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1. Introduction. In a series of papers [5–7, 15–18], Mauduit and Sárkö-
zy (partly with coauthors) studied finite pseudorandom binary sequences by
a constructive approach. Since then, many constructions of pseudorandom
binary sequences have been presented. (See for example [11, 12, 14, 20–22],
the survey paper [24] and the references therein.) In some situations one may
need to extend the binary sequences to pseudorandom sequences of k sym-
bols. To this end, measures of pseudorandomness for sequences of k symbols
were developed in [19]. Some constructions of pseudorandom sequences of k
symbols can be found in [2, 3, 8, 13, 28].

For many purposes one needs a large family of pseudorandom sequences,
and it is desirable that the family has a “rich”, “complex” structure, and
that sequences in the family are “random” or “independent” in some sense.
In the binary case, several measures were developed in this direction. This
includes the f -complexity (here “f” stands for family) introduced by Ahlswe-
de, Khachatrian, Mauduit and Sárközy [1], and the f -correlation introduced
by Gyarmati [9]. The f -complexity was generalized to sequences of k symbols
by Ahlswede, Mauduit and Sárközy [2, 3]. In the same spirit, Tóth [25, 26]
studied the collision and avalanche effect of pseudorandom sequences, and
Gyarmati, Mauduit and Sárközy [10] examined the cross-correlation measure
for families of binary sequences.

The aim of this paper is to generalize the f -correlation of [9] to the k-ary
case. In particular, we study the f -correlation of k-ary sequences introduced
in [2, 3]. It turns out that most properties in the binary case continue to
hold in the k-ary case, but some of them require a different treatment.
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Along the way we also improve some previous results on pseudorandom
k-ary sequences.

1.1. Pseudorandomness of k-ary sequences. We briefly recall the
two sets of (nearly equivalent) measures for pseudorandomness of k-ary se-
quences defined in [19]. Let k ≥ 2 be an integer, and let A = {a1, . . . , ak}
be a set of k symbols. For a sequence EN = (e1, . . . , eN ) ∈ AN and a given
symbol a ∈ A, let

x(EN , a,M, u, v) = |{j : 0 ≤ j ≤M − 1, eu+jv = a}|,

and for w ∈ A`, D = (d1, . . . , d`) with nonnegative integers d1 < · · · < d`,
let

g(EN , w,M,D) = |{n : 1 ≤ n ≤M, (en+d1 , . . . , en+d`) = w}|.

The well-distribution measure of EN is defined by

(1.1) δ(EN ) = max
a,M,u,v

∣∣∣∣x(EN , a,M, u, v)− M

k

∣∣∣∣,
and the correlation measure of order ` of EN is

(1.2) γ`(EN ) = max
w,M,D

∣∣∣∣g(EN , w,M,D)− M

k`

∣∣∣∣,
where in both maxima all indices vary between 1 and N .

The other set of measures resembles the case k = 2 more closely using
the roots of unity. Let E be the set of kth roots of unity, and let F be the
set of all bijections φ : A → E . Set

X(EN , φ,M, u, v) =
M−1∑
j=0

φ(eu+jv),

and for φ = (φ1, . . . , φ`) ∈ F `, D = (d1, . . . , d`) with non-negative integers
d1 < · · · < d`, set

G(EN , φ,M,D) =
M∑
n=1

φ1(en+d1) . . . φ`(en+d`).

Then the E-well-distribution measure of EN is defined by

∆(EN ) = max
φ,M,u,v

|X(EN , φ,M, u, v)|,

and the E-correlation measure of order ` of EN is

Γ`(EN ) = max
φ,M,D

|G(EN , φ,M,D)|.

Again the maxima are taken over all indices varying from 1 to N .
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The two sets of measures are related by the following formulas (see [19,
Theorems 1, 2]):

k

k − 1
δ(EN ) ≤ ∆(EN ) ≤ kδ(EN ),(1.3)

1

k`
Γ`(EN ) ≤ γ`(EN ) ≤

∑̀
t=1

(
`

t

)
(k − 1)tΓt(EN ).

