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Abstract

Let X be a topological space. A subset of C(X), the space of continuous real-valued functions
on X, is a partially ordered set in the pointwise order. Suppose that X and Y are topological
spaces, and A(X) and A(Y ) are subsets of C(X) and C(Y ) respectively. We consider the general
problem of characterizing the order isomorphisms (order preserving bijections) between A(X)
and A(Y ). Under some general assumptions on A(X) and A(Y ), and when X and Y are compact
Hausdorff, it is shown that existence of an order isomorphism between A(X) and A(Y ) gives
rise to an associated homeomorphism between X and Y . This generalizes a classical result of
Kaplansky concerning linear order isomorphisms between C(X) and C(Y ) for compact Hausdorff
X and Y . The class of near vector lattices is introduced in order to extend the result further to
noncompact spaces X and Y . The main applications lie in the case when X and Y are metric
spaces. Looking at spaces of uniformly continuous, Lipschitz, little Lipschitz and differentiable
functions, and the bounded, “local” and “bounded local” versions of these spaces, criteria of
when spaces of one type can be order isomorphic to spaces of another type are obtained.

Acknowledgements. The research of D. H. Leung was partially supported by AcRF project no.
R-146-000-157-112. The research of W.-K. Tang was partially supported by AcRF project no.
RG26/14. The authors thank the referee for his comments, particularly for the suggestion to
include the appendix in order to make the paper more self-contained.

2010 Mathematics Subject Classification: Primary 06F20, 46E05, 47H07, 54C30, 54F05.
Key words and phrases: nonlinear order isomorphisms, continuous functions, uniformly contin-

uous functions, Lipschitz functions, differentiable functions.
Received 6 October 2014; revised 6 November 2015.
Published online 11 July 2016.

[4]



Introduction

There is a long tradition in mathematics of studying a mathematical object by looking at

maps from the object into a simpler object of the same type. For instance, the dual group

of a topological group is the set of characters, i.e., the group homomorphisms into the

circle group; the dual space of a topological vector space is the set of continuous linear

functionals. In the case of a topological space X, it is natural to consider the space C(X)

of continuous real-valued functions on X. The space C(X) carries with it a multitude of

mathematical structures. It is an algebra (or ring) of functions, a vector lattice, and its

subspace Cb(X) consisting of the bounded functions in C(X) is a Banach space. All these

aspects of C(X) have been used classically to characterize the space X for compact Haus-

dorff X, with various generalizations to noncompact spaces. The Banach–Stone Theorem

[6, 26] shows that the isometric structure of C(X) determines a compact Hausdorff space

X up to homeomorphism. Subsequently, the validity of the Banach–Stone Theorem for

the Banach space valued space of continuous functions C(X,E) has been used to study

the geometry of the Banach space E. See, e.g., [7]. The study of isometries on general

Banach spaces is also well developed. We refer the reader to the two-volume monograph

by Fleming and Jamison [12]. Gelfand and Kolmogorov [15] proved that a compact Haus-

dorff space X is determined up to homeomorphism by C(X) as an algebra. Developments

in this direction up to the 1970’s are beautifully summarized in the classic monograph of

Gillman and Jerison [16]. It includes, in particular, a generalization by Hewitt [17] of the

theorem of Gelfand and Kolmogorov to noncompact spaces, who identified the class of

realcompact spaces and showed the important role played by them in this context. Later

advances saw versions of the theorem of Gelfand and Kolmogorov on other function al-

gebras as well as generalizations to biseparating maps, i.e., bijective maps that preserve

disjointness of functions in both directions (for instance, see [3, 4, 5, 14, 18, 20, 22]). Ka-

plansky [21] showed that as a vector lattice, C(X) determines a compact Hausdorff space

X up to homeomorphism. In a sense, this result is the most general of the three classical

results, as it is not hard to see that both the Banach–Stone and Gelfand–Kolmogorov

Theorems can be derived from Kaplansky’s Theorem (see, e.g., [23]). While a general

function space may no longer be a vector lattice, it always retains the partial order de-

termined pointwise. Let A(X) and A(Y ) be sets of real-valued functions defined on X

and Y respectively. We say that a bijective map T : A(X) → A(Y ) is an order isomor-

phism if f ≤ g if and only if Tf ≤ Tg for all f, g ∈ A(X). One may ask if Kaplansky’s

Theorem can be extended to order isomorphisms on general function spaces. The recent

paper of the first author and L. Li [23] shows that Kaplansky’s result is valid for linear

order isomorphisms for rather general classes of function spaces (see also the work of

[5]
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Jiménez-Vargas and Villegas-Vallecillos concerning linear order isomorphisms on spaces

of Lipschitz functions [19]). Within the last decade, a number of papers by F. Cabello

Sánchez and J. Cabello Sánchez have appeared that characterize nonlinear order isomor-

phisms on various function spaces [8, 9, 10, 11]. In this paper, our aim is to present a

unified and thorough study of nonlinear order isomorphisms between function spaces. In-

stead of adapting our arguments on a case-by-case basis, we present a general framework

for the analysis of order isomorphisms that applies to a class of spaces which we call near

vector lattices. The class includes spaces of continuous, uniformly continuous, Lipschitz,

little Lipschitz and differentiable functions and their “local” versions. In particular, they

include as special cases all the main results of [8, 9, 10, 11]. It is shown that an order

isomorphism between any two such spaces must be a nonlinear weighted composition

operator. Modulo the composition map, such operators are called superposition opera-

tors. We refer to the monograph [1] for an in-depth treatment of nonlinear superposition

operators. Some of our methods may have applications in this area. We go on to an-

alyze extensively comparisons of function spaces under order isomorphisms. Along the

way, new properties of metric spaces manifest themselves. Specifically, the connections

between order isomorphisms having to do with Lipschitz or little Lipschitz spaces and

the properties “expansive”, “expansive at ∞” and “almost expansive at ∞” seem to us

to be rather intricate.

We now briefly describe the contents of the individual chapters. The first chapter sets

up a general framework for dealing with order isomorphisms. The main result is Theo-

rem 1.9, which shows that an order isomorphism between sets of articulated, compatible

and directed sets of functions on compact Hausdorff spaces gives rise to an associated

homeomorphism between the spaces. We might add that we view the properties of be-

ing articulated and directed as part of the basic infrastructure that is necessary in the

theory. On the other hand, compatibility is a linking property between functions that is

only required when studying nonlinear order isomorphisms (as opposed to linear order

isomorphisms).

The second chapter introduces the class of near vector lattices. The utility of this

class lies in the fact that it is general enough to include many of the function spaces

that are of interest, including all vector sublattices of C(X) as well as spaces of differen-

tiable functions. On the other hand, a satisfactory general theory of order isomorphisms

holds for this class of spaces. We use the well-established method of compactification

to transcend the restriction of compactness of the underlying spaces in Theorem 1.9.

It is at this point that efficacy of having near vector lattices shows up, because, by

Proposition 2.6, the space of continuous extensions (onto a suitable compactification)

of the bounded functions in a near vector lattice remains a near vector lattice. A sec-

ond problem to overcome is that one has to make use of a whole host of compacti-

fications, since each one is effective only for an order bounded subset of the function

space. Lemma 2.10 solves this problem. It clears the final hurdle for Theorem 2.11, which

shows that an order isomorphism between two near vector lattices gives rise to an as-

sociated homeomorphism between some compactifcations of the underlying topological

spaces.
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Chapter 3 gives the first application of Theorem 2.11. Theorem 3.1 shows that if X

and Y are realcompact spaces such that C(X) and C(Y ) are order isomorphic, then

the associated homeomorphism obtained in Theorem 2.11 restricts to a homeomorphism

between X and Y . It generalizes the previously known result of F. Cabello Sánchez for

the case of compact X and Y [8].

From Chapter 4 onwards, we concentrate on metric spaces X and Y . First, a condition

(♠) is identified so that for spaces satisfying that condition, the associated homeomor-

phism obtained in Theorem 2.11 restricts to a homeomorphism between X and Y (Theo-

rem 4.3). Then it is shown that under an additional condition (♥), an order isomorphism

must be a weighted composition operator (Theorem 4.5). Examples B and C show the

wide application of conditions (♠) and (♥).

Chapter 5 contains the first part of the analysis of spaces of Lipschitz functions. It

begins with an observation that any complete metric space X can be endowed with a com-

plete bounded metric d′ so that Lip(X) is linearly order isomorphic to Lip(X ′) (Theorem

5.3). Since order isomorphisms between spaces of Lipschitz functions on bounded metric

spaces have been characterized [9], it leads to an immediate generalization to general

metric spaces (Theorem 5.5). The analogous result for lip(X) is quite a bit more delicate.

Here a property of a metric space which we call “almost expansive at∞” arises. Proposi-

tion 5.11 shows that if X is a complete metric space that is almost expansive at ∞, then

lip(X) is order isomorphic to lip(X, d′), where d′ is the same complete bounded metric

mentioned above. This result is only the first installment in a long intricate story. Proving

the converse, that is, determining when lipα(X) can be order isomorphic to lipα(Y ) for

a bounded metric space Y , has to wait for some of the machinery to be built in Chap-

ter 6, and is completed in Theorem 6.34. Further on, the issue of characterizing when

two spaces of the type lipα(X) are order isomorphic finds its resolution in Chapter 7

(Theorem 7.14).

In the long Chapter 6, we undertake an extensive analysis of comparing various spaces

of functions under order isomorphism. In the course of this analysis, some new properties

of metric spaces naturally arise. In addition to the condition of “almost expansive at ∞”

(definition following Theorem 5.5) already mentioned above, we point out the notions

of “proximally compact” (definition following Proposition 6.8), “expansive” (definition

following Lemma 6.22), and “expansive at ∞” (definition following Lemma 6.31). An-

other result worthy of interest is that in our general set up, every order isomorphism is

continuous with respect to the topology of uniform convergence on compact sets (Corol-

lary 6.4).

The final chapter, Chapter 8, concludes with some results characterizing order iso-

morphisms between spaces of the same type. At the end of the paper, we append tables

summarizing the comparison results obtained. It is worth pointing out that the remaining

open cases all concern spaces of differentiable functions. To take the space Cp(X) as an

example, we have the following open problems:

(a) Suppose that T : Cp(X) → Cp(Y ) is an order isomorphism. Must the associated

homeomorphism be differentiable on X? Cp on X? To illustrate the extent of our

ignorance, the answers are unknown even for p = 1 and X = Y = R.



8 D. H. Leung and W.-K. Tang

(b) Is it possible to have p 6= q and some open sets X and Y in Banach spaces such that

Cp(X) is order isomorphic to Cq(Y )? (Here, we require that Cp(X) contains a bump

function.)

1. General framework

Let X be a Hausdorff topological space and let A(X) be a subset of C(X), the space of

continuous real-valued functions on X. If f, g ∈ C(X), let {f < g} = {g > f} = {x ∈ X :

f(x) < g(x)}. We say that A(X) is articulated if the following conditions hold:

(A1) for any x ∈ X, there exist f ≤ g in A(X) such that x ∈ {f < g};
(A2) if f ≤ g are functions in A(X), and U is an open set in X containing a point

x ∈ {f < g}, then there exists u ∈ A(X), f ≤ u, such that x ∈ {f < u} ⊆ U ;

similarly, there exists v ∈ A(X), v ≤ g, such that x ∈ {v < g} ⊆ U ;

(A3) if f, g, h ∈ A(X), h ≤ f, g, and there exists x ∈ X with h(x) < f(x), g(x), then there

is a function u ∈ A(X), h ≤ u ≤ f, g, such that h(x) < u(x); a similar statement

holds if the “≤” and “<” signs are replaced by “≥” and “>” respectively.

Remark. Suppose that x ∈ {f < g} ∩ U , where f ≤ g are functions in A(X) and

U is an open set in X. By assumption (A2), there exists u ∈ A(X) such that f ≤ u

and x ∈ {f < u} ⊆ U . Choose ε > 0 such that u(x) > f(x) + ε. By assumption (A2)

again, there exists w ∈ A(X), w ≥ f , such that x ∈ {f < w} ⊆ {f + ε < u}. Thus

x ∈ {f < w} ⊆ {f < w} ⊆ U .

Let A(X) and A(Y ) be articulated subsets of C(X) and C(Y ) respectively, where X

and Y are Hausdorff topological spaces. For the remainder of the chapter, we consider a

fixed order isomorphism T : A(X)→ A(Y ).

Proposition 1.1. If h ≤ f, g are functions in A(X) such that {h < f} ∩ {h < g} = ∅,
then

{Th < Tf} ∩ {Th < Tg} = ∅.

Proof. Suppose that y ∈ {Th < Tf} ∩ {Th < Tg}. By assumption (A3), there exists

u ∈ A(Y ), Th ≤ u ≤ Tf, Tg, such that u(y) > Th(y). Thus h ≤ T−1u ≤ f, g and hence

T−1u = h. But then u = Th, contrary to the choice of u.

Proposition 1.2. If h ≤ f, g are functions in A(X) such that {h < f} ⊆ {h < g}, then

{Th < Tf} ⊆ {Th < Tg}.

Proof. It suffices to show that {Th < Tf} ⊆ {Th < Tg}. Suppose that there exists

y ∈ {Th < Tf} \ {Th < Tg}. By assumption (A2), there exists u ∈ A(Y ) such that

Th ≤ u, y ∈ {Th < u} and {Th < u} ∩ {Th < Tg} = ∅. By assumption (A3), there

exists v ∈ A(Y ) such that Th ≤ v ≤ Tf, u and v(y) > Th(y). In particular, we have

h ≤ T−1v ≤ f . Thus {h < T−1v} ⊆ {h < f} ⊆ {h < g}. On the other hand, since

{Th < v}∩ {Th < Tg} ⊆ {Th < u}∩ {Th < Tg} = ∅, it follows by applying Proposition

1.1 to T−1 that {h < T−1v} ∩ {h < g} = ∅. Since {h < T−1v} is open, we must have
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{h < T−1v} ∩ {h < g} = ∅. Thus we conclude that {h < T−1v} = ∅; equivalently,

h = T−1v. But then Th = v, contradicting the choice of v.

For each f ∈ A(X), let C+
f (X) be the collection of sets {f < g}, where f ≤ g ∈ A(X).

Similarly, let C−f (X) consist of the sets {g < f}, where f ≥ g ∈ A(X). Set

C±f (X) = {U : U ∈ C±f (X)}.

By Proposition 1.2, the map θ+
f : C+

f (X)→ C+

Tf (Y ) given by θ+
f ({f < g}) = {Tf < Tg}

is well-defined. By the same proposition and its counterpart for T−1, θ+
f is a bijection

and preserves the natural order of set inclusion in C+

f (X) and C+

Tf (Y ). Similarly, the map

θ−f : C−f (X) → C−Tf (Y ) defined by θ−f ({g < f}) = {Tg < Tf} for g ≤ f in A(X) is an

order preserving bijection.

Proposition 1.3. If A ∈ C+

f (X) and f ≤ g ∈ A(X), then f = g on A if and only if

Tf = Tg on θ+
f (A). Similarly, if A ∈ C−f (X) and g ≤ f ∈ A(X), then f = g on A if and

only if Tf = Tg on θ−f (A).

Proof. Suppose that f ≤ g, h in A(X), A = {f < h} ∈ C+

f (X), and f = g on A. Then

{f < h} ∩ {f < g} = ∅. By Proposition 1.1, {Tf < Th} ∩ {Tf < Tg} = ∅. Hence

{Tf < Th} ∩ {Tf < Tg} = ∅. Thus Tf ≥ Tg on θ+
f (A). Since Tf ≤ Tg, we have

Tf = Tg on θ+
f (A). The converse follows by symmetry. The second statement is entirely

analogous.

Lemma 1.4. Suppose that U∩θ+
f (A) 6= ∅, where f ∈ A(X), A ∈ C+

f (X) and U ∈ C+
Tf (Y ).

Then there exists a nonempty set V ∈ C+
f (X) such that

V ⊆ (θ+
f )−1(U) ∩A.

Proof. There exist g, h ∈ A(X), f ≤ g, h, such that U = {Tf < Th} and θ+
f (A) =

{Tf < Tg}. Since U is open, it follows from the assumption that

{Tf < Th} ∩ {Tf < Tg} 6= ∅.

By Proposition 1.1, {f < h} ∩ {f < g} 6= ∅. By assumption (A3), there exists u ∈ A(X)

such that f ≤ u ≤ g, h and f 6= u. Note that (θ+
f )−1(U) ∩ A = {f < h} ∩ {f < g}. Thus

the set V = {f < u} satisfies the conditions of the lemma.

We say that A(X) is a compatible set of functions if for any pair f ≤ g in A(X), any

x ∈ {f < g} and any closed set A in X such that x /∈ A, there exist open neighborhoods

U and V of x and u, v ∈ A(X) such that f ≤ u, v ≤ g, U ∩A = ∅ = V ∩A and

u =

{
f on U ,

g on A,
v =

{
g on V ,

f on A.

Compatibility of functions allows us to connect different mappings of the form θ±f .

Proposition 1.5. Let A(X) and A(Y ) be articulated, compatible sets of functions. Sup-

pose that f ≤ g are functions in A(X). Let A ∈ C+

f (X) and B ∈ C−g (X). If A ⊆
B ∩ {f < g}, then

θ+
f (A) ∩ {Tf < Tg} ⊆ θ−g (B).
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Similarly, if B ⊆ A ∩ {f < g}, then

θ−g (B) ∩ {Tf < Tg} ⊆ θ+
f (A).

Proof. We will prove the first assertion; the second one can be obtained similarly. Assume

to the contrary that there exists y such that y ∈ θ+
f (A)∩{Tf < Tg} and y /∈ θ−g (B). Since

A(Y ) is compatible, there exist u ∈ A(Y ), Tf ≤ u ≤ Tg, and an open neighborhood U

of y, such that U∩θ−g (B) = ∅, u = Tf on U , and u = Tg on θ−g (B). By property (A2), we

may assume that U ∈ C+
Tf (Y ). Let D = (θ+

f )−1(U). Then T−1u = f on D and T−1u = g

on B by Proposition 1.3. In particular, f = g on A∩D. By Lemma 1.4, we have A∩D 6= ∅,
yielding a contradiction to the assumption that f < g on A.

Say that A(X) is directed if for any f1, f2 ∈ A(X), there exist h1, h2 ∈ A(X) such

that h1 ≤ f1, f2 ≤ h2. For each x ∈ X, let Fx be the collection of all sets of the form

{Tf < Tg}, where f ≤ g are functions in A(X) such that x ∈ {f < g}. Define Fy in the

same manner for all y ∈ Y , using the map T−1 in place of T .

Lemma 1.6. Let A(X) and A(Y ) be articulated, compatible and directed sets of functions.

Suppose that y ∈
⋂
Fx for some x ∈ X. If y ∈ U for some U ∈ C±Tf (Y ), then x ∈

(θ±f )−1(U).

Proof. Suppose that the lemma fails. Consider the “+” case. We find f ≤ g in A(X)

such that y ∈ {Tf < Tg} and x /∈ {f < g}. By assumption (A1) and the fact that

A(X) is directed, there are functions h1, h2 ∈ A(X) such that h1 ≤ f, g ≤ h2 and

h1(x) < h2(x). We may assume that h1(x) < f(x) = g(x); otherwise f(x) = g(x) < h2(x)

and the proof is similar. By assumption (A2) and the Remark thereafter, there exists

v ∈ A(X), v ≤ g, such that x ∈ {v < g} and {v < g} ⊆ {h1 < g} ∩ ({f < g})c.
Applying the same assumption, we find w ∈ A(X), h1 ≤ w, such that x ∈ {h1 < w} and

{h1 < w} ⊆ {v < g} ∩ {h1 < f}. We use (A2) a third time to obtain u ∈ A(X), u ≤ f ,

such that x ∈ {u < f} ⊆ {h1 < w}. Applying (A3) as well, we may further assume that

h1 ≤ u. Observe that

{u < f} ⊆ {h1 < w} ⊆ {h1 < f},

where {u < f} ∈ C−f (X) and {h1 < w} ∈ C+

h1
(X), and

{h1 < w} ⊆ {v < g} ⊆ {h1 < g},

where {h1 < w} ∈ C+

h1
(X) and {v < g} ∈ C−g (X). We have

{Tu < Tf} ⊆ θ−f ({u < f}) ∩ {Th1 < Tf}

⊆ θ+
h1

({h1 < w}) ∩ {Th1 < Tg} ⊆ θ−g ({v < g}),

where, for the second inclusion, we apply the second half of Proposition 1.5 with A =

{h1 < w} and B = {u < f}; for the third inclusion, we apply the first half of the same

proposition with A = {h1 < w} and B = {v < g}. Hence {Tu < Tf} ⊆ θ−g ({v < g}).
Since f ≤ g and f = g on {v < g} ∈ C−g (X), we have Tf = Tg on θ−g ({v < g}) by

Proposition 1.3. However, u ≤ f , x ∈ {u < f} and y ∈
⋂
Fx imply that y ∈ {Tu < Tf}.

Thus y ∈ θ−g ({v < g}). Hence Tf(y) = Tg(y), contradicting y ∈ {Tf < Tg}.
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Proposition 1.7. Let A(X) and A(Y ) be articulated, compatible and directed sets of

functions. If x ∈ X and y ∈
⋂
Fx, then x ∈

⋂
Fy.

Proof. If A ∈ Fy, then A = {f < g}, where Tf ≤ Tg are functions in A(Y ) such that

y ∈ {Tf < Tg}. In other words, A = (θ+
f )−1(U), where U = {Tf < Tg} is a set in

C+
Tf (Y ) that contains y. By Lemma 1.6, x ∈ A. This proves that x ∈

⋂
Fy.

Proposition 1.8. Let A(X) and A(Y ) be articulated, compatible and directed sets of

functions. For each x ∈ X, Fx has the finite intersection property. Moreover, the inter-

section
⋂
Fx consists of at most one point.

Proof. Suppose that fi ≤ gi, 1 ≤ i ≤ k, are functions in X such that x ∈
⋂k
i=1{fi < gi}.

Since A(X) is directed, there exists g ∈ A(X) such that gi ≤ g, 1 ≤ i ≤ k. By assumption

(A2) and the Remark thereafter, there exist ui, wi ∈ A(X) with ui ≤ g and fi ≤ wi, such

that

x ∈ {ui < g} ⊆ {fi < wi} ⊆ {fi < wi} ⊆ {fi < gi}, 1 ≤ i ≤ k.

Applying assumption (A3), we find v in A(X) such that fi, ui ≤ v ≤ g, 1 ≤ i ≤ k, and

x ∈ {v < g}. Since

{v < g} ⊆ {ui < g} ⊆ {fi < wi} ⊆ {fi < g},

and {v < g} ∈ C−g (X), {fi < wi} ∈ C
+

fi(X), Propositions 1.5 and 1.2 imply that

{Tv < Tg} ∩ {Tfi < Tg} ⊆ {Tfi < Twi} ⊆ {Tfi < Tgi}.

As fi ≤ v ≤ g, we have {Tv < Tg} ⊆ {Tfi < Tg}, 1 ≤ i ≤ k. Therefore,

{Tv < Tg} ⊆ {Tv < Tg} ∩ {Tfi < Tg} ⊆ {Tfi < Tgi}, 1 ≤ i ≤ k.

Because v ≤ g, v 6= g and T is an order isomorphism, the set on the left is nonempty.

This proves that Fx has the finite intersection property.

Suppose that there are distinct points y1 and y2 in
⋂
Fx. By assumption (A1) and

the fact that A(X) is directed, there are h1 ≤ h2 in A(X) such that h1(x) < h2(x) and

Th1(yi) < Th2(yi), i = 1, 2. By assumption (A2), there exists V ∈ C−Th2
(Y ) such that

y1 /∈ V and y2 ∈ V . By the compatibility of functions in A(Y ), there exist u ∈ A(Y ) and

an open neighborhood U of y1 such that Th1 ≤ u ≤ Th2, u = Th1 on U and u = Th2

on V . By property (A2), we may assume that U ∈ C+
Th1

(Y ). Note that u = Th1 on

U ∈ C+

Th1
(Y ), Th1 ≤ u, and thus T−1u = h1 on (θ+

h1
)−1(U). Similarly, T−1u = h2 on

(θ−h2
)−1(V ). Since h1(x) 6= h2(x) and x ∈ (θ+

h1
)−1(U) ∩ (θ−h2

)−1(V ) by Lemma 1.6, we

have a contradiction.

Proposition 1.8 suggests that the set mappings θ±f , f ∈ A(X), may be induced by a

point mapping ϕ between “large” subsets of X and Y in the sense that x ∈ U ∈ C±f (X)

implies ϕ(x) ∈ θ±f (U). The key, evidently, is to guarantee that
⋂
Fx 6= ∅ for any x ∈ X.

This is obvious if compactness is present.

Theorem 1.9. Let X and Y be compact Hausdorff spaces, and let A(X) and A(Y ) be

articulated, compatible and directed sets of continuous real-valued functions on X and Y

respectively. If T : A(X) → A(Y ) is an order isomorphism, there is a homeomorphism
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ϕ : X → Y such that for any f ≤ g in A(X) and any open set W of X, f = g on W if

and only if Tf = Tg on ϕ(W ).

Proof. Since Y is compact, by Proposition 1.8, for each x ∈ X,
⋂
Fx contains exactly

one point in Y . Define ϕ : X → Y by letting ϕ(x) be the unique point in
⋂
Fx. Similarly,

for each y ∈ Y , we obtain a function β : Y → X by letting β(y) be the unique point

in
⋂
Fy. By Proposition 1.7, we see that ϕ and β are mutual inverses.

Suppose that ϕ is not continuous at x0 ∈ X. Since Y is compact Hausdorff, there is

a net (xγ) in X converging to x0 such that (ϕ(xγ)) converges to some z 6= ϕ(x0). By

assumption (A1) and the directedness of A(X), there are functions f ≤ g in A(X) such

that f(x0) < g(x0), Tf(z) < Tg(z) and Tf(ϕ(x0)) < Tg(ϕ(x0)). By assumption (A2),

there exists V ∈ C−Tg(Y ) containing ϕ(x0) such that z /∈ V . Since A(Y ) is a compatible

set of functions, there exist an open neighborhood U of z and u ∈ A(Y ) such that

Tf ≤ u ≤ Tg, U ∩ V = ∅, u = Tf on U and u = Tg on V . By property (A2), we

may assume that U ∈ C+
Tf (Y ). For a cofinal set of γ, we have ϕ(xγ) ∈ U . Hence by

Lemma 1.6, xγ ∈ (θ+
f )−1(U). Therefore, x0 ∈ (θ+

f )−1(U). Similarly, ϕ(x0) ∈ V implies

that x0 ∈ (θ−g )−1(V ). Since u = Tf on U ∈ C+

Tf (Y ), u = Tg on V ∈ C−Tg(Y ) and

Tf ≤ u ≤ Tg, we have T−1u = f on (θ+
f )−1(U) and T−1u = g on (θ−g )−1(V ) by

Proposition 1.3. It follows that f(x0) = T−1u(x0) = g(x0), contrary to the choice of f

and g. This proves that ϕ is continuous on X. By symmetry, β is continuous on Y . Thus

ϕ is a homeomorphism from X onto Y .

Finally, suppose that f ≤ g in A(X), and f = g on an open set W in X. Let x0 ∈W
and set U = {Tf < Tg} ∈ C+

Tf (Y ). If ϕ(x0) ∈ U , then x0 ∈ (θ+
f )−1(U) = {f < g}

by Lemma 1.6, which is impossible. Hence Tf(ϕ(x0)) = Tg(ϕ(x0)). This shows that

Tf = Tg on the set ϕ(W ). The converse follows by symmetry.

2. Near vector lattices

In this chapter we consider applications of Theorem 1.9, even to noncompact spaces X

and Y . A vector subspace A(X) of C(X) is said to be unital if it contains the constant

function 1. It separates points from closed sets if for any x0 ∈ X and any closed set A in

X not containing x0, there exists f ∈ A(X) such that f(x0) 6= 0 and f = 0 on A. A unital

vector subspace A(X) of C(X) that separates points from closed sets is a near vector

lattice if for any f ∈ A(X), there exists g ∈ A(X) such that g(x) = f(x) if f(x) ≥ 1,

g(x) = 0 if f(x) ≤ 0, and 0 ≤ g(x) ≤ 1 if 0 ≤ f(x) ≤ 1. It is easy to see that in this

definition, the numbers 0 and 1 may be replaced by any pair of real numbers a, b such

that a < b.

