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Baire classes of affine vector-valued functions

by

Ondřej F. K. Kalenda and Jiř́ı Spurný (Praha)

Abstract. We investigate Baire classes of strongly affine mappings with values in
Fréchet spaces. We show, in particular, that the validity of the vector-valued Mokobodzki
result on affine functions of the first Baire class is related to the approximation property of
the range space. We further extend several results known for scalar functions on Choquet
simplices or on dual balls of L1-preduals to the vector-valued case. This concerns, in
particular, affine classes of strongly affine Baire mappings, the abstract Dirichlet problem
and the weak Dirichlet problem for Baire mappings. Some of these results have weaker
conclusions than their scalar versions. We also establish an affine version of the Jayne–
Rogers selection theorem.

1. Introduction. Investigation of Baire hierarchy of affine functions on
compact convex sets forms an important part of the Choquet theory. The
abstract Dirichlet problem for Baire functions on Choquet simplices was
studied for example in [25, 60, 61, 66, 63], and the descriptive properties of
affine functions for example in [40, 39, 38, 67]. A large number of results
valid for simplices were proved in a more general framework of L1-preduals.
Recall that a Banach space X is called an L1-predual (or a Lindenstrauss
space) if its dual X∗ is isometric to L1(X,S, µ) for a measure space (X,S, µ).
There are two types of L1-preduals: the real and complex ones. Unlike in
most areas, there is a difference between the real and complex theories.
More precisely, there are some results known in the real case and unknown
in the complex case; moreover, proofs in the complex setting are often more
involved. However, our results hold in both cases in the same form.

Real L1-preduals were investigated in depth in [11, 15, 16, 2, 33, 44, 17,
45, 9, 21, 6, 40]. Complex L1-preduals were studied for example in [74, 48,
75, 57, 53, 37, 54, 7, 72, 46, 10]. It has turned out that both real and complex
L1-preduals can be characterized by a “simplex-like” property of the dual
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unit ball BX∗ (see [34, 12]). This result was used to investigate variants of
the abstract Dirichlet problem for L1-preduals in [41, 39, 38].

In the present paper we study vector-valued affine functions, more pre-
cisely mappings with values in a Fréchet space. We show that some results
remain valid in the same form, some results are true in a weaker form and
some results cannot be transferred at all. Main results are contained in Sec-
tion 2. In the rest of the introductory section we collect some definitions
and basic facts on compact convex sets, Baire mappings and vector inte-
gration. In Section 3 we give auxiliary results needed to prove the main
theorems. Some of them are known and we just collect them, some of them
are up to our knowledge new and may be of independent interest. Several
subsequent sections are devoted to the proofs of the main results. In the
last section we discuss sharpness of our results and formulate related open
problems.

1.1. Compact convex sets, simplices and L1-preduals. We will
deal both with real and complex spaces. To shorten notation we will use the
symbol F to denote the appropriate field, R or C.

If X is a compact Hausdorff space, we denote by C(X,F) the Banach
space of all F-valued continuous functions on X equipped with the sup-norm.
The dual of C(X,F) will be identified (by the Riesz representation theorem)
with M(X,F), the space of F-valued Radon measures on X equipped with
the total variation norm and the corresponding weak∗ topology.

Let X be a convex subset of a (real or complex) vector space E and F be
another (real or complex) vector space. Recall that a mapping f : X → F is
said to be affine if f(tx+ (1− t)y) = tf(x) + (1− t)f(y) whenever x, y ∈ X
and t ∈ [0, 1]. We stress that the notion of an affine function uses only the
underlying structure of real vector spaces.

Let X be a compact convex set in a Hausdorff locally convex topological
vector space. We write A(X,F) for the space of all F-valued continuous
affine functions on X. This space is a closed subspace of C(X,F) and is
equipped with the inherited sup-norm. Given a Radon probability measure µ
on X, we write r(µ) for the barycenter of µ, i.e., the unique point x ∈ X
satisfying a(x) =

	
X a dµ for each affine continuous function on X (see

[1, Proposition I.2.1] or [32, Chapter 7, §20]; note that it does not matter
whether we consider real or complex affine functions). Conversely, for a point
x ∈ X, we denote byMx(X) the set of all Radon probability measures on X
with barycenter x (i.e., of probabilities representing x).

The usual dilation order ≺ on the setM1(X) of Radon probability mea-
sures on X is defined as µ ≺ ν if and only if µ(f) ≤ ν(f) for any real-valued
convex continuous function f on X. (Recall that µ(f) is an abbreviation for	
f dµ.) A measure µ ∈ M1(X) is said to be maximal if it is maximal with
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respect to the dilation order. In case X is metrizable, the maximal measures
are exactly the probabilities carried by the Gδ set extX of extreme points
of X (see, e.g., [1, p. 35] or [43, Corollary 3.62]). By the Choquet represen-
tation theorem, for any x ∈ X there exists a maximal representing measure
(see [32, p. 192, Corollary] or [1, Theorem I.4.8]). The set X is termed a
simplex if this measure is uniquely determined for each x ∈ X (see [32, §20,
Theorem 3]). We write δx for this uniquely determined measure.

A measure µ ∈ M(X,F) is called boundary if either µ = 0 or the prob-
ability measure |µ|/‖µ‖ is maximal. If X is metrizable, the boundary mea-
sures are exactly the measures carried by extX.

If X is a simplex, the space A(X,F) is an example of an L1-predual (see
[18, Proposition 3.23] for the real case; the complex case follows from the real
one and [32, §23, Theorem 6]). Moreover, L1-preduals can be characterized
using a simplex-like property of the dual unit ball:

Fact 1.1. Let E be a Banach space over F and X = (BE∗ , w
∗). Then E

is an L1-predual if and only if for each x∗ ∈ X there is a unique F-valued
Radon measure µ on X with the properties:

(a) ‖µ‖ ≤ 1,
(b) µ(αA) = αµ(A) for any Borel set A ⊂ X and any α ∈ F with
|α| = 1,

(c) µ is a boundary measure,
(d) x∗(x) =

	
X y
∗(x) dµ(y∗) for any x ∈ E.

This is proved at the end of Section 3.4. It is a variant of the character-
izations given in [34] for the real case and in [12] for the complex case. The
unique measure µ provided by the previous fact will be denoted by T (x∗).

The measures satisfying (b) are called odd in the real case and anti-
homogeneous in the complex case (we will sometimes use the unified term
F-anti-homogeneous). Condition (d) means that µ represents x∗ in a way.
Notice that for a function f : X → F the following assertions are equivalent:

(i) There is x ∈ E with f(y∗) = y∗(x) for y∗ ∈ X.
(ii) f is affine, continuous and f(αy∗) = αf(y∗) for each y∗ ∈ X and

any α ∈ F with |α| = 1.

Functions with the third property in (ii) are called odd in the real case and
homogeneous in the complex case (or F-homogeneous in both cases).

1.2. Baire hierarchies of mappings. Given a set K, a topological
space L and a family F of mappings from K to L, we define the Baire
classes of mappings as follows. Let (F)0 = F . For α ∈ [1, ω1), assuming
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that (F)β have already been defined for each β < α, we set

(F)α =
{
f : K → L; there exists a sequence (fn) in

⋃
β<α

(F)β

such that fn → f pointwise
}
.

We will use several hierarchies matching this pattern:

• If K and L are topological spaces, we write Cα(K,L) for (C(K,L))α,
where C(K,L) is the set of all continuous functions from K to L.
• If K is a compact convex set and L is a convex subset of a locally

convex space, we write Aα(K,L) for (A(K,L))α, where A(K,L) is the
set of all affine continuous functions defined on K with values in L.
• If K = (BE∗ , w

∗), where E is a real Banach space and L is a convex
symmetric subset of a locally convex space, we write Aodd,α(K,L) for
(Aodd(K,L))α, where Aodd(K,L) is the set of all odd affine continuous
functions defined on K with values in L.
• If K = (BE∗ , w

∗), where E is a complex Banach space and L is an
absolutely convex subset of a complex locally convex space, we write
Ahom,α(K,L) for (Ahom(K,L))α, where Ahom(K,L) is the set of all
homogeneous affine continuous functions defined on K with values
in L.

1.3. Vector integration and strongly affine mappings. To inves-
tigate vector-valued strongly affine mappings, we need some vector integral.
We will use the Pettis approach. Our vector-valued mappings will mostly
have values in Fréchet spaces, but sometimes in general Hausdorff locally
convex spaces. Since we will deal only with Hausdorff spaces, by a space we
mean always a Hausdorff space.

Let µ be an F-valued σ-additive measure defined on an abstract measur-
able space (X,A) (i.e., X is a set and A is a σ-algebra of subsets of X) and
let F be a locally convex space over F. (To avoid confusion we stress that
we will consider only finite measures.) A mapping f : X → F is said to be
µ-measurable if f−1(U) is µ-measurable for any open U ⊂ F , and weakly
µ-measurable if τ ◦ f is µ-measurable for each τ ∈ F ∗.

A mapping f : X → F is said to be µ-integrable over a µ-measurable set
A ⊂ X if

• τ ◦ f ∈ L1(|µ|) for each τ ∈ F ∗,
• for each µ-measurable B ⊂ A there exists xB ∈ F such that

τ(xB) =
�

B

τ ◦ f dµ, τ ∈ F ∗.

It is clear that xB is uniquely determined; we denote it
	
B f dµ. If µ is clear,

we say just that f is integrable.
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Any µ-integrable mapping is necessarily weakly µ-measurable but not
necessarily µ-measurable (cf. the discussion after Question 10.4 below).

If X is a compact convex set, a mapping f : X → F is called strongly
affine if, for any µ ∈M1(X), f is µ-integrable and

	
X f dµ = f(r(µ)). This

is a strengthening of the notion of an affine mapping: indeed, f is affine if
and only if the formula holds for any finitely supported probability µ.

The notion of a strongly affine mapping is also a straightforward gener-
alization of the scalar case; in fact, the following easy observation shows a
close connection with the scalar case.

Fact 1.2. Let X be a compact convex set and F a locally convex space.
A mapping f : X → F is strongly affine if and only if τ ◦f is strongly affine
for each τ ∈ F ∗.

Proof. The ‘only if’ part follows immediately from the definitions. Let
us show the ‘if’ part. Suppose that τ ◦ f is strongly affine for each τ ∈ F ∗.
Given any µ ∈M1(X), A ⊂ X µ-measurable and τ ∈ F ∗, we have

�

A

τ ◦ f dµ =

{
0, µ(A) = 0,

µ(A)τ(f(r(µ|A/µ(A)))), µ(A) > 0.

Hence f is µ-integrable and
	
X f dµ = f(r(µ)).

2. Main results. In this section we collect our main results. We start
from results on affine Baire-one maps on general compact convex sets. It
turns out that the situation here is quite different from the scalar case. We
continue with several positive results which are generalizations of theorems
known in the scalar case. Sometimes we are only able to generalize weaker
variants of those results. These theorems are formulated and proved in three
versions: for simplices, for dual balls of real L1-preduals and for dual balls
of complex L1-preduals.

Let us start by considering affine Baire-one mappings. If X is a com-
pact convex set and f : X → F is an affine function on X which is of the
first Baire class (i.e., f ∈ C1(X,F)), then f is strongly affine by a result of
Choquet (see, e.g., [1, Theorem I.2.6], [52, Section 14], [59] or [43, Corol-
lary 4.22]), and moreover f ∈ A1(X,F) by a result of Mokobodzki (see, e.g.,
[55, Théorème 80] or [43, Theorem 4.24]).

If F = R, X = (BE∗ , w
∗) for a real Banach space E and f is odd, then

f ∈ Aodd,1(X,R). This follows easily from the general case since an affine
function on X is odd if and only if it vanishes at the origin. If F = C, X =
(BE∗ , w

∗) for a complex Banach space E, and f is homogeneous, then f ∈
Ahom,1(X,C). This is a bit more difficult, and follows from Lemma 3.14(c)
below.
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The situation for vector-valued functions is different. Firstly, the follow-
ing analogue of the Choquet result follows immediately from Fact 1.2.

Theorem 2.1. Let X be a compact convex set, F a locally convex space
and f : X → F an affine mapping which is of the first Baire class. Then
f is strongly affine.

The vector version of the Mokobodzki theorem is not valid in general
but it is valid under additional assumptions on the range space. This is
illustrated by the following two results.

Theorem 2.2. Let X be a compact convex set and E a Banach space
with the bounded approximation property. Then any affine f ∈ C1(X,E)
belongs to A1(X,E). If moreover f(X) ⊂ BE and E has the λ-bounded
approximation property for some λ ≥ 1, then f ∈ A1(X,λBE).

Example 2.3. Let E be a separable reflexive Banach space which fails
the compact approximation property. Let X = (BE , w) and let f : X → E
be the identity embedding. Then f is affine, f ∈ C1(X,E) and f /∈⋃
α<ω1

Aα(X,E).

This example is a strengthening of [47, Example 2.22]. A Banach space
satisfying the assumptions exists due to [5, Proposition 2.12]. Theorem 2.2
is a generalization and strengthening of [47, Theorem 2.12]. We point out
that the proof of the latter theorem in [47] contains a gap. We provide a
correct proof of a stronger version. The preceding two results are proved in
Section 4 below, where also the definitions of approximation properties are
recalled and the gap in the proof in [47] is commented on.

For affine functions of higher Baire classes the situation is different even
in the scalar case. Firstly, an affine function of the second Baire class need
not be strongly affine even if X is simplex (an example is due to Choquet,
see, e.g., [1, Example I.2.10], [52, Section 14] or [43, Proposition 2.63]).
Further, by [70] there is a compact convex set X and a strongly affine
function f : X → R of the second Baire class which does not belong to⋃
α<ω1

Aα(X,R). Nonetheless, some positive results hold for strongly affine
functions on simplices and on dual balls of L1-preduals.

We begin with the following theorem on the quality of the dilation map-
ping in the three cases. Let us explain the notation used in the theorem. We
denote by Modd(X,R) the space of odd real-valued Radon measures on X,
and by Mahom(X,C) the space of all anti-homogeneous complex Radon
measures on X (see Section 1.1 for definitions). All the range spaces in the
theorem are considered with the weak∗ topology. The operator T in cases (R)
and (C) was defined in Section 1.1 using Fact 1.1.
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Theorem 2.4.

(S) Let X be a metrizable simplex. Then the map T : x 7→ δx belongs to
A1(X,M1(X)).

(R) Let E be a real separable L1-predual and X = (BE∗ , w
∗). Then the

map T belongs to Aodd,1(X,BModd(X,R)).
(C) Let E be a complex separable L1-predual and X = (BE∗ , w

∗). Then
the map T belongs to Ahom,1(X,BMahom(X,C)).

The above theorem is proved in Section 5. Case (S) is essentially known
(see [42, Theorem 6.6]). The formulation of the cited result is weaker, but
the construction in fact gives (S). Let us point out that this result is for-
mulated and proved only for metrizable X. However, in some special cases
metrizability is not necessary, as formulated in the following remark which
will also be discussed in Section 5.

Remark 2.5. The following assertions hold even without the metriz-
ability (separability) assumption:

• T is strongly affine.
• If extX is closed, then T is continuous.

We also include Example 5.4 showing that T need not be a Baire mapping
even if extX is Lindelöf.

We continue with a result on affine Baire classes of strongly affine Baire
mappings. The scalar version of assertion (S) is proved in [4, Theorem 2],
the scalar version of (R) follows easily from [40, Theorem 1.4], and the scalar
version of (C) is claimed to be unknown in [40]. The theorem is proved in
Section 6.

Theorem 2.6. Let X be a compact convex set, F a Fréchet space, 1 ≤
α < ω1 and f ∈ Cα(X,F ) strongly affine.

(S) If X is a simplex, then f ∈ A1+α(X,F ).
(R) If X = (BE∗ , w

∗), where E is a real L1-predual, then f ∈
A1+α(X,F ). If f is moreover odd, then f ∈ Aodd,1+α(X,F ).