A sequence EN is considered to be a“good” pseudorandom sequence if
both δ(EN ) and γ`(EN ) are of magnitude o(N) at least for small `, and
preferably the orders of δ(EN ) and γ`(EN ) should be close to O(

√
N logN),

which is the value for the truly random case (see [4] and Theorem 1). By
(1.3), similar statements hold for ∆(EN ) and Γ`(EN ).

Note that when k = 2, we can recover the well-distribution and correla-
tion measures in the binary case from the E-measures by taking A = {−1, 1}
and all maps φ to be the identity. More precisely, for a binary sequence
EN = (e1, . . . , eN ) ∈ {−1, 1}N , the well-distribution measure is

W (EN ) = max
a,b,t

∣∣∣ t−1∑
j=0

ea+jb

∣∣∣,
and the correlation measure of order ` is

C`(EN ) = max
M,D

∣∣∣ M∑
n=1

en+d1 . . . en+d`

∣∣∣.
Remark 1.1. In [19], the well-distribution measure (1.1) and the cor-

relation measure (1.2) were called the f -well-distribution measure and f -
correlation measure respectively, where “f” stands for frequency. To avoid
confusion with the f -correlation for families of sequences defined by Gyar-
mati [9], in this paper “f -correlation” refers exclusively to the “family”
notion.

Example 1.1. Let A = E be the set of kth roots of unity. Let p be a
prime, and let χ be a (multiplicative) character of order k over the finite
field Fp (hence we have k | p−1). Let f(x) ∈ Fp[x] be a polynomial of degree
h > 0 that has no multiple zero in the algebraic closure Fp. Consider the
sequence EN = EN (f) = (e1, . . . , eN ) ∈ AN defined by

en =

{
χ(f(n)) if (f(n), p) = 1,

1 otherwise.

It is shown in [2] that

δ(Ep) < 11hp1/2 log p.
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If furthermore no combination

F (n) = f(n+ d1)
t1 . . . f(n+ d`)

t`

is a constant multiple of a complete kth power for any distinct di and any
(t1, . . . , t`) 6= 0, 0 ≤ tj < k, then

γ(Ep) < 10`hkp1/2 log p.

In other words, for those f , the corresponding sequence EN (f) is a pseu-
dorandom sequence. It is shown in [3] that f has the above property if any
one of the following conditions holds:

(1) k > 2, h < p and ` = 1, or k = 2, h < p and ` = 1, 2.
(2) (4h)`(k−1) < p.
(3) For any prime q dividing k, q is a primitive root modulo p.

1.2. f-correlation of binary pseudorandom sequences. We recall
that in [9], Gyarmati defined the f -correlation of a family of sequences by
considering the concatenation of distinct sequences in the family.

Definition 1.2. Let F be a family of pseudorandom binary sequences.
The f -correlation measure of order m is defined by

Cm(F) = max
1≤`≤m,E(1)

N ,...,E
(`)
N ∈F

Cm({E(1)
N , . . . , E

(`)
N }),

where {E(1)
N , . . . , E

(`)
N } ∈ {−1, 1}`N is the sequence of length `N obtained

by concatenating the sequences E
(1)
N , . . . , E

(`)
N in that order.

Example 1.3. Consider the case of k = 2 in Example 1.1. For a prime p
and a polynomial f(x) ∈ Fp[x] of degree h that has no multiple zero, define
EN = EN (f) = (e1, . . . , eN ) by

en =

{(f(n)
p

)
if (f(n), p) = 1,

1 otherwise,

where
( ·
p

)
is the Legendre symbol. In [9], Gyarmati considered the f -cor-

relation of several families of EN with different sets of polynomials. For
example, if F is the set of all polynomials of degree at most h that have no
multiple zero, then C2(F) ≥ p− 1 is large. However, if F2 ⊆ F is the set of
all monic polynomials of degree at most h and of the form

(1.4) f(x) = xr + ar−2x
r−2 + · · ·+ a1x+ a0

with 1 ≤ r ≤ h and ai ∈ Fp, then

C2(F2) ≤ 80hp1/2 log p
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is small, but Ck(F2) ≥ p is large for all k ≥ 3. Finally, if we take F3 ⊆ F2

to be the set of all irreducible monic polynomials of the form (1.4), then

Ck(F3) ≤ 10hk22k−1p1/2 log p.

So F3 has small f -correlation to a very high order.

