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On square classes in generalized Fibonacci sequences
by

ZAFER SIAR (Bingol) and REFIK KESKIN (Sakarya)

1. Introduction. Let P and () be nonzero integers. The generalized
Fibonacci and Lucas sequences, (U,(P,Q)) and (V,,(P,Q)), are defined as
follows:

Uo(P,Q) =0, Ui(PQ)=1,
Upn+1(P,Q) = PU,(P,Q) + QU,—1(P,Q) forn >1,
and
W(P,Q)=2, Wi(PQ)=P,
Vit1(P,Q) = PV, (P, Q) + QV,—1(P,Q) forn > 1,

respectively. U, (P, Q) and V,,(P, Q) are called the nth generalized Fibonacci
number and nth generalized Lucas number, respectively. Since

Un(_Pa Q) = (_1)n_1Un(Pa Q) and Vn(_Pv Q) = (_1)nVn(Pv Q)>
it will be assumed that P > 1. Moreover, we will assume that P? 4+ 4Q > 0.
Sometimes, instead of U, (P, @) and V,,(P, @), we write just U,, and V,,. For
more information about these sequences one can consult [7].

For P = @ = 1, we have the classical Fibonacci and Lucas sequences (F},)
and (L,). In this paper, we determine all n and m such that U,, = wU,,z?
or UpUp, = wz? with w = 1,2, 3, or 6 under the following assumption:

(1.1) P?44Q >0, P>1andQ areodd, (P,Q)=1.

Regarding this issue, Keskin and Yosma [2] showed that if F,, = 2F,,,x? for
m > 3, then (m,n) = (3,12) or (6,12); if F,, = 3F,,2% for m > 3, then
(m,n) = (4,12); and no F, satisfies F,, = 6F,,x? for m > 1. Moreover,
Cohn [I] determined all n and m such that U,U,, = 2% and U,U,, = 2
when P is odd and @ = +1.
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Also, in this paper, we will solve each of the equations U,, = kx? and U,, =
2kz? when k| P, k > 1, under the assumption . As an application, we
determine all n such that U,, = 6x2. First of all, we will solve the equations
V2 - 3(-Q)" = wz? and V2 — (—Q)" = wa? for w € {1,2,3,6}, which is
used to solve U,, = wU,z2, U, = ka?, and U,, = 2kz>.

On the other hand, Cohn [I] studied the equations U,, = kx? and U,, =
2kz? when P > 1is odd and Q = 1, and he obtained the following results,
with r = min{n : n > 0 and k| U, }:

1. If 7 # 0 (mod 3), then U, = kx? can occur only for n = r, and
U, = 2kx? is impossible for n > 0.

2. If r = 3 (mod 6), then U,, = kx? is impossible for n > 0, and similarly
for U, = 2kz?.

3. If r =0 (mod 6), and if 2%*1 || r, then U,, = kx? is impossible except
if P =75, k=455, n = 12; if 22! || r, then U,, = 2kx? is impossible for
n > 0.

Moreover, Ribenboim and McDaniel [10] solved the equation U,, = kx?
under the assumption and that the Jacobi symbol (ih?“) is defined
and equals 1 for each odd divisor h of k with v > 1. In particular, they
solved U,, = 322 and gave the solutions as n = 1,3,4, or 6 but they must
have forgotten writing n = 2.

2. Preliminaries. In this paper, we assume that P > 1 is an odd
integer unless indicated otherwise, and also @) is an odd integer such that
(P, Q) = 1. Firstly, we will give a list of properties of generalized Fibonacci
and Lucas numbers, which will be needed later. Throughout, the symbol [
denotes a perfect square.

(2.1) Uin = =(=Q)"Un,

(2.2) Vi = (—Q) "V,

(2.3) Uap, = Up Vi,

(2.4) Van =V, = 2(=Q)",

(2:5) Usn = Un((P* +4Q)Uy +3(=Q)") = Un(Vyy = (=Q)"),
(2.6) Van = Va (Vi = 3(=Q)"),

(2.7) (Usni1, P) = (Ups1,Q) = 1 for n > 0,

(2.8) (Von, P) = (V,Q) = 1 for n > 0,

(2.9) 2|V, < 2|U, < 3|n,

(2.10) it Uy, # 1, then Uy, |Up, < m|n,
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(2.11) if Vi, # 1, then V,,, |V, & m|n and n/m is odd,

(2.12) if d = (m,n), then (U, Uy) = Uy,

(2.13) (U, Vin) =1 or 2,

(2.14) Usy, = nPQ" ! (mod P?) and Uy, = Q™ (mod P?),

(2.15) Van = 2Q" (mod P?) and Vi, 1 = nPQ"™ (mod P?),
Unn (P, Q) m

(2.16) Tn(P.0) Upn(Vin, —(—Q)™).

All the above identities except (2.14)—(2.16)) can be found in [3], 9]; (2.16)
is given in [8]; and (2.14) and (2.15) can be proved by induction on n.
Moreover, when P is even, it is well known that

(2.17) U, is even < n is even,
(2.18) U, is odd < nis odd.

