get
anhl 32, (2n —1)%)2?h

- an £ DVl (i) ERRE

+ sn(12, 32,...,(2n - 1)%).

Evaluating this equation at x = i, we obtain
n
Z Sn—h(127 327 SO (Qn - 1)2)(_1)h
h=0 h—1
= (1%,3%,. —1)? ' Aop_9j_1(i
zsn A 20— 02 317 (, 21| )Aaya(9

+ sn(12, 32,...,(2n — 1)?).

Since

Zn:sn_h(12,32, =D (D) =@+ 1Y) (w4 (20— 1)) =1 =0,
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we deduce that

n
D snon(1%,8%.., (20— 1) an R(12,3%, ..., (2n —1)?)
h=0

h—1
X Z(:) ‘<2j n 1) (A2h72j71(x) - A2h72j71(i))-

By setting £ = h — 7, the right-hand side becomes

n h
D snn(1%,3%,. 20— 1)%) ) (—1) <2£2f 1) (Age—1(x) — Age—1(1))

h=1 /=1

— Zz: (hz:(_nh (2;]_’ 1) sn_n(12,3%,...,(2n — 1)2)>

X (1) (Agr1 (2) — A1 (i),
Lemma then implies (6.10]).

Now suppose that for fixed n > 1 and all 0 < h < n, we have
sn—h(12a 321 ce (27’L — 1)2)
(2n)! '

bn,h =

We wish to show that all 0 < h < n,
sn_n(22,42,...,(2n)%)
(2n+1)!

By Lemma it suffices to show that

n
Z Sn—h(223 427 SUR) (2n)2)x2h+1
h=0

Qp+1,h =

=(@2n+1) Z snen(12,3%, ..., (2n — 1)3) Agp,(2).
h=0

By setting m = 2h in (j5.1]), we obtain

h
(2h+1
l’2h+1 = Z(—l)] (2] T 1>A2h2j(w)-

J=0

Therefore,

n
Z Sn—h(223 427 SUR) (2n)2)x2h+1
h=0

. b2k 1
= };snh@?,zﬁ - (2n)?) Z(—n <2j N 1>A2h2j(x).

Jj=0
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Setting ¢ = h — j, we see that this equals

n h
D snon(24%,,(20)%) ) (-1 <2h2j; 1) Age(x)

h=0 /=0

h n
2h+1
=S (S0 (r s ) ) (-1 Ao
{=0 “h=¢
Thus, follows from Lemma "

7. Polylogarithms and hyperlogarithms. To complete the proof of
Theorem 1.1}, we need to compute integrals of the form
(o]
S my(z + x) log? x
0
These integrals are related to polylogarithms.

dx
2 +1

DEeFINITION 7.1. Let wq,...,w, be complex variables and ni,...,nm,
be positive integers. Define the multiple polylogarithm by the power series
jl ]m
. w .. w
L1n1,...,nm (wl? Tt 7wm) = Z >77%1 T:ZL .

0<j1<+<jm
We say that the above series has length m and weight w =n1 + -+ +ny,. It
is absolutely convergent for |w;| <1 and n,, > 1.

REMARK 7.2. We remark that Akatsuka’s polylogarithm from Theorem
[4.7is a particular case of multiple polylogarithms:
ijVI/ .
Lng,...nm) (W) = Z AL hm Ling, (1,00 1 w).
0<jt << I 1 Jm
Multiple polylogarithms have meromorphic continuations to the complex
plane.

DEFINITION 7.3. Hyperlogarithms are defined by the following iterated
integral:

Inl,...,nm(al Lot am+1)
g dt dt dt  dt dt
= S O—Q:++0—O0-+--0 O—OQ+++0 —
dot-a i t t—a, t t
n e
where
b
hSH dt dt S dt, dtp,
O+« 0 g .
t— b1 t—by t1 — by ty, — by

0 0<t1 <<t <bp41
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REMARK 7.4. The path of integration should be interpreted as any path
connecting 0 and bp41 in C\ {by,...,by}. The integral depends on the ho-
motopy class of this path. For our purposes, we will always integrate on the
real line.