To see the applicability of this notion of f -correlation for k-ary sequences,
we will study Example 1.1 and find families of polynomials that have small
f -correlation of high orders, analogous to that of Example 1.3.

2. f-correlation of k-ary sequences and statements of main re-
sults. We start with the definitions for the f -correlation of families of k-ary
sequences, which are direct generalizations of Definition 1.2. Since there
are two measures for pseudorandomness of k-ary sequences, there are two
definitions for the f -correlation. Similar to the case of one pseudorandom
sequences, these two definitions are nearly equivalent.

Definition 2.1. Let F be a family of k-ary sequences.

(1) The f -correlation measure of order m is defined by

cm(F) = max
1≤`≤m,E(1)

N ,...,E
(`)
N ∈F

γm({E(1)
N , . . . , E

(`)
N }),

where {E(1)
N , . . . , E

(`)
N } ∈ A`N is the sequence of length `N obtained

by concatenating the sequences E
(1)
N , . . . , E

(`)
N in that order.

(2) The E-f -correlation measure of order m is defined by

Cm(F) = max
1≤`≤m,E(1)

N ,...,E
(`)
N ∈F

Γm({E(1)
N , . . . , E

(`)
N }).

Clearly cm(F) and Cm(F) have the following properties.

Proposition 2.2. Let F , F1 and F2 be families of k-ary sequences.

(1) If m1 ≤ m2 are two positive integers, then cm1(F) ≤ cm2(F) and
Cm1(F) ≤ Cm2(F).

(2) If F1 ⊆ F2, then cm(F1) ≤ cm(F2) and Cm(F1) ≤ Cm(F2).
(3) We have

1

km
Cm(F) ≤ cm(F) ≤ (km − 1)Cm(F).

From (3), we see that Cm(F) and cm(F) only differ by a constant mul-
tiple. So we will focus on cm(F); the corresponding statements for Cm(F)
can be derived similarly.

Before analyzing the f -correlations of the family in Example 1.1, we first
give some idea of the situation in the perfectly random case.
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Theorem 1. Let E
(1)
N , . . . , E

(m)
N be m randomly chosen k-ary sequences,

and let ` be a positive integer. For all ε > 0, there is a number N0 =
N0(ε, k, `,m) such that for all N > N0,

(2.1) P
(
γ`({E

(1)
N , . . . , E

(m)
N }) > 10k`(2k`mN logmN)1/2

)
< ε,

and there is a number N1 = N1(ε, k, `,m) such that for all N > N1,

(2.2) P
(
Γ`({E

(1)
N , . . . , E

(m)
N }) > 10k2`(2k`mN logmN)1/2

)
< ε.

The above theorem complements [4, Theorem 4] (see Lemma 3.2 below).
Note also that (2.2) follows from (2.1) by using (1.3).

Next, let EN (f) be defined as in Example 1.1. We first notice that if
r ∈ F∗p is a kth power residue modulo p, and if g(x) = rf(x), then EN (f) =
EN (g). In general, if g(x) = rf(x) for some r ∈ F∗p, it is not difficult to see
that

γ2({EN (f), EN (g)}) ≥ N/(2k).

Hence, if we want a family with small f -correlation, it is natural to restrict
our attention to

(2.3) F = {EN (f) : f(x) ∈ Fp[x], 0 < deg(f) ≤ h,
f monic and without multiple roots},

where 0 < h < p.

Our next task is to investigate the f -correlation of F and some of its
subfamilies. In particular, we will construct subfamilies that have small
f -correlation close to the random case. First, note that if g(x) = f(x + a)
for some a ∈ Fp with |a| < N , then the ith entry of EN (g) is the same as
the (i + a)th entry of EN (f). So these two sequences are not independent.
Indeed,

γ2({EN (f), EN (g)}) = max
w,M,D

∣∣∣∣g({EN (f), EN (g)}, w,M,D)− M

k2

∣∣∣∣
≥
∣∣∣∣{n : 1 ≤ n ≤ N − a, (en, en+N+a) = (1, 1)} − N − a

k2

∣∣∣∣
=

∣∣∣∣{n : 1 ≤ n ≤ N − a, en = 1} − N − a
k2

∣∣∣∣
=
N − a
k
− N − a

k2
+O(

√
p log p).