Now, we give some theorems and lemmas which will be used in the proofs
of the main theorems. The following theorem is proved in [13].

THEOREM 2.1. Let n,m € NU{0} and r € Z. Then

(2.19) Usnnsr = (—(—Q)™)"Uy (mod Vyu),

(2.20) Vamntr = (—=(=Q)™)"V; (mod Vi),

where we require mn +r > 0 if Q # +1.
The proofs of the following two lemmas can be found in [9].
LEMMA 2.2. Let m be an odd positive integer and r > 1.

(a) If 3|m, then Vary, =2 (mod 8).
(b) If 31m, then

Voo = 3 (mod 8) if r=1and Q =1 (mod 8),
A7 (mod 8) otherwise.

LEMMA 2.3. Let r be a positive integer. Then

.. . _(_61) Zf r=1,
(i) (7) = 1 if r>2,
(i) (%) = ().

) (L) — —(—@1) if =1,
() (vr) {1 if > 2,

if r>2.

(v) () :{Ezﬂ yr=1



280 7. Siar and R. Keskin

The following lemma can be proved by induction.

LEMMA 2.4. If 31 P, then

(0 (mod 3) if r=1 and Q =1 (mod 3),
1 (mod 3) if r> 1 and @ =0 (mod 3)
Vor = orr=2and Q=1 (mod 3),
2 (mod 3) ifr=1,2 and Q =2 (mod 3)
L orr>3and Q=1,2 (mod 3),
and if 3| P, then Vor =2 (mod 3) forr > 2.
Using Lemmas and we can see that
3
(2.21) <V

27‘

)zl if Q=2 (mod 3),r>2o0r Q=1 (mod 3), r>3.

We recall the following results from [9] and [14].

LEMMA 2.5. If V,, = 22, thenn =1, 3, or 5; if V3 = 22, then Q = 1
(mod 4) and also P = 0, P> +3Q = 0 or P = 30, P2 +3Q = 30; if
Vs = 22, then @ = 3 (mod 8), P = 500, and P* + 5P?Q + 5Q? = 501.

LEMMA 2.6. If V,, = 222, thenn =0, 3, or 6; if V3 = 222, then Q = 5,7
(mod 8), P = 30, and P? + 3Q = 60; if Vg = 222, then Q = 1 (mod 4),
P? 4+ 2Q =30, and (P? +2Q)? — 3Q? = 600.

LEMMA 2.7. If V,, = 322, thenn =1, 2, 3, or 5; V; = 322 iff P = 30;
Vo = 322 iff P2 +2Q = 30 and Q = 1 (mod 3); V3 = 322 iff P = [,
P?4+3Q =30, and Q = 1 (mod 4); V5 = 322 iff P = 150, P* + 5P%Q +
5Q% =500, and Q = 3 (mod 8).

LEMMA 2.8. If V,, = 622, thenn = 3; V3 = 622 iff P =0, P> +3Q =
60, and Q = 5,7 (mod 8).

THEOREM 2.9. Let k > 1 and k| P. If V,, = ka? for some integer x,
then n = 1,3, or 5; if Vs = 22, then P = 5k, P* +5P%Q +5Q? = 500, and
@ = 3 (mod 8).

THEOREM 2.10. Let k > 1 and k| P. If V;, = 2ka? for some integer x,
then n = 3.

The proofs of the following four theorems can be found in [9] and [10].

THEOREM 2.11. U, = 22 if and only if either (i) n = 0,1,2, or 3,
(ii) n = 6, P = 30, P?>+Q = 20, and P%2+3Q = 600, or (iii) n = 12, P = [,
P24+ Q =20, P> 4+2Q =30, P> +3Q =0, and (P> +2Q)? — 3Q? = 6.

THEOREM 2.12. U, = 222 if and only if either (i) n = 0 or 3, or
(ii)n=6, P=0, P2+ Q =20, and P?> +3Q = .
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THEOREM 2.13. U, = 322 if and only if either (i) n = 0 or 2, or
(i) n =3, P2+ Q =30, and 31 P, or (iii) n = 4, P =0, P? +2Q = 30,
Q =1 (mod 12), and 3 1 P, or (iv) n = 6, P = 0O, P> + Q = 20J,
P? +3Q =60, and 3| P.

THEOREM 2.14.

(i) If 3| P, then 3|U,, < n is even.

(ii) If 31 P, then

12|n and Q = 1,2 (mod 3), or
3|/Up e < 4|n,31n, and Q@ =1 (mod 3), or
4tn,3|n, and Q =2 (mod 3).

The proof of the following lemma is given in [12].

LEMMA 2.15. If 3| P, then 3|V, iff n is odd. If 3 1 P, then 3|V, iff
n =2 (mod 4) and Q@ =1 (mod 3).

Lastly, we will require the following theorem given in [11].

THEOREM 2.16. If P is even, Q@ = —1 (mod 4), (P,Q) = 1, and n is
odd, then Uy, (P,Q) =0 only if n = 0.

3. Auxiliary theorems. From now on, assume that n and m are pos-
itive integers.

The following lemma can be proved by induction and therefore we omit
its proof.