(C) If X = (BE∗ , w
∗), where E is a complex L1-predual, then f ∈

A1+α(X,F ). If F is moreover complex and f is homogeneous, then
f ∈ Ahom,1+α(X,F ).

If moreover α = 1, then 1 + α can be replaced by α, that is, if f belongs
to the class C1, it belongs to the class A1.

In case extX is an Fσ-set, 1 + α can be replaced by α for each α.

The next theorem is devoted to the abstract Dirichlet problem for vector-
valued Baire mappings. The scalar version of case (S) follows from [25], the
scalar version of (R) follows from [41, Theorem 2.14], and the scalar version
of (C) follows from [38, Theorem 2.22]. The scalar versions of all the three
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cases also hold for α = 0, but our proof of the vector version requires α ≥ 1.
The Lindelöf property is a quite natural assumption. It surely cannot be
dropped, as witnessed, for example, by the simplex from [1, Proposition
I.4.15] (or [43, Example 3.82]). However, it is still an open problem whether
the Lindelöf property is necessary for the validity of the scalar case for α = 0
(i.e., for continuous functions, see Question 10.9 below).

Theorem 2.7. Let X be a compact convex set with extX being Lindelöf,
α ≥ 1, F a Fréchet space and f : extX → F a bounded mapping from
Cα(extX,F ).

(S) If X is a simplex, then f can be extended to a mapping in
A1+α(X,F ).

(R) If X = (BE∗ , w
∗), where E is a real L1-predual and f is odd, then

f can be extended to a mapping from Aodd,1+α(X,F ).
(C) If X = (BE∗ , w

∗), where E is a complex L1-predual, F is complex
and f is homogeneous, then f can be extended to a mapping from
Ahom,1+α(X,F ).

If extX is moreover Fσ, then 1 +α can be replaced by α in all the cases.

If extX is even closed and f is continuous, then we can find a continuous
affine extension.

The next theorem is devoted to the so-called ‘weak Dirichlet problem’. The
scalar version of case (S) is known: for continuous functions it is proved in [1,
Theorem II.3.12], and for Baire functions it is due to [62]. Up to our knowledge,
cases (R) and (C) are new even in the scalar case. The result is proved in
Section 8 using a simplified and generalized variant of the method of [62].

Theorem 2.8. Let X be a compact convex set, K ⊂ extX a compact
subset, F a Fréchet space and f a bounded mapping in Cα(K,F ).

(S) If X is a simplex, then f can be extended to a mapping in
Aα(X, co f(K)).

(R) If X = (BE∗ , w
∗), where E is a real L1-predual, K is sym-

metric and f is odd, then f can be extended to a mapping in
Aodd,α(X, aco f(K)).

(C) If X = (BE∗ , w
∗), where E is a complex L1-predual, F is complex,

K is homogeneous and f is homogeneous, then f can be extended to
a mapping from Ahom,α(X, aco f(K)).

As a consequence, we get a result on extending Baire mappings from
compact subsets of completely regular spaces (see Theorem 8.1).

Finally, the following result can be viewed as an affine version of the
Jayne–Rogers selection theorem. Recall that a set-valued mapping Φ is said
to be upper semicontinuous if {x ∈ X; Φ(x) ⊂ U} is open in X for any open
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set U ⊂ F (or equivalently {x ∈ X; Φ(x) ∩ H 6= ∅} is closed in X for any
closed set H ⊂ F ).

Theorem 2.9. Let X be a compact convex set, F a Fréchet space and
Φ : X → F an upper semicontinuous set-valued mapping with nonempty
closed values and bounded range.

(S) If X is a metrizable simplex and the graph of Φ is convex, then Φ
has a selection in A2(X,F ).

(R) If X = (BE∗ , w
∗), where E is a separable real L1-predual and the

graph of Φ is convex and symmetric, then Φ has a selection in
Aodd,2(X,F ).

(C) If X = (BE∗ , w
∗), where E is a separable complex L1-predual, F

is complex and the graph of Φ is absolutely convex, then Φ has a
selection in Ahom,2(X,F ).

We point out that the Jayne–Rogers selection theorem provides a selec-
tion of the first class, while we obtain a selection of the second class. This is
the best we can achieve, due to Example 9.2. In the same example we show
that the metrizability assumption is essential.

3. Some auxiliary results. Below we collect auxiliary results which
we will need to prove the main results. These results are divided into four
sections. First we need the relationship between the Baire hierarchy of map-
pings and Baire measurability. These results are known; the only exception
is Lemma 3.4 which is a generalization of a result of [47]. Further we estab-
lish some results on Pettis integration, especially a dominated convergence
theorem. In the next section we collect properties of odd and homogeneous
mappings and of the associated operators odd and hom. The results are
either easy or vector-valued variants of the results from [38]. Finally, we in-
vestigate operators adjoint to odd and hom, and odd and antihomogeneous
measures. We think that some of these results are new and of independent
interest. In particular, we prove Fact 1.1 which is a simplex-like characteri-
zation of L1-preduals.

3.1. Baire hierarchy of sets and Baire mappings. In this section
we formulate the exact relationship between Baire mappings and mappings
measurable with respect to the Baire σ-algebra.

If X is a topological space, a zero set in X is the inverse image of a
closed set in R under a continuous function f : X → R. The complement of
a zero set is a cozero set. If X is normal, it follows from Tietze’s theorem
that a closed set is a zero set if and only if it is also a Gδ set. We recall
that Baire sets are members of the σ-algebra generated by the family of all
cozero sets in X.
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We will need a precise hierarchy of Baire sets. We define additive and
multiplicative Baire classes of sets as follows: Let Σb

1(X) be the family of all
cozero sets and Πb

1(X) the family of all zero sets. For α ∈ (1, ω1), let

Σb
α(X) = the family of countable unions of sets in

⋃
β<α Πb

β(X),

Πb
α(X) = the family of countable intersections of sets in

⋃
β<α Σb

β(X).

The family Σb
α(X) is termed the sets of Baire additive class α, while Πb

α(X)
is called the sets of Baire multiplicative class α.

The following two lemmata collect some properties of Baire measurable
mappings.

Lemma 3.1. Let X be a topological space and F a metrizable separable
space. Let f : X → F be a Baire measurable mapping. Then:

(a) The σ-algebra of Baire subsets of X equals⋃
α<ω1

Σb
α(X) =

⋃
α<ω1

Πb
α(X).

(b) There exists α < ω1 such that f is Σb
α(X)-measurable.

(c) If X is normal, F is a convex subset of a Fréchet space and α ∈
[0, ω1), then f ∈ Cα(X,F ) if and only if f is Σb

α+1(X)-measurable.

Proof. Assertion (a) is obvious.
(b) Since every separable metric space has a countable basis, the asser-

tion easily follows.
(c) For α = 0 the assertion is trivial. For α = 1 it follows from [73,

Theorem 3.7(i)].
The assertion for α > 1 follows from [65, Theorem 2.7]. Indeed, if F

denotes the algebra generated by the zero sets, then the families Σα(F) and
Πα(F) from [65] are exactly Σb

α(X) and Πb
α(X) for α ≥ 2. Further, the

family denoted by Φα in [65] is exactly Cα(X,F ) for α ≥ 1. For α = 1 this
follows from the previous paragraph, and for larger ordinals it follows from
the definitions.

An immediate consequence of assertion (c) above is the following.

Corollary 3.2. Let X be a normal space, F a separable Fréchet space,
α < ω1 and f ∈ Cα(X,F ). Then f ∈ Cα(X, co f(X)).

Lemma 3.3. Let X be a Baire subset of a compact space and F a metriz-
able space. Let f : X → F be a Baire measurable mapping. Then:

(a) f(X) is separable.
(b) There exists α < ω1 such that f is Σb

α(X)-measurable.
(c) If F is a convex subset of a Fréchet space and α ∈ [0, ω1), then

f ∈ Cα(X,F ) if and only if f is Σb
α+1(X)-measurable.
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Proof. Assertion (a) follows from [19, Theorem 1]. Indeed, the space X,
being a Baire subset of a compact space, is K-analytic by [19, Proposition β,
p. 1113] (spaces which are now called K-analytic are called analytic there).
Thus X satisfies the assumption on the domain space in [19, Theorem 1].
Further, f is Baire measurable. Note that in [19] this notion has a different
meaning, that the preimage of any Baire set is a Baire set. Since F is assumed
to be metrizable, this coincides with our notion of Baire measurability. The
conclusion is that f(X) is K-analytic, hence Lindelöf (by [19, Proposition α,
p. 1113]) and therefore separable (by metrizability).

(b) By (a) we can suppose that F is separable. Hence the assertion follows
from Lemma 3.1(b).

(c) By (a) we can suppose that F is separable. Since X is normal (being
regular and Lindelöf), the assertion follows from Lemma 3.1(c).

Let us point out that assertion (a) of the previous lemma is not valid in
general. It is valid (with the same proof) under the weaker assumption that
X is K-analytic (but we do not need it), but it fails if X is, say, a general
separable metric space. An example under Martin’s axiom and negation of
the continuum hypothesis is described in [29, Example 2.4(3)].

We continue with the following technical lemma which is a variant of [47,
Proposition 2.8] that dealt with mappings with values in a Banach space.
Our proof essentially follows that in [47] with necessary modifications due
to the assumption that F is a Fréchet space.

Lemma 3.4. Let X be a compact space and F a Fréchet space over F.
Let fn,m, fn, f : X → F (m,n ∈ N) satisfy the following conditions:

(i) fn,m is continuous on X for all n,m ∈ N;

(ii) fn,m(x)
m−→ fn(x) weakly in F for all n ∈ N and x ∈ X;

(iii) fn(x)
n−→ f(x) weakly in F for each x ∈ X;

(iv) (fn,m) is uniformly bounded;
(v) f ∈ C1(X,F ).

Then there is a sequence (gk) of convex combinations of functions fn,m,
n,m ∈ N, such that gk(x)→ f(x) in F for each x ∈ X.

Proof. Fix a closed absolutely convex bounded set L ⊂ F containing
the ranges of all the functions fn,m, n,m ∈ N. Since closed convex sets are
weakly closed, L also contains the ranges of fn, n ∈ N, and of f . Hence
by Corollary 3.2 we have f ∈ C1(X,L) (note that L can be chosen to be
separable). Fix a sequence (hk) in C(X,L) pointwise converging to f .

Since F is a Fréchet space, its topology is generated by a sequence (pk)
of seminorms. We can suppose that p1 ≤ p2 ≤ · · · . For each k ∈ N denote
by Kk the polar of the set {y ∈ F ; pk(y) < 1}. By the Alaoglu theorem, Kk

is weak∗ compact.
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Given any function u : X → F define û : X × F ∗ → F by

û(x, x∗) = x∗(u(x)), (x, x∗) ∈ X × F ∗.

It is easy to observe that:

• ûn → û pointwise whenever un(x)→ u(x) weakly in F for each x ∈ X.
• If u is continuous, then û is continuous on X × Kk for each k ∈ N

(Kk is equipped with the weak∗ topology).

Indeed, the first assertion is obvious. To show the second, suppose u is
continuous and k ∈ N. Fix (x, x∗) ∈ X×Kk and ε > 0. For (y, y∗) ∈ X×Kk

we have

|û(y, y∗)− û(x, x∗)| = |y∗(u(y))− x∗(u(x))|
≤ |y∗(u(y)− u(x))|+ |y∗(u(x))− x∗(u(x))|
≤ pk(u(y)− u(x)) + |y∗(u(x))− x∗(u(x))| < ε

whenever

pk(u(y)− u(x)) < ε/2 and |y∗(u(x))− x∗(u(x))| < ε/2,

which defines a neighborhood of (x, x∗) in X ×Kk.

Fix k ∈ N. Then ĥn → f̂ pointwise and hence f̂ |X×Kk
∈ C1(X ×Kk,F).

Moreover, f̂n → f̂ and f̂n,m
m−→ f̂n pointwise on X × Kk for each n ∈ N.

Since (f̂n,m|X×Kk
) is a uniformly bounded family of continuous functions,

[47, Lemma 2.5] yields a sequence (ukn)n in the convex hull of (fn,m) such that

ûkn
n−→ f̂ pointwise on X×Kk. Then ûkn− ĥn

n−→ 0 pointwise on X×Kk. Since
this sequence is uniformly bounded in C(X ×Kk,F), it converges weakly to
zero in C(X×Kk,F). By the Mazur theorem there is vk ∈ co{ukn−hn; n ≥ k}
such that ‖v̂k|X×Kk

‖ < 1/k. The function vk can be expressed as vk =
gk − wk, where gk ∈ co{fn,m; n,m ∈ N} and wk ∈ co{hn; n ≥ k}.

We claim that gn(x) → f(x) for each x ∈ X. So, fix x ∈ X and k ∈ N.

We will show that pk(f(x) − gn(x))
n−→ 0. Let ε > 0. Fix n0 ∈ N such that

n0 ≥ k, 1/n0 < ε/2 and pk(f(x) − hn(x)) < ε/2 for n ≥ n0. Fix n ≥ n0.
Then pk(f(x)− wn(x)) < ε/2 (as wn(x) ∈ co{hj(x); j ≥ n0}). Hence

pk(f(x)− gn(x)) ≤ pk(f(x)−wn(x)) +pk(wn(x)− gn(x)) ≤ ε/2 +pn(vn(x))

= ε/2 + sup{|x∗(vn(x))|; x∗ ∈ Kk} = ε/2 +‖v̂n|X×Kk
‖

≤ ε/2 +‖v̂n|X×Kn‖ < ε/2 + 1/n < ε.

An immediate consequence of the previous lemma is the following.

Corollary 3.5. Let X be a compact convex space and F a bounded
convex subset of a Fréchet space. If f ∈ C1(X,F ) and f ∈ A2(X,F ), then
f ∈ A1(X,F ).



Affine vector-valued functions 239

3.2. Integrable vector-valued functions. We now collect several re-
sults on vector integration. We start by two lemmata on the relationship
between measurability and weak measurability.

Lemma 3.6. Let F be a separable metrizable locally convex space. Then
each open subset of F is Fσ in the weak topology.

Proof. Let U be an open subset of F . For each x ∈ U there is a convex
open neighborhood Vx of zero such that x+ Vx ⊂ U . Since F is metrizable
and separable, there is a countable set C ⊂ U such that the sets x + Vx,
x ∈ C, cover U . Then U =

⋃
x∈C(x + Vx). Since closed convex sets are

weakly closed, the proof is complete.

Lemma 3.7. Let µ be an F-valued measure defined on a measurable space
(X,A) and let F be a separable metrizable locally convex space. Then any
weakly µ-measurable function f : X → F is µ-measurable.

Proof. Suppose that f is weakly measurable, i.e., τ ◦ f is µ-measurable
for any τ ∈ F ∗. It follows that f−1(U) is µ-measurable for any U from the
canonical basis of the weak topology on F . Since F is separable and metriz-
able, the weak topology is hereditarily Lindelöf, thus f−1(U) is µ-measurable
for any weakly open U . By Lemma 3.6, f−1(U) is µ-measurable for any U
open in the original topology of F .

Lemma 3.8. Let µ be an F-valued measure defined on a measurable space
(X,A) and let F be a Fréchet space over F. Suppose that f : X → F is
a bounded weakly µ-measurable mapping with (essentially) separable range.
Then:

(a) f is µ-integrable.
(b) If µ is moreover a probability and L ⊂ F is a closed convex set such

that f(X) ⊂ L, then µ(f) ∈ L.
(c) If ‖µ‖ ≤ 1 and L ⊂ F is a closed absolutely convex set such that

f(X) ⊂ L, then µ(f) ∈ L.
(d) If ρ is any continuous seminorm on F , then ρ◦f is µ-integrable and

ρ(
	
X f dµ) ≤

	
X ρ ◦ f d|µ|.