Multiple polylogarithms and hyperlogarithms are related by the follow-
ing identities (see [Gon95]).

LEMMA 7.5.
. a2 as a 1
Inl""’nm (al R am+1) = (_1)len1,..-7TLm <CL1’ ;27 et 2:: > )
Lin1,...,nm (w17 I 7wm) = (—1)m1n17“.7n’m((w1 “ e wm)fl et w;Ll . 1)

The following example will be useful later.

EXAMPLE 7.6. The second equality in Lelrnmailrnplies7 for (e1,...,€n)
e{l,2}"and e; +---+e, =k — 2,

dt dt dt

2\ n+1
L e A e v R s v A

O ey

where there is a term of the form % after each t_f% term corresponding
dt

to ¢; = 2 and there is no § after any t_fﬁ corresponding to €¢; = 1, and
dt__ o dt
t—1/w? 7t

By setting s2 = w?t, the above equals

2sds 2sds 2ds
70...0 07
032—1 s2—1 S

w
1 1 1 1 ds
(=1) (S) s—1+s+1 ° ° S—1+8—|—1 Os

In the previous formula, each % has contributed a factor of 2 to the
leading coefficient.

To express our results more clearly, we recall the notation from (|1.1J).

the last two terms

correspond to the subindex 2.

DEFINITION 7.7. We will work with combinations of polylogarithms
given by

£n1,-..,nm (’U}l, e ,wm)

= Z (—=1)"™Lin, g (1) w1, .oy (1) ™ wyy).

(r1,...,rm)€{0,1}™

The following result expresses the integrals that we need to evaluate in
terms of polylogarithms.
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LEMMA 7.8. We have

1
. dx . 1
_ +1; :
LS .
(S)logj Tl (=1)75!L(x-4,7 + 1).

For (e1,...,en) € {1,2}" and €1 + -+ - + €, = k — 2, we have

1

(7.1) S Lie, . en2) (:1:2) log? x
0

dx
2 —1

— (_1)]4’12]?*’!1*2]'[‘/6177En727j+1(1, ey 1),

1

(72) SL(el,...,en,Q)(x2) logj z
0

X
2 +1
=i(—1y ok =251 o aini(1, ., 1i0).

Proof. The first two identities are proved in [Lal06a, Lemma 9]. By ap-
plying Example [7.6] we get

. dx
SL(€1 ..... en,Q)(:‘CQ)lOgjx 2_1
0
1 x
1 1 1 1 ds
— _1 n+12k:—n—1 . e
(S)(( ) §)S—1+S+1 °re 5—1+s+1 s
. dx
log? .
X log $x2—1

We now use the fact that Sl 4t — _Jogx to deduce that the above equals

x t
1
. 1 1 1 1 ds
-1 n+1+]2k7n72 i o “e
(=1) ‘](S) 8—1+8+1 ° ° 8—1+S+1 Os
1 1 dt dt
o — dro—o---0—
r—1 x+1 t t
N~
J

_ (_1)n+1+j2k—n—2j! Z (_1)7"

(rl,...7rn+1,7")6{0,1}“+2
X Tey en 2441 ((—1)7"1 s (=)o (=) (1) 1)
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— (_1)j+12k—n—2j! Z (_l)r

(le-~~77'7z+1 ,T)G{O,l}n+2

% Liel,...7€n,2,j+1 ((_1)r1+r2’ o (_1)7*n+rn+17 (_1)7‘n+1+”'7 (_1)r)
— (_1)]4’12]&'*’!’1‘*2‘7'["617767“27]_'_1(17 ey 1)
This yields (7.1)).