LEMMA 3.1. Fork > 1,
V2k+2 = —Q2k+1 (mod V2k+1 + QQk) and V2k+2 = —Q2k+1 (mod V4 - Q2)
By Lemmas [2.3 and [3.I] we can see that

N2
(3.1) J:<V4 Q):l for k > 1.
Vair2

LEMMA 3.2. Let w € {1,2,3,6} and V2 — 3(—Q)" = wx? for some
integer x. Thenn =1 orn = 2.

Proof. If n is odd, it has been shown in [12] that the equation V,? —
3(—Q)™ = wx? has no solutions for n > 1. So let n be even. Thus, Va, —Q" =
wx? by . It is obvious that waz? = Vo, — Q™ = 1 or 6 (mod 8) by Lemma
When w = 2 or w = 3, we have a contradiction.

Now assume that w = 1 or w = 6. We can write n = 2"z for some odd
positive integer z with r > 1.

If z =1, then n = 2", where r # 1, i.e., r > 2 since n > 2. In this case,
if w =1, then

1:2:V2n—Q":V2.2r—Q27'57—156(m0d8)
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by Lemma [2.2] This is impossible. If w = 6, then
622 = Vaor — Q¥ = —Q¥ Vo — Q% = —3Q% (mod Var)

by . Consequently, 1 = (‘;;) = (;;)(V;) = —1 by Lemma a

contradiction.

Thus z > 1. So, we can write z = 4¢ £+ 1 for some ¢ > 0. Hence 2n =
2(272) = 2(2" 2+ 27) = 2. 272 £ 2L,
Let g be odd. Using ([2.2)) and (2.20)), we get
wz? =Vy, — Q" =
—QQHZ‘?VWH QYT oy _Q2r+2q—2’"+lvzr+1 Q¥ e (mod Viriz),
ie.,
wz? = —Q2r+2q(‘/2r+1 + QT) or —Q2T+2qizr+1(v2r+1 + QQT) (mod Vyri2).

In both cases,

J= (_w<‘/2r+1 - Q2T)> ~1.
V2r+2

On the other hand, Vori1 + Q% =0 (mod 8) by Lemma So, Var+1 + Q%"
= 25t for some odd t and s > 3. Hence, Vori2 = —Q?" (mod t) by Lem-
ma [3.I] If w = 1, then we get

J - _(‘/27‘+1 + Q2T‘) _ V2'r+1 + er _ 2 5 t
o V27‘+2 o V2r+2 o V27‘+2 ‘/’27‘4»2

_ _(_1)<t—1>/2<V2T+2> _ _(_1)(t—1>/2<—1>
t t
— _(_1)(t71)/2(_1)(t71)/2 ——

by Lemma [2.3] contrary to J = 1.

Now, let w = 6. If 3|Q, from the equation Va, — Q" = 622, we have
3| Vap and therefore 2n = 2 (mod 4), i.e., n = 1 (mod 2) by Lemma [2.15]
This contradicts n being even. If 3 1 @, then we obtain

S —6(Vorss +Q*)\ [ 2 3 2 \°( t
o V2'r+2 o V2'r+2 V2'r+2 V2'r+2 V2r+2

_ _(_1)(t—1>/2<V2’"+2> _(c1)D2(C )02

t
by Lemma and ([2.21)), a contradiction again.
Now, let ¢ be even. Then 2n = 2(2"2) = 2(27+2¢q+2") = 2.2"+k+2por+1
with b odd and k£ > 1. Similarly, we can see that

k k
wr? = —Q2T+ +2b(V2r+1 + QQT) or —QQT+ +21’72%1(

Vori1 + Q%)
(mod Vv2r+k+2)
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by (2.2) and (2.20). This shows that
YEH T

‘/27‘+k'+2

A similar argument shows that this is impossible. =

LEMMA 3.3. Let n > 1 be an integer, w € {1,2,3,6}, and V.? — (—Q)" =
wx? for some integer x. Thenn = 1,2 or 4. In particular, V.2 — (—Q)" = x
has a solution only for n = 1; V.2 — (—Q)" = wz?, w € {2,6}, has a solution
only forn =1 or2; V2 — (—=Q)" = 322 has a solution for n = 1,2, or 4.

Proof. We divide the proof into two cases.

CASE 1: n odd. If n = 1, it is obvious that P? +Q = wa? has a solution
for w € {1,2,3,6}. So, assume that n > 1. Since n is odd, we have V2 —
(—Q)" = Vo, — Q" = wa? by (2.4)). We can write 2n = 2(2"2+1) = 2-2"2+2
for some odd positive integer z with r» > 2. Thus,

w$2 = Vo, — Qn = —QQTZVQ _ Q2Tz+1 or _Q2Tz—2v2 o QQTz—l (mod ‘/T),
ie.,
wz® = —Q?*(P? 4 3Q) or —Q?*72(P? 4+ 3Q) (mod Vi)
by (2.20)). Hence
—w(P? + 3Q) _1
Vaor o

If w=1or w= 2, then, using Lemma [2.3] it can be easily seen that
J = —1. This is impossible.