Lemma 2.1. Let A(X) be a near vector lattice. Suppose that f ∈ A(X) and a < b < c < d

are real numbers. Then there exists g ∈ A(X) such that a ≤ g ≤ d and

g(x) =


d if f(x) ≥ d,
a if f(x) ≤ a,
f(x) if b ≤ f(x) ≤ c.
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Proof. Let f1 ∈ A(X) be such that f1(x) = f(x) if f(x) ≥ b, f1(x) = a if f(x) ≤ a, and

a ≤ f1(x) ≤ b if a ≤ f(x) ≤ b. Then there exists f2 ∈ A(X) such that f2(x) = −f1(x) if

−f1(x) ≥ −c, f2(x) = −d if −f1(x) ≤ −d, and −d ≤ f2(x) ≤ −c if −d ≤ −f1(x) ≤ −c.
One may verify directly that g = −f2 satisfies the conclusions of the lemma.

The next proposition gives the motivation for considering near vector lattices.

Proposition 2.2. Let A(X) be a near vector lattice on a Hausdorff topological space X.

Define

B(X) = {f ∈ A(X) : 0 ≤ f ≤ 1}.

Then A(X) and B(X) are articulated, compatible and directed subsets of C(X).

Proof. Suppose that f ∈ A(X). Let g be as given by the definition of a near vector lattice.

Then g + 1 ∈ A(X) and g + 1 ≥ f, 0. If f1, f2 ∈ A(X), we can thus obtain g1, g2 ∈ A(X)

such that gi ≥ fi, 0, i = 1, 2. Then g1 + g2 ≥ f1, f2. Similarly, there exists h ∈ A(X) such

that h ≤ f1, f2. This shows that A(X) is directed.

Since A(X) is unital, property (A1) is obvious. Suppose that x ∈ {f < g} for some

f ≤ g in A(X) and let U be an open set containing x. Since A(X) separates points

from closed sets, there exists h ∈ A(X) such that h(x) 6= 0 and h = 0 outside U .

We may assume that h(x) = c > 0. By Lemma 2.1, there exists w ∈ A(X) such that

0 ≤ w ≤ c, w(z) = 0 if h(z) ≤ 0, and w(z) = c if h(z) ≥ c. Set u = f + w. Then f ≤ u,

u(x) = f(x) + c > f(x) and

{f < u} = {w > 0} ⊆ {h > 0} ⊆ U.

Thus u fulfills the conditions in (A2). Let us also observe that w = u−f is a bounded func-

tion. The function v in (A2) may be constructed similarly. Suppose that f, g, h ∈ A(X),

h ≤ f, g, and h(x) < f(x), g(x). Choose a > 0 such that f(x), g(x) > h(x) + a. Set

U = {f > h+a}∩{g > h+a}. Then U is an open neighborhood of x. By the above, there

exists a bounded nonnegative function w ∈ A(X) such that w(x) > 0 and {w > 0} ⊆ U .

By rescaling, we may assume that 0 ≤ w ≤ 1. Set u = h+ aw. Then h ≤ u ∈ A(X) and

h(x) < u(x). If w(z) > 0, then z ∈ U and hence u(z) ≤ h(z)+a ≤ f(z), g(z). If w(z) = 0,

then u(z) = h(z) ≤ f(z), g(z). Therefore, u ≤ f, g. This verifies one of the directions of

condition (A3). The other direction may be obtained similarly.

Finally, we show that A(X) is compatible. Again, we limit ourselves to the construc-

tion of the function “u” in the definition. Let f ≤ g be functions in A(X), x ∈ {f < g},
and let A be a closed set such that x /∈ A. Set a = (g − f)(x) > 0. By property (A2),

there exists h1 ∈ A(X), f ≤ h1, such that

x ∈ {f < h1} ⊆ {g − f > a/2} ∩Ac.

Set h2 = h1 − f . We may assume that h2(x) = 1. Since A(X) is a near vector lattice,

there exists v ∈ A(X) such that

v(z)


= (g − f − 2ah2)(z) if (g − f − 2ah2)(z) ≥ 0,

= −a/3 if (g − f − 2ah2)(z) ≤ −a/3,
∈ [−a/3, 0] if −a/3 ≤ (g − f − 2ah2)(z) ≤ 0.
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By Lemma 2.1, there exists w ∈ A(X) such that 1/6 ≤ w ≤ 1/4 and

w(z) =

{
1/4 if h2(z) ≥ 1/4,

1/6 if h2(z) ≤ 1/6.

Set u = f + v + 4a(w − 1/6) ∈ A(X). By direct verification, the set

U = {g − f − 2ah2 < −a/2} ∩ {h2 > 1/4}

is an open neighborhood of x. Also,

U ⊆ {h2 ≥ 1/4} ⊆ {h2 > 0} = {f < h1} ⊆ Ac.

If z ∈ U , then v(z) = −a/3 and w(z) = 1/4. Thus u(z) = f(z). If h2(z) = 0, then

w(z) = 1/6 and (g − f − 2ah2)(z) = (g − f)(z) ≥ 0, hence v(z) = (g − f)(z). It follows

that u(z) = f(z) + (g − f)(z) = g(z). In particular, u(z) = g(z) if z ∈ A.

If (g− f − 2ah2)(z) < 0, then h2(z) > 0, so (g− f)(z) > a/2. Thus a/2− 2ah2(z) < 0

and hence h2(z) > 1/4. In this case, −a/3 ≤ v(z) ≤ 0 and w(z) = 1/4. It follows that

f(z) ≤ u(z) = f(z) + v(z) + a/3 ≤ f(z) + a/3 < f(z) + (g − f)(z) = g(z).

If (g−f−2ah2)(z) ≥ 0, then v(z) = (g−f−2ah2)(z) ≥ 0. In particular, u(z) ≥ f(z).

We also have

u(z) = g(z)− 2ah2(z) + 4a(w(z)− 1/6).

Either h2(z) ≤ 1/6, in which case w(z) = 1/6 and thus u(z) ≤ g(z); or h2(z) ≥ 1/6 and

hence

u(z) ≤ g(z)− a/3 + 4a(w(z)− 1/6) ≤ g(z).

This completes the proof that f ≤ u ≤ g.

Since B(X) contains a largest element 1 and a smallest element 0, it satisfies prop-

erty (A1) and is also directed. It is easy to see that B(X) inherits property (A3) and

compatibility from A(X). Suppose that f ≤ g are functions in B(X), and U is an open

neighborhood of a point x ∈ {f < g}. Since A(X) satisfies property (A2), there exists

w ∈ A(X), f ≤ w, such that x ∈ {f < w} ⊆ U . By property (A3) for A(X), there exists

u ∈ A(X) such that f ≤ u ≤ w, g and f(x) < u(x). But then f ≤ u ≤ g and hence

u ∈ B(X). This shows that B(X) satisfies property (A2) as well.

Let X be a Hausdorff topological space and let A(X) be a vector subspace of C(X)

that separates points from closed sets. Let R∞ be the set [−∞,∞] endowed with the order

topology. The map i : X → RA(X)
∞ given by i(x)(f) = f(x) is a homeomorphic embedding.

We identify X with i(X), and denote the closure of X in RA(X)
∞ by AX. Then AX is a

compact Hausdorff space. Every function f ∈ A(X) has a unique continuous R∞-valued

extension to AX, given by the formula f̂(x) = x(f) for all x ∈ AX. If f is bounded, then

f̂ is real-valued (and bounded) on AX.

Lemma 2.3. Let A(X) be a near vector lattice. Assume that f ∈ A(X), x0 ∈ AX and U

is an open neighborhood of x0(f) in R∞. Then there exists g ∈ A(X) such that g ≥ 0,

ĝ(x0) = 0 and

{x ∈ AX : ĝ(x) < 1} ⊆ {x ∈ AX : x(f) ∈ U}.
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Proof. First consider the case where a = x0(f) ∈ R. Since {x ∈ AX : x(f) ∈ U} = {x ∈
AX : x(f − a) ∈ U ′}, where U ′ = {t − a : t ∈ U}, we may further assume that a = 0.

Choose ε > 0 such that (−3ε, 3ε) ⊆ U . By Lemma 2.1, there are functions g1, g2 in A(X)

such that ε ≤ g1, g2 ≤ 2ε,

g1(x) =

{
2ε if f(x) ≥ 2ε,

ε if f(x) ≤ ε,
g2(x) =

{
2ε if −f(x) ≥ 2ε,

ε if −f(x) ≤ ε.

Let g = ε−1(g1 + g2 − 2ε). Since g1, g2 ≥ ε, we have g ≥ 0. Moreover, g(x) = 1 if

f(x) /∈ (−2ε, 2ε) and g(x) = 0 if −ε ≤ f(x) ≤ ε. Suppose that x ∈ AX and x(f) /∈ U .

Then V = {z ∈ AX : |z(f)| > 2ε} is an open neighborhood of x in AX. Since g = 1 on

V ∩X, we have ĝ(x) = 1 by continuity of ĝ and density of X in AX. This proves that

ĝ(x) < 1 implies x(f) ∈ U . We also have g(x) = 0 if f(x) ∈ [−ε, ε], x ∈ X. Thus, g = 0

on W ∩X, where W = {z ∈ AX : z(f) ∈ (−ε, ε)} is an open neighborhood of x0. Hence

ĝ(x0) = 0 by continuity.

Next, consider the case where x0(f) = ∞. If x0(f) = −∞, the argument is similar.

Choose m ∈ R such that (m,∞] ⊆ U . By Lemma 2.1, there exists g1 ∈ A(X) such that

m+ 1 ≤ g1 ≤ m+ 2, g1(x) = m+ 2 if f(x) ≥ m+ 2, and g1(x) = m+ 1 if f(x) ≤ m+ 1.

Set g = m+ 2− g1. Then g ≥ 0. Moreover, {f̂ > m+ 2} is a neighborhood of x0 in AX
and g = 0 on {f̂ > m + 2} ∩ X. Hence ĝ(x0) = 0. Similarly, ĝ = 1 on {f̂ < m + 1}.
Therefore, f̂ ≥ m + 1 on the set {ĝ < 1}. In particular, ĝ(x) < 1 implies x(f) > m and

thus x(f) ∈ U .

Proposition 2.4. Let A(X) be a near vector lattice. If U is an open neighborhood of a

point x0 in AX, then there exists a function f ∈ A(X), 0 ≤ f ≤ 1, such that f̂(x0) = 1

and f̂ = 0 outside U .

Proof. There exist f1, . . . , fn ∈ A(X) and open neighborhoods V1, . . . , Vn of x0(fi) in

R∞ such that
⋂n
i=1 Ui ⊆ U , where Ui = {x ∈ AX : x(fi) ∈ Vi}. By Lemma 2.3, there

exist g1, . . . , gn ∈ A(X) such that gi ≥ 0, ĝi(x0) = 0, Wi = {ĝi < 1} ⊆ Ui, 1 ≤ i ≤ n. Let

g =
∑n
i=1 gi ∈ A(X). Then g ≥ 0, ĝ(x0) = 0, and ĝ ≥ 1 outside U . By Lemma 2.1, there

exists h ∈ A(X) such that 1/3 ≤ h ≤ 2/3, h(x) = 2/3 if g(x) ≥ 2/3, and h(x) = 1/3

if g(x) ≤ 1/3. Set f = 2 − 3h ∈ A(X). Then 0 ≤ f ≤ 1. Since {ĝ < 1/3} is an open

neighborhood of x0 in AX and f = 1 on {ĝ < 1/3}∩X, we have f̂(x0) = 1 by continuity.

Similarly, {ĝ > 2/3} is an open neighborhood of AX \ U and f = 0 on {ĝ > 2/3} ∩X.

Thus f̂ = 0 on AX \ U .

Corollary 2.5. Let A(X) be a near vector lattice. If U and V are open subsets of AX
such that U ⊆ V , then there exists a function f ∈ A(X), 0 ≤ f ≤ 1, such that

f̂(x) =

{
1, x ∈ U,
0, x /∈ V.

Proof. By Proposition 2.4, for each x ∈ U , there exists fx ∈ A(X), 0 ≤ fx ≤ 1, such that

f̂x(x) = 1 and f̂x = 0 outside V . The sets {f̂x > 1/2}, x ∈ U , form an open cover of U .

Hence there exist x1, . . . , xn ∈ U such that U ⊆
⋃n
i=1{f̂xi

> 1/2}. Let g =
∑n
i=1 fxi

.

Then g ∈ A(X), g ≥ 0, and ĝ(x) > 1/2 for all x ∈ U and ĝ = 0 outside V . By Lemma

2.1, there exists h ∈ A(X), 1/4 ≤ h ≤ 1/2, such that
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h(x) =

{
1/2 if g(x) ≥ 1/2,

1/4 if g(x) ≤ 1/4.

Since g(x) > 1/2 for all x ∈ U ∩X, we have h(x) = 1/2 for all x ∈ U ∩X. By continuity

of ĥ and the density of X in AX, ĥ(x) = 1/2 for all x ∈ U . Similarly, ĥ(x) = 1/4 on the

set {ĝ < 1/4} which contains AX \ V . Finally, take f = 4h− 1. Then f has the desired

properties.

Proposition 2.6. Let A(X) be a near vector lattice. Then the space Ab(AX) consisting

of all functions f̂ , where f is a bounded function in A(X), is a near vector lattice of

functions on AX.

Proof. Obviously Ab(AX) is a vector subspace of C(AX). Since A(X) is unital, so is

Ab(AX). By Proposition 2.4, Ab(AX) separates points from closed sets. Let f be a

bounded function in A(X). Since A(X) is a near vector lattice, there exists u ∈ A(X)

such that u(x) = f(x) if f(x) ≥ 2/3, u(x) = 1/3 if f(x) ≤ 1/3, and 1/3 ≤ u(x) ≤ 2/3

if 1/3 ≤ f(x) ≤ 2/3. Note that u is a bounded function. By Corollary 2.5, there exists

v ∈ A(X) such that 0 ≤ v ≤ 1, v̂ = 1 on {û > 2/3} and v̂ = 0 outside {û > 1/3}. Let

g = u+ v/3− 1/3. Then g is a bounded function in A(X) and hence ĝ ∈ Ab(AX). Since

{f̂ ≤ 0} ⊆ {f̂ < 1/3} ⊆ {f < 1/3},

where {f > 1/3} ⊆ X and the closure is taken in AX, we have û = 1/3 and v̂ = 0 on

{f̂ ≤ 0}. Thus f̂(x) ≤ 0 implies ĝ(x) = 0. Similarly,

{f̂ ≥ 1} ⊆ {f̂ > 2/3} ⊆ {f > 2/3}

and hence on the set {f̂ ≥ 1}, û = f̂ ≥ 2/3 and v̂ = 1. Therefore, f̂(x) ≥ 1 implies

ĝ(x) = f̂(x). Observe that u ≥ 1/3 and v ≥ 0, and thus g ≥ 0. Also, since {f̂ < 1} ⊆
{f < 1} and u < 1 on {f < 1}, we have û ≤ 1 on {f̂ < 1}. Thus f̂(x) < 1 implies

ĝ(x) ≤ û(x) ≤ 1.

Corollary 2.7. Let A(X) be a near vector lattice. Then Ab(AX) and

B(AX) = {f̂ : f ∈ A(X), 0 ≤ f ≤ 1}

are articulated, compatible and directed sets of functions on AX.

Proof. Since B(AX) is precisely the set {f̂ ∈ Ab(AX) : 0 ≤ f̂ ≤ 1}, the conclusions

follow from Propositions 2.6 and 2.2.

Proposition 2.8. Let A(X) be a near vector lattice. Suppose that x0 ∈ AX and f, g are

functions in A(X) such that f̂ ≥ ĝ on an open neighborhood of x0 in AX. Then there

exists h ∈ A(X) such that h ≥ f, g and ĥ = f̂ on an open neighborhood of x0 in AX.

Proof. Let U and V be open sets in AX such that x0 ∈ U ⊆ U ⊆ V and f̂ ≥ ĝ on V .

Then u = f − g ∈ A(X) and u ≥ 0 on V ∩X. Since A(X) is a near vector lattice, there

exists v ∈ A(X) such that v(x) = u(x) if u(x) ≥ −1, v(x) = −2 if u(x) ≤ −2, and

−2 ≤ v(x) ≤ −1 if −2 ≤ u(x) ≤ −1. By Corollary 2.5, there exists w ∈ A(X) such that

0 ≤ w ≤ 1, ŵ(x) = 1 if x ∈ U , and ŵ(x) = 0 if x /∈ V . Let h = g + v + 2 − 2w ∈ A(X).

If x ∈ U ∩ X, then u(x) ≥ 0 and hence v(x) = u(x) ≥ 0; also, w(x) = 1. Therefore,

h(x) = g(x) + u(x) + 2− 2w(x) = f(x). Thus ĥ = f̂ on U .
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If x ∈ X and f(x) − g(x) = u(x) < 0, then x /∈ V . Hence w(x) = 0. Observe

that v ≥ −2. Thus h(x) = g(x) + v(x) + 2 ≥ g(x) > f(x). Finally, if x ∈ X and

f(x)− g(x) = u(x) ≥ 0, then v(x) = u(x). Since w(x) ≤ 1 as well,

h(x) = g(x) + u(x) + 2− 2w(x) ≥ g(x) + u(x) = f(x) ≥ g(x).

This completes the proof that h ≥ f, g.

A subset S of an ordered vector space E is said to be order bounded if there exist

u, v ∈ E such that u ≤ x ≤ v for all x ∈ A. A compactification of a Hausdorff topological

space X is a compact Hausdorff space X̂ that contains a dense subset which is homeo-

morphic to X. If X̂ is a compactification of X, we will regard X as a dense subspace

of X̂.

Proposition 2.9. Let A(X) and A(Y ) be near vector lattices and T : A(X)→ A(Y ) be

an order isomorphism. Then for any order bounded subset S of A(X), there are compact-

ifications X̂ and Ŷ of X and Y respectively, and a homeomorphism ϕS : X̂ → Ŷ such

that for any f, g ∈ S and any open set U in X̂, f ≥ g on U ∩X if and only if Tf ≥ Tg

on ϕS(U) ∩ Y .

Proof. By translation, we may assume that T0 = 0 and there is a function f1 ∈ A(X)

such that 0 ≤ f ≤ f1 for all f ∈ S. Let

f0 = 2f1 + T−1(2Tf1) + 1 + T−11.

Then 0 ≤ f ≤ 1
2f0, 0 ≤ Tf ≤ 1

2Tf0 for all f ∈ S, f0 ≥ 1 and Tf0 ≥ 1. Define vector

subspaces F (X) and F (Y ) of C(X) and C(Y ) respectively by

F (X) = {f/f0 : f ∈ A(X)} and F (Y ) = {g/Tf0 : g ∈ A(Y )}.

If f ∈ A(X), there exists u ∈ A(X) such that u(x) = f(x) if f(x) ≥ 1, u(x) = 0 if

f(x) ≤ 0, and 0 ≤ u(x) ≤ 1 if 0 ≤ f(x) ≤ 1. Then u/f0 ∈ F (X). Since f0 ≥ 1, if

f/f0 ∈ F (X) and (f/f0)(x) ≥ 1, then f(x) ≥ 1 and hence (u/f0)(x) = (f/f0)(x). If

(f/f0)(x) ≤ 0, then f(x) ≤ 0 and hence (u/f0)(x) = 0. If 0 ≤ (f/f0)(x) ≤ 1, then either

0 ≤ f(x) ≤ 1 or f(x) ≥ 1. In the former case, 0 ≤ u(x) ≤ 1 and thus 0 ≤ (u/f0)(x) ≤ 1.

In the latter case, u(x) = f(x) and thus 0 ≤ (u/f0)(x) = (f/f0)(x) ≤ 1. Obviously, F (X)

is unital. It also separates points from closed sets since A(X) does so. This proves that

F (X) is a near vector lattice. Similarly, F (Y ) is a near vector lattice.

Denote by X̂ and Ŷ the F (X)- and F (Y )-compactifications of X and Y respectively.

By Corollary 2.7, the sets

B(X̂) = {f̂ : f ∈ F (X), 0 ≤ f ≤ 1} and B(Ŷ ) = {ĝ : g ∈ F (Y ), 0 ≤ g ≤ 1}

are articulated, compatible and directed sets of functions. It is easy to check that the

map T̂ : B(X̂) → B(Ŷ ) defined by T̂ (f̂) = [T (ff0)/Tf0]ˆ is an order isomorphism. By

Theorem 1.9, there is a homeomorphism ϕS : X̂ → Ŷ such that for any û ≤ v̂ in B(X̂)

and any open set U of X̂, û = v̂ on U if and only if T̂ û = T̂ v̂ on ϕS(U).

Now suppose that f, g ∈ S, U is an open set in X̂, and f ≥ g on U ∩ X. Fix

y0 ∈ ϕS(U) ∩ Y . Then x0 = ϕ−1
S (y0) ∈ U . Since 0 ≤ f/f0, g/f0 ≤ 1 are functions

in F (X), we have (f/f0)ˆ, (g/f0)ˆ ∈ B(X̂). Moreover, f/f0 ≥ g/f0 on U ∩ X implies

that (f/f0)ˆ≥ (g/f0)ˆ on U . By Proposition 2.8, there exists h1 ∈ F (X) such that h1 ≥
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f/f0, g/f0 and ĥ1 = (f/f0)ˆ on an open neighborhood V of x0 in X̂. Since F (X) is a

near vector lattice, there exists h ∈ F (X) such that for x ∈ X, we have h(x) = h1(x)

if h1(x) ≤ 3/4, h(x) = 1 if h1(x) ≥ 1, and 3/4 ≤ h(x) ≤ 1 if 3/4 ≤ h1(x) ≤ 1. By

choice of f0, 0 ≤ f/f0, g/f0 ≤ 1/2. Thus h ≥ f/f0, g/f0 ≥ 0. Clearly h ≤ 1. Therefore,

ĥ ∈ B(X̂). Note that h1 = f/f0 ≤ 3/4 on V ∩X. Thus h = h1 = f/f0 on V ∩X. Hence

ĥ = (f/f0)ˆon the open neighborhood V of x0. By the previous paragraph, T̂ (f/f0)ˆ = T̂ ĥ

on ϕS(V ). But T̂ ĥ ≥ T̂ (g/f0)ˆ. Therefore, [Tf/Tf0]ˆ≥ [Tg/Tf0]ˆon ϕS(V ). Consequently,

Tf ≥ Tg on ϕS(V ) ∩ Y . Since x0 ∈ V , we have y0 ∈ ϕS(V ). Thus Tf(y0) ≥ Tg(y0).

As this holds for all y0 ∈ ϕS(U) ∩ Y , we see that Tf ≥ Tg on ϕS(U) ∩ Y . The reverse

implication follows by symmetry.

The next result allows us to remove the dependence of the homeomorphism on the

particular order bounded set in Proposition 2.9.

Lemma 2.10. Let X and Y be Hausdorff topological spaces and let T : A(X)→ A(Y ) be

a map between vector subspaces A(X) and A(Y ) of C(X) and C(Y ) respectively. Suppose

that S1 ⊆ S2 are subsets of A(X). Assume that for i = 1, 2, there are compactifications

X̂i and Ŷi of X and Y respectively, and a homeomorphism ϕi : X̂i → Ŷi such that for

all f, g ∈ Si and any open set U in X̂i, f ≥ g on U ∩ X if and only if Tf ≥ Tg on

ϕi(U) ∩ Y . Also, assume that if y ∈ Y and D is a closed subset of Y not containing y,

then there exist f, g ∈ S1 with Tf(y) 6= Tg(y) and Tf = Tg on D. Then for all f, g ∈ S2

and all open sets U in X̂1, f ≥ g on U ∩X implies that Tf ≥ Tg on ϕ1(U) ∩ Y .

Proof. Let U be an open set in X̂1. For notational convenience, let U1 = U . Then there

is an open set U2 in X̂2 such that U1 ∩X = U2 ∩X. First we show that

ϕ1(U1) ∩ Y
Y
⊆ ϕ2(U2) ∩ Y

Y
.

Suppose otherwise. Let D = ϕ2(U2) ∩ Y
Y

. Then D is a closed set in Y and there exists

y ∈ ϕ1(U1) ∩ Y such that y /∈ D. By the assumption, there exist f ′, g′ ∈ S1 ⊆ S2 with

Tf ′(y) 6= Tg′(y) and Tf ′ = Tg′ on D. In particular, Tf ′ = Tg′ on ϕ2(U2)∩Y and hence

f ′ = g′ on U2 ∩X = U1 ∩X. But then Tf ′ = Tg′ on ϕ1(U1) ∩ Y . This contradicts the

fact that Tf ′(y) 6= Tg′(y).

Now assume that f, g ∈ S2 and f ≥ g on U ∩ X = U1 ∩ X = U2 ∩ X. Then

Tf ≥ Tg on ϕ2(U2)∩Y . By continuity of Tf and Tg, we have Tf ≥ Tg on ϕ2(U2) ∩ Y
Y

,

which contains ϕ1(U1) ∩ Y
Y

by the previous paragraph. This proves that Tf ≥ Tg on

ϕ1(U1) ∩ Y = ϕ1(U) ∩ Y , as desired.

Theorem 2.11. Let A(X) and A(Y ) be near vector lattices and let T : A(X) → A(Y )

be an order isomorphism. There are compactifications X̂ and Ŷ of X and Y respectively,

and a homeomorphism ϕ : X̂ → Ŷ such that for any f, g ∈ A(X) and any open set U

in X̂, f ≥ g on U ∩X if and only if Tf ≥ Tg on ϕ(U) ∩ Y .

Proof. Without loss of generality, we may assume that T0 = 0. Let f0 = T−11 ∈ A(X).

Since A(X) is directed by Proposition 2.2, there exists f1 ∈ A(X) such that f1 ≥ f0,1.

The set S = {f ∈ A(X) : 0 ≤ f ≤ f1} is an order bounded subset of A(X) such that

f ∈ S for any f ∈ A(X) with 0 ≤ f ≤ 1, and T−1g ∈ S for any g ∈ A(Y ) with 0 ≤ g ≤ 1.
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By Proposition 2.9, there are compactifications X̂ and Ŷ of X and Y respectively, and

a homeomorphism ϕ : X̂ → Ŷ such that for any h1, h2 ∈ S and any open set U in X̂,

h1 ≥ h2 on U ∩X if and only if Th1 ≥ Th2 on ϕ(U) ∩ Y . Suppose that f, g ∈ A(X) and

U is an open set in X̂. We show that f ≥ g on U ∩X implies Tf ≥ Tg on ϕ(U)∩Y . The

converse follows by symmetry. Choose u1, u2 ∈ A(X) such that

u1 ≤ 0, f, g and f1, f, g ≤ u2.

Let S′ = {h ∈ A(X) : u1 ≤ h ≤ u2}. Then S′ is an order bounded set in A(X)

containing S. By Proposition 2.9, there are compactifications X̂ ′ and Ŷ ′ of X and Y

respectively, and a homeomorphism ϕ′ : X̂ ′ → Ŷ ′ such that for any h1, h2 ∈ S′ and any

open set U ′ in X̂ ′, h1 ≥ h2 on U ′ ∩X if and only if Th1 ≥ Th2 on ϕ′(U ′) ∩X. Suppose

that y ∈ Y and D is a closed set in Y not containing y. There is a closed set D1 ∈ AY
such that D1 ∩ Y = D. By Proposition 2.4, there exists h ∈ A(Y ), 0 ≤ h ≤ 1, such

that h(y) 6= 0 and ĥ(z) = 0 for all z ∈ D1, where ĥ is the continuous extension of h

onto AY . In particular, h(z) = 0 for all z ∈ D. Since the functions 0 = T−10 and T−1h

lie in S, this verifies that Lemma 2.10 applies to the map T : A(X) → A(Y ), the sets

S ⊆ S′ ⊆ A(X) and the homeomorphisms ϕ : X̂ → Ŷ and ϕ′ : X̂ ′ → Ŷ ′. Now f, g ∈ S′
and f ≥ g on U ∩X, where U is an open set in X̂. By the lemma, Tf ≥ Tg on the set

ϕ(U) ∩ Y .

In view of Theorem 2.11, it would be of interest to provide examples of near vector

lattices. If X is a Hausdorff topological space and A(X) is a subspace of C(X), let Ab(X)

consist of the bounded functions in A(X), and let Aloc(X) be the space of all functions

f ∈ C(X) such that for every x0 ∈ X, there are an open neighborhood U of x0 and

a function g ∈ A(X) such that f = g on U . The space Aloc
b (X) is the subspace of all

bounded functions in Aloc(X).

Examples A. Let X be a Hausdorff topological space unless otherwise specified.

(a) Any unital vector sublattice A(X) of C(X) that separates points from closed sets is

a near vector lattice.

(b) If A(X) is a near vector lattice, then so is Ab(X).

(c) Let X be an open set in a Banach space. For 1 ≤ p ≤ ∞, let Cp(X) be the space of

all p-times continuously differentiable real-valued functions on X. If Cp(X) separates

points from closed sets, then Cp(X) is a near vector lattice.

(d) Let X be an open set in a Banach space and let 1 ≤ p ≤ ∞. Denote by Cp(X)

the space of all continuous functions f ∈ C(X) such that f|X ∈ Cp(X). Denote by

Cp∗ (X) the subspace of all functions f ∈ Cp(X) such that Dkf is bounded on X for

0 ≤ k ≤ p (0 ≤ k < ∞ if p = ∞). These spaces (considered as subspaces of C(X))

are near vector lattices provided that they separate points from closed sets.