Proof. Without loss of generality we can suppose that F is separable.
Assertion (a) for nonnegative measures then follows immediately from

[71, Corollary 3.1]. The general case is an easy consequence.
(b) Assuming µ(f) /∈ L, by the Hahn–Banach separation argument we

can find τ ∈ F ∗ and c ∈ R such that Re τ(µ(f)) > c > sup{Re τ(l); l ∈ L}.
Then

c < Re τ(µ(f)) =
�

X

Re τ(f(x)) dµ(x) <
�

X

c dµ(x) = c,

a contradiction.
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(c) We proceed as in the proof of (b). If L is absolutely convex, we get

sup{Re τ(l); l ∈ L} = sup{|τ(l)|; l ∈ L}
and

c < Re τ(µ(f)) = Re
�

X

τ(f(x)) dµ(x) ≤
�

X

|τ(f(x))| d|µ|(x) ≤ c.

To show (d), let ρ be any continuous seminorm on F . Since f is µ-
measurable by Lemma 3.7, it is clear that ρ◦f is µ-measurable and bounded,
hence µ-integrable. Set V = {x ∈ F ; ρ(x) ≤ 1} and let

V 0 = {τ ∈ F ∗; |τ(x)| ≤ 1 for x ∈ V }
denote the absolute polar of V . Then the Bipolar Theorem implies that

ρ(x) = sup{|τ(x)|; τ ∈ V 0}, x ∈ F.
Hence

ρ
( �
X

f dµ
)

= sup
{∣∣∣τ( �

X

f dµ
)∣∣∣; τ ∈ V 0

}
= sup

{∣∣∣ �
X

τ ◦ f dµ
∣∣∣; τ ∈ V 0

}
≤ sup

{ �

X

|τ ◦ f | d|µ|; τ ∈ V 0
}
≤

�

X

ρ ◦ f d|µ|.

An important class of integrable functions is formed by Baire measurable
functions.

Lemma 3.9. Let X be a compact space, µ an F-valued Radon measure
on X and f : X → F a bounded Baire measurable mapping from X to a
Fréchet space F over F. Then f is µ-integrable.

Proof. By Lemma 3.3(a) the image f(X) is separable. Hence the con-
clusion follows from Lemma 3.8(a).

We will also use the following version of the Dominated Convergence
Theorem.

Theorem 3.10 (Dominated Convergence Theorem). Let µ be an F-
valued measure defined on a measurable space (X,A) and let F be a Fréchet
space over F. Let fn, f : X → F be mappings such that

• each fn is weakly µ-measurable and has separable range,
• {fn} is bounded in F (i.e.,

⋃∞
n=1 fn(X) is bounded in F ),

• fn(x)→ f(x) in F for x ∈ X.

Then f is bounded and µ-measurable. Moreover, all the functions involved
are µ-integrable and

	
X fn dµ→

	
X f dµ in F .

Proof. Set L = {fn(x); n ∈ N, x ∈ X}. Then L is a separable closed
bounded set and clearly f(X) ⊂ L. Thus f is bounded and has separable
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range. Moreover, it is weakly µ-measurable as measurability is preserved by
pointwise limits of sequences. By Lemma 3.7, all the mappings involved are
even µ-measurable. Their µ-integrability now follows from Lemma 3.8(a). It
remains to prove the convergence of the integrals.

To do so, let ρ be any continuous seminorm on F . By Lemma 3.8(c),

ρ
( �
X

fn dµ−
�

X

f dµ
)

= ρ
( �
X

(fn − f) dµ
)
≤

�

X

ρ ◦ (fn − f) d|µ|

for each n ∈ N. Since fn → f pointwise, ρ ◦ (fn − f)→ 0 pointwise. Clearly
ρ(fn(x) − f(x)) ≤ 2 sup{ρ(v); v ∈ L} for each x ∈ K, thus the classical
Dominated Convergence Theorem gives

lim
n→∞

�

X

ρ ◦ (fn − f) d|µ| = 0.

Since ρ is an arbitrary continuous seminorm, the convergence of the integrals
follows.

3.3. Odd and homogeneous mappings. Let E be a vector space
over F. A set A ⊂ E is called F-homogeneous if αx ∈ A whenever x ∈ A
and α ∈ F satisfies |α| = 1. R-homogeneous sets are called symmetric, and
C-homogeneous ones just homogeneous.

If A ⊂ E is F-homogeneous and F is another vector space over F, then
a mapping f : A → F is called F-homogeneous if f(αx) = αf(x) whenever
x ∈ A and α ∈ F satisfies |α| = 1. R-homogeneous maps are called odd, and
C-homogeneous ones just homogeneous.

The following lemma shows that there is a close connection between
F-homogeneous affine maps and linear operators.

Lemma 3.11. Let E be a Banach space over F and let f : BE → F be an
F-homogeneous affine mapping from BE to a vector space F over F. Then
there exists a unique linear operator L : E → F extending f .

Proof. We define L : E → F by

Lx =

{
‖x‖f(x/‖x‖), ‖x‖ > 1,

f(x), ‖x‖ ≤ 1.

It is a well defined linear extension of f which is obviously unique.

We are now going to describe a procedure of “homogenization” of func-
tions. This procedure is easier in the real case.

Let E, F be real vector spaces and B ⊂ E a symmetric set. For any
function f : B → F we define a function odd f by

(odd f)(x) = 1
2(f(x)− f(−x)), x ∈ B.

It is clear that odd f is an odd function and that f is odd if and only if
f = odd f .
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The complex procedure is a bit more involved. Again, we suppose that
E and F are complex vector spaces, B ⊂ E is a homogeneous set and
f : B → F is a mapping. We would like to define a function hom f by

(hom f)(x) =
1

2π

2π�

0

e−itf(eitx) dt, x ∈ B.

The difference from the real case is that a vector integral is involved and
it need not be meaningful. Therefore we restrict our assumptions: we will
assume that F is locally convex space and that the relevant integral is well
defined (in the Pettis sense defined in Section 1.3) for each x ∈ B. These
assumptions are satisfied, in particular, if E is a locally convex space, F is a
Fréchet space and f is a bounded Borel function. Indeed, then for each x ∈ B
the mapping t 7→ e−itf(eitx) is a bounded Borel mapping from [0, 2π] to F .
Since for compact metric spaces the Baire and Borel σ-algebras coincide, we
can conclude by Lemma 3.9. It is clear that hom f is homogeneous whenever
it makes sense.

The following lemma sums up the basic properties of the operator odd.

Lemma 3.12. Let E, F be real locally convex spaces and A ⊂ E, B ⊂ F
be symmetric sets. Then:

(a) The function odd f is continuous for each f : A→ F continuous.
(b) If f ∈ Cα(A,B) for some α < ω1, then odd f ∈ Codd,α(A,B) where
Codd,α(A,B) = (Codd(A,B))α and Codd(A,B) is the space of all odd
continuous mappings of A into B.

(c) If A and B are moreover convex and f ∈ Aα(A,B) for some α < ω1,
then odd f ∈ Aodd,α(A,B).

(d) If A and B are moreover convex, then each odd function in Aα(A,B)
belongs to Aodd,α(A,B).

Proof. Assertion (a) is obvious. Assertion (b) follows from (a) by trans-
finite induction. Assertion (c) is obvious for α = 0; the general case follows
by transfinite induction. Finally, (d) is an immediate consequence of (c).

We continue with the basic properties of the operator hom. The scalar
version is proved in [38, Lemma 2.2].

Lemma 3.13. Let E be a complex locally convex space, F a complex
Fréchet space, A ⊂ E a homogeneous set and B ⊂ F a closed absolutely
convex bounded set. Then:

(a) The function hom f is continuous for each f : A→ B continuous.
(b) Let fn : A→ B be a Borel function for each n ∈ N. Suppose that the

sequence (fn) pointwise converges to a function f . Then (hom fn)
pointwise converges to hom f .
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(c) If f ∈ Cα(A,B) for some α < ω1, then hom f ∈ Chom,α(A,B) where
Chom,α(A,B) = (Chom(A,B))α and Chom(A,B) is the space of all
homogeneous continuous mappings of A into B.

Proof. (a) Let x ∈ A. Fix any continuous seminorm ρ on F and any
ε > 0. We will find a neighborhood U of zero in E such that for any y ∈
(x+ U) ∩A one has ρ(hom f(y)− hom f(x)) ≤ ε.

To do so, first observe that the mapping h : A × R → B defined by
h(y, t) = e−itf(eity) is continuous. Therefore for any t ∈ R there is Vt, an
absolutely convex neighborhood of zero in E, and δt > 0 such that whenever
s ∈ (t− δt, t+ δt) and y ∈ (x+Vt)∩A, then ρ(h(y, s)−h(x, t)) < ε/2. Fix a
finite set J ⊂ [0, 2π] such that the intervals (t−δt, t+δt), t ∈ J , cover [0, 2π].
Let U =

⋂
t∈J Vt. Given s ∈ [0, 2π], choose t ∈ J with s ∈ (t − δt, t + δt).

Then for each y ∈ (x+ U) ∩A we have

ρ(h(y, s)− h(x, s)) ≤ ρ(h(y, s)− h(x, t)) + ρ(h(x, t)− h(x, s)) < ε.

Hence, for each y ∈ (x+ U) ∩A,

ρ(hom f(y)− hom f(x)) = ρ

(
1

2π

2π�

0

(h(y, s)− h(x, s)) ds

)

≤ 1

2π

2π�

0

ρ(h(y, s)− h(x, s)) ds ≤ ε.

Assertion (b) follows immediately from Theorem 3.10; and (c) follows
from (a) by using (b) and transfinite induction.

In case f is affine, hom f is always well defined and no further mea-
surability assumptions on f are needed. Indeed, given x ∈ E, the set
{eitx; t ∈ [0, 2π]} is contained in a finite-dimensional subspace of E (more
precisely, in a subspace of complex dimension one, hence of real dimension
two). Moreover, f is continuous on this finite-dimensional space and maps
it into a finite-dimensional subspace of F . The properties of the “homoge-
nization” of affine mappings are summed up in the following lemma.

Lemma 3.14. Let E, F be complex locally convex spaces, A ⊂ E an
absolutely convex set and B ⊂ F a closed absolutely convex set.

(a) If f : A→ F is affine, then

hom f(x) =
1

2
(f(x)− if(ix))− 1− i

2
f(0), x ∈ A.

Moreover, there are unique homogeneous affine functions u, v :
A → F such that f(x) = f(0) + u(x) + v(x) for x ∈ A. In this
formula u = hom f .

(b) If f ∈ Aα(A,B) for some α < ω1, then hom f ∈ Ahom,α(A,B).
(c) Each homogeneous function from Aα(A,B) belongs to Ahom,α(A,B).
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Proof. (a) Set h = f −f(0). Then h is odd, hence h(αx+βy) = αh(x)+
βh(y) whenever α, β ∈ R and x, y, αx+ βy ∈ A. Indeed, this is clear in case
β = 0. If β 6= 0, we have

h(αx+ βy) = 2(|α|+ |β|)h
(

αx+ βy

2(|α|+ |β|)

)
= (|α|+ |β|)

(
h

(
α

|α|+ |β|
x

)
+ h

(
β

|α|+ |β|
y

))
= αh(x) + βh(y).

Therefore

hom f(x) = homh(x) =
1

2π

2π�

0

e−ith(eitx) dt

=
1

2π

2π�

0

e−ith(x cos t+ ix sin t) dt

=
1

2π

2π�

0

(cos2 t− i cos t sin t)(h(x)) dt

+
1

2π

2π�

0

(cos t sin t− i sin2 t)h(ix) dt

=
1

2
(h(x)− ih(ix)) =

1

2
(f(x)− if(ix))− 1− i

2
f(0).

Set u = hom f and v(x) = f(x)− f(0)− u(x) for x ∈ A. Then u is a
homogeneous affine function. Moreover, by the above formula we get

v(x) = 1
2(f(x)− f(0)) + i(f(ix)− f(0)), x ∈ A.

Hence v(ix) = iv(x) for x ∈ A, so v is homogeneous. The uniqueness is
clear.

Assertion (b) follows from (a) by transfinite induction; and (c) follows
immediately from (b).

3.4. Odd and anti-homogeneous measures. Let E be a Banach
space over F and X = (BE∗ , w

∗). Then X is a compact convex set. Odd
and anti-homogeneous measures on X were defined in Section 1.1. In this
section we will elaborate these notions, and in particular provide a proof of
Fact 1.1.

There are two points of view on a Radon measure on X: we can view it
as a set function or as a functional on C(X,F). In the previous section we
defined the operators odd and hom on C(X,F). We use the same symbols
to denote the adjoint operators on C(X,F)∗. Let µ be an F-valued Radon
measure on X.
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• If F = R, we define oddµ ∈ C(X,R)∗ by (oddµ)(f) = µ(odd f) for
f ∈ C(X,R).
• If F = C, we define homµ ∈ C(X,C)∗ by (homµ)(f) = µ(hom f) for
f ∈ C(X,C).

The following lemma sums up the basic properties of the operator odd
on measures.

Lemma 3.15. Let E be a real Banach space, X = (BE∗ , w
∗) and µ a

signed Radon measure on X. Then:

(a) oddµ(A) = 1
2(µ(A)− µ(−A)) for any Borel set A ⊂ X.

(b) oddµ is an odd measure.
(c) µ is odd if and only if µ = oddµ.
(d) Let B ⊂ X be a symmetric µ-measurable set and f : B → R a

bounded Borel function. Then
	
B f d oddµ =

	
B odd f dµ.

(e) If µ is a boundary measure, then so is oddµ.

Proof. (a) Define ν(A) = 1
2(µ(A) − µ(−A)) for A ⊂ X Borel. This is

a well-defined measure. Moreover, for any f ∈ C(X,R) we have ν(f) =
µ(odd f). Indeed, set σ(x∗) = −x∗ for x∗ ∈ X. Then, given f ∈ C(X,R),

ν(f) =
1

2

( �
X

f dµ−
�

X

f dσ(µ)
)

=
1

2

( �
X

f dµ−
�

X

f ◦ σ−1 dµ
)

= µ(odd f).

Assertions (b) and (c) follow immediately from (a), and assertion (d)
follows from (a) by repeating the above computation. Assertion (e) follows
easily from the characterization of boundary measures in [1, pp. 34–35].

We continue with the following lemma on odd measures and their rela-
tionship to probabilities.

Lemma 3.16. Let E be a real Banach space, X = (BE∗ , w
∗) and µ an

odd Radon measure on X with ‖µ‖ ≤ 1. Then:

(a) There is a Borel set A ⊂ X with A ∩ (−A) = ∅ such that µ+ is
supported by A and µ− is supported by −A.

(b) There is a unique x∗ ∈ X such that for each x ∈ E one has x∗(x) =	
y∗(x) dµ(y∗).

(c) There is a probability ν on X such that odd ν = µ and r(ν) = x∗

(where x∗ is provided by (b)). If µ is a boundary measure, then ν can
be chosen maximal.

Proof. (a) Fix disjoint Borel sets A+ and A− such that µ+ is supported
by A+ and µ− is supported by A−. It is enough to take A = A+ \ (−A+).

To show (b) it is enough to observe that x 7→
	
y∗(x) dµ(y∗) defines a

linear functional on E of norm not greater than ‖µ‖.
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(c) If µ = 0, take ν = 1
2(εy∗ + ε−y∗) where y∗ is an extreme point of X.

If µ 6= 0, one can take

ν = 2µ+ +
1− 2‖µ+‖
‖µ‖

|µ|.