We proceed similarly to prove (|7.2)):
1
VLir.n2) (%) log/ @

0 x2+1
1 T
1 1 1 1 ds
— -1 n+12k—n—1 e
(S)(( ) (S) s—1+s—i—1 °re s—1+s+1 °s
. dx
log?
X e
1
. 1 1 1 1 ds
—i(—1 n+]2kfn72 i “e
l( ) j§51+s+1 ° ° S*1+S+1 Os
< 1 1 > dt dt
o — - dxo—o o —
r—1 T+ t t
%‘/_/
J
— i(_l)n+j2kfn72j! Z (_1)7"
(P15 n41,m)€{0,1} 2
X ey men2tt ((F1)™ oo (=1)™ o (=1)™ 0 2 (=1)74 2 1)

— i(—l)ij_"_Qj! Z (_1)r
(rlv---7rn+1,7")€{0,1}”+2

X Li61,~~~7€n72,j+1((_1)TI+T23 SRR (_1)Tn+rn+17 (_1)Tn+l+ria (_1)T+1i)

= (1)t ok =21 o ia(1,. ., 10,0).

8. The final steps in the proof of Theorem By combining
(3.1)), Definition and Theorem we obtain

72" my,(Ray)
n 2 42 2 00
e Sn-n(27,4%000, (20— 2)7) op oo, oh—1 ., dx
_Z (2n—1)' Akl o Smk(z—l—x)log xm,
h=1 0
" myg (Ropt1)

n 2 2 oo
e S (2n = 1)) ongy onon o dx
_hzo )] 24" (S)mk(z—km)log T ST
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We are now ready to express the above two integrals in terms of polyloga-
rithms.
For the case of 2h — 1, we have, by Theorem

T 2h—1 dx
S my(z + x) log T —
5 v —1

1
_ k
= (=1)"#! Z 92(k—n—1)

k/2—1<n<k—2

_ dx
S S
(G 6n)€{1,2}" 0
#{i:e;=2}=k—n—2

2htk—1 . dx
2 -1

-2

(k=37)/2—1<n<k—j—-2

0o ' 1 B dx
9 Z S log’ ;pL(El,,,_,Eng) <$2> 10g2h Ly pEREE

(€1, yen)€{1,2} 1
#{i:e,=2}=k—j—n—2

By making the change of variables y = 1/x in the integrals over > 1, and
then replacing y by = again, the above expression becomes

2
k
(—1)"k! Z 92(k—n—1)

k/2—1<n<k—2

1
dzx
x Z SLEL €n,2 )log 1331:2_1
(617---75n)€{1,2}" 0
#{i:e;=2}=k—n—2
dx
2 —1

_9 1 . 1
; 1(.)(—1)k<k—y>! 2 gD

(k—3)/2-1<n<k—j—2

1
o dx
X > VLier e (@) log™ 7w
(e1,...,6n)E{1,2}™ O
#{ire;=2}=k—j—n—2
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Finally, by Lemma [7.8]

N 2h—1 dx
S my(z + x) log T —
0 e —1

= (2h+k—1)! <1—22h1+k> C(2h + k)

1

k

+ (_1) k! Z 2k—n—1
k/2—1<n<k—2

X Z (2h = D)Ly cnaon(l, ..., 1)
(e15.-en)e{1,2}™
#{i:e;=2}=k—n—2

B

—2

k 3 . 1
+ ' <j>(_1) (k—j)! Z B
(k—j)/2—1<n<k—j—-2
X > (=1 (2h+j — 1)Le,, ... 22n+5(L, -

(617'--7En)6{172}n
#{i:e;=2}=k—j—n—2

<
Il
=

The case of 2k is handled similarly. First, by Theorem [4.5

ogom (z + z)log* x dz
) k g 2211

1
_ k
= (=1)"#! Z 92(k—n—1)

k/2—1<n<k—2

1
dx
x Z S L(617~--a€n,2) ($2) 10g2h T —
v +1
(€1,-en)e{1,2}™ O
#{i:e;=2}=k—n—2

922(k—j—n—1)
(k=3)/2—1<n<k—j-2

oo

. 1 dx
x > Vlog/ 2 Ly e 2) <xz> Jog2h z

(€1,0ven)€{1,2} 1
#{i:e,=2}=k—j—n—2

Then, by making the change of variables y = 1/x in the integrals over x > 1,
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and then replacing y by x again, we see that the above equals

1
2 dz
k 2 2h
(—1) k! Z W Z SL(El,..,,en,Z)(x )log $$2+1
k/2—1<n<k-—2 (€1,.en)E{1,2}" O
#{i:e;=2}=k—n—2
: dz
k 2h+k
—|—§( 1)"log T
k—2
N 1
— — 7! -
+ : (])( 1) (k ])‘ Z 92(k—j—n—1)
j=1 (k—j)/2—1<n<k—j—2
: , dz
<Y e @) log e