Hence, if we want a family with small f -correlation, then we may only take
at most one of the f(x+a) into the family. In general, we have the following
criterion on the polynomials to guarantee that a subfamily of F has small
f -correlation.
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Theorem 2. Let F be defined in (2.3). Let F1 ⊆ F be a family of
pseudorandom k-ary sequences, and let ` be a positive integer. If for any set
of m sequences

EN (f1), . . . , EN (fm) ∈ F ,
any i = (i1, . . . , i`) with 1 ≤ i1 ≤ · · · ≤ i` ≤ m, any a1 . . . , a` ∈ Fp such that
ar 6= as whenever ir = is, and any nonzero t = (t1, . . . , tm) with 0 ≤ ti < k,
the combination ∏̀

j=1

fij (x+ aj)
tj

is never a constant multiple of a complete kth power in Fp[x], then

γ`({EN (f1), . . . , EN (fm)}) ≤ 10`m2hp1/2 log p.

As a consequence,

cm(F1) ≤ 10m3hp1/2 log p.

Remark 2.1. Although we are in the case of k-ary sequences, it is still
important that the polynomials fi have distinct roots. Merely requiring them
to be kth power free is not enough to ensure small f -correlation. For exam-
ple, let p > 5 and k = 3. Set

f1(x) = (x2 − 1)2(x2 − 4), f2(x) = (x2 − 1)(x2 − 4)2.

Then both f1 and f2 are cube free, and hence EN (f1) and EN (f2) are both
pseudorandom. However, their product f1(x)f2(x) = (x2 − 1)3(x2 − 4)3 is
a perfect cube. Therefore, γ2({EN (f1), EN (f2)}) is large. Indeed, let E =
{EN (f1), EN (f2)} and write E = (e1, . . . , e2N ); then eieN+i = 1 for all
1 ≤ i ≤ N . It is now easy to see that γ2(E) ≥ N/6.

The condition on the polynomials fi in Theorem 2 is difficult to check
in general (for a discussion of the case m = 1, see [3]), but we will improve
a condition in [3] for the case m = 1, namely (2) in Example 1.3 there.

Theorem 3. With notation as in Theorem 2, for m = 1, the condition
on the polynomials in Theorem 2 is satisfied if (4h)` < p.

We are now ready to construct explicit families of pseudorandom k-ary
sequences that have small f -correlation, similar to the binary case. As in
the binary case, forcing one coefficient (neither leading nor constant) to be
zero is enough to guarantee small f -correlation of order two; for example we
have the following.

Corollary 4. Let p be a prime. Let F2 be the subfamily of F defined
by polynomials of the form

f(x) = xr + ar−2x
r−2 + · · ·+ a1x+ a0,
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where 0 < r ≤ h, ai ∈ Fp and the coefficient of xr−1 is zero. Then

c2(F2) ≤ 80hp1/2 log p.

Remark 2.2. Similar to [9, Theorem 3], the family F2 has small
f -correlation of order two, but cm(F2) is large for all m ≥ 3.

In order to get a family of small f -correlation, we can use irreducible
polynomials.

Corollary 5. Let p be a prime. Let F3 be the subfamily of F2 consisting
of the EN (f) with f(x) ∈ Fp[x] irreducible. Then

cm(F3) ≤ 10 · 2m−1m2hp1/2 log p for any m.

3. Lemmas. In this section we collect several lemmas that will be used
later. The first one gives an estimate for incomplete character sums, which
is of vital importance in our later proofs.

Lemma 3.1. Let p be a prime, and let χ be a (multiplicative) character
of order d. Let f(x) ∈ Fp[x] of degree h be such that f(x) 6= cg(x)d for any
c ∈ Fp and g(x) ∈ Fp[x]. Then for any real numbers X,Y ,∣∣∣ ∑

X<n<X+Y

χ(f(n))
∣∣∣ < 9hp1/2 log p.

Proof. This is [15, Theorem 1], a consequence of Weil’s theorem [27].

The next lemma is about the E-correlation of a randomly chosen k-ary
sequence.

Lemma 3.2. Suppose k is even. Let EN be a randomly chosen k-ary
sequence of length N . For each positive integer ` and each ε > 0, there is an
N0 = N0(ε, k, `) such that for all N > N0,

P
(
Γ`(EN ) > 10(k`N logN)1/2

)
< ε.