Indeed, let A be as in (a). Then ‖µ+‖ = µ+(A) = µ(A) = −µ(−A) =
µ−(−A) = ‖µ−‖, thus ‖µ+‖ ≤ 1/2. It follows that ν is a probability measure.
Moreover, given B ⊂ X Borel, we have

odd ν(B) =
1

2
(ν(B)− ν(−B))

= µ+(B)− µ+(−B) +
1− 2‖µ+‖

2‖µ‖
(|µ|(B)− |µ|(−B))

= µ(B ∩A)− µ((−B) ∩A)

+
1− 2‖µ+‖

2‖µ‖
(
µ(B ∩A)− µ(B ∩ (−A))

−µ((−B) ∩A) + µ((−B) ∩ (−A))
)

= µ(B ∩A) + µ(B ∩ (−A)) + 0 = µ(B),

thus odd ν = µ.

Let f : X → R be a continuous affine function. Then f − f(0) is odd,
thus there is x ∈ E such that f(x∗)− f(0) = x∗(x) for each x∗ ∈ X. Hence

ν(f) = ν(f(0)) + ν(f − f(0)) = f(0) + µ(f − f(0)) = f(0) + x∗(x) = f(x∗),

therefore ν represents x∗.

Finally, if µ is boundary, then both |µ| and µ+ are boundary, hence ν is
maximal.

The next lemma sums up the properties of the operator hom on complex
measures. It is analogous to Lemma 3.15 but the proof is more involved due
to the more complicated definition in the complex case.

Lemma 3.17. Let E be a complex Banach space, X = (BE∗ , w
∗) and µ

a complex Radon measure on X. Then:

(a) homµ(A) = (2π)−1
	2π
0 e−itµ(e−itA) dt for any Borel set A ⊂ X.

(b) homµ is an anti-homogeneous measure.
(c) µ is anti-homogeneous if and only if µ = homµ.
(d) Let B ⊂ X be a homogeneous µ-measurable set and f : B → C a

bounded Borel function. Then
	
B f d homµ =

	
B hom f dµ.

(e) If µ is a boundary measure, then so is homµ.

Proof. (a) Let λ denote the normalized Lebesgue measure on [0, 2π] and
λ × µ the product measure on [0, 2π] × X. Set h(t, x) = e−it. Then h is a
bounded continuous function on [0, 2π]×X, hence we can set ν1 = h·(λ×µ),
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a measure on [0, 2π]×X with density h with respect to λ×µ. Further, con-
sider ϕ : [0, 2π]×X → X defined by ϕ(t, x) = eitx. It is clearly continuous,
thus ν2 = ϕ(ν1) is a well-defined Radon measure on X. Then for any A ⊂ X
Borel we have

ν2(A) = ν1(ϕ
−1(A)) = ν1({(t, x); eitx ∈ A})

= ν1({(t, e−itx); t ∈ [0, 2π], x ∈ A})

=
�

{(t,e−itx); t∈[0,2π],x∈A}

e−it d(λ× µ) =
1

2π

2π�

0

e−itµ(e−itA) dt.

This shows that the formula in (a) defines the measure ν2. To show ν2 =
homµ it is enough to prove that ν2(f) = µ(hom f) for any f ∈ C(X,C).
Indeed, fix f ∈ C(X,C). Then

µ(hom f) =
�

X

(
1

2π

2π�

0

e−itf(eitx) dt

)
dµ

=
�

[0,2π]×X

e−itf(eitx) d(λ× µ)(t, x) =
�

[0,2π]×X

f(eitx) dν1(t, x)

=
�

[0,2π]×X

f(ϕ(t, x)) dν1(t, x) =
�

X

f dν2.

Assertions (b) and (c) follow immediately from (a). So does (d), since the
computation of µ(hom f) can be repeated for any bounded Borel function f .

(e) For the proof see [12, Lemma 4.2] or [32, §23, Lemma 10].

We continue with the complex analogue of Lemma 3.16. The proof is
again more involved than in the real case.

Lemma 3.18. Let E be a complex Banach space, X = (BE∗ , w
∗) and µ

an anti-homogeneous Radon measure on X with ‖µ‖ ≤ 1. Then:

(a) Reµ and Imµ are odd measures.
(b) Imµ(A) = Reµ(iA) for A ⊂ X Borel.
(c) There is a unique x∗ ∈ X such that x∗(x) =

	
y∗(x) dµ(y∗) for each

x ∈ E.
(d) There is a Radon probability ν on X such that hom ν = µ and r(ν)

= x∗. If µ is a boundary measure, then ν can be chosen maximal.

Proof. Assertions (a) and (b) are obvious. To show (c) it is enough to
observe that x 7→

	
y∗(x) dµ(y∗) defines a linear functional on E of norm at

most ‖µ‖.
(d) If µ = 0 take ν = 1

2(εy∗ + ε−y∗) where y∗ is an extreme point of X.
Let µ 6= 0. Then the absolute variation |µ| is invariant with respect to

rotations, i.e., |µ|(αA) = |µ|(A) for anyA ⊂ X Borel and α ∈ C with |α| = 1.
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Let h0 be a Borel function on X such that µ = h0|µ| (i.e., h0 is the density
of µ with respect to |µ|). Then |h0| = 1 |µ|-almost everywhere. We may
suppose that h0 is Baire measurable. Indeed, by the Luzin theorem there
is a sequence (fn) of continuous functions converging |µ|-almost everywhere
to h0. Then the function h1 defined by

h1(y
∗) =

{
lim fn(y∗) if the limit exists,

0 otherwise,

is a Baire measurable function which equals h0 |µ|-almost everywhere. Fur-
ther, define

h(y∗) =
1

2π

2π�

0

e−ith1(e
−ity∗) dt, y∗ ∈ X.

Then h is also Baire measurable (by Lemmata 3.3 and 3.13(c)). Moreover,
h(αy∗) = αh(y∗) for any y∗ ∈ X and any complex unit α. Finally, h = h1
|µ|-almost everywhere since h is also a density of µ with respect to |µ|.
Indeed, for any Borel set A ⊂ X we have

µ(A) = homµ(A) =
1

2π

2π�

0

e−itµ(e−itA) dt

=
1

2π

2π�

0

e−it
�

e−itA

h1(y
∗) d|µ|(y∗) dt

=
1

2π

2π�

0

e−it
�

A

h1(e
−ity∗) d|µ|(y∗) dt

=
�

A

1

2π

2π�

0

e−ith1(e
−ity∗) dt d|µ|(y∗) =

�

A

h(y∗) d|µ|(y∗).

Set X1 = {y∗ ∈ X; |h(y∗)| = 1} and X0 = X \ X1. Then X0 and X1 are
Baire subsets of X, 0 ∈ X0 (since h(0) = 0) and X0 has |µ|-measure zero.
Further, set P = {y∗ ∈ X; h(y∗) = 1}. Then P is a Baire subset of X and
the mapping Φ : [0, 2π)×P → X1 defined by Φ(t, y∗) = eity∗ is a continuous
bijection. Since Z = [0, 2π) × P is a Baire subset of the compact space
[0, 2π]×X, Φ maps Baire sets in Z to Baire sets in X1. (Indeed, let A ⊂ Z
be a Baire set. Then both A and Z \ A are K-analytic, hence Φ(A) and
Φ(Z \A) are disjoint K-analytic subsets of X1 covering X1, hence they are
Baire sets, by [20, Theorems 4.10 and 5.8].)

Therefore we can define ν1 = Φ−1(|µ|), a positive measure on the Baire
σ-algebra of Z. Further, define ν2 = π2(ν1), where π2 is the projection of
Z = [0, 2π)×P onto the second coordinate. Then ν2 is a positive measure on
the Baire σ-algebra of P . Since P is a Baire subset of X, we can consider ν2
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to be defined on the Baire σ-algebra of X (and supported by P ). Therefore
ν2 generates a positive functional on C(X,C). Since

‖ν2‖ = ν2(1) = ν2(P ) = ν1(Z) = |µ|(X1) = ‖µ‖,

we have ‖ν2‖ ≤ 1. Moreover, if f ∈ C(X,C) is homogeneous, then
�

X

f(y∗) dν2(y
∗) =

�

P

f(y∗) dν2(y
∗) =

�

Z

f(y∗) dν1(t, y
∗)

=
�

Z

e−itf(eity∗) dν1(t, y
∗) =

�

Z

h(eity∗)f(eity∗) dν1(t, y
∗)

=
�

X1

h(z∗)f(z∗) d|µ|(z∗) =
�

X

h(z∗)f(z∗) d|µ|(z∗)

=
�

X

f(z∗) dµ(z∗).

The first equality holds because ν2 is supported by P , the second follows from
the fact that ν2 = π2(ν1), and the third is valid since f is homogeneous. In
the fourth one we have used the properties of h: h(eity∗) = e−ith(y∗) = e−it

for y∗ ∈ P . The fifth inequality follows from the fact that ν1 = Φ−1(|µ|), in
the sixth one we have used the fact that |µ| is supported by X1, and the
last one follows from the choice of h. Hence, for any f ∈ C(X,C) we have

hom ν2(f) = ν2(hom f) = µ(hom f) = µ(f),

hence hom ν2 = µ.

Set ν = ν2 + 1−‖ν2‖
‖µ‖ |µ|. Then ν is a probability measure and hom ν = µ

(since hom |µ| = 0). We continue by showing that ν represents x∗. Let f be
an affine continuous function on X. By Lemma 3.14, there are homogeneous
affine continuous functions u, v : X → C such that f = f(0) + u + v. Since
u and v are given by evaluation at some points of E, we get

ν(f) = ν(f(0) +u+ v) = f(0) +ν(u) +ν(v) = f(0) +u(x∗) + v(x∗) = f(x∗).

It remains to show that ν is maximal whenever µ is boundary. Since ν is
a probability and |µ| is a boundary measure, it is enough to check that ν2 is
boundary. We will do that by testing against convex continuous functions.
For a real-valued continuous convex function f on X set

f̂(y∗) = sup{σ(f); σ ∈M1(X), r(σ) = y∗}, y∗ ∈ X,

and

B(f) = {y∗ ∈ X; f(y∗) = f̂(y∗)}.

Then the boundary measures are exactly the measures supported by each
B(f) (see [1, pp. 34–35]). So, let f be any real-valued continuous convex
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function on X. Set

g(y∗) =
1

2π

2π�

0

f(eity∗) dt, y∗ ∈ X.

Then g is again a continuous convex function, and moreover B(g) ⊂ B(f) by
[12, Lemma 4.1]. Hence |µ|(X \B(g)) = 0. Since X \B(g) is homogeneous,
by the definition of ν2 we get ν2(X \ B(g)) = |µ|(X \ B(g)) = 0. Hence ν2
is supported by B(g) and, a fortiori, by B(f).

Proof of Fact 1.1. The real case. By [32, §21, Theorem 7], E is an
L1-predual if and only if for any two maximal probability measures µ, ν
on X with the same barycenter we have oddµ = odd ν.

Thus the sufficiency is clear: If µ and ν are two maximal probability
measures with the same barycenter x∗, then oddµ and odd ν satisfy condi-
tions (a)–(d) (by Lemma 3.15). So, by the uniqueness assumption we have
oddµ = odd ν.

To show the necessity suppose that E is an L1-predual. Let x∗ ∈ X.
Then there is a maximal probability ν representing x∗. Set µ = odd ν. Then
µ satisfies (a)–(d) by Lemma 3.15. To prove the uniqueness suppose that µ1
is any measure satisfying (a)–(d). By Lemma 3.16 there is a maximal prob-
ability measure ν1 with barycenter x∗ such that odd ν1 = µ1. Thus µ = µ1.

The complex case is completely analogous. By [12, Theorem 4.3] or [32,
§23, Theorem 5], E is an L1-predual if and only if for any two maximal
probability measures µ,ν on X with the same barycenter we have homµ =
hom ν. Thus the sufficiency is again clear and the necessity can be proved
in the same way, only using Lemma 3.18.

4. Affine maps of the first class and approximation properties.
The aim of this section is to prove Theorem 2.2 and Example 2.3. To do so,
we first make the following observation on strongly affine maps.

Lemma 4.1. Let f : K → F be a strongly affine mapping from a compact
convex set K to a locally convex space F over F. Then f is bounded.

Proof. Let τ ∈ F ∗. By Fact 1.2 the mapping τ ◦ f is strongly affine.
By [1, Theorem I.2.6] (or [52, Section 14], [58] or [43, Lemma 4.5]), τ ◦ f is
bounded. Hence f is bounded by [22, Theorem 4, p. 151].

We continue by recalling definitions of some approximation properties of
Banach spaces.

A Banach space E is said to have

• the approximation property if for every ε > 0 and every compact
set K ⊂ E there exists a finite-rank operator L on E such that
supx∈K ‖Lx− x‖ ≤ ε;
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• the compact approximation property if for every ε > 0 and every
compact set K ⊂ E there is a compact operator L on E such that
supx∈K ‖Lx− x‖ ≤ ε.

In other words, E has the (compact) approximation property if and
only if the identity operator on E is in the closure of finite-rank (compact)
operators in the topology of uniform convergence on compact subsets of E.
If the identity can be approximated by operators of the respective type
with norm at most λ, then E is said to have the λ-bounded approximation
property (resp. λ-bounded compact approximation property). Further, E is
said to have the bounded approximation property if it has the λ-bounded
approximation property for some λ ≥ 1.

Now we give the proof of Example 2.3. It is a strengthening of [47,
Example 2.22] which follows from [47, Proposition 2.21]. In [4] the authors
prove that f /∈ A1(X,E); we prove that it is not in any affine Baire class.

Proof of Example 2.3. Since E is reflexive, the unit ball BE is weakly
compact. By the Namioka theorem (see e.g. [14, Corollary 14.4]), the func-
tion f (which is the identity from X = (BE , w) to E equipped with the
norm) has a dense (in fact residual) set of continuity points. The same is
true for the restriction of f to any closed subset of X. Since E is separable, X
is moreover metrizable, thus f is Fσ-measurable by [30, §31, X, Theorem 2].
This implies that f ∈ C1(X,BE) by Lemma 3.3(c).

Suppose that f ∈
⋃
α<ω1

Aα(X,E). Since f is odd [homogeneous], we
get f ∈

⋃
α<ω1

Aodd,α(X,E) by Lemma 3.12 [f ∈
⋃
α<ω1

Ahom,α(X,E) by
Lemma 3.13]. Let I denote the identity operator on E. Using Lemma 3.11 we
then get I ∈

⋃
α<ω1

(K(E))α, where the notation (K(E))α follows the pat-
tern from Section 1.2. (Indeed, a linear operator L : E → E is weak-to-norm
continuous on BE if and only if it is compact.) To finish the argument it
is enough to check that all the operators from

⋃
α<ω1

(K(E))α are bounded
and are contained in the closure of K(E) in the topology of uniform con-
vergence on norm compact subsets of E. This will be done by transfinite
induction. For α = 0 it is clear. Let α > 0 and suppose that the assertion is
valid for each operator in

⋃
β<α(K(E))β. Fix L ∈ (K(E))α. Then there is a

sequence (Ln) in
⋃
β<α(K(E))β pointwise converging to L. By the induction

hypothesis the operators Ln are bounded, hence the uniform boundedness
principle shows that the sequence (Ln) is uniformly bounded. Thus L is
bounded and Ln → L uniformly on compact sets.

To prove Theorem 2.2 we need some lemmata. Let us first introduce
some notation.

Let E,F be Banach spaces such that F has dimension n ∈ N. Fix a
basis y1, . . . , yn of F and denote by y∗1, . . . , y

∗
n the dual basis of F ∗. For an

n-tuple x∗∗ = (x∗∗1 , . . . , x
∗∗
n ) ∈ (E∗∗)n define operators Φ(x∗∗) ∈ L(E∗, F )
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and Ψ(x∗∗) ∈ L(F ∗, E∗∗) by

Φ(x∗∗)(x∗) =
n∑
i=1

x∗∗i (x∗)yi, x∗ ∈ E∗,

Ψ(x∗∗)(y∗) =
n∑
i=1

y∗(yi)x
∗∗
i , x∗ ∈ F ∗.