Let w = 3 and 3| Q. Then 3|V, since V2 — (—=Q)" = 3z%. This implies
3| P by Lemma contradicting (P,Q) = 1. Thus 3 1 Q and therefore
31 V,,. This shows that @ =2 (mod 3). Consequently,

. -3(P24+3Q)\ _ [(-1\[( 3 \[(P*+3Q\ _ 1
N Vor A\ Var ) \ Vi Vor -
by Lemma and (2.21), which is impossible.

If w = 6, a similar argument shows that 31 @ and @ = 2 (mod 3), and
therefore

Lo (TO(P243Q)\ _ (1) (2 3\ (PP+3Q\ _
- VQ’I‘ N ‘/27“ V2'r ‘/’Qr V2r o
by Lemma [2.3|and ([2.21)), a contradiction again.

CASE 2: n even. Then V2 — Q" = wz? and thus Vs, + Q" = wx? by
(2.4). If we write 2n = 2(2"z) for some odd positive integer z with r > 1,
then

wa? = Vo + Q" = Vo) + Q7F = —Q* "V + Q%% = —Q”* (mod Vyr)
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—w
J = =1.

When w =1 or w = 2,r > 2, it can be seen that J = —1 by Lemma 2.3
This is impossible.

If w =3 or w = 6, it follows that J = —1 for » > 3 by Lemma [2.3] and
when 31 Q, a contradiction.

If w = 3 or w = 6, it follows that 3 |V}, from the equation V.2 — Q" = wx?
when 3| Q. This implies 3 { P since (P, Q) = 1, and therefore () = 1 (mod 3)
by Lemma contradicting 3| Q.

Now we consider each of the cases w = 2,7 = landw =3o0r6,31Q,r =
Lor2. Let r = 1. Then n = 2z. If n = 2, we have (P?+ Q)(P?+3Q) = wa?.
We can see that this equation has a solution for some values of P and
Q@ when w € {2,3,6}. Therefore assume that n > 2. Then we can write
n=2z=2(4q+ 1) = 8q £ 2 for some ¢ > 0. Assume that ¢ is odd. Thus

wa? = Vasga + Q2 = —Q%V, + Q%2 or Q¥ 4V + Q% (mod V4),

ie.,

by (2.20]). This shows that

wa? = —QM(Vy — Q%) or QM (V; — Q2) (mod V)
by . Hence,
J = <M> -1

Vs
On the other hand, since 3 t @ for w = 3 or w = 6, it can be seen that

(V%) =1 and (V%) =1 by Lemmaand . Thus when w € {2, 3,6},

we have
() ()%
B Vs o\ Vs B

by Lemma and (3.1)), a contradiction.
Now assume that ¢ is even. Then we can write ¢ = 2¥s for some odd

s>1withk>1 Thusn=8¢+2= 2k+3s + 2. Therefore
wr? = —QQHSSV4 + Q2k+38+2 or —Q2k+gs_4V4 + Q2k+35_2 (mod Vorys),

ie.,

wz? = —Q2k+35(V4 - QQ) or —Q2k+33_4 (V4 - QZ) (mod Vokys)
by (2.20]). This shows that
(—w(V4 — Q2)> 1
V2k+3 '

On the other hand, since 3 t @ for w = 3 or w = 6, it can be seen that
3 _ 6 _
(V ) =1 and (V2k+3) = 1 by Lemma and ([2.21f). Thus when w €

2k+3
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{2,3,6}, we have

() ) () -
‘gk+3 ‘2k+3 ‘;k+3
by Lemma and (3.1)), a contradiction.

Now let r =2,w =3 or 6, and 3¢t Q. Then n = 4z. Assume that z > 1.
Then we can write n = 4z = 4(4qg £ 1) = 2 - 8¢ + 4 for some odd positive
integer ¢. A similar argument shows that V> — Q™ = wz? has no solutions
when ¢ is odd or even. When z = 1, the equation Vf — Q* = 322 has a
solution, at least for P = @ = 1. But V7 — Q* = 62% has no solutions.
Indeed, by (2.4)), it follows that 622 = V2 — Q* = Vg + Q* and thus

622 =T +Q* = —Q*Vp + Q* = —Q* (mod V)
by (2.20]). This shows that

—6 2 3 3
l=J=|- =)l )=-|+
(%)) ()
by Lemma On the other hand, if 3| P, then J = —1 by Lemma
Therefore 3 { P. Now, if Q@ = 2 (mod 3), then J = —1 by (2.21). This is
impossible.
Thus Q = 1 (mod 3) since 3 Q. Moreover, the equation V2 — Q* = 622
implies that
Vi — 2
(3.2) <46Q> (Vi + Q%) = 2?
since V4 — Q? =6 (mod 8) and 3| (V4 — Q?) by Lemmas and Thus,
(3.2) implies

(3.3) Vi+Q*=(P*+Q)(P*+3Q)=0
since (V4EQ2,V4 + QQ) = 1. Then |D implies
(3.4) P 4+ Q=20 and P%?+3Q =20

since (P?2+Q, P2 +3Q) = 2. It can be easily shown that (3.4) is impossible,
by reducing modulo 8. =

4. Main theorems
4.1. Solutions of U,, = kz?,U,, = 2kz? and U,, = wU,,z>

THEOREM 4.1. Let k > 1 be a square free positive divisor of P. If Uy, =
kx? for some integer x, then n = 2,6, or 12.