Proof. See Bérczi [4, Theorem 4].

We will also need Minkowski’s lattice point theorem, a basic and well-
known result in number theory. For a proof, see [23, Theorem I.4.4].

Lemma 3.3. Let Γ be a complete lattice in Rn. Let X be a convex subset
of Rn, symmetric with respect to the origin, whose volume satisfies

vol(X) > 2n vol(Γ ).

Then X contains at least one nonzero lattice point in Γ .

The final lemma of this section, which is a consequence of Minkowski’s
theorem, shows that translations of a given set in Fp will always reach new
elements, provided that the number of translations is relatively small.
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Lemma 3.4. Let r ≥ 2 and let x1, . . . , x` ∈ Fp be distinct. Suppose M
is a nonempty finite subset of Fp with 4|M| < p1/`. Then there exists a
j ∈ {1, . . . , `} such that M+ xj is not contained in

⋃
i 6=j(M+ xi).

Proof. Suppose (x1, . . . , x`,M) provides a counterexample to the state-
ment. Then for any nonzero t ∈ Fp, the tuple (tx1, . . . , tx`, tM) is another
counterexample.

By Lemma 3.3, there exists a nonzero integer t such that

|t| ≤ p− 1,

‖tx1/p‖ ≤ (p− 1)−1/`,

...

‖tx`/p‖ ≤ (p− 1)−1/`.

Thus there are integers yj such that

(3.1)

{
|yj | ≤ p(p− 1)−1/`,

yj ≡ txj (mod p),

for any j ∈ {1, . . . , `}, and (y1, . . . , y`, tM) is a counterexample. Now let
j0 be such that |yj0 | = max1≤j≤`|yj |. Choose α ∈ tM and set M̃ = tM∩
(α+ Fp). Then (y1, . . . , y`,M̃) will also be a counterexample.

Note that α+Fp can be written as a union of at most |M̃| intervals (i.e.
subsets of Fp consisting of consecutive integers, or translates of such subsets

in Fp) whose endpoints are in M̃, and which contain no points in M̃ apart
from the endpoints. Let I = {α+ a, α+ a+ 1, . . . , α+ b} be the longest of
these intervals. Then

|b− a| ≥ p

|M̃|
≥ p

|M|
.

From this, (3.1) and the hypothesis 4|M| < p1/r, we obtain

|b− a| > 4p1−1/r > 2|yj0 |.

Now if yj0 > 0, then α+a+yj0 belongs to M̃+yj0 but not to
⋃
i 6=j0(M̃+yi)

(because α+a+yj0 still lies in I, and |yj0 | is maximal among all yi). Similarly,

if yj0 < 0, then α+b+yj0 belongs to M̃+yj0\
⋃
i 6=j0(M̃+yi). This contradicts

that (y1, . . . , yr,M̃) is a counterexample, and completes our proof.

4. Proof of Theorem 1. Since, as remarked after the statement of
Theorem 1, (2.2) follows from (2.1), it is enough to prove (2.1). By Lemma
3.2 and (1.3), one immediately obtains (2.1) for all even k.

Now, fix an odd k. Write A2k and Ak for sets of 2k and k symbols
respectively. Fix any 2-to-1 map ϕ : A2k → Ak (i.e. for any a ∈ Ak, φ−1(a)
consists of exactly two elements), and extend ϕ in the natural way to a
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map AN2k → ANk . Let EN ∈ ANk be a random k-ary sequence. Then there

are 2N sequences ẼN such that ϕ(ẼN ) = EN . Pick one of them, and write
ẼN = (ẽ1, . . . , ẽN ).

Recall that

gk(EN , w,M,D) = |{n : 1 ≤ n ≤M, (en+d1 , . . . , en+d`) = w}|.
Set

(4.1) rk(EN , w) = rk(EN , w,M,D) := gk(EN , w,M,D)− M

k`
.

From the definition of gk(EN , w) we have

gk(EN , w) = |{n : 1 ≤ n ≤M, (en+d1 , . . . , en+d`) = w}|
= |{n : 1 ≤ n ≤M, ϕ(ẽn+d1 , . . . , ẽn+d`) = w}|
= |{n : 1 ≤ n ≤M, (ẽn+d1 , . . . , ẽn+d`) ∈ ϕ

−1(w)}|

=
∑

w̃∈ϕ−1(w)

gk(ẼN , w̃).