It is clear that Φ is an isomorphism of (E∗∗)n onto L(E∗, F ) and Ψ is an
isomorphism of (E∗∗)n onto L(F ∗, E∗∗).

Lemma 4.2. Under the above notation:

(i) ‖Φ(x∗∗)‖ = ‖Ψ(x∗∗)‖ for each x∗∗ ∈ (E∗∗)n.
(ii) Φ restricted to En is an isomorphism of En onto the subspace of

L(E∗, F ) formed by weak∗ continuous operators.
(iii) Ψ restricted to En is an isomorphism of En onto L(F ∗, E).
(iv) If we define on En a norm ‖ · ‖ by ‖x‖ = ‖Φ(x)‖, then the bidual

norm on (E∗∗)n coming from the canonical duality of En, (E∗)n

and (E∗∗)n is given by ‖x∗∗‖ = ‖Φ(x∗∗)‖.
Proof. (i) Let x∗∗ ∈ (E∗∗)n. Then

‖Φ(x∗∗)‖ = sup{‖Φ(x∗∗)(x∗)‖F ; x∗ ∈ BE∗}
= sup{|y∗(Φ(x∗∗)(x∗))|; x∗ ∈ BE∗ , y∗ ∈ BF ∗}

= sup
{∣∣∣ n∑

i=1

x∗∗i (x∗)y∗(yi)
∣∣∣; x∗ ∈ BE∗ , y∗ ∈ BF ∗}

= sup{|Ψ(x∗∗)(y∗)(x∗)|; x∗ ∈ BE∗ , y∗ ∈ BF ∗}
= sup{‖Ψ(x∗∗)(y∗)‖E∗∗ ; y∗ ∈ BF ∗} = ‖Ψ(x∗∗)‖.

Assertion (ii) follows from the fact that the weak∗ continuous functionals
on E∗ are exactly those which come from E. Assertion (iii) is obvious.

(iv) Due to (i) it is enough to prove this assertion with Ψ instead of Φ.
But this is proved for example in [8, Section 3].

Lemma 4.3. Let X be a compact convex set, F a finite-dimensional Ba-
nach space and f : X → F an affine function which belongs to C1(X,F ) and
satisfies ‖f(x)‖F ≤ 1 for each x ∈ X. Then f ∈ A1(X,BF ).

Proof. Without loss of generality we may suppose that F is a real space.
Since F has finite dimension, it easily follows from the Mokobodzki theorem
that f ∈ A1(X,F ). Let E = A(X). For any x ∈ X let εx ∈ E∗ be the
corresponding evaluation functional. By [26, Lemma 2.2] there is a unique
linear operator Lf : E∗ → F such that Lf (εx) = f(x) for each x ∈ X. It
follows from [26, Lemma 2.3] that ‖Lf‖ ≤ 1 and Lf |BE∗ ∈ A1((BE∗ , w

∗), F ).
The Banach–Dieudonné theorem easily implies that Lf ∈ A1((E

∗, w∗), F ).
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Let H denote the subspace of L(E∗, F ) formed by the weak∗ continuous
operators. By Lemma 4.2(iv) the bidual H∗∗ can be canonically identified
with L(E∗, F ). Hence, in this identification we have Lf ∈ H∗∗, and moreover
Lf is the weak∗ limit of a sequence from H. Since ‖Lf‖ ≤ 1, it follows from
[49, Remark, p. 379] that Lf is the weak∗ limit of a sequence from BH . But
this means that Lf ∈ A1((E

∗, w∗), BF ), hence f ∈ A1(X,BF ).

Proof of Theorem 2.2. It is enough to prove the ‘moreover’ part since any
affine mapping f ∈ C1(X,E) is bounded by Theorem 2.1 and Lemma 4.1.

Suppose that E has the λ-bounded approximation property for some
λ ≥ 1. Let f : X → E be an affine mapping of the first Baire class such
that f(X) ⊂ BE . Observe that f(X) is separable and fix a countable dense
subset C ⊂ f(X). The λ-bounded approximation property yields a sequence
(Ln) of finite-rank operators pointwise converging to the identity on C such
that ‖Ln‖ ≤ λ for each n. It follows that Ln converges to the identity also
pointwise on f(X). Then Ln ◦ f is also affine and of the first Baire class.
Moreover, since the range has finite dimension and (Ln ◦ f)(X) ⊂ λBE ,
Lemma 4.3 yields Ln ◦ f ∈ A1(X,λBE). As Ln ◦ f → f pointwise, we get
f ∈ A2(X,λBE). Finally, Corollary 3.5 yields f ∈ A1(X,λBE).

Remark 4.4. Similar problems are investigated in [47]. In particular,
Theorem 2.12 there is a weaker variant of our Theorem 2.2. However, the
proof given in [47] contains a gap. The authors confuse a projection on a
one-dimensional space with a coordinate functional. Therefore, it is not clear
why the operators Tn,m defined on p. 25 should be uniformly bounded. The
correct estimate is ‖Tn,m‖ ≤ 2Kn‖T‖, which is not a uniform bound. The
same type of gap is in Remark 2.18.1 and in the proof of Theorem 2.19.
These results can be repaired and improved using our Lemma 4.3.

5. The affine class of the dilation mapping. The aim of this section
is to prove Theorem 2.4 and Remark 2.5. We start by proving the latter.
First we show that the dilation mapping is always strongly affine.

Lemma 5.1.

(S) Let X be a simplex. Then the mapping T : x 7→ δx is strongly
affine.

(R,C) Let X = (BE∗ , w
∗) for an L1-predual E. Then T is strongly affine.

Proof. (S) It is clear that T is affine. (Indeed, if x, y ∈ X and t ∈ [0, 1],
then tδx + (1− t)δy is a probability measure with barycenter tx+ (1− t)y.
Since the maximal probabilities form a convex set (by [43, Theorem 3.70]),
necessarily tδx + (1 − t)δy = δtx+(1−t)y.) To prove that T is strongly affine,
by Fact 1.2 it is enough to prove that x 7→ δx(f) is strongly affine for each
f : X → R continuous. Since differences of convex continuous functions are
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norm-dense in C(X,R) by the Stone–Weierstrass theorem, it is enough to
prove the above for convex continuous functions. But if f is convex and
continuous, then x 7→ δx(f) is upper semicontinuous by [1, Theorem II.3.7],
hence strongly affine by [43, Proposition A.122 and Theorem 4.21].

(R) The proof is completely analogous to case (S); we only need to use
[32, Chapter 7, §21, Theorem 7] to show that Tf is a difference of two upper
semicontinuous functions whenever f is continuous and convex.

(C) The assertion for complex L1-preduals is proved in [51, Lem-
ma 4.12].

Lemma 5.2. If extX is closed, then T is continuous.

Proof. (S) The mapping r : M1(X) → X which assigns to each µ ∈
M1(X) its barycenter r(µ) is clearly continuous (see, e.g., [43, Proposition
3.40]). Since extX is compact, M1(extX) is a compact subset of M1(X).
Moreover, the maximal probabilities are exactly those supported by extX
(see, e.g., [1, p. 35] or [43, Proposition 3.80]). By simpliciality the operator r
restricted to M1(extX) is one-to-one, hence it is a homeomorphism. The
operator T is its inverse.

(R) The proof is similar. Let Y denote the set of all odd measures from
BM(X,R) and Yb the set of all boundary measures from Y . For any µ ∈ Y
let u(µ) denote the point of X provided by Lemma 3.16(b). It is clear that
the operator u is continuous and, by Fact 1.1, the restriction of u to Yb
is one-to-one. The operator T is the inverse of u|Yb . To prove that T is
continuous it is enough to check that Yb is compact. But Yb is the image
of the set of all maximal probabilities on X under the continuous operator
odd (by Lemma 3.16(c)) and the maximal probabilities on X are exactly the
probabilities from the compact set M1(extX) (by [43, Proposition 3.80]).

(C) The complex case is completely analogous to the real one. We
just consider anti-homogeneous measures instead of odd ones and use
Lemma 3.18 instead of Lemma 3.16.

Now we proceed with the proof of Theorem 2.4. It is based on the follow-
ing selection result, which can be viewed as an affine version of the Michael
selection theorem. We recall that a set-valued mapping Φ : X → F is said
to be lower semicontinuous if {x ∈ X; Φ(x) ∩ U 6= ∅} is open in X for any
open set U ⊂ F .

Theorem 5.3. Let X be a compact convex set, F a Fréchet space and
Φ : X → F a lower semicontinuous set-valued mapping with nonempty
closed values.

(S) If X is a simplex and the graph of Φ is convex, then Φ admits a
continuous affine selection.
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(R) If X = (BE∗ , w
∗), where E is a real L1-predual and the graph of Φ

is convex and symmetric, then Φ admits an odd continuous affine
selection.

(C) If X = (BE∗ , w
∗), where E is a complex L1-predual, F is complex

and the graph of Φ is absolutely convex, then Φ admits a homoge-
neous continuous affine selection.

Case (S) is due to [35, Theorem 3.1] (see also [43, Theorem 11.6]),
case (R) is proved in [36, Theorem 2.2] or [32, Chapter 7, §22, Theorem 2],
and case (C) in [50, Theorem 4.2]. More precisely, the assumptions of the
cited results are formulated in a slightly different way. Instead of assum-
ing that the graph of Φ is convex, it is assumed that Φ is affine (some-
times called convex), i.e., λΦ(x1) + (1 − λ)Φ(x2) ⊂ Φ(λx1 + (1 − λ)x2)
whenever x1, x2 ∈ X and λ ∈ [0, 1]. But these two assumptions are indeed
equivalent.

Proof of Theorem 2.4. (S) This case is essentially due to [42, Theorem
6.6] (or [43, Theorem 11.26]). However, the formulation of those results
is weaker and therefore we give a complete proof. Since X is metrizable,
A(X,R) is separable, hence we can choose a countable set {en; n ∈ N}
dense in A(X,R).

Fix n ∈ N. Define a multivalued mapping Γn : X →M1(X) by

Γn(x) = {µ ∈M1(X); |µ(ei)− ei(x)| < 1/n, i = 1, . . . , n}, x ∈ X.

We claim that Γn is a nonempty-valued lower semicontinuous mapping with
convex graph. First, Γn(x) 6= ∅ as εx ∈ Γn(x). Further, the graph of Γn is

{(x, µ) ∈ X ×M1(X); |µ(ei)− ei(x)| < 1/n, i = 1, . . . , n},

hence it is convex.

We continue by showing that Γn is lower semicontinuous. Let V ⊂
M1(X) be a nonempty open set and suppose Γn(x)∩V 6= ∅ for some x ∈ X.
We select µ ∈ V satisfying |µ(ei) − ei(x)| < 1/n for each i = 1, . . . , n. By
the continuity of ei, i = 1, . . . , n, there exists an open neighborhood U of x
satisfying

|µ(ei)− ei(y)| < 1/n, y ∈ U, i = 1, . . . , n.

Hence µ ∈ Γn(y)∩ V for y ∈ U , and thus the set {x ∈ X; Γn(x)∩ V 6= ∅} is
open. This implies that Γn is lower semicontinuous.

Next we modify Γn to have closed values. To this end we define Γn : X →
M1(X) by

Γn(x) = Γn(x), x ∈ X.

Since, for an open set V ⊂ M1(X) and x ∈ X, Γn(x) intersects V if and
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only if Γn(x) intersects V , Γn is also lower semicontinuous. Moreover, it is
clear that the graph of Γn convex.

Now we want to use the selection result of Theorem 5.3. This is possible
sinceM1(X), being a compact convex metrizable set, is affinely homeomor-
phic to a subset of `2. Hence there exists a continuous affine selection Tn
from Γn.

We continue by showing that Tn → T on extX. Fix x ∈ extX. Let µ be
any cluster point of the sequence (Tn(x)) in M1(X). By the very definition
of Γn and Γn, µ(ei) = ei(x) for i ∈ N. By the density of (ei) in A(X,R)
we infer that µ(e) = e(x) for all e ∈ A(X,R), i.e., r(µ) = x. Since x is an
extreme point of X, necessarily µ = εx = δx. Thus Tn(x)→ δx.

Finally, we will prove that Tn → T on X. Fix x ∈ X and f ∈ C(X,R).
Then

δx(f) =
�

X

δy(f) dδx(y) = lim
n→∞

�

X

Tn(y)(f) dδx(y) = lim
n→∞

Tn(x)(f).

The first equality follows from the strong affinity of T (see Lemma 5.1). To
verify the second, we use the fact that δx is maximal, hence supported by
extX, the already proved convergence Tn → T on extX, and Theorem 3.10.
The last equality uses the fact that Tn is affine and continuous.

(R) The construction of the sequence (Tn) is analogous; we indicate the
differences. First, {en; n ∈ N} is a dense subset of E. Further, M1(X) is
everywhere replaced by Y = {µ ∈M(X); µ is odd and ‖µ‖ ≤ 1}, a compact
convex symmetric set. The mappings Γn and Γn are defined in the same
way. They are lower semicontinuous for the same reason, and their graphs
are convex and symmetric. Using Theorem 5.3 we obtain a continuous odd
affine selection Tn from Γn.

We continue by showing that Tn → T on extX. Fix x ∈ extX. Let
µ be any cluster point of (Tn(x)) in Y . By the definition of Γn and Γn,
µ(ei) = x(ei) for i ∈ N. By density of (ei) in E we infer that µ(e) =
x(e) for all e ∈ E. It follows from Lemma 3.16 that there is a probability
measure ν representing x such that odd ν = µ. Since x is an extreme point
of X, necessarily ν = εx and ν is maximal, thus µ = T (x). It follows that
Tn(x)→ T (x).

Finally, we will prove that Tn → T on X. Fix x ∈ X and f ∈ C(X,R).
Let σ be a maximal probability representing x. Then

T (x)(f) =
�

X

T (y)(f) dσ(y) = lim
n→∞

�

X

Tn(y)(f) dσ(y) = lim
n→∞

Tn(x)(f).

The first equality follows by the strong affinity of T (see Lemma 5.1). To
verify the second, we use the fact that σ is maximal, hence supported by
extX, the already proved fact that Tn → T on extX, and Theorem 3.10.
The last equality uses the fact that Tn is affine and continuous.
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(C) The proof in the complex case is completely analogous. Instead of the
set of odd measures we consider the set of anti-homogeneous measures. If we
define Γn and Γn by the same formula, their graphs are clearly absolutely
convex and we can find a homogeneous affine continuous selection Tn of Γn.
The proof that Tn → T is analogous; we just use Lemma 3.18.

We remark that the metrizability assumption was used in the previous
proof in an essential way. First, we used the existence of a countable dense
set in A(X) (or in E), and secondly, we applied the selection Theorem 5.3
which works for mappings with values in a Fréchet space, hence we need
the metrizability of the relevant set of measures. However, as we know by
Lemma 5.2, if extX is moreover closed, then T is even continuous and no
metrizability assumption is needed. So, it is natural to ask how far one can go
in this direction. It follows from Lemma 6.1(iii) below that if T is of class A1,
then necessarily Tf is Baire-one for any scalar continuous function f on X.
This is the case if extX is Lindelöf (by [25, 41, 38]) but not only then
(see [27, Theorem 4]). The following example shows, in particular, that the
Lindelöf property of extX is not sufficient for T to be of class A1.

Example 5.4. There are simplices X1 and X2 with the following prop-
erties:

(a) extX1 is Lindelöf and extX2 is an uncountable discrete set.
(b) The function x 7→ δx(f) is Baire-one for f : Xi → R continuous

(i = 1, 2).
(c) The mapping T : x 7→ δx is not in

⋃
α<ω1

Cα(Xi,M1(Xi)) (i = 1, 2).