Proof. Assume that U,, = kx? for some integer x and k| P with k > 1.
Then n is even by (2.14)). Let n = 2m. Hence k2? = U,, = Usy, = Up,Vin by
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(2.3) and this implies that

(4.1) Upn=0ad and V, =0b0
or
(4.2) Upn =20 and V,, = 2b0

for some integers a and b with ab = k since (Uy,, Vin) = 1 or 2 by (2.13).

Assume that is satisfied. By Theorem we have m = 1,3, or 5 if
b > 1since b| P. If b = 1, then V;,, = O implies m = 1,3, or 5 by Lemma 2.5
Consequently, n = 2, 6, or 10. But, if n = 10, the equation U1g = UsVs = ka?
implies Us = O by and , which is impossible by Theorem m

Assume that is satisfied. By Theorem we have m =3 if b > 1
since b| P. If b = 1, then V;,, = 200 implies m = 3 or 6 by Lemma Thus
n==6or 12. n

THEOREM 4.2. Let k > 1 be a square free positive divisor of P. If U, =
2kxz? for some integer x, then n =6 or 12.

Proof. Assume that k > 1, k| P, and U, = 2kx?. Then n is even by
(2.14). Let n = 2m. Since 2| U,, it follows that 3|n by (2.9)), and therefore
3| m. Hence kz? = U, /2 = Uz /2 = Upy(V;/2) and this implies

(4.3) Upn=0ad and V,, =200
or
(4.4) Upn =200 and V, =b0

for some integers a and b with ab = k since (Up,, Vi) = 1 or 2 by (2.13).
Moreover, it can be easily seen that a = 1, b = k or a = k, b = 1 since
either (Up, k) =1 or (Vi/2,k) = 1 by and (2.8). Then implies
that m = 3 or m = 6 by Lemma [2.6] and Theorems and [4.1] since
3| m. Similarly, (4.4)) implies that m = 3 by Lemma and Theorems
and Consequently, n =6 or n = 12. =

COROLLARY 4.3. If U, = 622 for some integer x, then n =3 or n = 6.
Us = 622 if and only if P? + Q = 6x2; Us = 622 if and only if P = O,
P24+ Q=20,P>+3Q=30,and Q=1 (mod 8) or P=0, P2 +Q =0,
P? +3Q =60, and Q = 7 (mod 8).

Proof. Assume that U,, = 622. We divide the proof into two cases.

CASE 1: 3| P. Then, since U,, = 2 - 322, it follows that n = 6 or 12 by
Theorem 4.2

If n = 6, it can be seen from Ug = 622 that V3 = 30,Us = 20 or V3 =
60, Us = O by Theoremand Lemma Hence, P =0, P2+Q = 20,
P?2+3Q =30,and Q =1 (mod 8) or P =0, P2+ Q =0, P?+3Q = 60,
and @Q = 7 (mod 8), respectively, by Lemmas and and Theoremsm
and 2.12]
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If n = 12, then U = 622 implies Us = 30 and Vi = 20 by Lemma
Theorem and Lemma This is impossible by Lemma, and
Theorem 2,131

CASE 2: 31 P. Since 2|U, and 3|U,, it is seen that 12|n, 31 Q or 3| n,
4tn,and @ =2 (mod 3) by and Theorem [2.14]

Firstly, assume that 12 |n and 3 { Q. Then n = 12m. Hence 622 = U,, =
Ui2m = Ugm Vem, which implies

(4.5) Usm =0 and Ve = 600,
(4.6) Usm =20 and Vg, = 30,
(4.7) Usm = 30 and Vi, = 200,
or

(4.8) Usm = 60 and Vi = O

by (2.13]). The identities , , and are impossible by Lemmas

j andﬂ, and Theorems and 2 QL The identity (4.7)) implies that
=1 by Lemmaﬂ and Theorern 2. 1u|. Then Us = 30 and therefore 3 | P

by Theorem This contradicts 3 1 P.
Secondly, assume that 3|n, 4 4 n, and @ = 2 (mod 3). Then n = 3m.

Hence,
Un U3 V2 ( Q)m
o2 = 21— — ‘m %)
T3 = Um ( 3

3
by ([2.5)). Since

(Um’ (P + 4@)(@ + 3(—@)’”) :1

by (2.7)), it follows that

(4.9) Upn= 0O and V2 - (-Q)™ =60,
or
(4.10) Un=20 and V2 - (-Q)™ = 30.