Proof. Items (a) and (b) are obvious. For (c) and (d), let f be a given function in one

of the respective spaces. Choose a C∞ function h : R → R such that h(t) = 0 if t ≤ 0,

h(t) = t if t ≥ 1, and 0 ≤ h(t) ≤ 1 if 0 ≤ t ≤ 1. Then it is easy to verify that

g = h ◦ f is a function with the desired properties in the definition of a near vector

lattice.
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3. Spaces C(X) with X realcompact

Recall that a completely regular Hausdorff topological space X is realcompact if for any

x ∈ βX \ X, there exists f ∈ C(X) such that f̂(x) = ∞, where f̂ is the continuous

(extended real-valued) extension of f onto βX. The aim of this chapter is to prove the

following theorem. When X and Y are compact, this result was obtained by F. Cabello

Sánchez [8].

Theorem 3.1. Let X and Y be realcompact spaces and let T : C(X) → C(Y ) be an

order isomorphism. Then there exists a homeomorphism ϕ : X → Y such that for any

open set U in X and any f, g ∈ C(X), f ≥ g on U if and only if Tf ≥ Tg on ϕ(U).

Note that if f0 ∈ C(X) is a function that is strictly positive on X, then {f/f0 :

f ∈ C(X)} = C(X). Thus, taking A(X) = C(X) and A(Y ) = C(Y ) in the proof of

Proposition 2.9, the spaces F (X) and F (Y ) are C(X) and C(Y ) respectively. Hence the

compactifications X̂ and Ŷ in Theorem 2.11 are equal to βX and βY respectively. By the

theorem, there is a homeomorphism ϕ : βX → βY such that for any f, g ∈ C(X) and any

open set U in βX, f ≥ g on U ∩X if and only if Tf ≥ Tg on ϕ(U)∩Y . To complete the

proof of Theorem 3.1, it remains to show that ϕ maps X onto Y . The argument below

is inspired by results of a similar nature in [2, 4].

Lemma 3.2. Let Y be a realcompact space and let y0 ∈ βY \Y . There exist open sets Un
and Vn in βY , n ∈ N, such that

(a) Un ⊆ Vn for all n;

(b) y0 ∈
⋃∞
n=m Un for all m;

(c) Y
⋂⋂∞

m=1

⋃∞
n=m Vn = ∅;

(d) Vn ∩ Vm = ∅ if n 6= m.

Proof. There exists 0 ≤ f ∈ C(Y ) such that f̂(y0) = ∞, where f̂ is the continuous

extension of f onto βY . Let

Yk =
{
y ∈ Y : f(y) ∈

∞⋃
n=0

[4n+ k, 4n+ k + 1]
}
, 0 ≤ k ≤ 3.

Then Y =
⋃3
k=0 Yk. Hence there exists k such that y0 ∈ Yk, where the closure is taken

in βY . Without loss of generality, assume that y0 ∈ Y0. Define

Un = f̂−1(4n− 1/2, 4n+ 3/2) and Vn = f̂−1(4n− 1, 4n+ 2) for all n.

Clearly, Un and Vn are open sets in βY such that Un ⊆ Vn. Moreover,

y0 ∈ Y0 ⊆
∞⋃
n=1

Un =

m−1⋃
n=1

Un ∪
∞⋃
n=m

Un for any m.

Since f̂(y) is finite for all y ∈
⋃m−1
n=1 Un, we have y0 /∈

⋃m−1
n=1 Un. Thus y0 ∈

⋃∞
n=m Un. Sim-

ilarly, if y ∈
⋃∞
n=m Vn, then f̂(y) ≥ 4m− 1. Thus y ∈

⋂∞
m=1

⋃∞
n=m Vn implies f̂(y) =∞

and hence y /∈ Y . Finally, if y ∈ Vm, then f̂(y) ∈ [4m− 1, 4m+ 2]. Hence y /∈ Vn for any

n 6= m.
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Lemma 3.3. Let Y be a subspace of a topological space Z and let (Vn) be a sequence of

open sets in Z such that

(a) Y ∩
⋂∞
m=1

⋃∞
n=m Vn = ∅;

(b) Vn ∩ Vm = ∅ if n 6= m.

Suppose that gn : Y → R is a continuous function on Y such that {gn 6= 0} ⊆ Vn for

all n. Define g : Y → R by g(y) = gn(y) if y ∈ Y ∩ Vn and 0 otherwise. Then g is

continuous on Y .

Proof. Since the sets Vn are pairwise disjoint, g is well-defined. Suppose that y0 ∈ Y . If

y0 /∈
⋃∞
n=1 Vn, choose an open set U in Z containing y0 such that U ∩

⋃∞
n=1 Vn = ∅. If

y ∈ U∩Y , then g(y) = 0 = g(y0). Hence g is continuous at y0. Now assume y0 ∈
⋃∞
n=1 Vn.

Then there exists m such that y0 /∈
⋃∞
n=m Vn. Thus y0 ∈

⋃m−1
n=1 Vn. Pick 1 ≤ n0 < m such

that y0 ∈ Vn0 . Then y0 /∈ Vn, 1 ≤ n 6= n0 < m, and y0 /∈
⋃∞
n=m Vn. Hence there exists an

open neighborhood W of y0 in Z such that W ∩
⋃
n 6=n0

Vn = ∅. As a result, g = gn0
on

W ∩ Y . Therefore, g is continuous at y0.

Proposition 3.4. Let X and Y be realcompact spaces. Suppose that T : C(X)→ C(Y )

is a bijection. Let ϕ : βX → βY be a homeomorphism such that for any f, g ∈ C(Y ) and

any open set V in βY , f = g on Y ∩ V if and only if T−1f = T−1g on X ∩ ϕ−1(V ).

Then ϕ(X) = Y .

Proof. By symmetry, it suffices to show that ϕ(X) ⊆ Y . Assume that there exists x0 ∈ X
such that ϕ(x0) = y0 ∈ βY \ Y . Choose sets Un and Vn in βY as in Lemma 3.2. For

each n, there exists a continuous function hn : βY → [0, 1] such that hn = 1 on Un and

hn = 0 outside Vn. Consider the function gn : Y → R given by gn(y) = hn(y)T (n1X)(y).

Taking Z = βY in Lemma 3.3 and applying that lemma, we find a continuous function

g : Y → R such that g(y) = gn(y) if y ∈ Y ∩ Vn and 0 otherwise. Now g = T (n1X) on

Y ∩Un. By the assumption, T−1g = n1X on X∩ϕ−1(Un). As a result, T−1g(x) ∈ [m,∞)

on X ∩ ϕ−1(
⋃∞
n=m Un). Since y0 ∈

⋃∞
n=m Un, we have x0 ∈ ϕ−1(

⋃∞
n=m Un), for all m.

But this implies that T−1g(x0) ∈ [m,∞) for all m, which is impossible.

Proof of Theorem 3.1. We have seen above that there exists a homeomorphism ϕ : βX →
βY such that for any open set U in βX, f ≥ g on U∩X if and only if Tf ≥ Tg on ϕ(U)∩Y .

By Proposition 3.4, ϕ(X) = Y . Thus the restriction of ϕ to X is a homeomorphism from

X onto Y satisfying Theorem 3.1.

Corollary 3.5. Let X and Y be realcompact spaces. Then C(X) is order isomorphic

to C(Y ) if and only if X are Y are homeomorphic.

If X is compact Hausdorff, then C(X) and Cb(X) are identical. For a noncompact

realcompact space X, one can distinguish C(X) and Cb(X) order isomorphically. It is

a classical fact that every space C(X) is (linearly) order isomorphic to C(Y ) for some

realcompact Y (see, e.g., [16, Theorems 3.9 and 8.8(a)]).

Corollary 3.6. Let X be a realcompact space and Y be a topological space. If X is not

compact, then C(X) is not order isomorphic to Cb(Y ).
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Proof. By [16, Theorem 3.9], Cb(Y ) is (linearly) order isomorphic to Cb(Y
′) for some

Hausdorff completely regular space Y ′. Also, Cb(Y
′) is (linearly) order isomorphic to

C(βY ′). Thus, if C(X) is order isomorphic to Cb(Y ), then it is order isomorphic to

C(βY ′). By Corollary 3.5, X and βY ′ are homeomorphic. Therefore, X is compact.

4. Function spaces defined on metric spaces

In the previous chapter, we have seen that an order isomorphism between C(X) spaces

with X realcompact leads to a homeomorphism of the underlying topological spaces. In

this chapter, we will see that a similar result holds in many instances when the underlying

spaces X and Y are metric spaces.

The following result can be shown using the proof of [23, Corollary 4.3]. In the proof,

it suffices to assume that the set of extensions of the bounded functions in A(X) to the

compactification AX separate points from closed sets in AX; similarly for A(Y ). By

Proposition 2.4, near vector lattices possess this latter property. A set of points S in a

metric space is separated if there exists ε > 0 such that d(x1, x2) > ε whenever x1 and

x2 are distinct points in S.

Proposition 4.1. Let A(X) and A(Y ) be near vector lattices defined on metric spaces

X and Y respectively. Assume that A(Y ) = [Aloc(Y ) or Aloc
b (Y )] or

(♠1) Y is complete, and for any separated sequence (yn) in Y , there exists g ∈ A(Y )

such that the sequence (g(yn)) diverges in R.

If ϕ : AX → AY is a homeomorphism, then ϕ(X) ⊆ Y .

Let us say that a vector subspace A(Y ) of C(Y ) satisfies the condition

(♠2) if g ∈ A(Y ) and h ∈ C∞(R) with ‖h(k)‖∞ <∞ for all k ≥ 1, then h ◦ g ∈ A(Y ).

Moreover, A(Y ) satisfies (♠) if it satisfies both (♠1) and (♠2).

Lemma 4.2. Let Y be a metric space and let A(Y ) be a vector subspace of C(Y ) that

satisfies condition (♠). Assume that 1 ≤ g0 ∈ A(Y ). Then

F (Y ) = {g/g0 : g ∈ A(Y )}

is a vector subspace of C(Y ) that satisfies condition (♠1).

Proof. Since A(Y ) satisfies (♠), Y is complete. Let (yn) be a separated sequence in Y . In

the first case, assume that (g0(yn)) is bounded. By using a subsequence if necessary, we

may assume that (g0(yn)) converges to a real number a. Because g0 ≥ 1, we have a 6= 0.

Since A(Y ) satisfies condition (♠1), there exists g ∈ A(Y ) such that (g(yn)) diverges

in R. Then g/g0 ∈ F (Y ) and ((g/g0)(yn)) diverges in R.

Next, consider the case where (g0(yn)) is unbounded. By using a subsequence if nec-

essary, we may assume that g0(yn+1) > 2g0(yn) for all n. One can then construct a

function h ∈ C∞(R) with ‖h(k)‖∞ <∞ for all k ≥ 1, such that h(g0(y2n)) = g0(y2n) and

h(g0(y2n−1)) = 0 for all n. By condition (♠2), g = h ◦ g0 ∈ A(Y ). Then g/g0 ∈ F (Y ) and

((g/g0)(yn)) diverges in R.
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Theorem 4.3. Let A(X) and A(Y ) be near vector lattices defined on metric spaces X

and Y respectively. Assume that A(X) = [Aloc(X) or Aloc
b (X)] or A(X) satisfies (♠),

and the same holds for A(Y ). If T : A(X)→ A(Y ) is an order isomorphism, then there

is a homeomorphism ϕ : X → Y such that for any f, g ∈ A(X) and any open set U in X,

f ≥ g on U if and only if Tf ≥ Tg on ϕ(U).

Proof. By Theorem 2.11, there are compactifications X̂ and Ŷ of X and Y respec-

tively, and a homeomorphism ϕ : X̂ → Ŷ such that for any f, g ∈ A(X) and any

open set U in X̂, f ≥ g on U ∩ X if and only if Tf ≥ Tg on ϕ(U) ∩ Y . To com-

plete the proof it suffices to show that ϕ(X) = Y . We will show that ϕ(X) ⊆ Y , the

reverse inclusion follows by symmetry. From the proofs of Theorem 2.11 and Proposi-

tion 2.9, we see that the compactification Ŷ is induced by a near vector lattice F (Y ),

where

F (Y ) = {g/Tf0 : g ∈ A(Y )}

for some function f0 ∈ A(X) such that Tf0 ≥ 1. If A(Y ) = [Aloc(Y ) or Aloc
b (Y )], then

F (Y ) = [F loc(Y ) or F loc
b (Y )] respectively. (In the latter case, observe that there is a real

constant function M such that 1 ≤ Tf0 ≤ M .) By Proposition 4.1, ϕ(X) ⊆ Y . Now

suppose that A(Y ) satisfies (♠). By Lemma 4.2, F (Y ) satisfies condition (♠1). Thus

ϕ(X) ⊆ Y by Proposition 4.1.

Let (X, d) be a metric space. The space of Lipschitz functions Lip(X) consists of all

f : X → R such that there is a finite constant K with |f(x) − f(y)| ≤ Kd(x, y) for all

x, y ∈ X. The space lip(X) of little Lipschitz functions consists of all f ∈ Lip(X) such

that

lim
d(x,y)→0

|f(x)− f(y)|
d(x, y)

= 0.

The space of uniformly continuous real-valued functions on X is denoted by U(X). A set

of functions A(X) is said to be uniformly separating (cf. [13]; see also [9]) if whenever

U and V are subsets of X with d(U, V ) > 0, then there exists f ∈ A(X) such that

f = 1 on U , and f = 0 on V . Lip(X) and U(X) are always uniformly separating, while

lip(X) may not be. However, if 0 < α < 1, then lipα(X) = lip(X, dα) is uniformly

separating.

Examples B. Let X be a metric space.

(a) LetA(X) be one of the spacesC(X),Cb(X), Liploc(X), Liploc
b (X), liploc(X), liploc

b (X),

U loc(X) or U loc
b (X). In case A(X) = [liploc(X) or liploc

b (X)], we also assume that

A(X) separates points from closed sets. Then A(X) is a near vector lattice such that

A(X) = [Aloc(X) or Aloc
b (X)].

(b) Let A(X) be one of the spaces Lip(X), Lipb(X), lip(X), lipb(X), U(X) or Ub(X),

where X is a complete metric space. In case A(X) = [lip(X) or lipb(X)], we also

assume that A(X) is uniformly separating. Then A(X) is a near vector lattice that

satisfies (♠).

(c) Let X be an open subset of a Banach space and let 1 ≤ p ≤ ∞. Suppose that A(X)

is either Cp(X) or Cpb (X), and A(X) separates points from closed sets. Then A(X)

is a near vector lattice such that A(X) = [Aloc(X) or Aloc
b (X)].
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(d) Let X be an open subset of a Banach space and let 1 ≤ p ≤ ∞. Suppose that A(X) is

one of the spaces Cp(X), Cpb (X) and Cp∗ (X), and A(X) separates points from closed

sets in X. Then A(X) is a near vector lattice (on X) such that A(X) = [Aloc(X) or

Aloc
b (X)] or A(X) satisfies condition (♠).

Proof. (a) If A(X) is one of the spaces in (a), then A(X) is a unital vector sublattice

of C(X) that separates points from closed sets. Hence A(X) is a near vector lattice by

Example A(a). Obviously, A(X) = [Aloc(X) or Aloc
b (X)].

(b) All of the spaces A(X) in (b) are unital vector sublattices of C(X) that separate

points from closed sets. Thus they are near vector lattices by Example A(a). We show that

all of them satisfy (♠). By hypothesis, X is complete. Let (xn) be a separated sequence

in X. Set

U = {x2n−1 : n ∈ N} and V = {x2n : n ∈ N}.

Then d(U, V ) > 0. Since A(X) is uniformly separating, there exists f ∈ A(X) such that

f = 1 on U , and f = 0 on V . In particular, (f(xn)) diverges. Thus A(X) satisfies (♠1).

Condition (♠2) for any of the spaces A(X) follows easily from the Mean Value Theorem.

(c) Let A(X) be as given. Then A(X) is a near vector lattice by Examples A(c)

and (b). Clearly, if A(X) = Cp(X) then A(X) = Aloc(X), and if A(X) = Cpb (X) then

A(X) = Aloc
b (X).

(d) The spaces Cp(X) and Cp∗ (X) are near vector lattices by Example A(d). Then

it follows that Cpb (X) is a near vector lattice by Example A(b). If A(X) = [Cp(X) or

Cpb (X)], then A(X) = [Aloc(X) or Aloc
b (X)] respectively. We show that the space Cp∗ (X)

satisfies condition (♠). Obviously, X is complete. Let (xn) be a separated sequence in X.

Denote by ‖ · ‖ the norm on the Banach space E containing X. There exists ε > 0 such

that ‖xn − xm‖ > 3ε if n 6= m. Since Cp∗ (X) separates points from closed sets, there

exists h ∈ Cp∗ (E) such that h(0) > 0 and h(x) = 0 if ‖x‖ > ε. Define f : X → R by

f(x) = h(x−x2n) if ‖x−x2n‖ ≤ ε for some n, and f(x) = 0 otherwise. Then f ∈ Cp∗ (X)

and (f(xn)) diverges. Thus Cp∗ (X) satisfies condition (♠1). Condition (♠2) is obvious.

Examples B provide a large number of spaces to which Theorem 4.3 is applicable. We

seek to further strengthen the theorem into one which gives a functional representation

of the order isomorphism T . Consider the following property of a vector subspace A(X)

of C(X) at a point x ∈ X:

(♥x) Either x is an isolated point of X, or if f ∈ A(X), f ≥ 0 and f(x) = 0, then there

exists g ∈ A(X) such that x ∈ {f < g} ∩ {g < 0}.

Proposition 4.4. Let A(X) and A(Y ) be near vector lattices. Suppose that T : A(X)→
A(Y ) is a bijective function such that there is a homeomorphism ϕ : X → Y such that for

any f, g ∈ A(X) and any open set U in X, f ≥ g on U if and only if Tf ≥ Tg on ϕ(U).

Assume that A(X) satisfies condition (♥x). Set y = ϕ(x). Then there is a nondecreasing

function Φ(y, ·) : R→ R such that

Tf(y) = Φ(y, f(ϕ−1(y))) for all f ∈ A(X).

Proof. It suffices to show that if f, g ∈ A(X) and f(x) = g(x), then Tf(y) = Tg(y).

Indeed, once this has been shown, define Φ(y, ·) : R → R by Φ(y, t) = (Tt)(y), where
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t denotes the constant function with value t. Given f ∈ A(X), let t = f(x). Then

Tf(y) = Tt(y) = Φ(y, t). Since T is order preserving, Φ(y, ·) : R→ R is nondecreasing.

We now proceed to prove the assertion above. Assume, if possible, that there are

f, g ∈ A(X) such that f(x) = g(x) and Tf(y) > Tg(y). In particular, from the assump-

tion, x cannot be an isolated point of X. By the assumption, A(X) satisfies condition

(♥x). Let a = Tf(y)−Tg(y) > 0. SinceA(Y ) is a near vector lattice, there exists h ∈ A(Y )

such that h(z) = Tf(z)− Tg(z) if Tf(z)− Tg(z) ≥ a/2, h(z) = 0 if Tf(z)− Tg(z) ≤ 0,

and 0 ≤ h(z) ≤ a/2 if 0 ≤ Tf(z) − Tg(z) ≤ a/2. Then h ≥ 0 and h = Tf − Tg on a

neighborhood of y. Let u = T−1(h+ Tg) ∈ A(X). Since Tu ≥ Tg, we have u ≥ g. Also,

Tu = Tf on a neighborhood of y, and hence u = f on a neighborhood of x. In particular,

u(x) = f(x) = g(x). Thus 0 ≤ u − g ∈ A(X) and (u − g)(x) = 0. Since A(X) satisfies

condition (♥x), there exists v ∈ A(X) such that

x ∈ {u− g < v} ∩ {v < 0} = {u < g + v} ∩ {g + v < g}. (4.1)

Now Tu ≤ T (g+ v) on the set ϕ({u < g+ v}), and T (g+ v) ≤ Tg on ϕ({g+ v < g}). By

(4.1), y lies in the closure of both of these sets. Thus, by continuity, Tu(y) ≤ T (g+v)(y) ≤
Tg(y). However, Tu(y) = Tf(y) > Tg(y), yielding a contradiction. This completes the

proof of the proposition.

The next theorem is an immediate consequence of Theorem 4.3 and Proposition 4.4.

Theorem 4.5. Let A(X) and A(Y ) be near vector lattices defined on metric spaces X

and Y respectively. Assume that A(X) = [Aloc(X) or Aloc
b (X)] or A(X) satisfies con-

dition (♠), and the same holds for A(Y ). Suppose that T : A(X) → A(Y ) is an order

isomorphism, and let ϕ : X → Y be the associated homeomorphism obtained in The-

orem 4.3. Let x ∈ X and y = ϕ(x). If A(X) and A(Y ) satisfy conditions (♥x) and

(♥y) respectively, then there is an increasing homeomorphism Φ(y, ·) : R → R such that

Tf(y) = Φ(y, f(ϕ−1(y))) for all f ∈ A(X).

Proof. Proposition 4.4 applies to both T and T−1 at x and y = ϕ(x). Thus there

are nondecreasing functions Φ(y, ·) : R → R and Ψ(x, ·) : R → R such that Tf(y) =

Φ(y, f(ϕ−1(y))) and T−1g(x) = Ψ(x, g(ϕ(x))) for all f ∈ A(X) and all g ∈ A(Y ). Con-

sidering the equations TT−1t = t and T−1Tt = t for all constant functions t shows that

Φ(y, ·) and Ψ(x, ·) are mutual inverses. Thus Φ(y, ·) : R → R is an increasing bijection

and so must be a homeomorphism.

Say that A(X) satisfies condition (♥) if it satisfies condition (♥x) at all x ∈ X.

Examples C. Let X be a metric space unless otherwise stated.

(a) If A(X) is a near vector lattice that satisfies condition (♥x) at some x ∈ X, then

Ab(X) satisfies the same condition at x.

(b) If A(X) is a unital vector sublattice of C(X) that separates points from closed sets

and satisfies condition (♥), then Aloc(X) and Aloc
b (X) satisfy condition (♥).

(c) Let A(X) be one of the spaces C(X), Lip(X), lipα(X), where 0 < α < 1, or

U(X). Then A(X) is a unital vector sublattice of C(X) that separates points from

closed sets and satisfies condition (♥); hence the same is true of Ab(X), Aloc(X)

and Aloc
b (X).
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(d) Let X be an open set in a Banach space and let 1 ≤ p ≤ ∞. Suppose that A(X) is

one of the spaces Cp(X) or Cpb (X). If A(X) separates points from closed sets, then

A(X) satisfies condition (♥).

(e) Let X be an open set in a Banach space and let 1 ≤ p ≤ ∞. Suppose that A(X) is

one of the spaces Cp(X) or Cpb (X). If A(X) separates points from closed sets, then

A(X) satisfies condition (♥).

(f) Let X be an open set in a Banach space and let 1 ≤ p ≤ ∞. If Cp∗ (X) sepa-

rates points from closed sets, then A(X) = Cp∗ (X) satisfies condition (♥x) for all

x ∈ X.

Proof. (a) Suppose that f ∈ Ab(X), f ≥ 0 and f(x) = 0, where x is an accumulation

point of X. Then there exists h ∈ A(X) such that x ∈ {f < h} ∩ {h < 0}. In particular,

h(x) = 0. Since A(X) is a near vector lattice, by Lemma 2.1, there exists g ∈ Ab(X)

such that g(z) = h(z) if |h(z)| ≤ 1. Then g = h on an open neighborhood of x. Hence

x ∈ {f < g} ∩ {g < 0}.
(b) Suppose that 0 ≤ f ∈ Aloc(X) and f(x) = 0 for an accumulation point x of X.

Then there exist an open neighborhood U of x and f ′ ∈ A(X) such that f = f ′ on U .

Since A(X) is a vector lattice, we may replace f ′ by f ′ ∨ 0 if necessary to assume that

f ′ ≥ 0. Because A(X) satisfies condition (♥), there exists g′ ∈ A(X) such that x ∈
{f ′ < g′} ∩ {g′ < 0}. By continuity, 0 = f ′(x) ≤ g′(x) ≤ 0; hence g′(x) = 0. Thus

V = {|g′| < 1}∩U is an open neighborhood of x. Let g = (g′∧1)∨−1. Then g ∈ Aloc
b (X),

{f < g} ∩ V = {f ′ < g′} ∩ V and {g < 0} ∩ V = {g′ < 0} ∩ V.
Therefore, x ∈ {f < g} ∩ {g < 0}. This shows that Aloc(X) and Aloc

b (X) satisfy (♥).

(c) Let 0 ≤ f ∈ A(X) and let x0 be an accumulation point in X, where f(x0) = 0.

Choose a sequence (xn) in X converging to x0 such that 0 < d(xn+1, x0) < d(xn, x0)/5

for all n. Set rn = d(xn, x0). Define gn : X → R by

gn(x) =


(f(xn) + rn)

[
1− 2

rn
d(x, xn)

]+

if n is even,

−
[
rn
2
− d(x, xn)

]+

if n is odd.

Then gn are disjointly supported functions in Lip(X), the Lipschitz constant of gn is

at most 2(f(xn)/rn + 1), and ‖gn‖∞ ≤ f(xn) + rn. It follows that g =
∑
gn converges

uniformly on X, and thus g ∈ U(X) ⊆ C(X).

Observe that if m < n, d(y, xn) < rn/2 and d(z, xm) < rm/2, then

d(y, z) ≥ d(z, x0)− d(y, x0) ≥ rm
2
− 3rn

2
>
rm
2
− 3rm

10
=
rm
5

(4.2)

and

|g(y)− g(z)| ≤ |g(y)|+ |g(z)| ≤ f(xn) + rn + f(xm) + rm. (4.3)

If A(X) = Lip(X), then there is a constant K such that

f(xn) = f(xn)− f(x0) ≤ Kd(xn, x0) = Krn for all n.

By (4.2), (4.3) and the fact that each gn is Lipschitz with constant at most 2(K+ 1), one

can conclude that g ∈ Lip(X).
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If A(X) = lipα(X), 0 < α < 1, then

lim
n

f(xn)

rαn
= lim

n

f(xn)− f(x0)

d(xn, x0)α
= 0. (4.4)

As observed above, gn is Lipschitz with respect to the metric d with constant at most

2(f(xn)/rn + 1). Let y, z ∈ X. If y, z /∈
⋃
B(xn, rn/2), then g(y) = g(z) = 0. Suppose

there exists n such that y ∈ B(xn, rn/2) and z /∈
⋃
m6=nB(xm, rm/2). Then g(y) = gn(y)

and g(z) = gn(z). Thus

|g(y)− g(z)|
d(y, z)α

≤ 2

(
f(xn)

rn
+ 1

)
d(y, z)1−α

= 2

(
f(xn) + rn

rαn

)(
d(y, z)

rn

)1−α

. (4.5)

Also, since ‖gn‖∞ ≤ f(xn) + rn, we have

|g(y)− g(z)|
d(y, z)α

≤ 2(f(xn) + rn)

d(y, z)α
. (4.6)

If d(y, z) ≤ rn, use the estimate (4.5); while if d(y, z) > rn, employ the estimate (4.6). In

either case, keeping (4.4) in mind, we can conclude that

|g(y)− g(z)|
d(y, z)α

→ 0 as d(y, z)→ 0,

and the above expression is bounded independently of y, z and n.

On the other hand, assume that y ∈ B(xm, rm/2) and z ∈ B(xn, rn/2), where m < n.

Then g(y) = gn(y) and g(z) = gm(z). By (4.2) and (4.3),

|g(y)− g(z)|
d(y, z)α

≤ f(xn) + rn + f(xm) + rm
(rm/5)α

.

In particular, the left hand side is bounded independently of y, z, m and n. Furthermore,

since d(y, z)→ 0 implies m→∞, one can deduce that

lim
d(y,z)→0

|g(y)− g(z)|
d(y, z)α

= 0.

Therefore, g ∈ lipα(X).

Finally, g(xn) > f(xn) if n is even, g(xn) < 0 if n is odd, and (xn) converges to x0.

Hence x0 ∈ {f < g} ∩ {g < 0}.
(d), (e), (f) (refer to [10, Step 1.5, p. 293]) Suppose that 0 ≤ f ∈ A(X), respec-

tively A(X), and f(x0) = 0 for some x0 ∈ X. Then Df(x0) = 0. Let E be the ambient

Banach space containing X. Choose a nonzero x∗ ∈ E∗ and define h : X → R by h(x) =

x∗(x − x0). Then h ∈ Cp(X). Since Df(x0) = 0, we have x0 ∈ {f < h} ∩ {h < 0}. Let

γ : R→ R be a C∞ function such that γ(t) = t if |t| ≤ 1, and γ(t) = 0 if |t| > 2. Clearly,

γ(k) is bounded on R for any k ∈ N∪{0}. In particular, g = γ ◦h ∈ Cpb (X). Furthermore,

‖Dkg(x)‖ ≤ |γ(k)(h(x))| ‖x∗‖k for all x ∈ X and all k with 1 ≤ k ≤ p (1 ≤ k < ∞ if

p =∞) and g has a continuous extension g onto X. Thus g ∈ Cp∗ (X) ⊆ Cpb (X) ⊆ Cp(X).