Proof. We will use the well-known construction of ‘porcupine simplices’,
used for example in [27]. Let A ⊂ [0, 1] be an uncountable set. Let

K = ([0, 1]× {0}) ∪ (A× {−1, 1})

be equipped with the following topology. The points of A × {−1, 1} are
isolated, and a basis of neighborhoods of a point (x, 0) ∈ [0, 1] × {0} is
formed by the sets of the form

(U × {−1, 0, 1}) ∩K \ {(x, 1), (x,−1)},

where U is a standard neighborhood of x in [0, 1]. Then K is a compact
space. Let

A =
{
f ∈ C(K,R); f(x, 0) = 1

2(f(x,−1) + f(x, 1)) for each x ∈ A
}
,

and let X = {ξ ∈ A∗; ‖ξ‖ = 1 & ξ(1) = 1} be equipped with the weak∗

topology. Then X is a simplex. Moreover, K canonically homeomorphically
embeds into X (as evaluation mappings); in this way extX is identified with
((K \A)× {0}) ∪ (A× {−1, 1}).
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Assertion (b) is valid for any such X by [27, Theorem 1]. If we take
A = [0, 1], then extX is uncountable discrete (see [27, Theorem 4]); and
there is an uncountable A such that extX is Lindelöf (by [27, Theorem 2],
A containing no uncountable compact subset is enough, cf. [27, p. 69]).

Finally, we will prove that (c) is valid for any X of the described form.
We consider K canonically embedded in X. For any a ∈ A set fa = χ{(a,1)}−
χ{(a,−1)}. Then fa ∈ A. Define

U = {ξ ∈ X; ∃a ∈ A : ξ(fa) > 1/2}, H = {ξ ∈ X; ∀a ∈ A : ξ(fa) ≥ −1/2}.

Then U is open and H is closed. Moreover, clearly A × {1} ⊂ U and H ∩
(A×{−1}) = ∅. Further, U ⊂ H. Indeed, pick any ξ ∈ U and fix a ∈ A such
that ξ(fa) > 1/2. Fix any b ∈ A. We will show that ξ(fb) ≥ −1/2. This is
obvious if b = a. So, suppose b 6= a. Since the function fa − fb belongs to A
and has norm one, we have

1 ≥ ξ(fa − fb) = ξ(fa)− ξ(fb) > 1/2− ξ(fb),

and the inequality follows.

Now consider the system of mappings

F =
{
S : X →M1(X); {a ∈ A; S(a,−1)(H) < S(a, 0)(U)} is countable

}
.

First observe that F contains all continuous mappings. Indeed, suppose
that S is continuous. Fix any q ∈ Q and set

Mq = {a ∈ A; S(a,−1)(H) < q < S(a, 0)(U)}.

Given a ∈ Mq, we have S(a, 0)(U) > q. Since U is open, the mapping µ 7→
µ(U) is lower semicontinuous on M1(X), hence {µ ∈ M1(X); µ(U) > q}
is open. Therefore there is a neighborhood W of a in [0, 1] such that for
any x ∈ (W × {−1, 0, 1}) ∩ K \ {(a,−1), (a, 1)} we have S(x)(U) > q. In
particular, W ∩ Mq = {a} (recall that H ⊃ U and so S(b,−1)(H) > q
for b ∈ W \ {a}). It follows that each point of Mq is isolated, hence Mq is
countable. Therefore

⋃
q∈QMq is countable as well, hence S ∈ F .

Further observe that F is closed with respect to pointwise limits of se-
quences. Indeed, let (Sn) be a sequence in F pointwise converging to a
mapping S. By the definition of F there is a countable set C ⊂ A such that
Sn(a,−1)(H) ≥ Sn(a, 0)(U) for all n ∈ N and a ∈ A \ C.

We will show that S(a,−1)(H) ≥ S(a, 0)(U) for a ∈ A \ C as well. So,
fix a ∈ A \ C and suppose that S(a,−1)(H) < S(a, 0)(U). Fix a number q
such that S(a,−1)(H) < q < S(a, 0)(U). Since Sn(a, 0)→ S(a, 0) and U is
open, we can find n0 ∈ N such that Sn(a, 0)(U) > q for each n ≥ n0. Since
a ∈ A \C, we get Sn(a,−1)(H) ≥ Sn(a, 0) > q for n ≥ n0. Since H is closed
and Sn(a,−1)→ S(a,−1), we get S(a,−1)(H) ≥ q, a contradiction.
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We conclude that
⋃
α<ω1

Cα(X,M1(X)) ⊂ F . Finally, the mapping T
does not belong to F , since for any a ∈ A we have

T (a, 0)(U) = δ(a,0)(U) = 1
2(ε(a,1)(U) + ε(a,−1)(U)) = 1/2,

T (a,−1)(H) = δ(a,−1)(H) = ε(a,−1)(H) = 0.

6. Strongly affine Baire mappings. The aim of this section is to
prove Theorem 2.6. The proof will be in two steps. First, we handle the
case of X metrizable with the use of Theorem 2.4. Secondly, we reduce the
general case to the metrizable case.

In the proof of the metrizable case we will need the following notation.
Let X be a compact convex set, F a Fréchet space over F, U : X → BM(X,F)
a mapping and f : X → F a bounded Baire mapping. Then we define
Uf : X → F by

Uf(x) =
�

X

f dU(x), x ∈ X.

The mapping Uf is well defined due to Lemma 3.9.

Lemma 6.1. In the above notation:

(i) If U and f are continuous, then so is Uf .
(ii) If U is strongly affine, then so is Uf .

(iii) If U ∈ Aα(X,BM(X,F)) and f ∈ Cβ(X,F ) is a bounded mapping,
then Uf ∈ Aα+β(X, aco f(X)).

Proof. (i) Since f is continuous, f(X) is a compact subset of F . Thus
L = aco f(X) is an absolutely convex compact subset of F (see, e.g., [22,
Proposition 6.7.2]). By Lemma 3.8(c), Uf(X) ⊂ L. We need to show that
Uf is continuous. To this end, let τ ∈ F ∗. Then

τ(Uf(x)) = τ
( �
X

f dU(x)
)

=
�

X

τ ◦ f dU(x) = U(x)(τ ◦ f), x ∈ X.

Since U is continuous and τ ◦ f ∈ C(X,F), the mapping x 7→ U(x)(τ ◦ f)
is continuous on X. Thus Uf : X → (L,weak) is continuous. Since L is
compact, the original topology of F coincides on L with the weak topology.
Hence Uf ∈ C(X,L).

(ii) First suppose that f is continuous. Let µ be any Radon probability
on X. Then for any τ ∈ F ∗ we have�

X

τ(Uf(x)) dµ(x) =
�

X

τ
( �
X

f dU(x)
)
dµ(x) =

�

X

�

X

τ ◦ f dU(x) dµ(x)

=
�

X

U(x)(τ ◦ f) dµ(x) = U(r(µ))(τ ◦ f)

=
�

X

τ ◦ f dU(r(µ)) = τ(Uf(r(µ))).
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Thus τ ◦ Uf is strongly affine for each τ ∈ F ∗, so Uf is strongly affine by
Fact 1.2.

The general case follows by transfinite induction on class using Corol-
lary 3.2 and the following observation: If (fn) is a bounded sequence of Baire
mappings pointwise converging to a mapping f , then for each x ∈ X and
each τ ∈ F ∗ we have

τ(Ufn(x)) =
�

X

τ ◦ fn dU(x)→
�

X

τ ◦ f dU(x) = τ(Uf(x)).

(iii) Set L = aco f(X). By Lemma 3.8(c) we have Uf(X) ⊂ L.
Assume first that β = 0, i.e., f is continuous. The case α = 0 follows from

(i) and (ii). We continue by transfinite induction. It is enough to show that
Un → U pointwise on X implies Unf → Uf pointwise on X. So, suppose
that Un → U pointwise on X. Fix x ∈ X. Then Un(x) → U(x). For any
τ ∈ F ∗ we have

τ(Unf(x)) = Un(x)(τ ◦ f)→ U(x)(τ ◦ f) = τ(Uf(x)).

Thus Unf(x)→ Uf(x) weakly in F . But since the sequence is contained in
the compact set L, we deduce that Unf(x) → Uf(x) in F . This completes
the proof for β = 0.

Suppose now that γ > 0 is such that the assertion is valid for any β < γ.
Let f ∈ Cγ(X,F ) be bounded. Then L = aco(F ) is bounded and f ∈
Cγ(X,L) due to Corollary 3.2. So, fix a sequence (fn) in

⋃
β<γ Cβ(X,L)

pointwise converging to f . Then Ufn ∈
⋃
β<γ Aα+β(X,L) by the induction

hypothesis. Further, Ufn → Uf pointwise by Theorem 3.10, hence Uf ∈
Aα+γ(X,L).

Now we are ready to complete the first step:

Proof of Theorem 2.6 for X metrizable. (S) Let f be strongly affine and
f ∈ Cα(X,F ). Then f(x) = δx(f) for each x ∈ X. Since the mapping x 7→ δx
belongs to A1(X,M1(X)) by Theorem 2.4, from Lemma 6.1(iii) we conclude
that f ∈ A1+α(X,F ).

(R) If f is odd and strongly affine, then f = Tf . Since T belongs to
A1(X,BModd(X,R)) by Theorem 2.4, we conclude by using Lemmata 6.1(iii)
and 3.12(c). If f is not odd, then f = f(0) + (f − f(0)). Since f − f(0) is
odd, we get f − f(0) ∈ Aodd,1+α(X,F ), thus f ∈ A1+α(X,F ).

(C) If F is complex and f is homogeneous and strongly affine, then
f = Tf . Since T ∈ A1(X,BMahom(X,C)) by Theorem 2.4, we conclude by
applying Lemmata 6.1(iii) and 3.14(b). If F is complex and f is not homo-
geneous, then we can write

f(x) = f(0) + u(x) + v(x), x ∈ X,
where u and v are homogeneous and strongly affine, and moreover u = hom f
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(see Lemma 3.14(a)). Then u, v ∈ Cα(X,F ) by Lemma 3.13(c), hence u, v ∈
Ahom,1+α(X,F ). It follows that f ∈ A1+α(X,F ). Finally, if F is a real
Fréchet space, denote by FC its complexification. Then F is a real-linear
subspace of FC, thus f ∈ Cα(X,FC), so f ∈ A1+α(X,FC). Since the canon-
ical projection of FC onto F is continuous and real-linear (hence affine), it
is clear that f ∈ A1+α(X,F ).

Finally, suppose α = 1. In all the cases we deduce as above by using
Lemma 6.1(iii) that f ∈ A2(X, aco f(X)). Hence, Corollary 3.5 yields f ∈
A1(X, aco f(X)).

To prove the general statement we need a reduction to the metrizable
case. The first step is the following lemma.

Lemma 6.2. Let E be a Banach space, X ⊂ BE∗ a weak∗ compact convex
set and L a convex subset of a Fréchet space F . Let f : X → L be a mapping
of type Cα(X,L) for some α ∈ [0, ω1). Then there exist a closed separable
subspace E1 ⊂ E and g : π(X)→ L such that g ∈ Cα(π(X), L) and f = g◦π.
(Here π : E∗ → E∗1 denotes the restriction mapping.)

Proof. Assume first that α = 0, i.e., f is continuous. Then f(X) is a
compact subset of F , hence a compact metrizable space. It follows that there
is a homeomorphic injection p : f(X) → RN. Further, since X is equipped
with the weak∗ topology, it can be canonically embedded into the Cartesian
product FE . The continuous mapping p ◦ f : X → RN can be extended to
a continuous mapping g : FE → RN (by [13, Theorem 3.1.7]). Further, by
[56, Theorem 4] (see also [13, Problem 2.7.12(d)]) there is a countable set
C ⊂ E such that

u, v ∈ FE , u|C = v|C ⇒ g(u) = g(v).

Hence we can take E1 to be the closed linear span of C. Then E1 is a closed
separable subspace of E; moreover, π(x∗1) = π(x∗2) for some x∗1, x

∗
2 ∈ X

implies (p ◦ f)(x∗1) = (p ◦ f)(x∗2), and so f(x∗1) = f(x∗2). Thus there is a
mapping g : π(X) → L with f = g ◦ π. Since f is continuous and π is a
closed continuous mapping, g is continuous.

Assume now that α ∈ (0, ω1) and f : X → L is of type Cα(X,L). We
select a countable family F = {fn; n ∈ N} in C(X,L) such that f ∈ Fα. For
each n ∈ N we find using the previous step a countable set Cn ⊂ E such
that for any x∗1, x

∗
2 ∈ X we have

x∗1|Cn = x∗2|Cn ⇒ fn(x∗1) = fn(x∗2).

Let E1 be the closed linear span of
⋃
nCn. Then there are mappings g :

π(X) → L and gn : π(X) → L for n ∈ N such that f = g ◦ π and fn =
gn ◦π. As above, the gn are continuous, and it is easy to check by transfinite
induction that g ∈ ({gn : n ∈ N})α, thus g ∈ Cα(π(X), L).

The next step is the following lemma on cofinality.



262 O. F. K. Kalenda and J. Spurný

Lemma 6.3.

(S) Let X be a simplex and f : X → X1 an affine continuous sur-
jection of X onto a metrizable compact convex set. Then there
is a metrizable simplex X2 and affine continuous surjections f1 :
X2 → X1 and f2 : X → X2 such that f = f1 ◦ f2.

(R,C) Let E be an L1-predual over F and let E1 be its separable sub-
space. Then there exists a separable L1-predual E2 satisfying
E1 ⊂ E2 ⊂ E.

Proof. (S) In this proof we will denote by A(X) the space A(X,R), and
similarly for other compact convex sets. Let f∗ : A(X1)→ A(X) denote the
canonical isometric embedding defined by f∗(u) = u◦f for u ∈ A(X1). Let E
be a (for a while arbitrary) closed subspace of A(X) containing f∗(A(X1)).
Denote by π2 : A(X)∗ → E∗ the canonical restriction map. Define π1 :
E∗ → A(X1)

∗ by π1(x
∗)(u) = x∗(f∗(u)), x∗ ∈ E∗, u ∈ A(X1). Further, let

κX : X → A(X)∗ be the canonical evaluation mapping, i.e., κX(x)(u) = u(x)
for x ∈ X and u ∈ A(X). Similarly, κX1 denotes the analogous mapping
for X1. Set X2 = π2(κX(X)), f2 = π2 ◦ κX and f1 = (κX1)−1 ◦ π1|X2 . Then
X2 is a compact convex set, and f1 : X2 → X1 and f2 : X → X2 are affine
continuous surjections satisfying f = f1 ◦ f2. So, to complete the proof it is
enough to choose E in such a way that X2 is a metrizable simplex.

Observe that E is canonically isometric to A(X2). More precisely, if we
consider the isometric embedding f∗2 : A(X2) → A(X) defined by f∗2 (u) =
u ◦ f2 for u ∈ A(X2), then E = f∗2 (A(X2)). Indeed, if v ∈ E, we define
u ∈ A(X2) by u(x∗) = x∗(v) for x∗ ∈ X2. Then for each x ∈ X we have

f∗2 (u)(x) = u(f2(x)) = f2(x)(v) = π2(κX(x))(v) = κX(x)(v) = v(x),

thus v ∈ f∗2 (A(X2)). Conversely, let u ∈ A(X2). Then f∗2 (u) = u◦f2 ∈ A(X).
If u ◦ f2 /∈ E, by the Hahn–Banach separation theorem there is x∗ ∈ A(X)∗

such that x∗|E = 0 and x∗(u◦f2) 6= 0. By [43, Proposition 4.31(a,b)] we have
x∗ = c1κX(x1) − c2κX(x2) for some x1, x2 ∈ X and c1, c2 nonnegative real
numbers. Since E contains the constant functions, we get c1 = c2. Hence
without loss of generality c1 = c2 = 1. Then v(x1) = v(x2) for each v ∈ E.
It follows that π2 ◦ κX(x1) = π2 ◦ κX(x2), thus f2(x1) = f2(x2). So,

x∗(u ◦ f2) = (u ◦ f2)(x1)− (u ◦ f2)(x2) = 0,

a contradiction.