Using (4.1), we get

M

k`
+ rk(EN , w) =

∑
w̃∈ϕ−1(w)

(
M

(2k)`
+ r(ẼN , w̃)

)
,

which simplifies to

rk(EN , w) =
∑

w̃∈ϕ−1(w)

rk(ẼN , w̃)

since there are 2` elements in ϕ−1(w). Taking absolute values on both sides,
then take the maximum over all w,D,M and use (1.2) to obtain

(4.2) γ`(EN ) ≤ 2`γ`(ẼN ).

Let A > 0 be a real number. Then (4.2) implies that to one EN with
γ`(EN ) > A there correspond at least 2N of ẼN with γ`(ẼN ) > A/2`.

Now consider

P (γ`(EN ) > A) =
|EN ∈ ANk : γ`(EN ) > A|

kN

≤
2−N |ẼN ∈ AN2k : γ`(EN ) > A/2`|

kN

=
|ẼN ∈ AN2k : γ`(EN ) > A/2`|

(2k)N

= P (γ`(ẼN ) > A/2`).

On the other hand, since 2k is even, we can apply Lemma 3.2 to obtain

P
(
γ`(ẼN ) > 10(2k)`(2k`N logN)1/2

)
< ε.
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By the above calculation this implies

(4.3) P
(
γ`(EN ) > 10k`(2k`N logN)1/2

)
< ε.

Now (2.1) for k odd and general m follows from (4.3), by replacing EN with

{E(1)
N , . . . , E

(m)
N } and N with mN .

5. Proof of Theorem 2. Let EN (f1), . . . , EN (fm) ∈ F1 and set E =
{EN (f1), . . . , EN (fm)}. Write E = (e1, . . . , emN ). Define Ii1,...,i` to be the
set of all n with 1 ≤ n ≤M and such that

ij =

[
n+ dj − 1

N

]
+ 1

for all 1 ≤ j ≤ `. It is easy to see that Ii is an interval (possibly empty) for
all i. Write i = (i1, . . . , i`). Clearly Ii is empty unless 1 ≤ ij ≤ m for all j.
We also have Ii1 ∩ Ii2 = ∅ if i1 6= i2, and the union of all Ii is the set of
integers from 1 to M . Note that if we fix an i1, then

i1 =

[
n+ d1 − 1

N

]
+ 1⇒ i1 − 1 ≤ n+ d1 − 1

N
≤ i1

⇒ N(i1 − 1) ≤ n+ d1 − 1 ≤ i1N
⇒ N(i1 − 1) + dj − d1 ≤ n+ dj − 1 ≤ i1N + dj − d1

⇒ i1 − 1 +
dj − d1
N

≤ n+ dj − 1

N
≤ i1 +

dj − d1
N

⇒ i1 − 1 +

[
dj − d1
N

]
≤
[
n+ dj − 1

N

]
≤ i1 +

[
dj − d1
N

]
.

For any fixed i1, clearly there exists an integer Hj such that[
n+ dj − 1

N

]
=

{
i1 − 1 +

[dj−d1
N

]
if n < Hj ,

i1 +
[dj−d1

N

]
if n ≥ Hj .

Define a sequence of integers Ks (0 ≤ s ≤ `) by

{K0,K1, . . . ,K`} = {0, H2, H3, . . . ,H`,M + 1}.
It is clear that 0 = K0 ≤ K1 ≤ · · · ≤ K` = M + 1. From the definitions of
the Ks’s and Hs’s, for any n, n′ with Ks ≤ n, n′ ≤ Ks+1 we have[

n+ dj − 1

N

]
=

[
n′ + dj − 1

N

]
.

Thus the interval [Ks,Ks+1) is contained in a single interval Ii1,...,i` .
Since i1 may take m different values and for each fixed i1, the number of

intervals [Ks,Ks+1) constructed above is ` and these intervals (for 0 ≤ s ≤
`− 1) cover the whole range [0,M ], we have

(5.1) |{i : Ii 6= ∅}| ≤ m`.
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Next, consider

g(E,w,M,D) = |{1 ≤ n ≤M : (en+d1 , . . . , en+d`) = w}|

=
∑
i

|{n ∈ Ii : (en+d1 , . . . , en+d`) = w}|.