Since g = h on a neighborhood of x0, it is clear that x0 ∈ {f < g}∩ {g < 0}. This proves

that Cp(X) and Cpb (X) satisfy condition (♥), and Cp(X), Cpb (X), and Cp∗ (X) satisfy

(♥x) for all x ∈ X.
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It remains to prove that Cp(X) and Cpb (X) satisfy condition (♥x) for any x ∈ X \X
whenever these spaces separate points from closed sets. Let x0 ∈ X \X and assume that

f ∈ Cp(X), f ≥ 0 and f(x0) = 0. Choose a sequence of distinct points (xn) in X that

converges to x0. Then there are open neighborhoods Un of xn, Un ⊆ X, diamUn → 0,

such that Un ∩
⋃
m 6=n Um = ∅ for all n (where the closures are taken in X). Denote by

(E, ‖ · ‖) the Banach space containing X. Since Cp(X) separates points from closed sets,

there exists h ∈ Cp(E) such that h(0) = 1 and h(x) = 0 if ‖x‖ ≥ 1. We may assume that

f is bounded; otherwise, replace f with γ ◦ f , where γ is as in the previous paragraph.

Choose εn > 0 so that ‖x− xn‖ < εn implies x ∈ Un. Define g : X → R by

g(x) =


f(x2n−1) +

1

n
h

(
x− x2n−1

ε2n−1

)
if ‖x− x2n−1‖ < ε2n−1,

− 1

n
h

(
x− x2n

ε2n

)
if ‖x− x2n‖ < ε2n,

0 otherwise.

Since (f(xn)) converges to 0, it is easy to see that g is a function in Cpb (X). Moreover,

x2n−1 ∈ {f < g} and x2n ∈ {g < 0} for all n. Thus x0 ∈ {f < g} ∩ {g < 0}.

In general, the space Cp∗ (X) may not satisfy condition (♥).

Example D. Let X = (0, 1) ⊆ R. The space C2
∗(X) fails condition (♥0).

Proof. Consider the function f : [0, 1]→ R, f(x) = x. Clearly, f ∈ C2
∗(X). Assume that

there exists g ∈ C2
∗(X) such that 0 ∈ {f < g}∩{g < 0}. Then there exists a sequence (xn)

in (0, 1) strictly decreasing to 0 such that x2n−1 = f(x2n−1) < g(x2n−1) and g(x2n) < 0

for all n. By the Mean Value Theorem, there exists tn ∈ (xn+1, xn) such that

g′(tn) =
g(xn)− g(xn+1)

xn − xn+1

>
xn

xn − xn+1
> 1 if n is odd,

< 0 if n is even.

By the Mean Value Theorem again, there exists sn ∈ (tn+1, tn) such that

|g′′(sn)| =
∣∣∣∣g′(tn)− g′(tn+1)

tn − tn+1

∣∣∣∣ ≥ 1

tn − tn+1
→∞.

This contradicts the assumption that g′′ is bounded on (0, 1).

5. More on spaces of Lipschitz functions

The main result in [9] shows that for a pair of complete metric spaces X and Y with

finite diameters, the spaces Lip(X) and Lip(Y ) are order isomorphic if and only if X

and Y are Lipschitz homeomorphic. In this chapter, we show that for any complete

metric space X, Lip(X) is (linearly) order isomorphic to some Lip(X ′), where X ′ is a

complete metric space with finite diameter. This result is a close relative of Proposition

1.7.5 in [27]. We include complete proofs since the statements are slightly different and

some of the estimates obtained in the proofs will be useful subsequently. The result may
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be exploited to give a characterization of pairs of complete metric spaces which support

order isomorphic spaces of Lipschitz functions.

Let (X, d) be a metric space with a distinguished point e. Given f ∈ Lip(X), let

L(f) = sup
p 6=q

|f(p)− f(q)|
d(p, q)

be its Lipschitz constant. Let ξ ∈ Lip(X) be the function ξ(x) = d(x, e) ∨ 1. Define

another metric d′ on X by

d′(p, q) = sup
f∈Lip(X)

L(f),|f(e)|≤1

∣∣∣∣f(p)

ξ(p)
− f(q)

ξ(q)

∣∣∣∣. (5.1)

In the following proposition we summarize some of the properties of the metric d′.

Proposition 5.1.

(a) d′ is a bounded metric on X. In fact, d′(p, q) ≤ 4 for all p, q ∈ X.

(b) For any p, q ∈ X, let

ρ(p, q) =
d(p, q)

ξ(p) ∨ ξ(q)
.

Then

ρ(p, q) ≤ d′(p, q) ≤ 3ρ(p, q) for all p, q ∈ X.

(c) If p, q ∈ X and ξ(p) ≤ ξ(q), then

d′(p, q) ≤ d′(p, q)ξ(p) ≤ 3d(p, q).

(d) If X is complete with respect to d, then it is complete with respect to d′.

Proof. (a) Suppose that f ∈ Lip(X) with L(f), |f(e)| ≤ 1. For any p, q ∈ X,

|f(p)| ≤ |f(e)|+ |f(p)− f(e)| ≤ 1 + d(p, e) ≤ 2ξ(p).

Hence ∣∣∣∣f(p)

ξ(p)
− f(q)

ξ(q)

∣∣∣∣ ≤ 4.

Thus d′(p, q) ≤ 4 for all p, q. It is clear that d′ is a metric on X.

(b) Fix p, q ∈ X. We may assume that ξ(p) ≤ ξ(q). Define f : {e, p, q} → R by

f(e) = 0, f(p) = d(p, e) and

f(q) = d(p, e)− d(p, q).

Note that the definition is consistent even if some of the points e, p, q coincide. Further-

more, f is a Lipschitz function with respect to d with Lipschitz constant at most 1. Hence

f extends to a function in Lip(X, d), still denoted by f , with Lipschitz constant at most 1

(see e.g. [27, Theorem 1.5.6]). Obviously |f(e)| = 0 ≤ 1. By definition of d′, we have

d′(p, q) ≥
∣∣∣∣f(p)

ξ(p)
− f(q)

ξ(q)

∣∣∣∣ = f(p)

(
1

ξ(p)
− 1

ξ(q)

)
+
d(p, q)

ξ(q)
≥ ρ(p, q).

On the other hand, consider f ∈ Lip(X) with L(f), |f(e)| ≤ 1. Then

|f(p)| ≤ |f(p)− f(e)|+ |f(e)| ≤ d(p, e) + 1 ≤ 2ξ(p).
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Hence∣∣∣∣f(p)

ξ(p)
− f(q)

ξ(q)

∣∣∣∣ =

∣∣∣∣f(p)

(
1

ξ(p)
− 1

ξ(q)

)
+
f(p)− f(q)

ξ(q)

∣∣∣∣
≤ 2ξ(p)

(
1

ξ(p)
− 1

ξ(q)

)
+
d(p, q)

ξ(q)
=

1

ξ(q)
[2(ξ(q)− ξ(p)) + d(p, q)]

≤ 3
d(p, q)

ξ(q)
= 3ρ(p, q).

Taking supremum over all f ∈ Lip(X) with L(f), |f(e)| ≤ 1 gives d′(p, q) ≤ 3ρ(p, q).

(c) The first inequality is obvious since ξ(p) ≥ 1. Suppose that ξ(p) ≤ ξ(q). By (b),

d′(p, q)ξ(p) ≤ 3ρ(p, q)ξ(p) ≤ 3d(p, q).

(d) Assume that (X, d) is complete. Suppose that (xn) is a d′-Cauchy sequence in X.

If (ξ(xn)) is unbounded, by taking a subsequence if necessary, we may assume that

ξ(xn+1) > 2ξ(xn) for all n. In particular, ξ(xn) = d(xn, e) if n > 1. If m < n, then

d(xn, xm) ≥ d(xn, e)− d(xm, e) ≥ ξ(xn)− ξ(xm) ≥ 1
2ξ(xn).

Hence

d′(xn, xm) ≥ ρ(xn, xm) =
d(xn, xm)

ξ(xn)
≥ 1

2
.

This contradicts the fact that (xn) is d′-Cauchy. Therefore, (ξ(xn)) is bounded. By (b),

d(xm, xn) ≤ Cd′(xm, xn) for some constant C <∞, and hence (xn) is d-Cauchy. Let x0

be the limit of (xn) with respect to d. By (c), d′(xn, x0) ≤ 3d(xn, x0) → 0. Thus (xn)

converges to x0 with respect to d′.

Proposition 5.2. Suppose that f is a real-valued function on X. Then f ∈ Lip(X, d) if

and only if f/ξ ∈ Lip(X, d′).

Proof. Suppose that f ∈ Lip(X, d). Set c = L(f) ∨ |f(e)| ∨ 1. Let g = f/c. Then

L(g), |g(e)| ≤ 1. For any p, q ∈ X, p 6= q,

cd′(p, q) ≥ c
∣∣∣∣g(p)

ξ(p)
− g(q)

ξ(q)

∣∣∣∣ =

∣∣∣∣f(p)

ξ(p)
− f(q)

ξ(q)

∣∣∣∣.
This shows that f/ξ ∈ Lip(X, d′). Moreover, L′(f/ξ) ≤ L(f) ∨ |f(e)| ∨ 1, where L′(g)

denotes the Lipschitz constant of g with respect to d′.

Suppose that g = f/ξ ∈ Lip(X, d′) and let p, q be distinct points in X. We may

assume that ξ(p) ≤ ξ(q). By Proposition 5.1(a), d′ ≤ 4. Hence

|g(q)| ≤ |g(q)− g(e)|+ |g(e)| ≤ L′(g)d′(q, e) + |g(e)| ≤ 4L′(g) + |g(e)|.

Then

|f(p)− f(q)| ≤ |g(p)− g(q)|ξ(p) + |g(q)|(ξ(q)− ξ(p))
≤ L′(g)d′(p, q)ξ(p) + (4L′(g) + |g(e)|)d(p, q)

≤ (7L′(g) + |g(e)|)d(p, q),

where we have used Proposition 5.1(c) in the last inequality. This proves that f ∈
Lip(X, d).

The results of Propositions 5.1 and 5.2 can be summarized as follows.
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Theorem 5.3. Let (X, d) be a complete metric space with a distinguished point e. Let X ′

be the metric space (X, d′), where d′ is given by equation (5.1). Then X ′ is a complete

metric space of finite diameter and Lip(X) is linearly order isomorphic to Lip(X ′) =

Lipb(X
′).

We can now extend the characterization of order isomorphisms between spaces of

Lipschitz functions defined on metric spaces with finite diameter [9] to general metric

spaces. First we recall

Theorem 5.4 ([9, Theorem 1, see also Theorem 9.3]). Let X and Y be complete metric

spaces with finite diameter. If T : Lip(X) → Lip(Y ) is an order isomorphism, then

there are a Lipschitz homeomorphism ϕ : X → Y and a function Φ : Y × R → R
such that Φ(y, ·) : R → R is an increasing homeomorphism for all y ∈ Y and Tf(y) =

Φ(y, f(ϕ−1(y))) for all f ∈ Lip(X) and all y ∈ Y .

Theorem 5.5. Let (X, dX) and (Y, dY ) be complete metric spaces with distinguished

points eX and eY respectively. Define

ξ(x) = 1 ∨ dX(x, eX) and ζ(y) = 1 ∨ dY (y, eY ).

Then Lip(X) is order isomorphic to Lip(Y ) if and only if there are a homeomorphism

ϕ : X → Y and a finite constant C > 0 such that

1

C
ρX(p, q) ≤ ρY (ϕ(p), ϕ(q)) ≤ CρX(p, q) (5.2)

for all p, q ∈ X, where

ρX(p, q) =
dX(p, q)

ξ(p) ∨ ξ(q)
and ρY is defined similarly.

Proof. Let X ′ and Y ′ be the metric spaces X and Y endowed with the metrics d′X and

d′Y given by

d′X(p, q) = sup
f∈Lip(X)

L(f),|f(eX)|≤1

∣∣∣∣f(p)

ξ(p)
− f(q)

ξ(q)

∣∣∣∣,
d′Y (u, v) = sup

f∈Lip(Y )
L(f),|f(eY )|≤1

∣∣∣∣f(u)

ζ(u)
− f(v)

ζ(v)

∣∣∣∣.
By Proposition 5.1(a), X ′ and Y ′ have finite diameter. Let T : Lip(X) → Lip(Y ) be

an order isomorphism. It is clear from Proposition 5.2 that the map T̃ : Lip(X ′) →
Lip(Y ′), T̃ f = T (ξf)/ζ, is an order isomorphism. By Theorem 5.4, there is a Lipschitz

homeomorphism ϕ : X ′ → Y ′. Inequality (5.2) follows from Proposition 5.1(b).

Conversely, given (5.2), (X, d′X) and (Y, d′Y ) are Lipschitz homeomorphic by Propo-

sition 5.1(b). Hence Lip(X ′) and Lip(Y ′) are order isomorphic. By Theorem 5.3, Lip(X)

and Lip(Y ) are order isomorphic.

Proposition 5.2 can be extended to little Lipschitz spaces. Let (X, d) be a complete

metric space with a distinguished point e. Say that X is almost expansive at ∞ if for all

ε > 0, there exists C <∞ such that d(p, q) < ε if d(p, e) ≥ C and d(p, q) < d(p, e)/C. For
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the remainder of this chapter, let (X, d) be a complete metric space with a distinguished

point e that is almost expansive at ∞. Choose 1 ≤ C1 < C2 < · · · such that d(p, q) <

1/(k + 2) if d(p, e) ≥ Ck and d(p, q) < d(p, e)/Ck. If x ∈ X and 0 ≤ r1 < r2, let

Ann(x, r1, r2) = {z ∈ X : r1 < d(z, x) < r2}.

Lemma 5.6. Suppose that d(p, e) ≥ Ck. Then

Ann

(
p,

1

k + 2
,
d(p, e)

C1

)
= ∅.

Proof. Suppose that q ∈ X and d(p, q) ≥ 1/(k + 2). By choice of Ck, we have d(p, q) ≥
d(p, e)/Ck ≥ 1/3, and by choice of C1, d(p, q) ≥ d(p, e)/C1.

Let Γ be a subset of X \B(e, C1) that is maximal with respect to the condition that

B(p, 1) ∩B(q, 1) = ∅ if p and q are distinct points in Γ.

Lemma 5.7. X0 =
⋃
p∈ΓB(p, 1) is both open and closed in X, and X = B(e, C1) ∪X0.

Proof. Clearly, X0 is an open set. Let (xn) be a sequence in X0 converging to some

x0 ∈ X. Choose pn ∈ Γ such that xn ∈ B(pn, 1). By Lemma 5.6, d(xn, pn) ≤ 1/3. If

pn 6= pm, then

d(xn, xm) ≥ d(pn, pm)− d(xn, pn)− d(xm, pm) ≥ 1− 1/3− 1/3 = 1/3.

Thus, there exists p ∈ Γ such that pn = p for all sufficiently large n. By Lemma 5.6,

B(p, 1) = {x ∈ X : d(x, p) ≤ 1/3} is closed in X. Hence x0 ∈ B(p, 1) ⊆ X0. This proves

that X0 is closed.

If there exists q /∈ B(e, C1) such that q /∈ X0, by the maximality of Γ there ex-

ists p ∈ Γ such that B(p, 1) ∩ B(q, 1) 6= ∅. Let x ∈ B(p, 1) ∩ B(q, 1). By Lemma 5.6,

d(x, p), d(x, q) ≤ 1/3. Hence q ∈ B(p, 1) ⊆ X0, contradicting the choice of q.

As above, define ξ : X → R by ξ(x) = d(x, e) ∨ 1. Let ζ : X → R be the function

given by

ζ(x) =

{
ξ(p) if x ∈ B(p, 1) for some p ∈ Γ,

1 if x /∈ X0.

Let X ′ be the metric space (X, d′) with d′ given in (5.1).

Lemma 5.8. There exists 1 ≤ K <∞ such that for all x ∈ X,

(1/K)ξ(x) ≤ ζ(x) ≤ Kξ(x).

Proof. If x /∈ X0, then d(x, e) ≤ C1 by Lemma 5.7. Thus ξ(x) ≤ C1. Hence

ξ(x)/C1 ≤ ζ(x) = 1 ≤ ξ(x).

If x ∈ B(p, 1) for some p ∈ Γ, then d(x, p) ≤ 1/3 by Lemma 5.6. Thus

|ζ(x)− ξ(x)| = |ξ(p)− ξ(x)| ≤ d(x, p) ≤ 1/3 ≤ ξ(x)/3.

The lemma holds if we take K ≥ 4/3 such that K−1 ≤ C−1
1 ∧ 2/3.

For the rest of the chapter, K will denote a constant as in Lemma 5.8 with K ≥ 2.

Lemma 5.9. Suppose that u ∈ B(p, 1) for some p ∈ Γ and v /∈ B(p, 1). Then

d′(u, v) ≥ 2(3KC1)−1.
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Proof. If v /∈ X0, then d(v, e) ≤ C1 by Lemma 5.7. Hence ξ(v) ≤ C1 ≤ ξ(p). Also,

ξ(u) ≤ ξ(p) + d(u, p) ≤ ξ(p) + 1 ≤ 2ξ(p).

Hence ξ(u) ∨ ξ(v) ≤ 2ξ(p) ≤ Kξ(p). If v ∈ X0, there exists q ∈ Γ, q 6= p, such that

v ∈ B(q, 1). Without loss of generality, assume that ξ(p) = d(p, e) ≥ d(q, e) = ξ(q). By

Lemma 5.8, ξ(u) ≤ Kζ(u) = Kξ(p) and ξ(v) ≤ Kξ(q). Hence ξ(u) ∨ ξ(v) ≤ Kξ(p). By

Lemma 5.6, d(v, p) ≥ ξ(p)/C1 and d(u, p) ≤ 1/3. Thus

d(u, v) ≥ d(v, p)− d(u, p) ≥ ξ(p)

C1
− 1

3
≥ 2ξ(p)

3C1
.

Therefore, by Proposition 5.1(b),

d′(u, v) ≥ d(u, v)

ξ(u) ∨ ξ(v)
≥ d(u, v)

Kξ(p)
≥ 2

3KC1
.

Lemma 5.10. The functions ξ/ζ and ζ/ξ are Lipschitz with respect to the metric d′ on X.

Proof. Let u and v be distinct points in X. Consider the following three cases:

Case 1: u, v /∈ X0. In this case, ξ(u) ∨ ξ(v) ≤ C1 by Lemma 5.7. Proposition 5.1(b)

implies that d′(u, v) ≥ d(u, v)/C1. Then∣∣∣∣ ξζ (u)− ξ

ζ
(v)

∣∣∣∣ = |ξ(u)− ξ(v)| ≤ d(u, v) ≤ C1d
′(u, v).

Case 2: u ∈ B(p, 1) for some p ∈ Γ and v /∈ B(p, 1). By Lemma 5.9, d′(u, v) ≥
2(3KC1)−1. By Lemma 5.8,∣∣∣∣ ξζ (u)− ξ

ζ
(v)

∣∣∣∣ ≤ ∣∣∣∣ ξζ (u)

∣∣∣∣+

∣∣∣∣ ξζ (v)

∣∣∣∣ ≤ 2K ≤ 3K2C1d
′(u, v).

Case 3: There exists p ∈ Γ such that u, v ∈ B(p, 1). In this case,

ξ(u) ≤ ξ(p) + d(u, p) ≤ ξ(p) + 1 ≤ 2ξ(p).

Similarly ξ(v) ≤ 2ξ(p). By Proposition 5.1(b),∣∣∣∣ ξζ (u)− ξ

ζ
(v)

∣∣∣∣ =
|ξ(u)− ξ(v)|

ξ(p)
≤ d(u, v)

ξ(p)
≤ 2d(u, v)

ξ(u) ∨ ξ(v)
≤ 2d′(u, v).

This completes the proof that ξ/ζ is Lipschitz with respect to d′. Since ξ/ζ is also bounded

below by 1/K, it is routine to check that its reciprocal ζ/ξ is also Lipschitz with respect

to d′.

Proposition 5.11. Let (X, d) be a complete metric space with a distinguished point e that

is almost expansive at ∞. Take X ′ = (X, d′), where the metric d′ is given by (5.1). Define

ζ : X → R as above. Then T : lip(X)→ lip(X ′), Tf = f/ζ, is an order isomorphism.

Proof. Use the notation developed just prior to Lemma 5.6. By Proposition 5.2, f ∈
Lip(X) if and only if f/ξ ∈ Lip(X ′). Suppose that f ∈ Lip(X), then f/ξ, ξ/ζ ∈ Lip(X ′),

where the latter follows from Lemma 5.10. Since X ′ has finite diameter, f/ζ ∈ Lip(X ′).

Conversely, if f/ζ ∈ Lip(X ′), then from Lemma 5.10 again, f/ξ = (f/ζ)·(ζ/ξ) ∈ Lip(X ′).

Hence f ∈ Lip(X).

Suppose that f ∈ lip(X). In particular, f ∈ Lip(X) and hence f/ζ ∈ Lip(X ′) by

the previous paragraph. Given ε > 0, choose δ > 0 such that |f(u) − f(v)| < εd(u, v)
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if d(u, v) < δ. Fix k ∈ N such that 2(k + 2)−1 < δ. Consider u, v such that d′(u, v) <

2(3KC1)−1 ∧ δ/(2Ck). By Lemma 5.9, either u, v /∈ X0, or there exists p ∈ Γ such that

u, v ∈ B(p, 1). In the former case, ζ(u) = ζ(v) = 1 and ξ(u), ξ(v) ≤ C1 by Lemma 5.7.

By Proposition 5.1(b), d′(u, v) ≥ d(u, v)/C1. In particular, d(u, v) < δ. Hence∣∣∣∣fζ (u)− f

ζ
(v)

∣∣∣∣ = |f(u)− f(v)| < εd(u, v) ≤ C1εd
′(u, v).

In the latter case, ξ(u), ξ(v) ≤ 2ξ(p) from Case 3 in the proof of Lemma 5.10. By Propo-

sition 5.1(b),

d′(u, v) ≥ d(u, v)

ξ(u) ∨ ξ(v)
≥ d(u, v)

2ξ(p)
.

If d(p, e) ≥ Ck, then d(u, v) < 2(k + 2)−1 < δ by Lemma 5.6. On the other hand,

if d(p, e) < Ck, then ξ(p) < Ck. Hence d′(u, v) ≥ d(u, v)/(2Ck). Therefore, d(u, v) ≤
2Ckd

′(u, v) < δ. In either situation, we have∣∣∣∣fζ (u)− f

ζ
(v)

∣∣∣∣ =
|f(u)− f(v)|

ξ(p)
<
εd(u, v)

ξ(p)
≤ 2εd′(u, v).

This completes the proof that f/ζ ∈ lip(X ′) if f ∈ lip(X).

Conversely, suppose that g = f/ζ ∈ lip(X ′). By the first paragraph, f ∈ Lip(X).

Given ε > 0, choose δ > 0 so that |g(u) − g(v)| < εd′(u, v) if d′(u, v) < δ. Consider

u, v ∈ X such that d(u, v) < δ/3 ∧ 2(9KC1)−1. By Proposition 5.1(c),

d′(u, v) ≤ 3d(u, v) < δ ∧ 2(3KC1)−1.

In particular, Lemma 5.9 implies that either u, v /∈ X0, or there exists p ∈ Γ such that

u, v ∈ B(p, 1). In the former case, ζ(u) = ζ(v) = 1. Thus

|f(u)− f(v)| = |g(u)− g(v)| < εd′(u, v) ≤ 3εd(u, v).

In the latter case, we may assume that ξ(u) ≤ ξ(v). Then ζ(u) = ζ(v) = ξ(p) and

ξ(p) ≤ 2ξ(u) by Case 3 of the proof of Lemma 5.10. Hence

|f(u)− f(v)| = ξ(p)|g(u)− g(v)| < 2ξ(u)εd′(u, v) ≤ 6εd(u, v),

where the last step follows again from Proposition 5.1(c). This proves that f ∈ lip(X) if

f/ζ ∈ lip(X ′).

Remark. Note that X ′ has finite diameter, and hence lip(X) ∼ lip(X ′) = lipb(X
′) if X

is almost expansive at∞. A strong converse to Proposition 5.11 for Hölder metric spaces

will be shown below (see Theorem 6.34).

6. Comparing function spaces under order isomorphism

We have seen in Corollary 3.6 that if X is a noncompact realcompact space, then C(X) is

never order isomorphic to any space of the type Cb(Y ). This serves as a prototype of the

results to be considered in this chapter. More precisely, we seek to determine conditions

under which two different spaces among the ones listed in Examples B or C can be order

isomorphic.
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6.1. General principles. We begin by listing several general principles before going

into specific cases.

Proposition 6.1. Let A(X) and A(Y ) be near vector lattices defined on metric spaces

X and Y respectively, where A(X) = Aloc(X) and either A(Y ) = Aloc
b (Y ), or A(Y ) =

Ab(Y ) and A(Y ) satisfies (♠). If X is not compact, then A(X) and A(Y ) are not order

isomorphic.

Proof. Let T : A(X)→ A(Y ) be an order isomorphism. Consider a homeomorphism ϕ :

X → Y as in Theorem 4.3. Suppose that X is not compact. Then there exists a sequence

of distinct points (xn) in X with no convergent subsequence. Hence, for each n, we may

choose an open neighborhood Un of xn so that diamUn → 0 and Un ∩ Um = ∅ if m 6= n.

Then
⋃
n∈N Un =

⋃
n∈N Un for any subset N of N. Set yn = ϕ(xn) and an = (T−1n)(xn)

for all n. Since A(X) has property (A2), for each n there exists fn ∈ A(X) such that

fn(xn) > an and fn = 0 outside Un. Let f be the pointwise sum f =
∑
fn. If x /∈

⋃
Un,

then f = 0 on the neighborhood (
⋃
Un)c of x. If x ∈

⋃
Un, then x ∈ Un0

for some n0 and

x /∈
⋃
m 6=n0

Um. Hence f = fn0
on the neighborhood (

⋃
m6=n0

Um)c of x. This shows that

f ∈ Aloc(X) = A(X). Moreover, f ≥ T−1n on an open neighborhood of xn for each n.

By Theorem 4.3, Tf ≥ n on an open neighborhood of yn for all n. But then Tf is an

unbounded function in A(Y ), which contradicts the assumption that A(Y ) consists of

bounded functions.

Proposition 6.2. Let A(X) and A(Y ) be near vector lattices defined on metric spaces

X and Y respectively. Assume that A(X) = [Aloc(X) or Aloc
b (X)] or A(X) satisfies (♠),

and the same holds for A(Y ). Suppose that A(X) satisfies (♥) and there is a dense subset

Y ′ of Y such that A(Y ) satisfies (♥y) for all y ∈ Y ′. If A(X) is a vector sublattice of

C(X), and A(X) is order isomorphic to A(Y ), then A(Y ) is a vector sublattice of C(Y ).

Proof. Suppose that T : A(X) → A(Y ) is an order isomorphism. We may assume that

T0 = 0. Consider a homeomorphism ϕ : X → Y from Theorem 4.3. Let X ′ = ϕ−1(Y ′).

By Theorem 4.5, applied to both T and T−1, if x ∈ X ′ and y = ϕ(x), there are increasing

homeomorphisms Φ(y, ·),Ψ(x, ·) : R→ R such that

Tf(y) = Φ(y, f(ϕ−1(y))) and T−1g(x) = Ψ(x, g(ϕ(x)))

for all f ∈ A(X) and g ∈ A(Y ). Moreover, Φ(y, ·) and Ψ(x, ·) are mutual inverses. Since

T0 = 0, we have Φ(y, 0) = 0 = Ψ(x, 0). Let g ∈ A(Y ). Then T−1g ∈ A(X). Since A(X) is

a vector sublattice of C(X), the pointwise supremum f = T−1g∨0 is in A(X). If x ∈ X ′,
then

f(x) = [T−1g(x)]+ = [Ψ(x, g(ϕ(x)))]+.

If y ∈ Y ′, then ϕ−1(y) ∈ X ′. Thus,

Tf(y) = Φ(y, f(ϕ−1(y))) =

{
g(y) if Ψ(ϕ−1(y), g(y)) ≥ 0,

0 if Ψ(ϕ−1(y), g(y)) < 0.