Assume that (4.9) is satisfied. Then m = 1 or m = 2 by Theorem and
Lemma Therefore n = 3 or n = 6. The identity (4.10) is impossible by
Theorem 2.12] and Lemma 3.3 =

In the following four theorems, we assume that U, # 1 for all m. When
Un = 1, we have U, = wz? with w € {1,2,3,6}. In this case, the solutions
of these equations are given in Theorems [2.11 and Corollary

THEOREM 4.4. Assume that m > 1 and U, = U,,x? for some integer x.
Then m =n or (m,n) = (5,10), (2,12), or (3,6).
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Proof. Since Uy, | Uy, we have n = mr for some integer r by (2.10)). Thus,

U U
4.11 220 T U (Vi —(—Q)™
by (2.16)). If » = 1, then m = n. So, assume that r # 1.
Let 3 4 m. Then V,,, is odd by (2.9)) and also (V;,,, —(—Q)™) = 1 by (2.8]).
Hence, (4.11]) implies that r = 2, 3,6, or 12, and therefore

(4.12) V=2 ifr=2

(4.13) V2 —(—Q)m =2* ifr=23,

(4.14) V=30, V2 —(=Q)" =20, V2 -3(-Q)" =60 ifr =6,
(4.15) V=0, V2 — (—Q)™ = 200,

Vi —2(-Q)" =30, Vi — 3(—@)’” —0 ifr=12,

by Theorem Since 3 f m and m > 1, 2|) implies that m = 5 and
so n = 10 by Lemma The identity (4 is 1mp0831ble by Lemma |3.3 E
since m > 1. The identity (4.14) implies m = 2 by Lemmas . - 2[and |3 .
Therefore n = 12. Lastly, (4.15]) is impossible by Lemmas ﬂ and (3 n 3.2| since
m > 1.

Now let 3|m. If r is even, then r = 2a and therefore n = mr = 2ma.

Hence, using (12.3]) we get

U, U, U,

2 n ma ma

= o me_ Tmay
T U Un  Un

and this implies

(4.16) Uno = U, and Vi, =0

or

(4.17) Une = 2U,,00 and V., =20

since (Uma/Um, Vina) = 1 or 2 by .

Assume that is satisfied. Then m = 3, a = 1 by Lemma since
3|m. Thus n = 6.

Assume that is satisfied. Then m =3, a=1orm =3, a =2, or
m = 6, a = 1 by Lemma It can be seen that neither m = 3, a = 1 nor
m = 6, a = 1 is possible for the equation U,,, = 2U,,0. If m = 3 and a = 2,
then we get Vg = 200 and V3 = 201, which is impossible by Lemma

Assume that r is odd. Since 3 |m, we can write m = 3s.

If s is even, then s = 2b and so n = mr = 3sr = 6br. Hence, using
and , we get
U6br _ U3br V3br
C Usy  Usy Vi’

U,
s _ Un
U,
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and this implies

(4.18) Ugbr = U3bD and VSbr = ngD,
or
(4.19) Usp = 2Us0  and Vi, = 2V O

since (Uspr/Usp, Vaor/Vap) = 1 or 2 by (2.13). Each of (4.18) and (4.19) is

impossible, by [12 Theorems 3.2 and 3.3] respectively.

Now let s be odd. Then m is odd too.

Let » = 1 (mod 4). Then writing n = mr = m(r —1) +m = 2-2*mz+m
for some odd positive integer z with k > 1, we get

Un® = Up = Upgtmsim = —Q% ™*U,, (mod Vyr)
by (2.19). Since (Up, Vor) = 1 by (2.13)), the above congruence yields
2?2 = —Q¥'m= (mod Vo).
This shows that (‘;Ti) = 1, which is impossible by Lemma ﬁ

If r = —1 (mod 4), then n = mr = m(r +1) —m = 2- 2"mz — m with 2
odd and k£ > 1. Thus

Una? = Up = Uygprr._ . = —Q¥ ™7, (mod Vyr)
by (2.1) and (2.19). Since (Uy,, Vor) = 1 by (12.13), we obtain
22 —QkaZ_m (mod Vo).

This shows that (;—f) =1.If @ =1 (mod 4), then, by Lemma [2.3
2

L= (C9) o () (@)= () =
N VQk N ‘/vQIC VQk N Q N ’
a contradiction. If @ = —1 (mod 4), then (4.11)) implies that r is a perfect
square by Theorem contrary to r = —1 (mod 4). m

THEOREM 4.5. Assume that m > 1 and U, = 2U,,x? for some integer x.
Then (m,n) = (2,6),(3,6),(3,12), or (6,12).

Proof. Since Uy, | Uy, it follows that n = mr for some positive integer r

by (2.10)). Thus,
(4.20) 202 =

by .

Firstly, let 3 t m. Then V;, is odd by and also (Vi,,, —(—Q)™) =1
by . Hence, r = 3 or 6 by Theorem If » = 3, then we obtain
V2 —(—Q)™ = 222 from . Thus m = 2, and therefore n = 6 by Lemma
If r = 6, then V,,, = 00, V.2 — (—Q)™ = 200, and V2 — 3(-Q)™ = O by
Theorem This is impossible by Lemmas and
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Secondly, let 3| m. Then V;, is even by ([2.9)). Thus, since 2| U,, r is even
by (2.17). Let r = 2a. Hence, using ({2.3)), we get
2 Un - U2ma o Uma Vma

Y Tau, T ou, U, 2

and this implies

(4.21) Una =UpnO  and Vi = 20,
or
(4.22) Unme =2U,,00 and V,,, =0

since (Uma/Upm, Vima/2) = 1 or 2 by (2.13).