Note that for n ∈ Ii, we have en+dj = χ(fij (n + dj − (ij − 1)N)). Write
w = (w1, . . . , w`). By the orthogonality of characters, if (a, p) = 1, then

1

k

k−1∑
t=0

(wjχ(a))t =

{
1, χ(a) = wj ,

0, χ(a) 6= wj .

Hence,

(5.2) g(E,w,M,D)

=
1

k`

∑
i

∑
n∈Ii

p-fij (n+dj−(ij−1)N)

k−1∑
t1=0

· · ·
k−1∑
t`=0

∏̀
j=1

(
wjχ(fij (n+ dj − (ij − 1)N))

)tj
+
∑
i

∑
n∈Ii

∃j, p|fij (n+dj−(ij−1)N)

1,

where the sum over i is taken over all i with Ii 6= ∅. By (5.1) we see that
the second term on the right-hand side is at most

(5.3)
∑
i

∑
n∈Ii

∃j, p|fij (n+dj−(ij−1)N)

1 ≤ m2`h.

Write t = (t1, . . . , t`). To estimate the first term on the right-hand side in
(5.2), note that the terms corresponding to t = 0 sum to

1

k`

∑
i

∑
n∈Ii

p-fij (n+dj−(ij−1)N)

1 =
M

k`
− 1

k`

∑
n∈Ii

p|fij (n+dj−(ij−1)N)

1.

Similar to (5.3), the second term above is at most m2`h/k`. Combining this
with (5.2) and (5.3), we obtain

γ`(E) ≤ 1

k`

∑
i

∑
n∈Ii

p-fij (n+dj−(ij−1)N)

∑
t 6=0

∏̀
j=1

(
wjχ(fij (n+ dj − (ij − 1)N))

)tj
+ 2m2`h.

Changing the order of summation yields



Pseudorandom sequences 211

γ`(E) ≤ 1

k`

∑
i

∑
t 6=0

wt11 . . . w
t`
`

∑
n∈Ii

p-fij (n+dj−(ij−1)N)

∏̀
j=1

χ(fij (n+dj− (ij−1)N))tj

(5.4)

+ 2m2`h.

A typical polynomial in the character of the above sum is of the form

fi1(n+ d1 − (i1 − 1)N)t1 · · · fi`(n+ d` − (i` − 1)N)t` .

The condition in Theorem 2 implies that no such term is a complete kth
power (take aj = dj − (ij − 1)N). By Lemma 3.1, we get∑

n∈Ii
p-fij (n+dj−(ij−1)N)

∏̀
j=1

χ
(
fij (n+ dj − (ij − 1)N)

)tj ≤ 9h`p1/2 log p.

Putting this into (5.4) and using (5.1), we obtain

γ`(E) ≤ 9`mhp1/2 log p+ 2m2`h ≤ 10`m2hp1/2 log p.

6. Proof of Theorem 3. Theorem 3 follows directly from the following
proposition, which is slightly more general.

Proposition 6.1. Let k ≥ 2 be an integer with (k, p) = 1. Let P (x) ∈
Fp[x] be a monic polynomial of degree h which is not of the form cg(x)k

′
for

any k′ with GCD(k′, k) > 1, c ∈ Fp and g ∈ Fp[x]. Let b1, . . . , b` be distinct
elements in Fp with

` <
log p

log(4h)
.

Then for any a ∈ Fp and e = (e1, . . . , e`) with 0 ≤ ej ≤ k − 1, e 6= 0, the
polynomial

Q(x) =
∏̀
j=1

P (ax+ bj)
ej

is not a complete kth power.