As Ψ(ϕ−1(y), ·) is an increasing homeomorphism such that Ψ(ϕ−1(y), 0) = 0, we have

Ψ(ϕ−1(y), g(y)) ≥ 0 if and only if g(y) ≥ 0. Therefore, Tf(y) = [g(y)]+. For any z ∈ Y ,

there is a sequence (yn) in Y ′ converging to z. Then Tf(z) = limTf(yn) = lim[g(yn)]+ =
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[g(z)]+. We have shown that if g ∈ A(Y ), then its positive part, taken pointwise, is a

function in A(Y ). Since A(Y ) is also a vector subspace of C(Y ), it follows that A(Y ) is

a vector sublattice of C(Y ).

Proposition 6.3. Let A(X) and A(Y ) be near vector lattices defined on metric spaces

X and Y respectively. Suppose that A(X) = [Aloc(X) or Aloc
b (X)] or A(X) satisfies

condition (♠). Assume the same for A(Y ). Let T : A(X) → A(Y ) be an order isomor-

phism, with the associated homeomorphism ϕ : X → Y given by Theorem 4.3. Let G

be a subset of X such that A(X) satisfies (♥x) for all x ∈ G, and A(Y ) satisfies (♥y)

for all y ∈ ϕ(G). Then there is an order isomorphism S : C(G) → C(ϕ(G)) such that

S(f|G) = (Tf)|ϕ(G) for all f ∈ A(X). The isomorphism S is continuous if both C(G)

and C(ϕ(G)) are equipped with the topology of uniform convergence on compact sets.

Moreover, if A(Y ) consists of bounded functions, then S(Cb(G)) ⊆ Cb(ϕ(G)).

Proof. By Theorem 4.5, there exists Φ : ϕ(G)×R→ R such that Φ(y, ·) is an increasing

homeomorphism for each y ∈ ϕ(G) and Tf(y) = Φ(y, f(ϕ−1(y))) for all f ∈ A(X) and

all y ∈ ϕ(G). Let h ∈ C(G). We claim that y 7→ Φ(y, h(ϕ−1(y))) is a continuous function

on ϕ(G). Let (yn) be a sequence in ϕ(G) converging to y0 ∈ ϕ(G). Set tn = h(ϕ−1(yn))

and t0 = h(ϕ−1(y0)). It suffices to show that (Φ(yn, tn)) has a subsequence converging to

Φ(y0, t0). By using a subsequence if necessary, we may assume that (tn) is monotone, say

increasing. Denoting by t the constant function with value t, we note that tn, t0 ∈ A(X)

and

Φ(yn, tn) = Ttn(yn) ≤ Tt0(yn).

Thus

lim sup Φ(yn, tn) ≤ limTt0(yn) = Tt0(y0) = Φ(y0, t0).

On the other hand, suppose that a < Φ(y0, t0). As Φ(y0, ·) is continuous and (tn) con-

verges to t0, there exists n0 such that Ttn0(y0) = Φ(y0, tn0) > a. By continuity of Ttn0 ,

there exists m0 > n0 such that Ttn0
(ym) > a for all m ≥ m0. Then, if m ≥ m0,

a < Ttn0(ym) ≤ Ttm(ym) = Φ(ym, tm).

This shows that lim inf Φ(yn, tn) ≥ a for any a < Φ(y0, t0) and completes the proof of

the claim.

Define S : C(G) → C(ϕ(G)) by Sh(y) = Φ(y, h(ϕ−1(y))) for all h ∈ C(G) and all

y ∈ ϕ(G). Obviously, h1 ≤ h2 in C(G) implies Sh1 ≤ Sh2 and S(f|G) = (Tf)|ϕ(G) for

all f ∈ A(X). By symmetry, there is a map S′ : C(ϕ(G)) → C(G) given by S′g(x) =

Ψ(x, g(ϕ(x))), where Ψ(x, ·) is the inverse of the map Φ(ϕ(x), ·). It is easy to see that

S′ = S−1. Hence S is an order isomorphism.

Let f0 ∈ C(G). By the continuity and monotonicity of Φ(y, ·) for each y, the sequences

(S(f0 − 1/n)) and (S(f0 + 1/n)) converge pointwise monotonically to Sf0. By Dini’s

Theorem, both converge uniformly to Sf0 on compact subsets of ϕ(G). Suppose that ε > 0

and K is a compact subset of ϕ(G). Then there exists n such that |S(f0±1/n)−Sf0| ≤ ε
on K. If f ∈ C(G) and |f − f0| ≤ 1/n on the compact set ϕ−1(K), then

S(f0 − 1/n) ≤ Sf ≤ S(f0 + 1/n)
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on K. Hence |Sf − Sf0| ≤ ε on K. This shows that S is continuous if both C(G) and

C(ϕ(G)) are equipped with the topology of uniform convergence on compact sets.

Finally, suppose that A(Y ) consists of bounded functions. Then Φ(·, t) = Tt is a

bounded function on Y for any t ∈ R. If f ∈ Cb(G), choose t1, t2 ∈ R such that t1 ≤
f(x) ≤ t2 for all x ∈ G. Then

Φ(y, t1) ≤ Φ(y, f(ϕ−1(y))) = S(y) ≤ Φ(y, t2)

for all y ∈ ϕ(G). Hence Sf is bounded.

Corollary 6.4. In Proposition 6.3, assume in addition that A(X) and A(Y ) both satisfy

condition (♥). Then T is continuous if both A(X) and A(Y ) are equipped with the topology

of uniform convergence on compact sets.

Let A(X) be a set of real-valued functions on a topological space X, and let G be a

subset of X. Say that a function f : G→ R belongs to Aloc(G) if for every x0 ∈ G, there

exists an open neighborhood U of x0 in G and g ∈ A(X) such that f = g on U .

Corollary 6.5. In the notation of Proposition 6.3, S is an order isomorphism from

Aloc(G) onto Aloc(ϕ(G)). Furthermore, if A(Y ) consists of bounded functions, then S

maps Aloc
b (G) into Aloc

b (ϕ(G)). In particular, S is an order isomorphism from Aloc
b (G)

onto Aloc
b (ϕ(G)) if both A(X) and A(Y ) consist of bounded functions.

Proof. We will show that S(Aloc(G)) ⊆ Aloc(ϕ(G)). Then S(Aloc(G)) = Aloc(ϕ(G)) by

symmetry. Suppose that f ∈ Aloc(G) and y0 ∈ ϕ(G). Let x0 = ϕ−1(y0). Then there exists

an open neighborhood U of x0 in G and a function g ∈ A(X) such that f = g on U .

Then Sf = S(g|G) = (Tg)|ϕ(G) on ϕ(U), which is an open neighborhood of y0 in ϕ(G).

Of course, Tg ∈ A(Y ). This proves that Sf ∈ Aloc(ϕ(G)).

If all functions in A(Y ) are bounded, then by the previous paragraph and the last

statement in Proposition 6.3,

S(Aloc
b (G)) = S(Aloc(G) ∩ Cb(G)) ⊆ Aloc(ϕ(G)) ∩ Cb(ϕ(G)) = Aloc

b (ϕ(G)).

6.2. Specifics. In this part, spaces X and Y will always be metric spaces, possibly with

additional properties. The metric on both X and Y will be denoted by d, even though

they may differ. We adopt the convention that when a space from Examples B or C is

mentioned, it is assumed to satisfy the conditions given in those examples. For instance,

for the space lip(X), X will be assumed to be a complete metric space and lip(X) itself

will be supposed to be uniformly separating. If A(X) and A(Y ) are spaces of functions,

we write A(X) ∼ A(Y ) to mean that they are order isomorphic. The next result is an

immediate consequence of Proposition 6.1.

Proposition 6.6. Let

(a) A(X) = [C(X), Liploc(X), liploc(X), U loc(X), or Cp(X)];

(b) A(X) = Cp(X);

(c) A(Y ) = [Cb(Y ), Lipb(Y ), Liploc
b (Y ), lipb(Y ), liploc

b (Y ), Ub(Y ), U loc
b (Y ), or Cpb (Y )];

(d) A(Y ) = [Cpb (Y ) or Cp∗ (Y )].
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If A(X) ∼ [A(Y ) or A(Y )], then X is compact. If A(X) ∼ [A(Y ) or A(Y )], then X is

compact.

Corollary 6.7.

(a) There exists Y such that any of the following holds if and only if X is compact.

C(X) ∼ Cb(Y ), C(X) ∼ U loc
b (Y ), C(X) ∼ Ub(Y ),

Liploc(X) ∼ Liploc
b (Y ), Liploc(X) ∼ Lipb(Y ),

liploc(X) ∼ liploc
b (Y ), liploc(X) ∼ lipb(Y ),

U loc(X) ∼ U loc
b (Y ), U loc(X) ∼ Ub(Y ), U loc(X) ∼ Cb(Y ).

(b) For any X and Y and any p and q,

Cp(X) � Cqb (Y ), Cqb (Y ), Cq∗(Y ) and Cp(X) � Cqb (Y ).

(c) Cp(X) ∼ Cqb (Y ) for some Y and some q if and only if X is a bounded open set in Rn
for some n.

Proof. (a) If X is compact, take Y = X and we have equality of the spaces in all cases.

Any one of the order isomorphisms implies that X is compact by Proposition 6.6.

(b) Assume that one of the given order isomorphisms exists. By Theorem 4.3, in the

respective cases, X is homeomorphic to Y , X is homeomorphic to Y , or X is homeo-

morphic to Y . We also conclude from Proposition 6.6 that X is compact in the first

three cases, and X is compact in the last case. In the latter case, this would imply that

Y is compact. However, since X and Y are open sets in Banach spaces, they are never

compact.

(c) As in the proof of (b), if Cp(X) ∼ Cqb (Y ), then X is a compact set and hence X

is a bounded open set in Rn for some n. Conversely, if X is a bounded open set in Rn,

then Cp(X) = Cpb (X).

The next result is an easy application of Proposition 6.2.

Proposition 6.8. Let A(X) be one of the spaces

C(X), Cb(X), Lip(X), Lipb(X), Liploc(X), Liploc
b (X), lipα(X),

lipα,b(X), liploc
α (X), liploc

α,b(X), U(X), Ub(X), U loc(X) or U loc
b (X).

Let A(Y ), respectively A(Y ), be Cp(Y ), Cpb (Y ), Cp(Y ), Cpb (Y ) or Cp∗ (Y ). Then A(X) �
A(Y ), respectively A(X) � A(Y ).

A metric space X is discrete if all of its points are isolated. It is separated if there

exists ε > 0 such that d(x, x′) > ε if x and x′ are distinct points in X. For any ε > 0, let

Xε = {x ∈ X : d(x,X \ {x}) > ε}.

Then X is said to be proximally compact if every sequence in X has a subsequence that

either converges or is contained in Xε for some ε > 0; and X is locally proximally compact

if for any x0 ∈ X, there exists r > 0 such that B(x0, r) is proximally compact. Observe

that every proximally compact metric space is complete.
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Proposition 6.9. If a metric space is discrete and proximally compact, then it is sepa-

rated.

Proof. Suppose that X is discrete and proximally compact but not separated. There are

sequences (xn) and (x′n) in X such that 0 < d(xn, x
′
n)→ 0. Since X is discrete, we may

assume that (xn) has no convergent subsequence. Since X is proximally compact, (xn)

has a subsequence contained in Xε for some ε > 0. This contradicts the choice of (xn)

and (x′n).

Proposition 6.10. Let X and Y be metric spaces and let T : C(X)→ C(Y ) be an order

isomorphism. If X is not discrete, then for any 0 < α < 1, there exists f ∈ Ub(X) such

that Tf /∈ liploc
α (Y ) ∪ Liploc(Y ).

Proof. By Theorem 4.5, there exist a homeomorphism ϕ : X → Y and a function Φ :

Y ×R→ R such that Φ(y, ·) : R→ R is an increasing homeomorphism for all y ∈ Y , and

Tf(y) = Φ(y, f(ϕ−1(y))) for all f ∈ C(X) and all y ∈ Y . Suppose that X is not discrete.

Then there is a sequence of distinct points (xn) in X converging to a point x0 ∈ X, with

x0 6= xn for all n. Set yn = ϕ(xn), n ≥ 0, and let rn = d(yn, y0). By using a subsequence

if necessary, we may assume that rn > 4rn+1 for all n. For each n ∈ N, define gn : Y → R
by gn(y) = n[(rn/2)α − d(y, yn)α]+. Clearly, gn ∈ C(Y ) and ‖gn‖∞ ≤ n(rn/2)α → 0. By

Corollary 6.4 applied to T−1, (T−1gn) converges uniformly to T−10 on the compact set

K = {xn : n ≥ 0}. In particular,

lim
n
T−1gn(xn) = lim

n
[(T−1gn(xn)− T−10(xn)) + T−10(xn)] = T−10(x0).

It is easy to construct f ∈ Ub(X) such that f(xn) = T−1gn(xn) for all n ∈ N and

f(x0) = T−10(x0). But Tf(yn) = gn(yn) = n(rn/2)α and Tf(y0) = 0. It is clear that Tf

is not Lipschitz with respect to either of the metrics d, dα on any neighborhood of y0.

Proposition 6.11. Let X and Y be metric spaces and let T : C(X) → C(Y ) be an

order isomorphism such that T0 = 0. Assume that X is not proximally compact. Fix

0 < α < 1. Then there exists f ∈ C(X) \ U(X) such that Tf ∈ Liploc(Y ) ∩ liploc
α (Y ). If

T (Cb(X)) ⊆ Cb(Y ), we may require additionally that Tf be bounded.

Proof. There are sequences (xn) and (x′n) in X such that (xn) has no convergent subse-

quence and 0 < d(xn, x
′
n) → 0. It follows that (x′n) has no convergent subsequence. We

may assume that the points in (xn)∪(x′n) are all distinct. Let yn = ϕ(xn) and y′n = ϕ(x′n)

for all n, where ϕ : X → Y is the homeomorphism associated with T . Since the points in

(yn) ∪ (y′n) are all distinct and neither (yn) nor (y′n) has a convergent subsequence, for

each n we have

cn = inf
m6=n

d(yn, ym) ∧ inf
m
d(yn, y

′
m) > 0.

Choose (rn) converging to 0 so that 0 < 4rn < cn. Let an = T1(yn) for all n. Define h

on Y by

h(y) =

an
(

1− d(y, yn)

rn

)
if d(y, yn) ≤ rn for some n,

0 otherwise.
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Then h ∈ Liploc(Y ) ∩ liploc
α (Y ). Since h(yn) = an = T1(yn) and h(y′n) = 0 = T0(y′n)

for all n, we have T−1h(xn) = 1 and T−1h(x′n) = 0. As d(xn, x
′
n) → 0, this shows that

T−1h /∈ U(X). The first part of the proof is completed by taking f = T−1h.

Assume additionally that T (Cb(X)) ⊆ Cb(Y ). Then T1 is a bounded function, and

hence (an) is a bounded sequence. Thus h is a bounded function and hence so is Tf .

Corollary 6.12. Let X be a metric space that is not proximally compact. For any ε > 0,

there exists f ∈ Liploc(X) \ U(X) such that ‖f‖∞ ≤ ε.

Proof. Take X = Y and T : C(X) → C(X) to be the identity map in Proposition 6.11.

By the proposition, there exists h ∈ Liploc
b (X) \ U(X). Then f = ε(‖h‖∞ + 1)−1h ∈

Liploc
b (X) \ U(X) and ‖f‖∞ ≤ ε.

Theorem 6.13.

(a) There exists Y such that any of the following holds if and only if X is discrete.

[C(X) or U loc(X)] ∼ [Liploc(Y ) or liploc
α (Y )],

[Cb(X) or U loc
b (X)] ∼ [Liploc

b (Y ) or liploc
α,b(Y )].

(b) There exists Y such that any of the following holds if and only if X is a finite set.

C(X), U loc(X) ∼ Liploc
b (Y ),Lipb(Y ), liploc

α,b(Y ), lipα,b(Y ),

Cb(X), Ub(X), U loc
b (X) ∼ Liploc(Y ), liploc

α (Y ),

C(X), U loc(X) ∼ lipα(Y ).

(c) There exists Y such that any of the following holds if and only if X is separated.

Lipb(X), lipα,b(X) ∼ Cb(Y ), U loc
b (Y ).

Proof. In all the cases, by Proposition 6.3, any order isomorphism as given above extends

to an order isomorphism from C(X) onto C(Y ). In view of Proposition 6.10, the existence

of any one of the given order isomorphisms implies that X and Y are discrete. (For (c),

apply the proposition to the map T−1.) In particular, this proves (a), since the relevant

spaces coincide if we take Y = X when X is discrete.

(b) In addition, with any of the order isomorphisms given in the first two lines of (b),

we may conclude from Proposition 6.1 that either X or Y is compact. Hence both are

compact. A compact discrete space is necessarily finite.

Since X is discrete, C(X) = U loc(X). Thus, if either of the order isomorphisms in the

last line of (b) holds, C(X) ∼ lipα(Y ). By Proposition 6.3, the given order isomorphism

extends to an order isomorphism from C(X) onto C(Y ). Therefore, C(Y ) = lipα(Y ).

Since Y is discrete, if (yn) is an infinite sequence of distinct points in Y , there is a function

g ∈ C(Y ) such that g(yn) = nd(yn, y1)α for all n. But then g /∈ lipα(Y ), contradicting

the above. Hence Y is finite and therefore so is X.

Of course, if X is a finite set, then all the given order isomorphisms are trivially true

if we take Y = X.

(c) Suppose that any of the given order isomorphisms holds, and label it as T . We

may assume that T0 = 0. Use Proposition 6.3 to extend T to an order isomorphism

S : C(X) → C(Y ) such that S(Cb(X)) ⊆ Cb(Y ). Since Y is discrete, it follows that
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U loc
b (Y ) = Cb(Y ). If X is not separated, by Proposition 6.9, it is not proximally compact.

It follows from Proposition 6.11 that there exists g ∈ Cb(Y ) such that S−1g /∈ U(X).

Hence T−1g = S−1g /∈ [Lipb(X) or lipα,b(X)]. This contradicts the choice of T . Con-

versely, if X is separated, we choose Y = X and all the spaces are equal.

Lemma 6.14. Let X be proximally compact. Then C(X) = U(X) = U loc(X), Cb(X) =

Ub(X) = U loc
b (X), Lipb(X) = Liploc

b (X), and lipα,b(X) = liploc
α,b(X).

Proof. Suppose that f ∈ C(X) \ U(X). There are sequences (xn) and (x′n) in X and

ε > 0 such that d(xn, x
′
n) → 0 and |f(xn) − f(x′n)| > ε for all n. By the proximal

compactness of X, (xn) has a subsequence (xnk
) convergent to some x0 ∈ X. Then

(x′nk
) converges to x0 as well. By continuity, lim(f(xnk

)− f(x′nk
)) = 0, a contradiction.

Therefore, C(X) = U(X) and Cb(X) = Ub(X). We also have U(X) ⊆ U loc(X) ⊆ C(X).

Hence U(X) = U loc(X) as well. Similarly, Ub(X) = U loc
b (X).

Obviously, lipα,b(X) ⊆ liploc
α,b(X). Suppose, if possible, that there exists a function

f ∈ liploc
α,b(X) \ lipα,b(X). There are sequences (xn) and (x′n) in X such that either

|f(xn) − f(x′n)| > nd(xn, x
′
n)α, or lim d(xn, x

′
n) = 0 and lim |f(xn) − f(x′n)|/d(xn, x

′
n)α

6= 0. Since f is bounded, 0 < d(xn, x
′
n) → 0 even in the first case. Take a subsequence

(xnk
) of (xn) that converges to some x0. Then (x′nk

) also converges to x0. Since f ∈
liploc

α,b(X), there exists an open neighborhood U of x0 such that f is Lipschitz with respect

to dα on U , and

lim
d(x,y)→0
x,y∈U

|f(x)− f(y)|
d(x, y)α

= 0.

This is clearly impossible since xnk
, x′nk

∈ U for all sufficiently large k. The proof that

Lipb(X) = Liploc
b (X) is similar.

Theorem 6.15.

(a) There exists Y such that one of the following holds if and only if X is proximally

compact.

U(X) ∼ C(Y ), Ub(X) ∼ Cb(Y ),

U(X) ∼ U loc(Y ), Ub(X) ∼ U loc
b (Y ).

(b) There exists Y such that either U loc(X) ∼ C(Y ) or U loc
b (X) ∼ Cb(Y ) if and only if

X is locally proximally compact.

(c) There exists Y such that one of the following holds if and only if X is compact.

U(X) ∼ [Cb(Y ) or U loc
b (Y )], lipα(X) ∼ liploc

α (Y ).

(d) There exists Y such that either U(X) ∼ [Liploc
b (Y ) or liploc

α,b(Y )] if and only if X is

a finite set.

(e) There exists Y such that one of the following holds if and only if X is separated.

U(X) ∼ [Liploc(Y ) or liploc
α (Y )], Ub(X) ∼ [Liploc

b (Y ) or liploc
α,b(Y )].

Proof. (a) If T : U(X) → C(Y ) is an order isomorphism, by Proposition 6.3, it can be

extended to an order isomorphism from C(X) onto C(Y ). Thus U(X) = C(X). Similarly,
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using Proposition 6.3 or Corollary 6.5, the other three order isomorphisms hold if and

only if

Ub(X) = Cb(X), U(X) = U loc(X), Ub(X) = U loc
b (X)

respectively. By Corollary 6.12, X is proximally compact. The converse follows from

Lemma 6.14.

(b) As in case (a), U loc(X) ∼ C(Y ) implies that U loc(X) = C(X). Suppose that there

exists x0 ∈ X such that B(x0, r) is not proximally compact for any r > 0. Let r1 = 1

and apply Corollary 6.12 to the metric space B(x0, r1). We find f1 ∈ C(B(x0, r1)) \
U(B(x0, r1)) with ‖f1‖∞ ≤ 1. Assume that rn > 0 and fn ∈ C(B(x0, rn)) \U(B(x0, rn))

have been chosen with ‖fn‖∞ ≤ 1/n. There exists rn+1 > 0 such that 2rn+1 < rn and

fn is not uniformly continuous on An = {x ∈ B(x0, rn) : d(x, x0) ≥ 2rn+1}. Finally,

choose fn+1 ∈ C(B(x0, rn+1)) \ U(B(x0, rn+1)) such that ‖fn+1‖∞ ≤ (n + 1)−1. De-

note the restriction of fn to An by gn. Define g : ∪An ∪ {x0} → R by g = fn on An
and g(x0) = 0. Then g is continuous. By the Tietze Extension Theorem, g extends to

a (bounded) continuous function on X. Clearly, g is not uniformly continuous on any

neighborhood of x0. Thus g /∈ U loc(X). This completes the proof that X is locally prox-

imally compact if U loc(X) ∼ C(Y ). Conversely, suppose that X is locally proximally

compact and f ∈ C(X). For any x0 ∈ X, choose r > 0 such that B(x0, r) is proximally

compact. By Lemma 6.14, f is uniformly continuous on B(x0, r). Reduce r if necessary

to assume that f is bounded on B(x0, r). There exists a uniformly continuous function

g : B(x0, r) → [0, 1] such that g = 1 on B(x0, r/3) and g = 0 outside B(x0, 2r/3). Then

fg is uniformly continuous on B(x0, r) and equals 0 outside B(x0, 2r/3). We may extend

it to a function h ∈ U(X) by defining h to be 0 outside B(x0, r). Observe that h = f on

B(x0, r/3). This proves that f ∈ U loc(X).

Similarly, U loc
b (X) ∼ Cb(Y ) if and only if U loc

b (X) = Cb(X) if and only if X is locally

proximal compact.

(c) Suppose that T is an order isomorphism from U(X) onto Cb(Y ) or U loc
b (Y ). We

may assume that T0 = 0. By Proposition 6.3, T may be extended to an order isomorphism

S : C(X) → C(Y ) such that S(Cb(X)) ⊆ Cb(Y ). By Proposition 6.11, X is proximally

compact. It follows from Lemma 6.14 that U(X) = C(X). Then C(X) = U(X) ∼ [Cb(Y )

or U loc
b (Y )]. By Corollary 6.7(a), X is compact.

Next, suppose that T : lipα(X) → liploc
α (Y ) is an order isomorphism. By Corollary

6.5, T can be extended to an order isomorphism from liploc
α (X) onto liploc

α (Y ). It follows

that lipα(X) = liploc
α (X). Suppose that X is not compact. Since X is complete by as-

sumption, X contains a separated sequence (xn). Choose r > 0 such that d(xm, xn) > 2r

if m 6= n. For each n, there exists hn ∈ lipα(X) such that hn(xn) = 1 and hn(x) = 0

if x /∈ B(xn, r). Take an = nd(xn, x1)α and let h be the pointwise sum
∑
anhn. It is

clear that h ∈ liploc
α (X). However, h /∈ lipα(X) since h(xn) − h(x1) = nd(xn, x1)α for

all n. This contradicts the fact that lipα(X) = liploc
α (X), and shows that X is compact if

lipα(X) ∼ liploc
α (Y ).

Conversely, if X is compact, then U(X) = Cb(X) = U loc
b (X) and lipα(X) = liploc

α (X).

(d) Assume that U(X) ∼ Liploc
b (Y ), respectively liploc

α,b(Y ). By Corollary 6.5, U loc(X)

∼ Liploc(Y ), respectively liploc
α (Y ). It follows from Theorem 6.13(a) that X is dis-
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crete. But then Y is discrete since it is homeomorphic to X. Therefore, Liploc
b (Y ) =

liploc
α,b(Y ) = Cb(Y ). Hence U(X) ∼ Cb(Y ). By part (c), X is compact. Since X is discrete

and compact, it is finite. The converse is trivial.

(e) If U(X) ∼ Liploc(Y ), respectively liploc
α (Y ), we also have U loc(X) ∼ Liploc(Y ),

respectively liploc
α (Y ), by Corollary 6.5. Thus X is discrete by Theorem 6.13(a). Hence

Y is discrete. But then Liploc(Y ) = liploc
α (Y ) = C(Y ), and we have U(X) ∼ C(Y ).

By (a), X is proximally compact. Thus X is separated by Proposition 6.9. Similarly,

Ub(X) ∼ [Liploc
b (Y ) or liploc

α,b(Y )] implies that U loc
b (X) ∼ [Liploc

b (Y ) or liploc
α,b(Y )] by

Corollary 6.5, and thus X and Y are discrete by Theorem 6.13(a). Therefore, Ub(X) ∼
Cb(Y ) and it follows from (a) that X is proximally compact. As above, X is separated

since it is both discrete and proximally compact. Conversely, if X is separated, then

U(X) = Liploc(X) = liploc
α (X) = C(X) and Ub(X) = Liploc

b (X) = liploc
α,b(X) = Cb(X).

Theorem 6.16. There exists Y such that Lipb(X) ∼ Liploc
b (Y ) or lipα,b(X) ∼ liploc

α,b(Y )

if and only if X is proximally compact.

Proof. By Corollary 6.5, any order isomorphism from Lipb(X) onto Liploc
b (Y ) can be

extended to an order isomorphism from Liploc
b (X) onto Liploc

b (Y ). Thus Lipb(X) =

Liploc
b (X). Similarly, lipα,b(X) ∼ liploc

α,b(Y ) implies that lipα,b(X) = liploc
b (X). If X is

not proximally compact, by Corollary 6.12, there exists f ∈ Liploc
b (X) ⊆ liploc

α,b(X) such

that f /∈ U(X). Thus f /∈ Lipb(X) ∪ lipα,b(X), contrary to the above. The converse

follows from Lemma 6.14.

Theorem 6.17.

(a) There exists Y such that one of the following holds if and only if X is discrete.

Liploc(X) ∼ liploc
α (Y ),

Liploc
b (X) ∼ [lipα,b(Y ) or liploc

α,b(Y )].

(b) There exists Y such that one of the following holds if and only if X is a finite set.

Liploc(X) ∼ [lipα(Y ), lipα,b(Y ) or liploc
α,b(Y )],

liploc
α (X) ∼ [Lipb(Y ) or Liploc

b (Y )].

(c) There exists Y such that Lipb(X) ∼ liploc
α,b(Y ) if and only if X is separated.

Proof. (a) Suppose that X is not discrete. There is a sequence of distinct points (xn) in

X convergent to some x0 ∈ X, x0 6= xn for all n. Let T be one of the indicated order

isomorphisms. We may assume that T0 = 0. Let ϕ : X → Y be the homeomorphism

associated with T . Set yn = ϕ(xn), y0 = ϕ(x0). Then there exists C < ∞ such that

d(xn, x0) ≤ C for all n. The function f(x) = d(x, x0) ∧ C belongs to Liploc
b (X) and

f(x0) = 0. For each k ∈ N, we have T (kf) ∈ liploc
α (Y ) and T (kf)(y0) = 0. Since T (kf)

agrees with a function in lipα(Y ) on a neighborhood of y0, and (yn) converges to y0, we

have T (kf)(yn)/d(yn, y0)α → 0 as n→∞. Choose n1 < n2 < · · · such that d(ynk+1
, y0) <

1
4d(ynk

, y0) and

T (kf)(ynk
)

d(ynk
, y0)α

→ 0 as k →∞.
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Then there exists g ∈ lipα,b(Y ) such that g(ynk
) = T (kf)(ynk

) for all k and g(y0) = 0.