Assume that holds. Then (m,a) = (3,1),(6,1), or (3,2) by Lemma
2.6) and Theorem [4.4] Thus (m,n) = (3,6), (6,12), or (3,12).

Assume that is satisfied. Then m = 3, a = 1 by Lemma since
3| m. But these values are impossible for U,,, = 2U,,]. u

THEOREM 4.6. Assume that m > 1 and U,, = 3U,2? for some integer .
Then (m,n) = (2,4), (2,6), (3,6), (4,12), or (5,10).

Proof. Since U,, | Uy, we have n = mr for some integer r by ([2.10f). Thus

(4.23) 302 = In _ Umr

Upn Un

by .

Let 31 m. Then V,, is odd by and also (V;,, —(—Q)™) = 1 by (2.8).
Thus implies r = 2, 3, 4, or 6. Therefore, by Theorem m
(4.24) Vi, =322 ifr=2,
(4.25) V2 —(—Q)™ = 32> ifr=3,
(4.26) Vi, =0and V2 —2(-Q)™ =30 ifr =4,
(4.27) V=0, V2 —(-Q)" =20 and V2 - 3(—Q)™ =60 if r = 6.
The identity implies that m = 2 or m = 5 by Lemma since 31 m

and m > 1. Thus n = 4 or n = 10. The identity (4.25) implies that m = 2
or m = 4 by Lemma [3.3| and therefore n = 6 or n = 12.

Assume that is satisfied. Since Va,, = V,2 — 2(—Q)™ by , we
have V,, = O and V3, = 30. This is impossible by Lemmas and 2.7
The identity is impossible by Lemmas and

Now let 3|m. Firstly, assume that r is even. Then r = 2a and thus
n = mr = 2ma. Hence, using , we have

Un - Uama Unma

2_ ¥n _ .
3z = Um Um Um Vmaa

= Ur(vm’ _(_Q)m)
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and this implies that

(4.28) Una =UpO  and Ve =30,
(4.29) Unma = 3Un0  and Ve =0,
(4.30) Upma = 2U0 and Vi = 60,
or

(4.31) Uma = 6Up0  and Ve = 20.

The identity implies that m = 3, a = 1 by Lemma since 3| m.
Thus n = 6. The identity implies that m = 3, a = 1 by Lemma
But this is impossible for the equation U,,, = 3U,,[. It can be seen that
is impossible by Lemma and Theorem The identity
implies (m,a) = (3,1),(6,1), or (3,2) by Lemma It can be seen that
(m,a) = (3,1) or (6,1) is impossible. If m = 3, a = 2, then Vs = 200 and
V3 = 600. This is impossible by Lemma [2.6] and Lemma [2.8
Secondly, assume that r is odd. Then, since 3 |U, by , it follows
that 3|r by Theorem Let r = 3s for some positive integer s. Then
n = mr = 3ms and thus
g2 = = G = Dy ()

Un Un Un
by ([2.5)). Since

(Ums, (P? +4Q)U2, + 3(—@)’”5) =1,3

Un
by , it follows that
(4.32) Uns =Up0  and V2, — (—Q)™ =30
or
(4.33) Uns = 3U,0 and V2, — (—Q)™ =0

But (4.32) and (4.33)) are impossible by Lemma (3.3 since 3|m. m

THEOREM 4.7. Assume that m > 1 and U, = 6U,,x for some integer x.
Then (m,n) = (2,6) or (3,6).

Proof. Since Uy, | Uy, it follows that n = mr for some integer r by (2.10)).
Hence,

(4.34) 622 =

by (2.16)).
Firstly, let 3 + m. Then V,, is odd by (2.9) and also (V;,,, —(—Q)™) =1

by (2.8)). Thus (4.34)) implies that » = 3 or 6 by Corollary If r =3, we
have V.2 — (—Q)™ = 6. Thus m = 2 by Lemma [3.3|since m > 1. Therefore
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n = 6. If r = 6, then
V=0, V2—(-Q)" =20, V2-3-Q)" =30
or
V=0, V2-(-Q)"=0 - V2-3-Q" =60
by Corollary [£.3] But both of these are impossible by Lemmas 32

and [3.3
Secondly, let 3 | m. Then V,, is even by (2.9). Thus, since 2| U, by (4.34]),
r is even by ([2.17)). Let r = 2s. Hence, using ([2.3)), we have
Un _ Umr _ UQms _ Ums . Vms
2Un  2Upn  2Un Un 2
since 3| m. This implies

322 =

(4.35) Uns =U,0O  and Vs = 60,
(4.36) Upe = 3U,,0 and Vi, = 20,
(4.37) Ups = 2Up0  and  Vipy = 30,
or

(4.38) Ups = 6Up0 and  Vips = O

since (Ups/Um, Vins/2) = 1 or 2 by .