Proof. The proposition is clearly true for all k when ` = 1. Suppose the
proposition is not true; then there is a least ` > 1 (satisfying our assumption
` < (log p)/log(4h)) such that a counterexample exists. Let k̃ be the least k
such that a counterexample occurs for the above `. Then

(6.1) Q(x) = P̃ (x)k̃ =
∏̀
j=1

P (ax+ bj)
ẽj ,
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where 1 ≤ ẽj < k̃ (if ej = 0 for some j we would have a smaller counterex-

ample) and P̃ (x) ∈ Fp[x] since (k, p) = 1.
Let α1, . . . , αs be all the distinct zeros of P (x) in Fp whose multiplicities

are not a multiple of k̃. Clearly 1 ≤ s ≤ h. Let M = {a−1α1, . . . , a
−1αs}

and xj = −a−1bj for all 1 ≤ j ≤ `. Note that M + xj is the set of zeros
of P (ax + bj). Since 4|M| = 4s ≤ 4h < p1/`, we can apply Lemma 3.4 to
obtain a j0 such that at least one of the roots of P (ax+ bj0) is distinct from
the roots of all other P (ax+ bi) for i 6= j0. By permuting the xj and αj we
may assume that the above occurs for j0 = `, and the distinguished root
is αs, of multiplicity ms.

If ms is relatively prime to k̃, then ẽ`ms cannot be a multiple of k̃. This
means the combination Q(x) cannot be a complete k̃th power, contradicting
(6.1). On the other hand, if GCD(ms, k̃) = k̃/d > 1, then (6.1) implies that
ẽ` must be a multiple of d. Since 1 < d < k̃ (that d > 1 follows from the
fact that ms is not a multiple of k̃), we see that

(6.2)
Q(x)

P (ax+ b`)ẽ`
=

(
P̃ (x)k̃/d

P (ax+ b`)ẽ`/d

)d
=

`−1∏
j=1

P (ax+ bj)
ẽj

is a complete dth power. Thus either there exists some ẽj which is not a
multiple of d, so (6.2) is a counterexample with smaller `, or each ẽj is a
multiple of d, and then

Q(x)1/d = P̃ (x)k̃/d =
∏̀
j=1

P (ax+ bj)
ẽj/d

is a counterexample with the same ` but a power smaller than k̃. In both
cases we obtain a contradiction.

7. Proof of the corollaries. It suffices to show that the families F2

and F3 satisfy the condition in Theorem 2. For Corollary 4, we need to show
that for any EN (f1), EN (f2) ∈ F2 (with the possibility of f1 = f2), and for
any a1, a2 ∈ Fp (with the restriction that a1 6= a2 if f1 = f2), the product

(7.1) Q(x) = f1(x+ a1)
t1f2(x+ a2)

t2

is not a complete kth power for any 0 ≤ t1, t2 < k, not both zero.
When f1 = f2 this is a direct consequence of Theorem 3. When f1 6= f2,

suppose on the contrary that the Q(x) defined in (7.1) is a complete kth
power for some a1, a2, t1, t2. If there is a root α ∈ Fp of f1(x + a1) that is
not a root of f2(x+a2), then (x−α)t1 divides Q(x) exactly (i.e. (x−α)t1+1

does not divide Q(x)). Since 0 ≤ t1 < k and Q(x) is a complete kth power,
this implies t1 = 0. Thus

Q(x) = f2(x+ a2)
t2 ,
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which is also impossible since f2 has no multiple roots and 0 < t2 < k.
Hence f1(x+a1) and f2(x+a2) must share the same set of roots. As neither
has multiple roots, this gives f1(x+a1) = f2(x+a2), which is impossible by
the construction of F2. This shows that the condition in Theorem 2 holds
for F2.

The proof of Corollary 5 is similar. Let 1 ≤ ` ≤ m. Suppose

Q(x) = fi1(x+ a1)
t1 . . . fi`(x+ a`)

t` .

Suppose i1 = · · · = is and the other ij ’s are different. Write f :=fi1 = · · ·= fis .
The combination

R(x) := f(x+ a1)
t1 . . . f(x+ as)

ts

is not a complete kth power since f is irreducible and deg f < p. In par-
ticular, there is an α ∈ Fp such that (x − α)t exactly divides R(x), with
0 < t < k. By the construction of the family F3, the roots of other fij are
linearly independent of the roots of f(x), and so α is not a root of any of
the fij (x + aj) for any ij 6= i1. This means (x − α)t exactly divides Q(x),
and Q(x) cannot be a complete kth power.

Acknowledgments. We thank the referees for carefully reading the
manuscript and for many valuable suggestions, in particular an argument
that led to a considerable improvement on the estimate (5.1), and hence on
Theorem 2.
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