For example, take

g(y) =

T (kf)(ynk
)

(
1− 2d(y, ynk

)

d(ynk
, y0)

)
if d(y, ynk

) < d(ynk
, y0)/2 for some k,

0 otherwise.

Since T−1g(xnk
) = kf(xnk

) = kd(xnk
, x0) and T−1g(x0) = 0, T−1g is not Lipschitz on

any neighborhood of x0, contrary to the assumption.

Conversely, if X is discrete, then Liploc(X) = C(X) = liploc
α (X) and Liploc

b (X) =

Cb(X) = liploc
α,b(X) = lipα,b(Y ), where Y is the set X endowed with the discrete metric.

(b) Suppose that any one of the order isomorphisms in part (b) holds. By Corollary

6.5, it leads to either Liploc(X) ∼ liploc
α (Y ) or liploc

α (X) ∼ Liploc(Y ). In either case, X and

Y are discrete by (a). Thus Liploc(X) = C(X) = liploc
α (X). Therefore,

C(X) ∼ [lipα(Y ), lipα,b(Y ), liploc
α,b(Y ), Lipb(Y ) or Liploc

b (Y )].

In all cases, it follows from Theorem 6.13(b) that Y is finite. Hence X is finite as well.

The converse is trivial.

(c) By Corollary 6.5, an order isomorphism T : Lipb(X)→ liploc
α,b(Y ) can be extended

to an order isomorphism from Liploc(X) to liploc
α (Y ). By part (a), X is discrete and hence

so is Y . Thus liploc
α,b(Y ) = Cb(Y ). It follows from Theorem 6.13(c) that X is separated.

Conversely, if X is separated, then Lipb(X) = Cb(X) = liploc
α,b(X).

Lemma 6.18. Let

A(X) = [lipα(X), lipα,b(X), U(X) or Ub(X)]

and

A(Y ) = [lipα(Y ), lipα,b(Y ), U(Y ), Ub(Y ) or Lipb(Y )].

Suppose that T : A(X) → A(Y ) is an order isomorphism such that T0 = 0. Denote

by ϕ : X → Y its associated homeomorphism. Let (xn), (x′n) be sequences in X such

that (xn) has no convergent subsequence and 0 < d(xn, x
′
n) → 0. Set yn = ϕ(xn) and

y′n = ϕ(x′n). Then there exist r > 0, n1 < n2 < · · · and a bounded function f ∈ A(X)

such that Tf(ynm) = m(r ∧ d(ynm , y
′
nm

)) and Tf(y′nm
) = 0. In particular, if (Tt(yn)) is

bounded for some 0 < t ∈ R, then lim inf d(yn, y
′
n) = 0.

Proof. Observe that neither (xn) nor (x′n) can have a convergent subsequence. Thus the

same holds for (yn) and (y′n). Since Y is complete by assumption, we may assume that

there is an r > 0 such that d(yn, ym) > r if n 6= m. If d(yn, y
′
n) 9 0, then by using a

subsequence if necessary, we may further assume that the set (yn) ∪ (y′n) is separated.

On the other hand, if d(yn, y
′
n)→ 0, then we may assume that d(yn, y

′
n) < r/2 for all n.

In either case, there exists g ∈ Lipb(Y ) such that g(yn) = r ∧ d(yn, y
′
n) and g(y′n) = 0 for

all n. Then g ∈ A(Y ). Hence T−1(mg) ∈ A(X) for all m ∈ N. Therefore,

T−1(mg)(xn)

d(xn, x′n)α
=
T−1(mg)(xn)− T−1(mg)(x′n)

d(xn, x′n)α
→ 0,
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where we take α = 0 if A(X) = [U(X) or Ub(X)]. Choose n1 < n2 < · · · such that

T−1(mg)(xnm
)

d(xnm
, x′nm

)α
→ 0.

Since (xnm
) has a separated subsequence, by taking a further subsequence if necessary,

we may assume that there exists a bounded function f ∈ A(X) such that

f(xnm
) = T−1(mg)(xnm

) and f(x′nm
) = 0 for all m.

Thus Tf(ynm) = mg(ynm) = m(r ∧ d(ynm , y
′
nm

)) and Tf(y′nm
) = 0.

Suppose that (Tt(yn)) is bounded for some 0 < t ∈ R. Observe that f(xnm
) ≤

t for all sufficiently large m. Then Tf(ynm
) ≤ Tt(ynm

) for all sufficiently large m,

and hence (Tf(ynm
)) is bounded. Since Tf(ynm

) = m(r ∧ d(ynm
, y′nm

)), we must have

d(ynm
, y′nm

)→ 0.

Proposition 6.19. Let A(X) = [lipα(X), lipα,b(X), U(X) or Ub(X)].

(a) If there exists Y such that A(X) ∼ Lipb(Y ), then X is proximally compact.

(b) If there exists Y such that A(X) ∼ [lipα,b(Y ) or Ub(Y )], then the associated homeo-

morphism ϕ : X → Y is uniformly continuous.

Proof. Let T be one of the indicated order isomorphisms and let ϕ : X → Y be the

associated homeomorphism. We may assume that T0 = 0. If X is not proximally compact,

there exist sequences (xn), (x′n) in X such that (xn) has no convergent subsequence and

0 < d(xn, x
′
n)→ 0. Set yn = ϕ(xn) and y′n = ϕ(x′n). If ϕ is not uniformly continuous, we

obtain such sequences with the additional property that inf d(yn, y
′
n) > 0. Choose f , r

and (nm) as in Lemma 6.18. Since (T1(ynm
)) is bounded, d(ynm

, y′nm
)→ 0. In particular,

this yields a contradiction if ϕ is not uniformly continuous, and hence completes the proof

of (b).

For (a), we have Tf(ynm) = md(ynm , y
′
nm

) for all sufficiently large m. It follows that

Tf is not Lipschitz on Y , which is absurd.

Proposition 6.20. Let T be an order isomorphism from A(X) = [U(X) or Ub(X)] onto

A(Y ) = [U(Y ) or lipα(Y )]. Then the associated homeomorphism ϕ : X → Y is uniformly

continuous.

Proof. We may assume that T0 = 0. Suppose that the proposition fails. Then there exist

sequences (xn) and (x′n) in X such that 0 < d(xn, x
′
n) → 0 and inf d(yn, y

′
n) > 0, where

yn = ϕ(xn) and y′n = ϕ(x′n). Since none of the sequences (xn), (yn) and (y′n) can have

convergent subsequences, and X and Y are complete by assumption, we may assume that

(xn) and (yn) ∪ (y′n) are separated.

Case 1: There exists r > 0 such that (yn) ⊆ Yr. Let rn = d(yn, Y \ {yn}). Then rn ≥ r

for all n. First suppose that A(Y ) = U(Y ). Then there exists g ∈ U(Y ) such that

g(yn) = Tn(yn) and g(y′n) = 0 for all n. Then T−1g(xn) = n and T−1g(x′n) = 0 for all n.

Clearly, T−1g /∈ U(X), contrary to the assumption.

Next, suppose that A(Y ) = lipα(Y ). Choose y′′n ∈ Y such that rn ≤ d(yn, y
′′
n) < 2rn

and set x′′n = ϕ−1(y′′n). We may assume that yn 6= y′′m for all m and n. Define g : Y → R by

g(yn) = rαn for all n and g(y) = 0 if y 6= yn for any n. Then g ∈ lipα(Y ). Hence T−1(mg) ∈
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U(X) for all m ∈ N. As T−1(mg)(x′n) = T−10(x′n) = 0 for all n and d(xn, x
′
n) → 0, we

have limn T
−1(mg)(xn) = 0. Choose n1 < n2 < · · · such that T−1(mg)(xnm

)→ 0. There

exists f ∈ Ub(X) such that f(xnm) = T−1(mg)(xnm) and f(x′′nm
) = 0 for all m. Then

Tf(ynm
) = mg(ynm

) = mrαnm
and Tf(y′′nm

) = 0 for all m. However, d(ynm
, y′′nm

) < 2rnm
.

This contradicts the fact that Tf ∈ lipα(Y ).

Case 2: (yn) 6⊆ Yr for all r > 0. By taking a subsequence if necessary, we may assume

that there exists (y′′n) in Y such that 0 < d(yn, y
′′
n) → 0. Set x′′n = ϕ−1(y′′n). By Lemma

6.18, if there exists 0 < t ∈ R such that (Tt(yn)) is bounded, then lim inf d(yn, y
′
n) = 0,

contrary to the choices of yn and y′n. Thus, by using a further subsequence if necessary, we

may assume that T1(yn)→∞. Then there exists 0 < s ∈ R such that T1(yn) ≥ s for all n.

Hence (T−1s(xn)) is bounded above by 1. Applying Lemma 6.18 to T−1, we conclude that

lim inf d(xn, x
′′
n) = 0. Since this applies to any subsequence, in fact d(xn, x

′′
n)→ 0. Observe

that lim inf d(y′n, y
′′
n) = lim inf d(y′n, yn) > 0. So, by using even further subsequences if

necessary, we can find g, h ∈ A(Y ) such that

g(yn) = h(y′′n) = 1, g(y′n) = h(y′n) = 0

for all n. Since T−1(mg), T−1(mh) ∈ U(X), T−1(mg)(x′n) = T−1(mh)(x′n) = 0, and

d(xn, x
′
n), d(x′′n, x

′
n)→ 0, we have

lim
n
T−1(mg)(xn) = lim

n
T−1(mh)(x′′n) = 0

for all m. Choose n1 < n2 < · · · such that

lim
n
T−1(mg)(xnm

) = lim
n
T−1((m+ 1)h)(x′′nm

) = 0.

There exists f ∈ Ub(X) with f(xnm
)=T−1(mg)(xnm

) and f(x′′nm
)=T−1((m+1)h)(x′′nm

)

for all m. Then Tf(ynm
) = mg(ynm

) = m and Tf(y′′nm
) = (m+ 1)h(ynm

) = m+ 1. This

is impossible since Tf ∈ U(Y ) and d(yn, y
′′
n)→ 0.

Theorem 6.21. There exists Y such that U(X) ∼ Lipb(Y ) if and only if X is a finite

set. There exists Y such that [lipα(X), lipα,b(X) or Ub(X)] ∼ Lipb(Y ) if and only if X

is separated.

Proof. Let T be one of the order isomorphisms indicated above. We may assume that

T0 = 0. By Corollary 6.5, we find that [U loc(X) or liploc
α (X)] ∼ Liploc(Y ). By Theorems

6.13(a) and 6.17(a), X is discrete. By Proposition 6.19(a), X is proximally compact.

Therefore, X is separated by Proposition 6.9. Conversely, if X is separated, then let Xα

be the metric space (X, dα). We have lipα(X) = Lip(Xα) ∼ Lipb(Y ) for some Y by

Theorem 5.3, and lipα,b(X) = Ub(X) = Lipb(X), since all three coincide with Cb(X).

Finally, if U(X) ∼ Lipb(Y ), then X is separated by the above. Hence C(X) = U(X) ∼
Lipb(Y ). By Theorem 6.13(b), Y is a finite set; hence so is X. The converse is trivial.

Lemma 6.22. Let X and Y be complete metric spaces. Assume that T : C(X)→ C(Y ) is

an order isomorphism such that T0 = 0. Express T in the form Tf(y) = Φ(y, f(ϕ−1(y))),

where ϕ : X → Y is a homeomorphism and Φ : Y × R → R is a function such that

Φ(y, ·) : R → R is an increasing homeomorphism for all y ∈ Y . Let (yn) and (y′n) be

sequences in Y such that (yn) is a sequence of distinct points and 0 < d(yn, y
′
n)→ 0. Set
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A(Y ) = [U(Y ) or lipα(Y )]. If T (Ub(X)) ⊆ A(Y ), then for all 0 < t ∈ R,

sup
n

Φ(yn, t)

d(yn, y′n)α
<∞,

where we take α = 0 if A(Y ) = U(Y ).

Proof. First we show that for any t ∈ R and any ε > 0, there exists δ > 0 such that

lim sup
n→∞

|Φ(yn, s)− Φ(y′n, t)|
d(yn, y′n)α

≤ ε

whenever |s− t| < δ. If not, there exist t ∈ R, ε > 0, a sequence (sk) converging to t, and

a subsequence (ynk
) of (yn) such that

|Φ(ynk
, sk)− Φ(y′nk

, t)|
d(ynk

, y′nk
)α

> ε (6.1)

for all k. Set xn = ϕ−1(yn) and x′n = ϕ−1(y′n) for all n. By using a further subsequence

if necessary, we may assume that either (xnk
) has no convergent subsequence, or (xnk

)

converges to some x0 6= xnk
for any k. In either case, using yet another subsequence,

we may assume that x′nj
6= xnk

for all j, k. Then there exists f ∈ Ub(X) such that

f(xnk
) = sk and f(x′nk

) = t for all k. Since Tf(ynk
) = Φ(ynk

, sk) and Tf(y′nk
) =

Φ(ynk
, t), inequality (6.1) contradicts the fact that Tf ∈ lipα(X).

From what was shown above, for all t ∈ R, there exists δt > 0 such that |s − t| < δt
implies

lim sup
n→∞

|Φ(yn, s)− Φ(y′n, t)|
d(yn, y′n)α

≤ 1.

If |s− t|, |s′ − t| < δt, then

lim sup
n→∞

|Φ(yn, s)− Φ(yn, s
′)|

d(yn, y′n)α

≤ lim sup
n→∞

|Φ(yn, s)− Φ(y′n, t)|
d(yn, y′n)α

+ lim sup
n→∞

|Φ(yn, t)− Φ(y′n, s
′)|

d(yn, y′n)α
≤ 2.

Fix m ∈ N. By Lebesgue’s Lemma [24, Lemma 3.7.2], there exists k ∈ N such that for

each 1 ≤ i ≤ mk, there exists t ∈ [0,m] such that (i−1)/k, i/k ∈ (t−δt, t+δt). Therefore,

keeping in mind that Φ(yn, 0) = T0(yn) = 0 for all n, we have

lim sup
n→∞

Φ(yn,m)

d(yn, y′n)α
= lim sup

n→∞

Φ(yn,m)− Φ(yn, 0)

d(yn, y′n)α

≤ lim sup
n→∞

km∑
i=1

Φ(yn, i/k)− Φ(yn, (i− 1)/k)

d(yn, y′n)α

≤ 2mk.

Hence

sup
n

Φ(yn,m)

d(yn, y′n)α
<∞.

For any 0 < t ∈ R, choose m ∈ N such that t ≤ m; then 0 < Φ(yn, t) ≤ Φ(yn,m) for

all n. The desired conclusion follows.
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We say that a metric space X with a distinguished point e is expansive if e is an

isolated point and there exists c > 0 such that d(p, q) ≥ cd(p, e) if p 6= q. The definition is

independent of the distinguished point e. Clearly, if X is expansive, then it is separated.

Proposition 6.23. Let (X, d) be a metric space with a distinguished point e. Recall the

metric d′ on X defined by (5.1), and let (X, d′) be denoted by X ′. Then X is expansive

if and only if X ′ is separated.

Proof. Suppose that X is expansive with constant c given by the definition. Since e is

an isolated point, there exists r > 0 such that d(x, e) ≥ r for all x ∈ X, x 6= e. Let

p 6= q ∈ X with d(q, e) ≥ d(p, e). In particular, q 6= e. Hence d(p, q) ≥ cd(q, e) ≥ cr.

Therefore, d(p, q) ≥ (c ∧ cr)ξ(q). By Proposition 5.1(b), d′(p, q) ≥ c ∧ cr. Hence X ′ is

separated.

Conversely, suppose that X ′ is separated. Choose r > 0 such that d′(p, q) ≥ r if

p 6= q ∈ X. By Proposition 5.1(b), for p 6= q ∈ X,

d(p, q) ≥ d(p, q)

ξ(p) ∨ ξ(q)
· d(p, e) ≥ d′(p, q)

3
· d(p, e) ≥ r

3
· d(p, e).

Finally, if e is not an isolated point in X, then there exists p 6= e with d(p, e) < (r/3)∧ 1.

Then ξ(p) = ξ(e) = 1. By Proposition 5.1(b), d′(p, e) ≤ 3d(p, e) < r, contrary to the

choice of r. This completes the proof that X is expansive.

Theorem 6.24.

(a) There exists Y such that one of the following holds if and only if X is expansive.

lipα(X) ∼ [Cb(Y ), U loc
b (Y ), Liploc

b (Y ) or Ub(Y )].

(b) There exists Y such that lipα,b(X) ∼ Ub(Y ) if and only if X is separated.

Proof. By Corollary 6.5, the given order isomorphisms extend to order isomorphisms

from liploc
α (X) onto C(Y ), U loc(Y ) or Liploc(Y ). By Theorems 6.13(a) and 6.17(a), Y is

discrete. Since X and Y are homeomorphic, X is also discrete.

For the first three cases in part (a), observe that Cb(X) ∼ Cb(Y ) = U loc
b (Y ) =

Liploc
b (Y ). So in all three cases, we arrive at the conclusion that lipα(X) ∼ Cb(X).

Moreover, asX is discrete, any permutation onX is continuous. Thus we may assume that

there is an order isomorphism T : Cb(X) → lipα(X) whose associated homeomorphism

is the identity map on X.

In the remaining two cases, by Propositions 6.19(b) and 6.20, the homeomorphism

ϕ : X → Y associated with the order isomorphism is a uniform homeomorphism. It

follows easily that there is an order isomorphism T from Ub(X) onto lipα(X) or lipα,b(X)

whose associated homeomorphism is the identity map on X.

To continue with the proof, in all cases, extend T to an order isomorphism S :

C(X) → C(X), by Proposition 6.3. Then S has the form Sf(x) = Φ(x, f(x)). Since

1 ∈ lipα,b(X), we have S−11 = T−11 ∈ Cb(X). Choose m ∈ N such that T−11 ≤ m.

Suppose that X is not separated. There are sequences (xn), (x′n) in X such that 0 <

d(xn, x
′
n) → 0. Since X is discrete, we may assume that (xn) is a sequence of distinct
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points. By Lemma 6.22,

sup
n

Φ(xn,m)

d(xn, x′n)α
<∞.

But by choice of m, Φ(xn,m) = Tm(xn) ≥ 1 for all n. As d(xn, x
′
n) → 0, the absurdity

of the final inequality above is evident. This proves that X is separated.

In case (a), it follows that

Lip(Xα) = lipα(X) ∼ Cb(X) = Ub(X) = Cb(X
α),

where Xα denotes the metric space (X, dα). Let Xα′ be the space (X, d′), with the metric

d′ given by (5.1), starting with the original metric dα instead of d. By Theorem 5.3,

Lip(Xα) ∼ Lipb(X
α′). Hence Lipb(X

α′) ∼ Cb(Xα). It follows from Theorem 6.13(c) that

Xα′ is separated. By Proposition 6.23, Xα is expansive. It is easy to see that Xα is

expansive if and only if X is expansive.

Conversely, in case (a), if X is expansive, then X and Xα′ are separated. Hence

lipα(X) = Lip(Xα) ∼ Lipb(X
α′) = Cb(X

α′) = U loc
b (Xα′)

= Liploc
b (Xα′) = Ub(X

α′).

In case (b), if X is separated, then lipα,b(X) = Cb(X) = Ub(X).

6.3. The case U(X) ∼ [lipα(Y ) or lipα,b(Y )]. Let A(Y ) = [lipα(Y ) or lipα,b(Y )] and

consider an order isomorphism T : U(X) → A(Y ) such that T0 = 0. Express T in the

form Tf(y) = Φ(y, f(ϕ−1(y))), where ϕ : X → Y is a homeomorphism and Φ : Y ×R→ R
is a function such that Φ(y, ·) : R → R is an increasing homeomorphism for all y ∈ Y .

By Propositions 6.19(b) and 6.20, ϕ is uniformly continuous. By Corollary 6.5, T can

be extended to an order isomorphism from U loc(X) onto liploc
α (Y ). Hence X and Y

are discrete by Theorem 6.13(a). We seek to show that X is separated. Suppose on the

contrary that X is not separated. By Proposition 6.9, X is not proximally compact. Thus

there is a sequence (xn) with no convergent subsequence and a sequence (x′n) in X such

that 0 < d(xn, x
′
n) → 0. Since X is complete by assumption, we may assume that (xn)

is a separated sequence. Set yn = ϕ(xn) and y′n = ϕ(x′n) for all n. Since ϕ is uniformly

continuous, d(yn, y
′
n)→ 0.

Lemma 6.25. Let (un) be a sequence in X such that 0 < d(xn, un)→ 0. Set vn = ϕ(xn).

Then

0 < inf
d(yn, vn)

d(yn, y′n)
≤ sup

d(yn, vn)

d(yn, y′n)
<∞.

Proof. Suppose that the upper bound fails. By using a subsequence if necessary, we

may assume that d(yn, vn)/d(yn, y
′
n) → ∞. Also, as (yn) has no convergent subse-

quence and Y is complete by assumption, we may assume that (yn) is a separated

sequence. Uniform continuity of ϕ implies that d(yn, vn) → 0. Thus, we may assume

that infm 6=n d({ym, vm}, {yn, vn}) > 0. By Lemma 6.22, sup Φ(yn, 1)/d(yn, y
′
n)α < ∞.

Hence Φ(yn, 1)/d(yn, vn)α → 0. Therefore, there is a function g ∈ lipα,b(Y ) such that

g(yn) = Φ(yn, 1) = T1(yn) and g(vn) = 0 for all n. However, T−1g(xn) = 1 and

T−1g(un) = 0, making it impossible for T−1g to belong to U(X). The lower bound

is proved in the same way with the roles of y′n and vn switched.
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For any x ∈ X and any r > 0, let B′(x, r) be the punctured ball {z ∈ X : 0 <

d(z, x) < r}.

Lemma 6.26. There exist r > 0 and 1 ≤ C < ∞ such that for any un ∈ B′(xn, r) and

vn = ϕ(un),
1

C
≤ d(yn, vn)

d(yn, y′n)
≤ C for all n.

Proof. For any m ∈ N, take r = 1/m and C = m. Suppose that the upper bound

is violated by some um ∈ B′(xnm , 1/m). Set vm = ϕ(um). Since X is discrete, (nm)

cannot contain a constant subsequence. Without loss of generality, we may assume that

n1 < n2 < · · · . This contradicts Lemma 6.25 applied to the subsequence (nm). Similarly,

the lower bound holds for some r and C.

Define Ψ : X × R → R by Ψ(x, t) = T−1t(x). It is easy to see that Ψ(x, ·) is the

inverse of Φ(ϕ(x), ·). In particular, Ψ(x, ·) : R→ R is an increasing homeomorphism.

Lemma 6.27. There exist s, t > 0 such that Φ(yn, t) ≥ sd(yn, y
′
n)α for all n.

Proof. We will show that there exists s > 0 such that the sequence (Ψ(xn, sd(yn, y
′
n)α))

is bounded above. Otherwise, there are n1 < n2 < · · · and 0 < sm → 0 such that

T−1cm(xnm) = Ψ(xnm , cm)→∞, where cm = smd(ynm , y
′
nm

)α.

Note that (yn) has no convergent subsequence and d(yn, y
′
n) → 0. By using a further

subsequence if necessary, we may assume that there exists g ∈ lipα,b(Y ) with g(ynm
) = cm

and g(y′nm
) = 0 for all m. Then T−1g(xnm

) = Ψ(xnm
, cm) and T−1g(x′nm

) = 0 for all m.

This contradicts the fact that T−1g ∈ U(X).

Recall the following notation. For any x ∈ X and 0 ≤ r1 < r2, write

Ann(x, r1, r2) = {z ∈ X : r1 < d(z, x) < r2}.

Let r and C be the numbers arrived at in Lemma 6.26. Since (xn) is a separated sequence,

we may assume without loss of generality that d(xn, xm) > 2r if n 6= m, and d(xn, x
′
n) <

r/2 for all n.

Lemma 6.28. Ann(xn, r/2, r) = ∅ for infinitely many n.

Proof. If the lemma fails, for all sufficiently large n, there exists un ∈ Ann(xn, r/2, r).

Then un and x′n are distinct points in B′(xn, r). By choice of r and C,

1

C
≤ d(yn, vn)

d(yn, y′n)
≤ C for all n,

where vn = ϕ(un). In particular, d(yn, vn) → 0. By Lemma 6.27, there are s, t > 0 such

that Φ(yn, t) ≥ sd(yn, y
′
n)α for all n. Since d(xn, un) > r/2 for all sufficiently large n,

there exists f ∈ U(X) such that f(xn) = t and f(un) = 0 for all sufficiently large n.

Then Tf ∈ lipα(Y ), Tf(vn) = 0, and

Tf(yn) = Φ(yn, t) ≥ sd(yn, y
′
n)α ≥ s

Cα
d(yn, vn)α,

which is impossible.
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Lemma 6.29. If there exists Y such that U(X) ∼ [lipα(Y ) or lipα,b(Y )], then X is

separated.

Proof. If X is not separated, then it follows from the lemmas above that there is a

sequence (xn) in X and r > 0 such that d(xn, xm) > 2r if n 6= m, and Ann(xn, r/2, r) = ∅
for all n. Choose tn ∈ R such that Ttn(yn) = nd(yn, y1)α for all n, where yn = ϕ(xn).

Define f : X → R by f(x) = tn if x ∈ B(xn, r) for some n, and f(x) = 0 otherwise. Since

Ann(xn, r/2, r) = ∅, we have f ∈ U(X). However, Tf(yn) = nd(yn, y1)α for all n, and so

Tf /∈ lipα(X), contrary to the assumption.

Theorem 6.30. There exists Y such that U(X) ∼ [lipα(Y ) or lipα,b(Y )] if and only if

X is a finite set.

Proof. Suppose that there exists Y such that U(X) ∼ [lipα(Y ) or lipα,b(Y )]. By Lemma

6.29, X is separated. Hence U(X) = C(X) ∼ [lipα(Y ) or lipα,b(Y )]. By Theorem 6.13(b),

X is a finite set. The converse is trivial.

6.4. The case lipα(X) ∼ liploc
α,b(Y )

Lemma 6.31. If lipα(X) ∼ liploc
α,b(Y ), then X is proximally compact.

Proof. An order isomorphism T : lipα(X) → liploc
α,b(Y ) can be extended to an order iso-

morphism S : liploc
α (X) → liploc

α (Y ) such that S(liploc
α,b(X)) ⊆ liploc

α,b(Y ), according to

Corollary 6.5. Hence liploc
α,b(X) ⊆ lipα(X). Therefore, liploc

α,b(X) = lipα,b(X). By Theo-

rem 6.16, X is proximally compact.

Say that a metric space (X, d) with a distinguished point e is expansive at ∞ if there

exists C <∞ such that p = q if d(p, e) ≥ C and d(p, q) < d(p, e)/C. A direct comparison

of the definitions shows that any metric space that is expansive at∞ is almost expansive

at∞. The converse is not true, as evidenced by the subspace of R consisting of the points

2n and 2n + n−1 for all n ∈ N. Let X ′ be the space X endowed with the metric d′ given

by equation (5.1).

Proposition 6.32. Let (X, d) be a complete metric space with a distinguished point e.

Then X ′ is proximally compact if X is proximally compact and expansive at ∞.

Proof. Suppose that X is proximally compact and expansive at ∞. Assume that X ′ is

not proximally compact. There exist sequences (xn), (x′n) in X such that (xn) has no

d′-convergent subsequence and 0 < d′(xn, x
′
n)→ 0. By Proposition 5.1(b),

d(xn, x
′
n)

ξ(xn) ∨ ξ(x′n)
≤ d′(xn, x′n). (6.2)

If (ξ(xn)) and (ξ(x′n)) are both bounded, then d(xn, x
′
n)→ 0. Since X is proximally com-

pact, we may assume that (xn) d-converges to some x0 ∈ X. By Proposition 5.1(b) again,

d′(xn, x0)→ 0, contrary to the choice of (xn). Thus, we may assume that d(xn, e)→∞.

Let C be the constant resulting from the fact that X is expansive at∞. For all sufficiently

large n, we have d(xn, x
′
n) ≥ d(xn, e)/C = ξ(xn)/C. Since d′(xn, x

′
n)→ 0, it follows from

inequality (6.2) that ξ(x′n) ≥ ξ(xn) for all sufficiently large n and d(xn, x
′
n)/ξ(x′n)→ 0. In
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particular, ξ(x′n)→∞ and hence ξ(x′n) = d(x′n, e) for all sufficiently large n. Therefore,

ξ(x′n) ≥ ξ(xn) = d(xn, e) ≥ d(x′n, e)− d(xn, x
′
n) = ξ(x′n)

(
1− d(xn, x

′
n)

ξ(x′n)

)
for all sufficiently large n. Hence ξ(xn)/ξ(x′n)→ 1. Thus

0 = lim
d(xn, x

′
n)

ξ(x′n)
= lim

d(xn, x
′
n)

ξ(xn)
≥ 1

C
> 0,

which is clearly absurd.