The identity implies m = 3, s = 1 by Lemma and so n = 6.
The identity implies m = 3, s = 2 by Lemma and Theorem
But, in this case, we obtain V3 = 30 and Vi = 20. This is impossible by
Lemmas and The identity is impossible by Lemma and
Theorem E The identity implies m = 3, s = 1 by Lemma But
this is impossible for the equation U,,s = 6U,,[]. =

4.2. On square classes in a generalized Fibonacci sequence. In
[4, 5, ®], the authors defined U, ~ Uy, iff there exist nonzero integers x
and y such that 22U, = y?U,,, or equivalently, U,U,, = O. If U, ~ U,
then U,, and U, are said to be in the same square class, and a square class
containing more than one term of the sequence (U,) is called non-trivial.

Now we briefly summarize the relevant known facts. Ribenboim [5] has
explicitly shown that if m # 1,2,3,6,12, then the square classes of F}, is
trivial. That is, if m # 1,2,3,6,12 and F,, F,, = [J, then m = n. It should
be pointed out that more generally, Cohn [I] determined the square classes
of the sequence (U, (P,Q)) when @ = +1 and P is odd. Ribenboim [0]
has determined the square classes of the sequences U, (Q + 1, Q). Moreover,
when P and @ are nonzero relatively prime integers such that P? +4Q # 0,
Ribenboim and McDaniel [8] showed that each square class of the sequences
(Up) and (V) is finite, and its elements are effectively computable. More-
over, in [4] they showed that for all odd relatively prime integers P and Q
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with P > 0 and P? +4Q > 0, if U,U,, = O for 1 < m < n, then either
(m,n) = (1,2),(1,6),(1,12),(2,3), (2,12), (3,6), (5,10), or (10,15), or n =
3m, 31m, m odd. But (m,n) = (10,15) is impossible: if (m,n) = (10, 15),
then
UrsUro = U3 (V5 + Q*)Vs =D
by and and this implies that
Vs=0and V2 +Q° =0

since (V2+Q5%,V;5) = 1 by . The equation V2 + Q5 = O has no solutions
by Lemma[3:3] Moreover, we will prove in Theorem [4.8|that m may only be 1,
and therefore n = 3, in case U, U,, = O for n = 3m, 3 f m, m odd. Lastly,
Siar [12] determined all » and m such that V,,V,,, = w with w € {1,2,3,6}.

Now let a and b be square-free positive integers such that (a,b) = 1.
Then we define an equivalence relation as follows: al,, ~ bU,, iff there
exist non-zero integers = and y such that z2alU,, = y?bU,,, or equivalently,
U, Uy = abl.

Now, we consider the equivalence relation alU,, ~ bU,, when ab €
{1,2,3,6}. In the following four theorems, we assume .

THEOREM 4.8. Assume that U,U,, = 22 for 1 < m < n. Then m =n
or (m,n) = (1,2),(1,3), (1,6), (1,12), (2,3),(2,12),(3,6), or (5,10).

Proof. 1t is obvious that m = n is a solution. So, let m # n. Let d =
(m,n). Then (U, U,) = Uy by (2.12) and therefore

U, Un, z\?

Ug Ug (Ud> '
Since (Uy,/Uq,Up/Uq) = 1, it follows that U, = Uy and U, = UiO.
Assume that Uy # 1. Then it is obvious that d > 1. Thus, by Theorem [4.4]
(4.39) n=d, or (dn)=(510),(2,12), or (3,6),
(4.40) m=d, or (d,m)=(5,10),(2,12), or (3,6).

The identities (4.39)) and (4.40) imply that (m,n) = (5,10), (2,12), or (3,6).
If Uy =1, then U, = O and U, = [, and these imply that

(m,n) = (1,2),(1,3),(1,6),(1,12),(2,3),(2,6), or (2,12)
by Theorem [2.11] But (m,n) = (2,6) is impossible for U,U,, = z%. u

THEOREM 4.9. Assume that U,U,, = 222 for1 < m < n. Then (m,n) =
(1,3), (1,6), (2,3), (2,6), (3,6), (3,12), or (6,12).

Proof. Tt is obvious that m # n. Let d = (m,n). Then (U,,,U,) = Uy
by and therefore
Un U _ 2<>
Ua Ug Ua)
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Since (U,,/Uq, Uy, /Uy) = 1, it follows that

(4.41) U, = U0 and U, = 20,0
or
(4.42) U,=2U;0 and U, =U,C.

Assume that Uy # 1. Then it is obvious that d > 1. Thus and (| -
imply that (m,n) = (6,12) and (m,n) = (2,6), (3,6), (3, 12), or (6,12) by
Theorems [4.4] and [4.5 If Uy = 1, then U, =0, U, =20 or U, = 20,
U,, = O. From these equations, we can see that (m,n) = (1, 3), (1,6), (2,3),

or (2,6) by Theorems 2.11] and [2.12] =
Similarly, the following theorems can be proved using Theorems [2.11}-
Corollary and Theorems and [4.7] Therefore we omit their

proofs.

THEOREM 4.10. If U,U,, = 322 for 1 < m < n, then (m,n) = (1,2),
(1,3),(1,4),(1,6), (2,3),(2,4),(2,6),(3,6), (4,12), or (5,10).

THEOREM 4.11. If U,U,, = 622 for 1 < m < n, then (m,n) = (1,3),
(17 6)) (27 3)7 (27 6)’ (374)7 (376)7 or (47 6)
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