Hence, X2 is metrizable provided E is separable, and X2 is a simplex
provided E satisfies the weak Riesz interpolation property (see [1, Corollary
II.3.11]). Recall that E has the weak Riesz interpolation property if, whenever
u1, u2, v1, v2 ∈ E are such that max{u1, u2} < min{v1, v2}, then there is
w ∈ E with max{u1, u2} < w < min{v1, v2}. The inequalities are considered
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pointwise. Further, it is clear that it is enough to check this property for
u1, u2, v1, v2 in a norm-dense subset of E.

Thus we can construct E by a standard inductive procedure. We con-
struct countable sets A0 ⊂ B1 ⊂ A1 ⊂ B2 ⊂ · · · ⊂ A(X) as follows:

• A0 is a countable dense subset of f∗(A(X1)).
• If u1, u2, v1, v2 ∈ An−1 are such that max{u1, u2} < min{v1, v2}, then

there is w ∈ Bn with max{u1, u2} < w < min{v1, v2}.
• An is the Q-linear span of Bn.

Then we can set E =
⋃
nAn.

(R,C) This is proved in [32, §23, Lemma 1].

The final ingredient is the following lemma.

Lemma 6.4. Let π : K → L be an affine continuous surjection of a com-
pact convex set K onto a compact convex set L. Let g : L→ F be a univer-
sally measurable mapping from L to a Fréchet space F . Then g is strongly
affine if and only if g ◦ π is strongly affine.

Proof. For F = F this is proved in [43, Proposition 5.29]. The vector-
valued case then follows immediately from Fact 1.2.

Now we can complete the proof:

Proof of Theorem 2.6 in the general case. (S) Let f ∈ Cα(X,F ) be
strongly affine. Set E = A(X,R) and κX : X → E∗ be the canonical em-
bedding. If we apply Lemma 6.2 to κX(X) in place of X and f ◦ κ−1X in
place of f , we get a separable space E1 ⊂ E and g ∈ Cα(π(κX(X)), F )
with f ◦ κ−1X = g ◦ π (where π : E∗ → E∗1 is the restriction mapping). Set
X1 = π(κX(X)) and h = π◦κX . Then X1 is a metrizable compact convex set
and h is an affine continuous surjection of X onto X1. By Lemma 6.3 there is
a metrizable simplex X2 and affine continuous surjections h1 : X2 → X1 and
h2 : X → X2 with h = h1 ◦h2. Then g◦h1 ∈ Cα(X2, F ) and g◦h1 is strongly
affine by Lemma 6.4. Thus by the metrizable case, g ◦ h1 ∈ A1+α(X2, F ). It
follows that f = g ◦ h1 ◦ h2 ∈ A1+α(X,F ).

(R), (C) Given f as in the premise, we use Lemma 6.2 to find a separable
subspace E1 ⊂ E and g : BE∗1 → F in Cα(BE∗1 , F ) satisfying f = g ◦ π
(π : E∗ → E∗1 is again the restriction mapping). By Lemma 6.3 we can
find a separable L1-predual E2 satisfying E1 ⊂ E2 ⊂ E. Denote by π1 :
E∗2 → E∗1 and π2 : E∗ → E∗2 the restriction maps. Then g ◦π1 ∈ Cα(BE∗2 , F ).
Moreover, g ◦ π1 is strongly affine by Lemma 6.4. Hence by the metrizable
case we get g ◦ π1 ∈ A1+α(BE∗2 , F ) (or g ◦ π1 ∈ Aodd,1+α(BE∗2 , F ) or g ◦ π1 ∈
Ahom,1+α(BE∗2 , F ) in the special cases). Since f = g ◦ π1 ◦ π2, the proof is
complete.

If α = 1 we obtain f ∈ A1(X,F ) by the same procedure.
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Finally, let us settle the remaining special case:

Proof of Theorem 2.6 if extX is an Fσ-set. If extX is Fσ, the result
follows from Theorem 2.7 proved below. More precisely:

(S) Let f ∈ Cα(X,F ) be strongly affine. Then f |extX ∈ Cα(extX,F ),
hence by Theorem 2.7 this function can be extended to a g ∈ Aα(X,F ).
Since f = g on extX and both functions are strongly affine, and each
maximal measure is supported by extX, we conclude that f = g on X, i.e.,
f ∈ Aα(X,F ).

(R) Let f ∈ Cα(X,F ) be strongly affine. Then f = f(0)+(f−f(0)), and
f −f(0) is odd, strongly affine and belongs to Cα(X,F ). Using Theorem 2.7
as in case (S) we get f − f(0) ∈ Aα(X,F ), thus f ∈ Aα(X,F ).

(C) Let f ∈ Cα(X,F ) be strongly affine. Then f = f(0) + u + v, where
u = hom f and v are homogeneous, affine and belong to Cα(X,F ) (see
Lemma 3.14(a)). Using Theorem 2.7 as in case (S) we get u, v ∈ Aα(X,F ),
thus f ∈ Aα(X,F ).

7. Extensions of Baire mappings. In this section we will prove The-
orem 2.7. We will proceed in several steps, imitating, generalizing and sim-
plifying the approach of [41]. The strategy is the following:

• Given a bounded Baire function f : extX → F , we extend it to a
bounded Baire function h : X → F . (We do not require affinity and
we do not control the class of h.)
• We prove that the function Th(x) =

	
X h dT (x), x ∈ X, used in the

previous section, is the unique strongly affine extension of f .
• We show that Th is of the right affine class.

The first step is made in the following lemma which is a vector-valued
variant of [41, Lemma 2.8] with a simplified proof.

Lemma 7.1. Let X be a compact convex set with extX Lindelöf. Let F
be a Fréchet space over F, and f be a bounded function in Cα(extX,F ) for
some α < ω1. Let L = co f(extX). Then there exists a Baire measurable
function h : X → L extending f . If f ∈ C1(extX,F ), then h may be chosen
from C1(X,L).

Proof. We use transfinite induction on α. Suppose first α = 1, i.e.,
f ∈ C1(extX,F ). Since L is separable and completely metrizable, by [28,
Theorem 30 and Proposition 28] there is an extension h : X → L which is
Σb
2(X)-measurable. Lemma 3.1 now implies h ∈ C1(X,L).

Assume now that α > 1 and the assertion is valid for all β < α. Suppose
that f ∈ Cα(extX,F ) is a bounded mapping and let L be as above. Then
f ∈ Cα(extX,L) by Corollary 3.2 (note that extX is normal, being Lindelöf
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and regular), and thus there exist fn ∈
⋃
β<α Cβ(extX,L) converging point-

wise to f on extX. Let hn : X → L be their Baire measurable extensions
and let

C = {x ∈ X; (hn(x)) converges}.
Let ρ be a compatible complete metric on F . Then

C = {x ∈ X; ∀k ∈ N ∃l ∈ N ∀m1,m2 ≥ l : ρ(hm1(x), hm2(x)) < 1/k},
clearly a Baire subset of X. Let z ∈ L. Then the function

h(x) =

{
limn→∞ hn(x), x ∈ C,
z, x ∈ X \ C,

is the required extension.

The next lemma enables us to deduce the vector-valued version from the
scalar one.

Lemma 7.2. Let K be a compact space and L a separable convex subset
of a Fréchet space F . Let f : K → L satisfy τ ◦ f ∈ Cα(K,L) for each
τ ∈ F ∗. Then f ∈ Cα+1(K,L).

Proof. Without loss of generality we can suppose that F is separable. By
Lemma 3.1, τ ◦f is Σb

α+1(K)-measurable for each τ ∈ F ∗. Since (τ ◦f)−1(U)
= f−1(τ−1(U)) for any U ⊂ F and F , being separable, is hereditarily Lin-
delöf in the weak topology, we find that f is Σb

α+1-measurable as a mapping
from K to the weak topology of F . It follows from Lemma 3.6 that f is
Σb
α+2(K)-measurable as a mapping from K to the original topology of F .

Thus f ∈ Cα+1(K,L) by Lemma 3.1.

Lemma 7.3. Let X be a compact convex set with extX Lindelöf, F a
Fréchet space and h : X → F a bounded Baire mapping. Suppose moreover
that one of the following conditions is satisfied:

(S) X is a simplex.
(R) X = (BE∗ , w

∗), where E is a real L1-predual and h|extX is odd.
(C) X = (BE∗ , w

∗), where E is a complex L1-predual and h|extX is
homogeneous.

Then Th is the unique strongly affine mapping which coincides with h on
extX. Moreover, Th is a Baire mapping and it is odd in case (R) and
homogeneous in case (C).

Proof. Let us first show the uniqueness. Suppose that g1, g2 are two
strongly affine mappings which coincide with h on extX. Fix τ ∈ F ∗. Then
for each i = 1, 2 the function τ ◦gi is strongly affine and τ ◦gi|extX is a Baire
mapping (as it coincides with h|extX), hence τ ◦ gi is a Baire mapping by
[40, Theorem 5.2]. In particular, the set {x ∈ X; τ(g1(x)) = τ(g2(x))} is a
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Baire set containing extX. Given any x ∈ X let µ be a maximal probability
representing x. Then µ is carried by any Baire set containing extX, hence
τ(g1(x)) = µ(τ ◦ g1) = µ(τ ◦ g2) = τ(g2(x)). Hence τ ◦ g1 = τ ◦ g2. Since
τ ∈ F ∗ is arbitrary, we conclude g1 = g2.

Further, any strongly affine mapping coinciding with h on extX is a
Baire mapping. Indeed, let g be such a mapping and suppose that h ∈
Cα(X,F ). Using [40, Theorem 5.2] as in the previous paragraph we get
τ ◦ g ∈ C1+α(X,F) for each τ ∈ F ∗, hence g ∈ C1+α+1(X,F ) by Lemma 7.2.
In particular, g is a Baire mapping.

Finally, Th is strongly affine by Lemmata 5.1 and 6.1(ii). To finish the
proof it is enough to show that Th coincides with h on extX and that it
enjoys the appropriate symmetry in cases (R) and (C). The fact that Th
is a Baire mapping then follows from the previous paragraph. Hence we
distinguish the three cases:

(S) For x ∈ extX we have Th(x) = δx(h) = h(x) since δx is the Dirac
measure supported at x.

(R) To show that g is odd it is enough to observe that T is odd (if
x∗ ∈ X, then −T (x∗) satisfies conditions (a)–(d) from Fact 1.1 for −x∗).
Further, for any x∗ ∈ extX we have T (x∗) = odd εx∗ , hence

Th(x∗) =
�

X

h d odd εx∗ =
�

X

oddh dεx∗ = oddh(x∗) = h(x∗).

(C) This case is completely analogous to case (R).

The final ingredient is the following easy lemma:

Lemma 7.4. Let X be a compact convex set, F a Fréchet space and f ,
fn, n ∈ N, strongly affine Baire mappings defined on X with values in F .
If the sequence (fn) is uniformly bounded and converges to f pointwise on
extX, then it converges to f pointwise on X.

Proof. Let A = {x ∈ X; fn(x) → f(x)}. By the assumption we have
A ⊃ extX and A is a Baire set (as the functions in question are Baire
functions, cf. the proof of Lemma 7.1). Therefore any maximal probability
measure is carried by A. Fix any x ∈ X and a maximal probability µ
representing x. Using Theorem 3.10 we have

f(x) = µ(f) = limµ(fn) = lim fn(x).

Now we are prepared to complete the proof:

Proof of Theorem 2.7. Let first α = 1, so suppose that f ∈ C1(extX,F )
is a bounded mapping. Let L = aco f(extX). By Lemma 7.1 there is h ∈
C1(X,L) extending f . Set g = Th. By Lemma 7.3, g is a strongly affine
Baire mapping extending f . Now let us distinguish the cases:
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(S) As in the proof of Theorem 2.6, we find (using Lemmata 6.2 and 6.3)
a metrizable simplex Y , an affine continuous surjection π : X → Y , h̃ ∈
C1(Y, L) and a Baire mapping g̃ : Y → L such that h = h̃ ◦ π and g = g̃ ◦ π.
By Lemma 6.4 the mapping g̃ is strongly affine. Moreover, since π(extX) ⊃
extY , g̃ coincides with h̃ on extY . Lemma 7.3 then yields g̃ = T h̃. By
Theorem 2.4 and Lemma 6.1(iii) we get g̃ ∈ A2(Y,L). Hence g ∈ A2(X,L).

Cases (R) and (C) are analogous.

Let us continue with the general case. Lemmata 7.1 and 7.3 imply that for
any (odd, homogeneous) bounded F -valued map f on extX there is a unique
strongly affine map Sf extending f . By Lemma 7.4 we know that Sfn → Sf
pointwise whenever (fn) is a bounded sequence converging to f pointwise on
extX. The already proved case α = 1 shows that Sf ∈ A2(X,F ) whenever
f ∈ C1(extX,F ). Hence the result follows by transfinite induction.

The case of extX being Fσ is proved in the next section using Theo-
rem 2.8.

Finally, suppose that extX is closed. For each bounded f ∈ Cα(extX,F )
(odd, homogeneous) we construct the extension g by the same method as
above. We will prove that g ∈ Aα(extX,F ). Since boundary measures are
supported by extX, we have

g(x) =
�

extX

f dT (x), x ∈ X.

Suppose first that α = 0, i.e., f is continuous. Then we can prove that g is
continuous by a minor modification of the proof of Lemma 6.1(i) with the
help of Lemma 5.2. The general case then follows by transfinite induction
using Lemma 7.4.

8. The weak Dirichlet problem for Baire mappings. In this sec-
tion we will prove Theorem 2.8. The proof will be a simplified and generalized
version of the proof of the main result of [62].

Proof of Theorem 2.8. (S) Set H = coK and L = co f(K). By Corol-
lary 3.2 we have f ∈ Cα(K,L). Fix a countable family F = {fn; n ∈ N} ⊂
C(K,L) such that f ∈ (F)α.

We define ϕ : K → FN by

ϕ(x) = (fn(x))∞n=1, x ∈ K.

Then ϕ is a continuous mapping of K into FN. Further we set

Γ (x) =

{
{ϕ(x)}, x ∈ K,
co ϕ(K), x ∈ X \K.

Then Γ is a lower semicontinuous mapping with closed values. Moreover,
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the graph of Γ is convex. By Theorem 5.3 there exists a continuous affine
selection γ : X → FN of Γ .

Let hn = πn ◦ γ, n ∈ N, where πn : FN → F is the nth projection
mapping. Then hn is a continuous affine mapping of X into F such that

hn(x) = πn(γ(x)) = πn(ϕ(x)) = fn(x), x ∈ K.
Further, for each x ∈ X we choose some r(x) ∈ H such that hn(x) =
hn(r(x)) for each n ∈ N. If x ∈ H we set r(x) = x. If x ∈ X \ H, then
γ(x) ∈ coϕ(K) = co γ(K) = γ(H), thus there exists an element r(x) ∈ H
such that γ(x) = γ(r(x)).

Finally, we can construct the required extension by

(8.1) f̂(x) =

{
δx(f), x ∈ H,
f̂(r(x)), x ∈ X \H.

First, if x ∈ H, then δx is supported by K, thus f̂ is well defined on H.
Next, f̂ is extended to X using the mapping r fixed above. It is clear that
f̂ is an extension of f . Moreover,

(8.2) f̂ ∈ ({hn; n ∈ N})α ⊂ Aα(X,L).

Indeed, (8.1) enables us to assign to each Borel function g : K → L its
extension ĝ : X → L. Note that

f̂n = hn for n ∈ N.
Further, it follows from Theorem 3.10 that

gk → g pointwise on K ⇒ ĝk → ĝ pointwise on X.

Hence it is easy to prove by transfinite induction on β that

g ∈ ({fn; n ∈ N})β ⇒ ĝ ∈ ({hn; n ∈ N})β,
so in particular (8.2) holds.