Theorem 6.33. There exists Y such that lipα(X) ∼ liploc
α,b(Y ) if and only if X is proxi-

mally compact and expansive at ∞.

Proof. Suppose that T : lipα(X)→ liploc
α,b(Y ) is an order isomorphism such that T0 = 0.

Denote the associated homeomorphism by ϕ : X → Y . By Lemma 6.31, X is proximally

compact. Suppose that X is not expansive at ∞. Fix a distinguished point e ∈ X. There

exist sequences (xn), (x′n) in X such that d(xn, e)→∞ and

0 <
d(xn, x

′
n)

d(xn, e)
→ 0.

In particular, d(x′n, e)→∞ as well. Thus we may assume that the points in (xn) ∪ (x′n)

are distinct. Set yn = ϕ(xn) and y′n = ϕ(x′n). The function h : [0,∞) → R given by

h(t) = (tα − 1)+ belongs to lipα[0,∞). Define f : X → R by f(x) = h(d(x, e)). Then

f ∈ lipα(X) and hence Tf ∈ liploc
α,b(Y ). In particular, (Tf(yn)) is a bounded sequence.

Since the points in (yn) ∪ (y′n) are distinct, and neither (yn) nor (y′n) has a convergent

subsequence, there exists g ∈ liploc
α,b(Y ) such that g(yn) = Tf(yn) and g(y′n) = 0. Now

T−1g ∈ lipα(X) with T−1g(xn) = f(xn) and T−1g(x′n) = 0. So there is a finite constant

K such that

(d(xn, e)
α − 1)+ ≤ Kd(xn, x

′
n)α for all n.

This is not possible since d(xn, e) → ∞ and d(xn, x
′
n)/d(xn, e) → 0. This shows that X

is expansive at ∞.

Conversely, suppose that X is proximally compact and expansive at ∞. By Proposi-

tion 6.32, X ′ is proximally compact, where X ′ is the space X endowed with the metric

d′ given by equation (5.1). Lemma 6.14 implies that lipα,b(X
′) = liploc

α,b(X
′). Since X is

expansive at ∞, it is almost expansive at ∞. By Proposition 5.11, lipα(X) ∼ lipα,b(X
′).

Thus lipα(X) ∼ liploc
α,b(X

′).

6.5. The case lipα(X) ∼ lipα,b(Y ). Proposition 5.11 implies that lipα(X) ∼ lipα,b(Y )

for a specific Y if X is almost expansive at∞. The aim of this part is to show conversely

that if lipα(X) ∼ lipα,b(Y ) for any Y , then X is almost expansive at ∞.

Theorem 6.34. There exists Y such that lipα(X) ∼ lipα,b(Y ) if and only if X is almost

expansive at ∞.

Let T : lipα(X) → lipα,b(Y ) be an order isomorphism such that T0 = 0, and let

ϕ : X → Y be the associated homeomorphism. Suppose, if possible, that X is not almost
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expansive at ∞. There are sequences (pn) and (qn) in X and r > 0 such that

d(pn, p1)→∞, d(pn, qn)

d(pn, p1)
→ 0 and d(pn, qn) > r for all n.

Let un = ϕ(pn) and vn = ϕ(qn).

Lemma 6.35. d(un, vn) 9 0.

Proof. Assume, if possible, that d(un, vn) → 0. Let rn = d(pn, qn) > r for all n. Since

d(pn, e) → ∞, we may assume that d(pm, pn) > 2rm + 2rn if m 6= n. The function

f : X → R defined by

f(x) =

{
(rαn − d(x, pn)α)+ ∧ (rαn/2) if x ∈ B(pn, rn) for some n,

0 otherwise

belongs to lipα(X). Thus T (mf) ∈ lipα,b(Y ) for all m ∈ N. Since mf(qn) = 0, we have

T (mf)(vn) = 0 for all m and n. Choose n1 < n2 < · · · such that

T (mf)(unm
)

d(unm , vnm)α
=
T (mf)(unm

)− T (mf)(vnm
)

d(unm , vnm)α
→ 0.

Since (pn) has no convergent subsequence, neither does (un). As Y is complete by as-

sumption, we may assume that (un) is a separated sequence in Y . Then there exists

g ∈ lipα,b(Y ) such that g(unm) = T (mf)(unm) and g(vnm) = 0 for all m. However,

T−1g(pnm
) = mf(pnm

) = md(pnm
, qnm

)α/2 and T−1g(qnm
) = 0, contradicting the fact

that T−1g ∈ lipα(X).

By taking a further subsequence if necessary, we may assume that X0 = (pn) ∪ (qn)

and Y0 = (un) ∪ (vn) are both separated sets. In particular, X0 and Y0 are complete

metric spaces. We will also assume that d(pn+1, p1) ≥ 2d(pn, p1) ≥ 2 for all n. Let Xα
0 be

the set X0 endowed with the metric dα, and let X ′0 be the set X0 endowed with the metric

d′(p, q) = sup

∣∣∣∣f(p)

ξ(p)
− f(q)

ξ(q)

∣∣∣∣,
where ξ(p) = 1∨d(p, p1)α for p ∈ X0 and the supremum is taken over all f ∈ Lip(Xα

0 ) with

|f(p1)| ≤ 1 and Lipschitz constant with respect to dα at most 1. Note that ξ ∈ lipα(X).

Lemma 6.36. There exists an order isomorphism S : C(X ′0)→ C(Y0) such that S0 = 0,

S(Cb(X
′
0)) ⊆ Cb(Y0), and f ∈ Lipb(X

′
0) if Sf ∈ Cb(Y0)

Proof. By Proposition 6.3, there is an order isomorphism R : C(X0)→ C(Y0) such that

R(f|X0
) = (Tf)|Y0

for all f ∈ lipα(X). By Theorem 5.3, the mapQ : Lip(Xα
0 )→ Lipb(X

′
0)

given by Qf = f/ξ is an order isomorphism. Apply Proposition 6.3 to extend Q to an

order isomorphism Q′ : C(Xα
0 ) → C(X ′0). Since X0 is a separated metric space, so

is Xα
0 . Thus C(X0) = C(Xα

0 ). The map S = R ◦ (Q′)−1 : C(X ′0) → C(Y0) is an order

isomorphism such that S0 = 0. For any t ∈ R, we have tξ ∈ lipα(X). Hence

R(tξ|X0
) = (Ttξ)|Y0

∈ lipα,b(Y0) ⊆ Cb(Y0).

If f ∈ Cb(X ′0), choose 0 < t ∈ R such that |f | ≤ t. Then

−tξ|X0
= (Q′)−1(−t) ≤ (Q′)−1f ≤ (Q′)−1t = tξ|X0

.

It follows from the above that Sf = R ◦ (Q′)−1f is bounded.
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Finally, suppose that Sf ∈ Cb(Y0). Since Y0 is separated, Sf ∈ Lipb(Y0). By [27,

Theorem 15.6], there exists g ∈ Lipb(Y ) such that g|Y0
= Sf . Now g ∈ lipα,b(Y ) and

hence h = T−1g ∈ lipα(X). By the choice of R,

R(h|X0
) = (Th)|Y0

= g|Y0
= Sf.

Therefore, f = S−1R(h|X0
) = Q′(h|X0

). Since h|X0
∈ Lip(Xα

0 ), it follows that

f = Q′(h|X0
) = Q(h|X0

) ∈ Lipb(X
′
0).

Proof of Theorem 6.34. We first show that X ′0 is not proximally compact. The sequences

(pn) and (qn) are contained in X ′0. By Proposition 5.1(b), for m < n,

d′(pn, pm) ≥ d(pn, pm)α

ξ(pn)
≥ (d(pn, p1)− d(pm, p1))α

ξ(pn)
≥ d(pn, p1)

2αξ(pn)
= 2−α.

Thus (pn) has no d′-convergent subsequence. On the other hand, by Proposition 5.1(b)

again,

d′(pn, qn) ≤ 3dα(pn, qn)

ξ(pn) ∨ ξ(qn)
≤ 3

(
d(pn, qn)

d(pn, p1)

)α
→ 0.

This completes the proof that X ′0 is not proximally compact.

Apply Proposition 6.11 to the order isomorphism S : C(X ′0) → C(Y0) obtained in

Lemma 6.36 to find a function f ∈ C(X ′0) \U(X ′0) such that Sf ∈ Liploc
b (Y0). Since Y0 is

separated, Liploc
b (Y0) = Cb(Y0). But then it follows from Lemma 6.36 that f ∈ Lipb(X

′
0),

contrary to the choice of f . This concludes the proof that X is almost expansive at ∞
if lipα(X) ∼ lipα,b(Y ) for some Y . The converse is a direct consequence of Proposition

5.11 (see also the subsequent Remark).

6.6. The case U(X) ∼ Ub(Y )

Lemma 6.37. If there exists Y such that U(X) ∼ Ub(Y ), then U(X) = Ub(X).

Proof. Suppose that there is an order isomorphism from U(X) onto Ub(Y ), and let ϕ :

X → Y be the associated homeomorphism. By Propositions 6.19(b) and 6.20, ϕ is a

uniform homeomorphism. It follows that there is an order isomorphism T : Ub(X) →
U(X) whose associated homeomorphism is the identity map. Let Φ : X × R → R be

a function such that Φ(x, ·) : R → R is an increasing homeomorphism for all x ∈ X,

and Tf(x) = Φ(x, f(x)). We may assume that T0 = 0. If U(X) 6= Ub(X), there exist a

function 0 ≤ f ∈ U(X) and a sequence (xn) in X such that f(xn) → ∞. Clearly, (xn)

has no convergent subsequence. Since X is complete by assumption, we may assume that

the sequence (xn) is separated.

Case 1: There exists ε > 0 such that (xn) ⊆ Xε. In this case, the function g : X → R
defined by g(xn) = Φ(xn, n), and g(x) = 0 otherwise, is uniformly continuous. However,

T−1g(xn) = n for all n and thus T−1g /∈ Ub(X), contrary to the assumption.

Case 2: (xn) 6⊆ Xε for any ε > 0. By using a subsequence if necessary, we may assume

that there is a sequence (x′n) in X such that 0 < d(xn, x
′
n) → 0. Extend T to an order

isomorphism S : C(X) → C(X) by Proposition 6.3. By Lemma 6.22, for any 0 < t ∈ R,

supn Φ(xn, t) < ∞. Since T−1f ∈ Ub(X), there exists 0 < t ∈ R such that T−1f ≤ t.
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Then f ≤ Tt. In particular, supn f(xn) ≤ supn Tt(xn) = supn Φ(xn, t) <∞, contrary to

the choice of f .

Lemma 6.37 reduces the problem of characterizing X with U(X) ∼ Ub(Y ) to charac-

terizing X with U(X) = Ub(X). The latter question has been answered by O’Farrell [25].

Let us recall some terminology from [25]. Let X be a metric space. For any ε > 0, define

an equivalence relation on X by x ∼ε y if and only if there exist x = x0, x1, . . . , xn = y

such that d(xk−1, xk) ≤ ε, 1 ≤ k ≤ n. The equivalence classes are called ε-step territories.

If x ∼ε y, then the smallest n in the definition above is denoted by sε(x, y). An ε-step

territory T is said to be ε-step-bounded if supx,y∈T sε(x, y) <∞.

Theorem 6.38 ([25, Theorem 2.1]). Let X be a metric space. Then U(X) = Ub(X) if

and only if for any ε > 0, X has only finitely many ε-step territories, each of which is

ε-step-bounded.

Let us call a metric space satisfying the conditions of Theorem 6.38 an O’Farrell space.

The following result is now immediate.

Theorem 6.39. There exists Y such that U(X) ∼ Ub(Y ) if and only if X is an O’Farrell

space.

6.7. More on spaces of differentiable functions. In this part, we compare the

remaining spaces of differentiable functions. Specifically, we consider the cases [Cp(X) or

Cpb (X)] ∼ Cq(Y ) and [Cp(X), Cpb (X) or Cpb (X)] ∼ Cq∗(Y ). Recall that here X and Y are

open sets in (possibly different) Banach spaces, and X and Y are their closures in the

respective ambient Banach spaces. We also assume that all spaces considered separate

points from closed sets.

Proposition 6.40. Let U and V be open sets in Banach spaces E and F respectively,

and let A(F ) = [Cq(F ) or Cq∗(F )]. Assume that A(F ) separates points from closed sets.

Suppose that there are a homeomorphism ϕ : U → V and a function Ψ : U ×R→ R such

that Ψ(x, ·) : R → R is an increasing homeomorphism with Ψ(x, 0) = 0 for all x ∈ U .

Furthermore, suppose that for any g ∈ A(F ), the formula Sg(x) = Ψ(x, g(ϕ(x))), x ∈ U ,

defines a function Sg ∈ Cp(U). Let (xn) be a sequence of distinct points in U with no

convergent subsequence in U . For each n, there exist:

(a) an open neighborhood Un of xn, such that Un ⊆ U , diamUn → 0, Un ∩ Um = ∅ if

m 6= n (closures taken in E),

(b) a function fn ∈ Cpb (E) such that fn(x) = 0 if x /∈ Un and ‖fn‖∞ ≤ 1/n,

(c) a function gn ∈ A(F ) and a point y′n ∈ ϕ(Un) such that

Sgn = fn|U , d(y′n, ϕ(xn))→ 0 and ‖Dgn(y′n)‖ → ∞.

Proof. It is clear that there is a sequence (Un) of sets satisfying (a). Let yn = ϕ(xn) and

cn > 0 be such that Ψ(xn, cn) = 1/n. For any c ∈ R, the constant function c ∈ A(F ), and

hence Ψ(x, c), lies is Cp(U) as a function of x ∈ U . In particular, Ψ(x, c) is continuous in

the variable x for x ∈ U . Choose 0 < rn < (cn ∧ 1)/n such that B(yn, rn) ⊆ ϕ(Un) and

Ψ(ϕ−1(y), cn/2) ≤ 1/n for all y ∈ B(yn, rn). Since A(F ) separates points from closed
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sets, there exists g ∈ A(F ) such that 0 ≤ g ≤ 1, g(0) > 0, and g(y) = 0 if ‖y‖ ≥ 1. In

particular, there exists z ∈ F , ‖z‖ < 1, such that Dg(z) 6= 0. Define gn : F → R by

gn(y) =
cn
2
g

(
y − yn
rn

)
.

Then gn ∈ A(F ) and hence fn = Sgn ∈ Cp(U). If x ∈ U and ϕ(x) /∈ B(yn, rn), then

gn(ϕ(x)) = 0 and hence fn(x) = 0. In particular, fn(x) = 0 if x ∈ U \Un. Since Un ⊆ U ,

we may extend fn to a function in Cp(E) by defining fn(x) = 0 for all x /∈ U . We will

continue to denote the extension by fn. Note that for x ∈ U with ϕ(x) ∈ B(yn, rn),

0 ≤ fn(x) = Ψ(x, gn(ϕ(x))) ≤ Ψ(x, cn/2) ≤ 1/n.

Hence 0 ≤ fn(x) ≤ 1/n. By the above, we see that 0 ≤ fn ≤ 1/n on E. Thus fn satisfies

the conditions in (b). Finally, for each n, let y′n = yn+rnz. Then y′n ∈ B(yn, rn) ⊆ ϕ(Un)

and d(y′n, yn)→ 0. Furthermore,

‖Dgn(y′n)‖ =
cn
2rn
‖Dg(z)‖ → ∞

since Dg(z) 6= 0 and 0 < rn < cn/n.

Theorem 6.41. There exist Y and q such that Cp(X) ∼ Cq(Y ) if and only if X = E,

the ambient Banach space containing X.

Proof. Suppose that there exist Y and q such that Cp(X) ∼ Cq(Y ). To show that X = E,

it suffices to show that X = X. Assume to the contrary that there exists x0 ∈ X \ X.

Let T : Cp(X) → Cq(Y ) be an order isomorphism such that T0 = 0. By Theorem

4.5, we have a representation Tf(y) = Φ(y, f(ϕ−1(y))) for f ∈ Cp(X) and y ∈ Y ,

where ϕ : X → Y is a homeomorphism and Φ : Y × R → R is a function such that

Φ(y, ·) : R → R is an increasing homeomorphism with Φ(y, 0) = 0 for all y ∈ Y . Set

U = X and V = ϕ(X). Then U and V are open sets in the respective ambient Banach

spaces E and F , and ϕ is a homeomorphism from U onto V . For each x ∈ U , let Ψ(x, ·)
be the inverse of Φ(ϕ(x), ·). Then Ψ(x, ·) : R→ R is an increasing homeomorphism such

that Ψ(x, 0) = 0 for all x ∈ U . By assumption, Cq(Y ) separates points from closed sets

and hence so does Cq(F ). If g ∈ Cq(F ), then g|Y ∈ Cq(Y ) and hence T−1(g|Y ) ∈ Cp(X).

In particular, Sg(x) = Ψ(x, g(ϕ(x))) = T−1(g|Y )(x) belongs to Cp(U) as a function of

x ∈ U . Choose a sequence (xn) of distinct points in U that converges to x0 in E. Clearly,

(xn) has no convergent subsequence in U . Obtain sets Un, functions fn, gn and points

y′n by applying Proposition 6.40. It is clear that the pointwise sum f =
∑
fn|X defines

a function in Cp(X). As f = fn on Un, we have Tf = gn on the open set ϕ(Un). Since

y′n ∈ ϕ(Un) we have ‖D(Tf)(y′n)‖ = ‖Dgn(y′n)‖ → ∞. However, (ϕ(xn)) converges to

ϕ(x0) and d(y′n, ϕ(xn)) → 0. Therefore, (y′n) converges to ϕ(x0). As Tf ∈ Cq(Y ) and

ϕ(x0) ∈ Y , we must have D(Tf)(y′n) → D(Tf)(ϕ(x0)). This contradicts the fact that

‖D(Tf)(y′n)‖ → ∞ and completes the proof that X = E.

Conversely, if X = E, then Cp(X) = Cp(E) = Cq(Y ) if we take q = p and Y = E.

Corollary 6.42. Cpb (X) � Cq(Y ) for any p, q and any X,Y .

Proof. Let A(X) = Cpb (X) and A(Y ) = Cq(Y ). Then Aloc(X) = Cp(X) and Aloc(Y ) =

Cq(Y ). By Corollary 6.5, if Cpb (X) ∼ Cq(Y ), then Cp(X) ∼ Cq(Y ). By Theorem 6.41,
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we have X = X. Thus Cpb (X) = Cpb (X) ∼ Cq(Y ). By Corollary 6.7(b), this is impos-

sible.

Theorem 6.43. Let A(X) = [Cp(X) or Cpb (X)]. Then A(X) � Cq∗(Y ) and Cpb (X) �
Cq∗(Y ) for any q and any Y .

Proof. Let T be an order isomorphism from either A(X) or Cpb (X) onto Cq∗(Y ). We may

assume that T0 = 0. Denote by ϕ the associated homeomorphism. Set U = X ∩ ϕ−1(Y )

and V = ϕ(X) ∩ Y , which are open sets in the ambient Banach spaces E and F re-

spectively. By Theorem 4.5 (note in particular Example C(f)), we have a representation

Tf(y) = Φ(y, f(ϕ−1(y))) for f ∈ A(X), respectively f ∈ Cpb (X), and y ∈ Y , where

Φ : Y × R→ R is a function such that Φ(y, ·) : R→ R is an increasing homeomorphism

with Φ(y, 0) = 0 for all y ∈ Y . For each x ∈ U , let Ψ(x, ·) be the inverse of Φ(ϕ(x), ·).
Then Ψ(x, ·) : R → R is an increasing homeomorphism such that Ψ(x, 0) = 0 for all

x ∈ U . If g ∈ Cq∗(F ), then g|Y ∈ C
q
∗(Y ). It is easy to check that

Sg(x) = Ψ(x, g(ϕ(x))) = T−1(g|Y )(x), x ∈ U.

Hence Sg ∈ Cp(U). Since U is a dense open subset of an open setX in a Banach space, it is

clear that there is a sequence of distinct points (xn) in U with no convergent subsequence

in X. Consider sets Un, functions fn, gn and points y′n obtained by applying Proposi-

tion 6.40. Let f : E → R be the pointwise sum
∑
fn. It is easy to see that f|X ∈ C

p
b (X)

and f|X ∈ Cpb (X). Hence T (f|X) ∈ Cq∗(Y ), respectively T (f|X) ∈ Cq∗(Y ). However, as in

the proof of Theorem 6.41, ‖D(T (f|X))(y′n)‖ → ∞, respectively ‖D(T (f|X))(y′n)‖ → ∞.

This contradiction concludes the proof of the theorem.

7. Spaces of little Lipschitz functions

In this chapter, we return to the study of spaces of little Lipschitz functions. The main aim

is to establish the counterpart of Theorem 5.5 for spaces of the type lipα(X). A special

case of the result we intend to prove was established in [9]. The space lip(X) is said to

separate points boundedly if there is a constant K <∞ such that for any x, y ∈ X, there

exists f ∈ lip(X) such that L(f) ≤ K and |f(x) − f(y)| = d(x, y). Here L(f) is the

Lipschitz constant of f . Since Lipb(X) ⊆ lipα(X) if 0 < α < 1, it is clear that lipα(X)

separates points boundedly for any metric space X and any 0 < α < 1.

Theorem 7.1 ([9, Theorem 2, see also Theorem 9.3]). Let X and Y be compact metric

spaces such that lip(X) and lip(Y ) separate points boundedly. If T : lip(X) → lip(Y )

is an order isomorphism, then there are a Lipschitz homeomorphism ϕ : X → Y and a

function Φ : Y × R → R such that Φ(y, ·) : R → R is an increasing homeomorphism for

each y ∈ Y , and Tf(y) = Φ(y, f(ϕ−1(y))) for all f ∈ lip(X) and all y ∈ Y .

We set the stage by proving some extension results for little Lipschitz functions, which

may be of independent interest. For results of a similar nature, refer to [27, Section 3.2].

Note however that the results there concern exclusively compact metric spaces. In what

follows, fix a complete metric space (X, d) and 0 < α < 1.



58 D. H. Leung and W.-K. Tang

Proposition 7.2. Let X0 be a separated subset of X. If f : X0 → R is Lipschitz with

respect to dα, then there exists g ∈ lipα(X) such that g|X0
= f .

Proof. Choose r > 0 such that d(x, x′) > r if x and x′ are distinct points in X0. It suffices

to prove the proposition for nonnegative f ; otherwise, consider f+ and f− separately.

Let C be such that |f(x)− f(x′)| ≤ Cd(x, x′)α for all x, x′ ∈ X0. Define g : X → R by

g(x) = inf
z∈X0

[
f(z) + 2C

(
d(x, z)α − rα

2

)+]
.

Since f ≥ 0, g is nonnegative. Suppose that x, z, are distinct points in X0. Then t =

d(x, z) > r and hence tα < 2(tα − rα/2). Thus

f(z) + 2C

(
d(x, z)α − rα

2

)+

> f(z) + Cd(x, z)α ≥ f(x).

It follows that g(x) = f(x) for all x ∈ X0.

Fix ε > 0. Since the function h : [0,∞) → R, h(a) = (aα − rα/2)+, belongs to

lipα[0,∞), there exist K < ∞ and δ > 0 such that |h(a) − h(b)| ≤ K|a − b|α for all

a, b ∈ [0,∞), and |h(a)− h(b)| ≤ ε|a− b|α if |a− b| < δ. Let x1 and x2 be distinct points

in X. Without loss of generality, suppose that g(x1) ≤ g(x2). Choose z ∈ X0 such that

f(z) + 2C

(
d(x1, z)

α − rα

2

)+

≤ g(x1) + εd(x1, x2)α.

By definition, g(x2) ≤ f(z) + 2C(d(x2, z)
α − rα/2)+. Thus

0 ≤ g(x2)− g(x1) ≤ 2C

[(
tα − rα

2

)+

−
(
sα − rα

2

)+]
+ εd(x1, x2)α,

where t = d(x2, z) and s = d(x1, z). Therefore,

0 ≤ g(x2)− g(x1) ≤ 2C|h(t)− h(s)|+ εd(x1, x2)α

≤ 2CK|t− s|α + εd(x1, x2)α

≤ (2CK + ε)d(x1, x2)α.

This shows that g ∈ Lip(X, dα). If, in addition, d(x1, x2) < δ, then |t− s| < δ and hence

|h(t)− h(s)| < ε|t− s|α. By the calculation above,

0 ≤ g(x2)− g(x1) ≤ 2C|h(t)− h(s)|+ εd(x1, x2)α

≤ 2Cε|t− s|α + εd(x1, x2)α

≤ (2C + 1)εd(x1, x2)α.

Hence g ∈ lipα(X).

Proposition 7.3. Let (xn) be a sequence in X and let (rn), (an) be real sequences such

that rn > 0, d(xm, xn) ≥ rm+rn if m 6= n, and an/r
α
n → 0. Then there exists f ∈ lipα(X)

such that f(xn) = an for all n and f(x) = 0 if x /∈
⋃
B(xn, rn).

Proof. The function h(t) = (1−(2tα−1)+)+ belongs to lipα[0,∞); h(0) = 1 and h(t) = 0

if t ≥ 1. Define f : X → R by taking the pointwise sum

f(x) =
∑

anh

(
2d(x, xn)

rn

)
.
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If d(x, xn) ≥ rn/2, then h(2d(x, xn)/rn) = 0. It follows that at each x, at most one of

the terms in the sum is nonzero. Clearly, f(xn) = an and f(x) = 0 if x /∈
⋃
B(xn, rn).

Since h ∈ lipα[0,∞), there is a bounded function η : [0,∞) → R, continuous at 0 with

η(0) = 0, such that

|h(t)− h(s)| ≤ η(|t− s|)|t− s|α for all t, s ≥ 0.

Consider x, x′ ∈ X. We divide the proof into two cases.

Case 1: There exists n such that one of x or x′ lies in B(xn, rn/2) and the other is

not in B(xm, rm/2) for any m 6= n. In this case, f(x) = anh(2d(x, xn)/rn) and f(x′) =

anh(2d(x′, xn)/rn). We have

|f(x)− f(x′)| ≤ |an|
∣∣∣∣h(2d(x, xn)

rn

)
− h
(

2d(x′, xn)

rn

)∣∣∣∣
≤ |an|η

(
2

rn
|d(x, xn)− d(x′, xn)|

)
2α

rαn
|d(x, xn)− d(x′, xn)|α

≤ |an|η
(

2

rn
|d(x, xn)− d(x′, xn)|

)
2α

rαn
d(x, x′)α

≤ 2α sup
m

|am|
rαm
‖η‖∞d(x, x′)α.

In particular, there is a constant C, independent of x and x′, such that |f(x)− f(x′)| ≤
Cd(x, x′)α. Let ε > 0. Then there exists N ∈ N such that |an/rαn | < ε if n ≥ N . Next

choose δ > 0 such that η(2w/rn) < ε if 0 ≤ w < δ, 1 ≤ n < N . If n ≥ N , by the preceding

calculation we have

|f(x)− f(x′)| ≤ 2αε‖η‖∞d(x, x′)α.

On the other hand, if 1 ≤ n < N and d(x, x′) < δ, then |d(x, xn)− d(x′, xn)| < δ. Hence

η(2|d(x, xn)− d(x′, xn)|/rn) < ε. Thus, from the preceding calculation, we obtain

|f(x)− f(x′)| ≤ 2α sup
m

|am|
rαm

εd(x, x′)α.

Case 2: There exist m 6= n such that x ∈ B(xm, rm/2) and x′ ∈ B(xn, rn/2). In this

case, d(x, x′) ≥ (rn + rm)/2. We have

|f(x)− f(x′)| ≤ |am|
∣∣∣∣h(2d(x, xm)

rm

)
− h(1)

∣∣∣∣+ |an|
∣∣∣∣h(2d(x′, xn)

rn

)
− h(1)

∣∣∣∣
≤ |am|η

(∣∣∣∣2d(x, xm)

rm
− 1

∣∣∣∣)∣∣∣∣ 2

rm
d(x, xm)− 1

∣∣∣∣α
+ |an|η

(∣∣∣∣2d(x′, xn)

rn
− 1

∣∣∣∣)∣∣∣∣ 2

rn
d(x′, xn)− 1

∣∣∣∣α
≤ 2α‖η‖∞

[
|am|
rαm

∣∣∣∣d(x, xm)− rm
2

∣∣∣∣α +
|an|
rαn

∣∣∣∣d(x′, xn)− rn
2

∣∣∣∣α]
≤ 2α‖η‖∞

[
|am|
rαm

(
rm
2

)α
+
|an|
rαn

(
rn
2

)α]
≤ 2α‖η‖∞

[
|am|
rαm

+
|an|
rαn

]
d(x, x′)α.
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In particular, there is a constant C, independent of x and x′, such that |f(x)− f(x′)| ≤
Cd(x, x′)α. Given ε > 0, choose N ∈ N such that |an/rαn | < ε if n ≥ N . Set δ =

min1≤k<N rk/2. Then rn/2 + rm/2 < δ implies that n,m ≥ N . Thus, if d(x, x′) < δ, then

|f(x)− f(x′)| ≤ 2α‖η‖∞2εd(x, x′)α.