(€1,..,en)€{1,2} O
#{ire;=2}=k—j—n—2

Finally, by Lemma [7.8

Ogom (z+z)lo thdix
) k g 2241

= (2h + k)\L(x-4,2h +k+1)

1
+ (_1)k+1k! Z ok—n—1
k/2—1<n<k—2
X Z Z'(2h)!ﬁel,...,en,Q,Qh—i-l(17 ceey 1) i? Z)

(e15e-6n)€{1,2}"
#{i:e;=2}=k—n—2

k—2 k 1
—Dk (k= i) _ -
FX (e X i
=1 (k—j)/2—1<n<k—j—2
X > W17 Ch+ ) Ler . en2ontjr1 (Lo 1,4,0).

(€1,...,6n)E{1,2}™
#{ire;=2}=k—j—n—2

<

This concludes the proof of Theorem [1.1

8.1. The reduction to Corollary We now proceed to deduce
Corollary from Theorem
Recall that Theorem [I.1] implies in particular that

7[.2

4
mQ(RQ) = e + Pﬁg,g(l, 1).
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By using the formulas (see [BJOP02))
3
Ligo(1,1) = —((2)?
i22(1,1) = 15¢(2)%,
. 1 .
Ligo(1,—1) = §4(2)2 — 2Ly 3(1, 1),
. —11 9 .
L1272(—1, 1) = KC(Q) =+ 2L11,3(1, —1),

-3
Ligo(—1,—1) = —((2)?
ba(—1,-1) = 222
one can replace £22(1,1) in order to obtain

89712 16

mQ(RQ) = % + ﬁLil,?)(]-v —].)

By combining the identity

_ 11 7 .
Lij3(—1,-1) = *%C@)Q + 1 (log2)¢(3) — Liys(1, -1)
from [BJOPO02] with

Lijs(—1,—1) = C(;) - 2<Li4<;> + i(logQ 2)(log?2 — 7T2)>

(see [BBG95]) one finally obtains (|1.2)).

8.2. The simpler case of Proposition To find formulas for
my (@), we start by taking P, = az. Indeed, replacing a by (};2 ) e (L‘r—iz)
yields z@Q),, which has the same higher Mahler measures as ),,. This com-

putation is particularly easy to do because my(az) = log" |a|. We obtain

n 2 42 2 00
om o Sn—h(2 74 IR (27’L - 2) ) 2h,_2n—2h k+2h—1 dr
T mk(QQn)—Z @n— 1] 2°" 1 S log T3
h=1 0
and
g1 o Sner(15 0 (2n=1)7) opy on-on kton . dT
h=0 0

Proposition [I.3] follows with the same arguments that we used in the final
steps of the proof of Theorem and the combination of the well-known
formulas
(—1)j+132j (27T)2j

2(25)!

¢(24) =

and ‘ ‘
(_1)3E2j7r2j+1

Lo 2+ 1) = 571
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Finally, Corollary [I.4] follows from the simple observation that

k 1—mx L —am
mi@n = 3 (5 1w () e (55

and the fact that

1— —1)2(x2)IE;, j ,
m(5) =mtan = { VT o

9. Concluding remarks. We have proved exact formulas for my of a
particular family of rational functions with an arbitrary number of variables.
Much as in the case of the classical Mahler measure for this family, we have
obtained formulas involving multiple polylogarithms evaluated at roots of
unity. It is expected that many, if not all, of the formulas from Theorem
could be reduced to expressions solely involving terms of length 1. For ex-
ample, Lg2,41(1,1) can be reduced to combinations of products of ((n) by
means of a result in [BBB97] that generalizes a result of Euler on the reduc-
tion of multizeta values of length 2. Additional efforts in this direction may
be found in [Lal06bl [ILL], but they are currently insufficient to reduce all the
terms involved in such expressions. Another direction for future exploration
is the search for formulas for my(S,,) and mg(75,).
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