(R) We assume that K is moreover symmetric and f is odd. We proceed
in the same way. The sets H and L are convex and symmetric. The family F
may consist of odd functions by Lemma 3.12. Then ϕ is moreover odd and
the graph of Γ is convex and symmetric. Thus the selection γ may be chosen
to be moreover odd and the functions hn are odd as well. The formula for
the extension is similar:

f̂(x) =

{
T (x)(f), x ∈ H,
f̂(r(x)), x ∈ X \H.

The rest of the proof is the same; we use the fact that T (x) is supported
by K whenever x ∈ H.

(C) The proof is completely analogous to the real case.

Now we give the proof of the missing part of Theorem 2.7.
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Proof of Theorem 2.7 if extX is Fσ. (S) It is enough to prove that
x 7→ δx(f) is in A1(X,F ) for any bounded f ∈ C1(extX,F ). Choose such
an f . Fix a bounded sequence of continuous functions fn : extX → F point-
wise converging to f (this can be done by Corollary 3.2). Let extX =

⋃
nKn,

where (Kn) is an increasing sequence of compact sets. By Theorem 2.8 there
are affine continuous maps hn extending fn|Kn . Then hn converges to f
pointwise on extX, thus for each x ∈ X,

δx(f) = lim
n→∞

δx(hn) = lim
n→∞

hn(x).

(R) The proof is analogous. Assume that f is moreover odd. We can
choose fn to be odd (Lemma 3.12) and Kn to be symmetric. In the final
computation we use T (x) instead of δx.

(C) If f is homogeneous, by Lemma 3.13 we can choose fn to be homo-
geneous. Moreover, Kn can be chosen homogeneous as well. Indeed, if K is
compact, then

⋃
{αK; α ∈ C, |α| = 1} is compact as a continuous image of

the compact set K × {α ∈ C; |α| = 1}.

Another consequence of Theorem 2.8 is the following extension theorem.

Theorem 8.1. Let K be a compact subset of a completely regular
space Z, F a Fréchet space and f : K → F a bounded mapping in Cα(K,F ).
Then there exists a mapping h : Z → F in Cα(Z,F ) extending f such that
h(Z) ⊂ co f(K).

Proof. Let L = aco f(K). Let βZ be the Čech–Stone compactification
of Z and X = M1(βZ). Then X is a simplex and extX is canonically
identified with βZ. Hence K is a compact subset of extX. Therefore the
result follows from Theorem 2.8.

9. Affine version of the Jayne–Rogers selection theorem. The
aim of this section is to prove Theorem 2.9. To this end we need the following
lemma on ‘measure-convexity’:

Lemma 9.1. Let X be a compact convex set, F a Fréchet space over F
and Γ : X → F an upper or lower semicontinuous mapping with closed
values and convex graph such that Γ (X) is bounded. Let f : X → F be a
Baire measurable selection from Γ . If µ ∈M1(X), then

µ(f) ∈ Γ (r(µ)).

Proof. Since f is Baire measurable, µ(f) is well defined by Lemma 3.9.
Set x = r(µ). Assuming µ(f) /∈ Γ (x), Γ (x), as a convex closed set, can be
separated from µ(f) by some element from F ∗, i.e., there exist τ ∈ F ∗ and
c ∈ R such that

(Re τ)(µ(f)) > c > sup(Re τ)(Γ (x)).



270 O. F. K. Kalenda and J. Spurný

Let

ϕ(y) = sup(Re τ)(Γ (y)), y ∈ X.
Since the graph of Γ is convex, ϕ is a concave function on X. Moreover,
if Γ is upper semicontinuous, then ϕ is upper semicontinuous; and if Γ is
lower semicontinuous, then ϕ is lower semicontinuous. In both cases, by [43,
Proposition 4.7],

c < (Re τ)(µ(f)) =
�

X

(Re τ)(f(y)) dµ(y) ≤
�

X

ϕ(y) dµ(y) ≤ ϕ(x) < c.

This contradiction finishes the proof.

Proof of Theorem 2.9. (S) By [24, Theorem] (which is an improved ver-
sion of [23, Theorem 2]) and Lemma 3.3(c) there is a selection f from Γ
which belongs to C1(X,F ). Set g(x) = δx(f) for x ∈ X. By Theorem 2.4 and
Lemma 6.1(iii) we have g ∈ A2(X,F ) and by Lemma 9.1, g is a selection
of Γ .

(R) We proceed in the same way. We find a selection f in C1(X,F ) and
set f1 = odd f . Then f1 is still a selection from Γ . Indeed, if x ∈ X, then
(x, f(x)) and (−x, f(−x)) belong to the graph of Γ . Since the graph of Γ is
symmetric, (x,−f(−x)) belongs there, too. By convexity we conclude that
(x, f1(x)) = (x, odd f(x)) belongs there as well. Further, set g = Tf1. By
Theorem 2.4 and Lemma 6.1(iii) we have g ∈ A2(X,F ). Let x ∈ X. Fix a
maximal representing measure µ of x. Then

g(x) = T (x)(f1) = oddµ(f1) = µ(f1) ∈ Γ (x)

by Lemmata 9.1 and 3.15(d), hence g is a selection from Γ . It remains to
observe that g is odd since T is odd.

(C) This case is analogous to (R). We find a selection f in C1(X,F )
and we define f1 = hom f . Then f1 is still a selection of Γ . Indeed, if
x ∈ X and t ∈ [0, 2π], then (eitx, f(eitx)) belongs to the graph of Γ .
Since the graph is homogeneous, it also contains (x, e−itf(eitx)), hence
e−itf(eitx) ∈ Γ (x). Since Γ (x) is closed and convex, we can deduce that
f1(x) = hom f(x) ∈ Γ (x). The rest of the proof is the same as in case (R).

It is natural to ask whether we can obtain a nice affine selection even
if X is not metrizable. We stress that the Jayne–Rogers theorem requires
metrizability both of the domain space and of the range space. However,
if F is separable, it easily follows from the Kuratowski–Ryll-Nardzewski
selection theorem (see [31] or [68, Theorem 5.2.1]) that F admits a Borel
measurable selection, in fact a selection of the first Borel class in the sense
of [65]. However, an affine Borel selection need not exist even in the scalar
case. This is illustrated by the following example, where we show also that
the class of the affine selection in the metrizable case cannot be improved.
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Example 9.2. There are simplices X1, X2 and upper semicontinuous
mappings Γi : Xi → R with closed values, bounded range and convex graph
for i = 1, 2 such that:

(i) X1 is metrizable and Γ1 admits no affine Baire-one selection.
(ii) X2 is nonmetrizable and Γ2 admits no affine Borel selection.

Proof. Let A ⊂ [0, 1] be any subset. Let K, A and X be as in Exam-
ple 5.4. We again consider K canonically embedded into X. Fix B ⊂ A
and define two real-valued functions on K by u0 = χB×{1} and v0 =
χ(B×{1})∪([0,1]×{0}). Then u0 ≤ v0. We further define two functions on X
by

u(x) = sup{h(x); h ∈ A(X,R), h ≤ u0 on K},
v(x) = inf{h(x); h ∈ A(X,R), h ≥ v0 on K}.

Then u is lower semicontinuous and convex, while v is upper semicontinu-
ous and concave. Moreover, u ≤ v (if h1, h2 ∈ A(X,R) with h1 ≤ u0 and
h2 ≥ v0 on K, then h1 ≤ h2 on extX, hence h1 ≤ h2 on X). Therefore
Γ (x) = [u(x), v(x)], x ∈ X, is a bounded upper semicontinuous mapping
with nonempty closed values and convex graph.

We claim that u|K = u0 and v|K = v0. This follows from abstract results
[43, Propositions 3.48 and 3.55], but it can also be seen directly:

Since u0 ≥ 0, it follows that u(x) = 0 = u0(x) for x ∈ K \ (B × {1}). If
x = (b, 1) for some b ∈ B, set fb = χ(b,1)−χ(b,−1). Then fb ∈ A and fb ≤ u0.
Since fb defines a function in A(X,R), we conclude that u(x) = 1 = u0(x).

Since v0 ≤ 1, we get v(x) = 1 = v0(x) for x ∈ (B × {1}) ∪ ([0, 1]× {0}).
If x = (a,−1) for some a ∈ A, then 1 + fa ≥ v0, thus v(x) = 0 = v0(x). If
x = (a, 1) for some a ∈ A \B, then 1− fa ≥ v0, thus v(x) = 0 = v0(x).

In particular, u = v on A×{−1, 1}. Let g be any affine selection from Γ .
Then

f(a, 0) =

{
1/2, a ∈ B,
0, a ∈ A \B.

Therefore, to construct X1 it is enough to take A to be a countable dense
subset of [0, 1] and B ⊂ A such that both B and A \ B are dense. To
construct X2 it is enough to take A to be an uncountable Borel set and
B ⊂ A a non-Borel subset.

10. Sharpness of results and open problems. In this final section
we collect several open questions and discuss which of the results are sharp.
We start by pointing out a gap between Theorem 2.2 and Example 2.3.

Question 10.1. Let X be a compact convex set and E a Banach space
having the approximation property (or the compact approximation property).
Does any affine function f ∈ C1(X,E) belong to A1(X,E)?
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The next question concerns optimality of constants in Theorem 2.2.

Question 10.2. Let X be a compact convex set and E a Banach space
with the bounded approximation property. Does any affine function f ∈
C1(X,BE) belong to A1(X,BE)?

We continue with problems concerning Theorem 2.4. For a metrizable
simplex we have proved that the mapping T is of class A1 when the target
space isM1(X). The same proof gives a slightly stronger conclusion that T
is of class A1 when the target space is M1(extX), and a similar statement
in cases (R) and (C). However the following question seems to be open.

Question 10.3. Let X be a metrizable simplex. Is it true that T ∈
A1(X,M1(extX))? Is the analogous statement valid for L1-preduals?

As remarked above, the metrizability assumption was used in the proof of
Theorem 2.4 in an essential way. Further, this assumption cannot be omitted
or just weakened to the Lindelöf property of extX by Example 5.4. However,
the general question when the operator T belongs to the class C1 or even A1

seems to be hard. A sufficient condition is metrizability of X or closedness
of extX. But these conditions are not necessary. It is easy to construct a
simplex X when T is of class A1 even though X is not metrizable and extX
is not closed: for example, the simplex constructed by the method used in
[27, Theorem 4] starting with K = [0, ω1] and A = {ω}. (This construction
is based upon the well-known constructions from [69] and [3].) It seems that
the following question is natural. (By an (S,R,C) compact set we mean a
compact convex set which is either a simplex or the dual unit ball of a real
or complex L1-predual.)

Question 10.4. Let X be an (S,R,C ) compact set. Is T of class C1 or
even A1 if one of the conditions below is satisfied?

• extX is K-analytic.
• extX is a Baire set.
• extX is Fσ.

Let us further remark that the operator T cannot be ‘too nonmeasurable’
since it is strongly affine due to Lemma 5.1. More precisely, it follows from
the proof of that lemma that in cases (S) and (R), Tf is a uniform limit
of a sequence of differences of lower semicontinuous functions for any f ∈
C(X,R). In case (C) the same property is enjoyed by ReTf and ImTf for
each f ∈ C(X,C) by [51, proof of Lemma 4.12]. Hence, in all three cases,
Tf is Borel measurable for any scalar continuous function f . (In fact, in
this case Tf is of the first Borel class in the sense of [65].) It easily follows
that T−1(U) is a Borel set (of the first additive class in the sense of [65]) for
any cozero set U in the relevant set of measures (but it need not be Borel
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measurable, as the spaces from Example 5.4 easily show). However, Tf need
not be of the first Baire class—an example is given in [27, Theorem 4]. In
fact, in the cited example T is not in Aα for any α < ω1 since Tf need not
even be a Baire function (by the cited example and [27, Theorem 5]).

We continue by looking at Theorem 2.6. It is sharp even in the scalar
case, i.e. the shift α→ 1 +α may occur. In case (S) it was shown in [64] for
α = 2 and in [67] for general α ∈ [2, ω). The same examples can be easily
transferred to cases (R) and (C). What we still do not know is the following.

Question 10.5. Let X be an (S,R,C ) compact set such that extX is a
Lindelöf resolvable set. Can one replace 1 + α by α in Theorem 2.6?

Recall that a subset of a X is said to be resolvable (or an H-set) if its
characteristic function has the point of continuity property. For more details
see [66]. Within metrizable spaces this class is defined in [30, §12, III] using
an equivalent condition. Further, a subset of a completely metrizable space
is resolvable if and only if it is simultaneously Fσ and Gδ. Thus, the answer
is positive if X is metrizable. Further, the answer is also positive in the
scalar case. Case (S) follows from [66], case (R) from [40, Theorem 1.4], and
case (C) from [38, Theorem 2.23].

The conclusion of Theorem 2.7 is optimal since it follows from the op-
timality of Theorem 2.6 (the above-mentioned examples from [64] and [67]
are metrizable). However, it is not clear whether it is optimal for α = 0.

Question 10.6. Let X be an (S,R,C ) compact set with extX Lin-
delöf, F a Fréchet space and f : extX → F a bounded continuous (odd,
homogeneous) map. Can f be extended to an element of A1(X,F )?

In the scalar case the answer is positive (by [25, 41, 38]), but in the
vector case our proof just gives an extension in A2(X,F ). Moreover, if g is
such an extension, the scalar version yields τ ◦g ∈ A1(X,F) for each τ ∈ F ∗.

Another question is the following.

Question 10.7. Let X be an (S,R,C ) compact set such that extX is
Lindelöf resolvable. Can one replace 1 + α by α in Theorem 2.7?

In the scalar case the answer is positive (by [66, 41, 38]). In the vector
case we are able to prove it only if extX is an Fσ set, hence the answer is
positive if X is metrizable.

Theorem 2.7 deals with extending Baire mappings. It is natural to ask
whether we can extend Baire measurable mappings. If the target space F
is separable, then any Baire measurable mapping with values in F which
is defined on a regular Lindelöf space is a Baire mapping of the respective
class (by Lemma 3.1). Hence the question of extending Baire measurable
mappings reduces to the question whether a Baire measurable mapping has
separable range.



274 O. F. K. Kalenda and J. Spurný

Question 10.8. Let X be a compact convex set with extX Lindelöf.
Let f : extX → F be a Baire measurable mapping with values in a Fréchet
space. Is the range of f separable?

The answer is positive if extX is a Baire set (or, more generally, a K-
analytic set)—see Lemma 3.3(a). For a general Lindelöf (even separable
metric) space in place of extX the answer is negative by [29, Example
2.4(3)]. But we do not know whether an example can be of the form extX.

Finally, one can ask whether the assumption that extX is Lindelöf is
necessary. It cannot be just omitted (even in the scalar case: see, e.g., [27,
Theorem 4]). However, the following question asked already in [25] is still
open.

Question 10.9. Let X be a simplex such that each bounded continuous
real-valued function on extX can be extended to an affine Baire function
on X. Is necessarily extX Lindelöf? Does the analogous implication hold
for dual balls of L1-preduals?

Let us remark that the answer is positive within a special class of ‘Stacey
simplices’ by [27, Theorems 2 and 6], but the general case is not clear.

Finally, Theorem 2.8 is clearly sharp and Theorem 2.9 is sharp due to
Example 9.2.
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[19] Z. Froĺık, A measurable map with analytic domain and metrizable range is quotient,
Bull. Amer. Math. Soc. 76 (1970), 1112–1117.
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J. Math. Oxford Ser. (2) 30 (1979), 469–482.

[70] M. Talagrand, A new type of affine Borel function, Math. Scand. 54 (1984), 183–188.

[71] G. E. F. Thomas, Integration of functions with values in locally convex Suslin spaces,

Trans. Amer. Math. Soc. 212 (1975), 61–81.

[72] U. Uttersrud, Geometrical properties of subclasses of complex L1-preduals, Israel J.

Math. 72 (1990), 353–371.
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