This completes the proof that f ∈ lipα(X).

Corollary 7.4. Let (xn) be a sequence converging to x0 in X such that d(xn+1, x0) ≤
d(xn, x0)/2 for all n. Set X0 = (xn). If f : X0 → R belongs to lipα(X0), then there exists

g ∈ lipα(X) such that g|X0
= f .

Proof. Let rn = d(xn, x0)/3. If rn = 0 for some n, then (xn) is eventually constant and

hence X0 is separated. The corollary follows from Proposition 7.2. Assume that rn > 0 for

all n. By the assumption, d(xm, xn) ≥ rm+rn if m 6= n. Suppose that f ∈ lipα(X0). Then

a = lim f(xn) exists. Furthermore, if an = f(xn)−a, then an/r
α
n → 0. By Proposition 7.3,

there exists h ∈ lipα(X) such that h(xn) = an for all n. Set g = h+ a. Then g ∈ lipα(X)

and g|X0
= f .

For the sake of brevity, a sequence (xn) satisfying the hypothesis of Corollary 7.4 will

be said to converge rapidly (to x0). Every convergent sequence has a subsequence that

converges rapidly.

Proposition 7.5. Let (xn) and (x′n) be sequences in X such that xn 6= x′n for all n.

There is a subsequence (nk) of N such that, taking X0 = (xnk
)∪(x′nk

), every f ∈ lipα(X0)

extends to a function g ∈ lipα(X).

Proof. Since X is assumed to be complete, every sequence in X has a subsequence that

either converges or is separated. Thus, by considering subsequences, and taking note of

the symmetry between (xn) and (x′n), we may assume that we are in one of the following

situations:

(a) (xn) is separated and d(xn, x
′
n) 9 0.

(b) (xn) is separated and d(xn, x
′
n)→ 0.

(c) (xn) and (x′n) converge rapidly to x0 and x′0 respectively, x0 6= x′0.

(d) (xn) and (x′n) converge rapidly to the same limit x0.

In case (a), if (x′n) is also separated, then by taking a further subsequence, we may

assume that (xn) ∪ (x′n) is separated. The desired result follows from Proposition 7.2.

Next, suppose that we are either in case (a) with (x′n) having no separated subsequence,

or in case (c). In either of these situations, we may assume that (x′n) converges rapidly

to some x′0. Set rn = d(x′n, x
′
0)/3. Then d(xm, xn) ≥ rm + rn if m 6= n. Furthermore, we

may assume that xn /∈
⋃
mB(x′m, rm) for all n ∈ N, and d(x0, x

′
0)/2 > d(x1, x0) if x0 is

defined (i.e., in case (c)). Let X0 = (xn)∪(x′n) and let f ∈ lipα(X0). We may extend f by

continuity to x′0, and the resulting function will be in lipα(X0 ∪ {x′0}). Since {x′0} ∪ (xn)

either is separated or converges rapidly, by Proposition 7.2 or Corollary 7.4, there exists

g1 ∈ lipα(X) such that g1(xn) = f(xn) for all n ∈ N and g1(x′0) = f(x′0). Since

(f − g1)(x′n)

rαn
= 3α

(f − g1)(x′n)− (f − g1)(x′0)

d(x′n, x
′
0)α

→ 0,
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by Proposition 7.3, there exists g2 ∈ lipα(X) such that g2(x′n) = (f − g1)(x′n) and

g2(x) = 0 if x /∈
⋃
mB(x′m, rm). In particular, g2(xn) = 0 for all n ∈ N. Now g =

g1 + g2 ∈ lipα(X) and g|X0
= f .

The proof for case (b) is similar. Let rn = d(xn, x
′
n). We may assume that d(x′m, x

′
n) ≥

rm + rn if m 6= n, and xn /∈
⋃
mB(x′m, rm) for all n. Let f ∈ lipα(X0), where X0 =

(xn) ∪ (x′n). By Proposition 7.2, there exists g1 ∈ lipα(X) such that g1(xn) = f(xn) for

all n. Since f−g1 ∈ lipα(X0) and (f−g1)(xn) = 0 for all n, we have (f−g1)(x′n)/rαn → 0.

By Proposition 7.3, there exists g2 ∈ lipα(X) such that g2(x′n) = (f − g1)(x′n) and

g2(x) = 0 for all x /∈
⋃
B(x′m, rm). Then g = g1 + g2 ∈ lipα(X) and g|X0

= f .

Finally, consider case (d). If at least one of (xn) and (x′n) is eventually constant,

we may reduce the result to Corollary 7.4. Otherwise, we may assume that both rn =

d(xn, x0) and r′n = d(x′n, x0) are nonzero for all n. By taking further subsequences,

we may suppose that rn+1 ≤ r′n+1 ≤ rn/2 ≤ r′n/2 for all n. Then sn = d(xn, x
′
n) ≤

rn + r′n ≤ 2r′n for all n. It is easy to check that d(x′m, x
′
n) ≥ sm/6 + sn/6 if m 6= n, and

xn /∈
⋃
B(x′m, sm/6) for all n. Let f ∈ lipα(X0), where X0 = (xn) ∪ (x′n). Extend f by

continuity to x0. The extension belongs to lipα(X0∪{x0}). By Corollary 7.4, there exists

g1 ∈ lipα(X) such that g1(xn) = f(xn) for all n. Now

(f − g1)(x′n)

sαn
=

(f − g1)(x′n)− (f − g1)(xn)

sαn
→ 0.

Hence, by Proposition 7.3, there exists g2 ∈ lipα(X) such that g2(x′n) = (f − g1)(x′n)

and g2(x) = 0 for all x /∈
⋃
B(x′m, sm/6). In particular, g2(xn) = 0 for all n ∈ N. Then

g = g1 + g2 ∈ lipα(X) and g|X0
= f .

Remark. By the proof of Proposition 7.5, one can choose (nk) so that the conclusion

applies to any further subsequence of (nk). Furthermore, if f ∈ lipα(X0), then the propo-

sition yields a g ∈ lipα(X) such that g|X0
= f|X0

. By continuity, g|X0
= f .

Proposition 7.6. Let A(X) and A(Y ) be sets of real-valued functions defined on X and

Y respectively. Suppose that there is an order isomorphism T : A(X) → A(Y ) given by

Tf(y) = Φ(y, f(ϕ−1(y))), where ϕ : X → Y is a bijection and Φ : Y × R → R is a

function such that Φ(y, ·) : R→ R is an increasing homeomorphism for each y ∈ Y . Let

X0 be a subset of X, let Y0 = ϕ(X0) and set

A(X0) = {f|X0
: f ∈ A(X)}, A(Y0) = {g|Y0

: g ∈ A(Y )}.

For any f ∈ A(X0), define T0f : Y0 → R by T0f(y) = Φ(y, f(ϕ−1(y))) for all y ∈ Y0.

Then T0f ∈ A(Y0) and T0 is an order isomorphism from A(X0) onto A(Y0).

Proof. Let f ∈ A(X0). Then f = f̃|X0
for some f̃ ∈ A(X), and g = (T f̃)|Y0

∈ A(Y0).

Obviously, g(y) = Φ(y, f(ϕ−1(y))) for all y ∈ Y0. Thus T0f ∈ A(Y0). For each x ∈ X,

let Ψ(x, ·) : R → R be the inverse of Φ(ϕ(x), ·). Then T−1g(x) = Ψ(x, g(ϕ(x))) for all

g ∈ A(Y ) and all x ∈ X. In the same manner, the formula S0g(x) = Ψ(x, g(ϕ(x))) for all

g ∈ A(Y0) and all x ∈ X0 defines a map S0 from A(Y0) into A(X0). Obviously, T0 and S0

are mutual inverses, and both are order preserving. Hence T0 is an order isomorphism.

For the remainder of the chapter, suppose that X and Y are complete metric spaces

and T : lipα(X) → lipα(Y ) is an order isomorphism such that T0 = 0. Express T as
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Tf(y) = Φ(y, f(ϕ−1(y))) for some homeomorphism ϕ : X → Y and a function Φ :

Y ×R→ R such that Φ(y, ·) : R→ R is an increasing homeomorphism for all y ∈ Y . We

seek to extract information on the homeomorphism ϕ. The key idea is that the extension

results for little Lipschitz functions proved above lead to a restriction of T to functions

defined on subspaces of X and Y respectively.

Corollary 7.7. Let X0 be a compact subset of X and let Y0 = ϕ(X0). Suppose that

any f ∈ lipα(X0) and g ∈ lipα(Y0) extend to functions f̃ ∈ lipα(X) and g̃ ∈ lipα(Y )

respectively. Then ϕ is a Lipschitz homeomorphism from X0 onto Y0.

Proof. By Proposition 7.6, we have an order isomorphism T0 : lipα(X0)→ lipα(Y0) whose

associated homeomorphism is ϕ : X0 → Y0. The result now follows from Theorem 7.1.

Proposition 7.8. Let (xn) and (x′n) be sequences in X. Set yn = ϕ(xn) and y′n = ϕ(x′n)

for all n. If (xn) is separated and (xn) ∪ (x′n), (yn) ∪ (y′n) are bounded, then there exists

C <∞ such that d(yn, y
′
n) ≤ Cd(xn, x

′
n).

Proof. If the proposition fails, we find bounded sequences (xn) and (x′n) in X, and

bounded sequences (yn) = (ϕ(xn)) and (y′n) = (ϕ(x′n)), such that (xn) is separated,

xn 6= x′n for all n, and d(yn, y
′
n)/d(xn, x

′
n)→∞. Since supn d(yn, y

′
n) <∞, we must have

d(xn, x
′
n)→ 0. As (xn) has no convergent subsequence, neither does (x′n). Thus the same

holds for (yn) and (y′n). By taking subsequences if necessary, we may assume that (yn)

and (y′n) are separated. Set rn = d(xn, x
′
n) and Rn = d(yn, y

′
n). We may assume that

inf
m 6=n

d(xm, xn), inf
m 6=n

d(x′m, x
′
n) > ri + rj for all i, j,

and Rαn ≥ nrαn and rαn < 1/2 for all n. Since (yn) is bounded, so is (T1(yn)). There exists

M <∞ such that Φ(yn, 1) ≤M for all n.

Claim. For all n, there exists 0 ≤ tn ≤ 1 such that

Φ(yn, tn + rαn)− Φ(yn, tn) ≤ 2Mrαn .

Otherwise, there exists n such that for all 0 ≤ t ≤ 1,

Φ(yn, t+ rαn)− Φ(yn, t) > 2Mrαn .

Choose k such that 1/2 < krαn ≤ 1. Then

Φ(yn, kr
α
n) =

k∑
j=1

[Φ(yn, jr
α
n)− Φ(yn, (j − 1)rαn)] > 2kMrαn > M.

It follows that Φ(yn, 1) > M , contrary to the choice of M .

Since (xn) is separated and (tn) is bounded, the function f : (xn) → R defined by

f(xn) = tn is Lipschitz with respect to dα. By Proposition 7.2, there exists g ∈ lipα(X)

such that g(xn) = f(xn) = tn. In particular,

tn − g(x′n)

rαn
=
g(xn)− g(x′n)

rαn
→ 0.
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Thus Proposition 7.3 applies to (x′n), with rn as chosen above and an = tn − g(x′n).

Furthermore, xn /∈ B(x′n, rn) for all n, while for m 6= n,

d(xn, x
′
m) ≥ d(x′n, x

′
m)− d(xn, x

′
n) > rm.

Thus there exists h ∈ lipα(X) such that h(xn) = 0 and h(x′n) = tn − g(x′n) for all n. Let

p = g + h. Then p ∈ lipα(X), and p(xn) = p(x′n) = tn for all n. From the Claim,

0 ≤ Φ(yn, tn + rαn)− Φ(yn, tn)

Rαn
≤ 2Mrαn

Rαn
→ 0.

If Rn → 0, then we may assume that infm 6=n d(ym, yn) > Ri + Rj for all i, j. As above,

Proposition 7.3 applies to (yn), with the parameters Rn and bn = Φ(yn, tn + rαn) −
Φ(yn, tn). Furthermore, y′n /∈

⋃
mB(ym, Rm) for all n. Thus there exists q ∈ lipα(Y ) such

that q(yn) = bn and q(y′n) = 0 for all n. On the other hand, if Rn 9 0, then we may

assume that (yn)∪(y′n) is separated. Since the sequence (bn) converges to 0, it is bounded.

Thus the function γ : (yn) ∪ (y′n)→ R defined by γ(yn) = bn and γ(y′n) = 0 is Lipschitz

with respect to dα. By Proposition 7.2, we also obtain q ∈ lipα(Y ) such that q(yn) = bn
and q(y′n) = 0. In either case, Tp + q ∈ lipα(Y ) and thus T−1(Tp + q) ∈ lipα(X). We

have

(Tp+ q)(yn) = Φ(yn, tn) + q(yn) = Φ(yn, tn + rαn),

(Tp+ q)(y′n) = Φ(y′n, tn) + q(y′n) = Φ(y′n, tn).

Therefore,

T−1(Tp+ q)(xn) = tn + rαn and T−1(Tp+ q)(x′n) = tn.

This violates the fact that T−1(Tp+ q) ∈ lipα(X).

Proposition 7.9. Let (xn) and (x′n) be sequences in X. Set yn = ϕ(xn) and y′n = ϕ(x′n)

for all n. If (xn) ∪ (x′n) and (yn) ∪ (y′n) are bounded, then there exists C <∞ such that

d(yn, y
′
n) ≤ Cd(xn, x

′
n).

Proof. Suppose that the proposition fails. Then there are sequences (xn) and (x′n) such

that (xn) ∪ (x′n) and (yn) ∪ (y′n) = (ϕ(xn)) ∪ (ϕ(x′n)) are bounded, and the sequence

(d(yn, y
′
n)/d(xn, x

′
n)) diverges to∞. In particular, d(xn, x

′
n)→ 0. By Proposition 7.8, (xn)

cannot have a separated subsequence. Thus, by considering a subsequence if necessary,

we may assume that (xn) converges to some x0. It follows that (x′n) also converges to x0.

Then (yn) and (y′n) both converge to y0 = ϕ(x0). Applying Proposition 7.5 to (xn)∪(x′n),

respectively (yn)∪ (y′n), we may assume that there is a subsequence (nk) of N such that,

setting X0 = (xnk
) ∪ (x′nk

), Y0 = (ynk
) ∪ (y′nk

), every function in lipα(X0), respectively

lipα(Y0), extends to a function in lipα(X), respectively lipα(Y ). Clearly, every function in

lipα(X0∪{x0}) also extends to a function in lipα(X), and every function in lipα(Y0∪{y0})
extends to a function in lipα(Y ). Since X0 ∪ {x0} is compact, by Corollary 7.7, ϕ is a

Lipschitz homeomorphism from X0 ∪ {x0} onto Y0 ∪ {y0}. This yields a contradiction in

view of the choices of (xn), (x′n) and (yn), (y′n).

The next result follows immediately from Proposition 7.9.

Theorem 7.10. Suppose that X and Y are complete metric spaces with finite diameter.

If T : lipα(X) → lipα(Y ) is an order isomorphism, then the associated homeomorphism
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ϕ : X → Y is a Lipschitz homeomorphism. Conversely, if X and Y are Lipschitz homeo-

morphic, then lipα(X) is order isomorphic to lipα(Y ).

Next, we consider complete metric spaces which may be unbounded. For clarity, denote

the metrics on X and Y by dX and dY respectively. Recall the following from §5. Fix

e ∈ X and let e′ = ϕ(e) ∈ Y . Set ξ(x) = 1 ∨ dX(x, e)α, ζ(y) = 1 ∨ dY (y, e′)α,

ρX(x, x′) =
dX(x, x′)α

ξ(x) ∨ ξ(x′)
and ρY (y, y′) =

dY (y, y′)α

ζ(y) ∨ ζ(y′)

for all x, x′ ∈ X and y, y′ ∈ Y .

Proposition 7.11. Let T : lipα(X)→ lipα(Y ) be an order isomorphism with associated

homeomorphism ϕ : X → Y . Then there exists C < ∞ such that ρY (ϕ(x), ϕ(x′)) ≤
CρX(x, x′) for all x, x′ ∈ X.

Proof. Suppose that the proposition fails. Then there are sequences (xn) and (x′n) in X

such that xn 6= x′n and ρY (yn, y
′
n)/ρX(xn, x

′
n)→∞, where yn = ϕ(xn) and y′n = ϕ(x′n).

By taking further subsequences and by symmetry between (xn) and (x′n), we may assume

that we have one of the following situations:

(a) (xn) ∪ (x′n) is bounded.

(b) (xn) is unbounded, dX(xn+1, e) ≥ 2dX(xn, e) for all n, and (x′n) is bounded.

(c) (xn) is unbounded, dX(xn+1, e) ≥ 2dX(xn, e) for all n, and dX(xn, x
′
n)→ 0.

(d) (xn) and (x′n) are both unbounded, and dX(xn, x
′
n) 9 0.

Set X0 = (xn) ∪ (x′n) and Y0 = (yn) ∪ (y′n). Applying Proposition 7.5 and the Remark

following it, we may assume that every function in lipα(X0), respectively lipα(Y0), extends

to a function in lipα(X), respectively lipα(Y ). By Proposition 7.6, there is an order

isomorphism T0 : lipα(X0)→ lipα(Y0) whose associated homeomorphism is ϕ : X0 → Y0.

In cases (a), (b) and (c), one can readily verify that X0 is almost expansive at ∞. (Refer

to the definition following Theorem 5.5.) By Propositions 5.11 and 5.1(a), (b) and (d),

one may endow X0 with a complete bounded metric d′ such that ρX(x, x′) ≤ d′(x, x′) ≤
3ρX(x, x′) for all x, x′ ∈ X0, and such that lipα(X0) is order isomorphic to lip(X0, d

′),

with the formal identity map as the associated homeomorphism. As d′ is a bounded

metric, lipb(X0, d
′) = lip(X0, d

′) ∼ lipα(X0) ∼ lipα(Y0). Since ρ
1/α
X is within a constant

multiple of a metric, we may also assume that d′ is a Hölder metric of order α. It follows

from Theorem 6.34 that Y0 is almost expansive at ∞. By Propositions 5.11 and 5.1(b),

one may endow Y0 with a complete metric d′′ such that ρY (y, y′) ≤ d′′(y, y′) ≤ 3ρY (y, y′)

for all y, y′ ∈ Y0, and such that lipα(Y0) is order isomorphic to lip(Y0, d
′′), with the

formal identity map as the associated homeomorphism. Again, we may assume that d′′

is a Hölder metric of order α. Working through the chain of order isomorphisms

lip(X0, d
′) ∼ lipα(X0) ∼ lipα(Y0) ∼ lip(Y0, d

′′),

we see that lip(X0, d
′) ∼ lip(Y0, d

′′) with associated homeomorphism ϕ : X0 → Y0. Since

both d′ and d′′ are bounded metrics, ϕ : (X0, d
′)→ (Y0, d

′′) is a Lipschitz homeomorphism

by Theorem 7.10. But this shows that there is a constant C such that ρY (yn, y
′
n) ≤

CρX(xn, x
′
n), contrary to the choice of (xn) and (x′n).
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In case (d), we may assume that (xn) ∪ (x′n) is separated. Then neither (yn) nor

(y′n) has a convergent subsequence. Hence we may assume that each is separated. If

dY (yn, y
′
n) → 0, then by taking further subsequences, and possibly interchanging (yn)

and (y′n), we end up in one of the situations (a) or (c) for (yn) and (y′n). By the above,

the map ϕ−1 : (Y0, d
′′) → (X0, d

′) is a Lipschitz homeomorphism. Again, this implies

that there is a constant C such that ρY (yn, y
′
n) ≤ CρX(xn, x

′
n), contrary to the choice of

(xn) and (x′n).

Finally, suppose that (xn)∪ (x′n) is separated and dY (yn, y
′
n) 9 0. Then we may also

assume that (yn) ∪ (y′n) is separated. In this case X0 = X0 and Y0 = Y0 are separated.

Hence lipα(X0) = Lip(X0, d
α
X) and lipα(Y0) = Lip(Y0, d

α
Y ). It follows that Lip(X0, d

α
X) ∼

Lip(Y0, d
α
Y ), with associated homeomorphism ϕ : X0 → Y0. By Theorem 5.5, there is a

constant 1 ≤ C < ∞ such that ρY (ϕ(x), ϕ(x′)) ≤ CρX(x, x′) for all x, x′ ∈ X0. Again,

this contradicts the choice of (xn) and (x′n).

Proposition 7.12. Let T : lipα(X) → lipα(Y ) be an order isomorphism. Then the

associated homeomorphism ϕ : X → Y is uniformly continuous.

Proof. If the proposition fails, there are sequences (xn) and (x′n) in X such that 0 <

dX(xn, x
′
n) → 0 and dY (yn, y

′
n) 9 0, where yn = ϕ(xn) and y′n = ϕ(x′n). In particular,

neither (xn) nor (x′n) can have a convergent subsequence. Thus the same holds for (yn)

and (y′n). By taking subsequences, we may assume that (xn) and (yn)∪(y′n) are separated.

Set X0 = (xn) ∪ (x′n) and Y0 = (yn) ∪ (y′n). Note that X0 and Y0 are complete. Apply-

ing Proposition 7.5, we may further assume that every function in lipα(X0), respectively

lipα(Y0), extends to a function in lipα(X), respectively lipα(Y ). It follows from Propo-

sition 7.6 that we have an order isomorphism T0 : lipα(X0) → lipα(Y0). Since Y0 is

separated, lipα(Y0) = Lip(Y0, d
α
Y ). By Theorem 5.3 and Proposition 5.1(d), Lip(Y0, d

α) is

(linearly) order isomorphic to a space Lip(Y0, d
′), where d′ is a complete bounded metric

on Y0. Therefore,

lipα(X0) ∼ lipα(Y0) = Lip(Y,d
α
Y ) ∼ Lip(Y0, d

′) = Lipb(Y0, d
′).

By Proposition 6.19, X0 is proximally compact (refer to the definition following Propo-

sition 6.8). However, (xn) is a sequence in X0 with no convergent subsequence, and

(x′n) ⊆ X0 with 0 < dX(xn, x
′
n)→ 0. This contradicts the proximal compactness of X0.

Lemma 7.13. Let X and Y be complete metric spaces. Suppose that ϕ : X → Y is a

uniform homeomorphism such that there exists 1 ≤ C <∞ satisfying

1

C
ρX(x, x′) ≤ ρY (ϕ(x), ϕ(x′)) ≤ CρX(x, x′) (7.1)

for all x, x′ ∈ X. Then for all f ∈ lipα(X), g : Y → R defined by

g(y) =
f(ϕ−1(y))

ξ(ϕ−1(y))
ζ(y)

belongs to lipα(Y ).

Proof. There exists a bounded function η : [0,∞) → R, with η(0) = 0 and continuous

at 0, such that

|f(x)− f(x′)| ≤ η(dX(x, x′))dX(x, x′)α for all x, x′ ∈ X.
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In particular, there exists M < ∞ such that |f(x)| ≤ Mξ(x) for all x ∈ X. For any

y, y′ ∈ Y , let x = ϕ−1(y) and x′ = ϕ−1(y′). We may assume that ξ(x′) ≤ ξ(x). Then

|g(y)− g(y′)|

≤ |f(x)− f(x′)|ζ(y)

ξ(x)
+ |f(x′)|ζ(y)

∣∣∣∣ 1

ξ(x)
− 1

ξ(x′)

∣∣∣∣+
|f(x′)|
ξ(x′)

|ζ(y)− ζ(y′)| =: I + II + III.

(7.2)

For term I, we find that

I ≤ η(dX(x, x′))dX(x, x′)α
ζ(y)

ξ(x)
= η(dX(x, x′))ρX(x, x′)ζ(y)

≤ η(dX(x, x′))CρY (y, y′)ζ(y) ≤ η(dX(x, x′))CdY (y, y′)α. (7.3)

For terms II and III, we use the fact that the function h : [0,∞)→ R given by h(t) = tα∨1

belongs to lipα[0,∞). Then

II =
|f(x′)|
ξ(x′)

ζ(y)

ξ(x)
|h(dX(x, e))− h(dX(x′, e))|

≤MC
|h(dX(x, e))− h(dX(x′, e))|

dX(x, x′)α
dY (y, y′)α

≤MC
|h(dX(x, e))− h(dX(x′, e))|
|dX(x, e)− dX(x′, e)|α

dY (y, y′)α (7.4)

and

III =
|f(x′)|
ξ(x′)

|h(dY (y, e′))− h(dY (y′, e′))|

≤M |h(dY (y, e′))− h(dY (y′, e′))|
|dY (y, e′)− dY (y′, e′)|α

dY (y, y′)α. (7.5)

Since ϕ−1 is uniformly continuous, dX(x, x′)→ 0 as dY (y, y′)→ 0. Since h ∈ lipα[0,∞),

it follows readily from (7.2)–(7.5) that g ∈ lipα(Y ).

Theorem 7.14. Let X and Y be complete metric spaces. If T : lipα(X) → lipα(Y ) is

an order isomorphism, then the associated homeomorphism ϕ : X → Y is a uniform

homeomorphism and there exists 1 ≤ C < ∞ satisfying (7.1). Conversely, if there is a

uniform homeomorphism ϕ : X → Y and a constant 1 ≤ C < ∞ satisfying (7.1), then

lipα(X) is order isomorphic to lipα(Y ).

Proof. The first statement is a consequence of Propositions 7.11 and 7.12. Conversely,

suppose that ϕ : X → Y is a uniform homeomorphism such that (7.1) holds. By Lemma

7.13, the map T defined by Tf(y) = f(ϕ−1(y))ζ(y)/ξ(ϕ−1(y)) maps lipα(X) into lipα(Y ).

By symmetry, the map S defined by Sg(x) = g(ϕ(x))ξ(x)/ζ(ϕ(x)) maps lipα(Y ) into

lipα(X). Clearly, T and S are mutual inverses. Since both maps obviously preserve point-

wise order, lipα(X) is order isomorphic to lipα(Y ).
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8. Comparing spaces of the same type

In this final chapter, we identify necessary and sufficient conditions for pairs of spaces of

the same type to be order isomorphic. We adopt the same convention as in Section 6.2.

Namely, X and Y will always denote metric spaces, with additional properties as given in

Examples B or C, depending on the space being considered. The metrics on both spaces

will be denoted by d, even though they may differ. We begin by making a list of the cases

that are already known and/or follow readily from results obtained earlier in this paper.

Theorem 8.1. Let X and Y be metric spaces and assume that the relevant spaces satisfy

the conditions given in Examples B and C.

(a) ([8]) Cb(X) ∼ Cb(Y )⇔ C(X) ∼ C(Y )⇔ X and Y are homeomorphic.

(b) (Theorem 5.5) Lip(X) ∼ Lip(Y ) if and only if there is a homeomorphism ϕ : X → Y

satisfying condition (5.2).

(c) Lipb(X) ∼ Lipb(Y ) if and only if there is a Lipschitz homeomorphism ϕ : (X, d∧1)→
(Y, d ∧ 1).

(d) (Theorem 7.14) lipα(X) ∼ lipα(Y ) if and only if there is a uniform homeomorphism

ϕ : X → Y satisfying condition (7.1).

(e) lipα,b(X) ∼ lipα,b(Y ) if and only if there is a Lipschitz homeomorphism ϕ : (X, d∧1)

→ (Y, d ∧ 1).

(f) ([11], see also Proposition 6.20) U(X) ∼ U(Y ) if and only if X and Y are uniformly

homeomorphic.

(g) (Proposition 6.19) Ub(X) ∼ Ub(Y ) if and only if X and Y are uniformly homeo-

morphic.

Proof. (a) If Cb(X) ∼ Cb(Y ), then C(X) ∼ C(Y ) by Proposition 6.3. If C(X) ∼ C(Y ),

then X and Y are homeomorphic by Theorem 4.5. Obviously, Cb(X) ∼ Cb(Y ) if X and

Y are homeomorphic.

(c) Since Lipb(X) = Lip(X, d∧1) and Lipb(Y ) = Lip(Y, d∧1), the result follows from

[9, Theorem 1].

(e) Since lipα,b(X) = lipα(X, d∧1) and lipα,b(Y ) = lipα(Y, d∧1), we have lipα,b(X) ∼
lipα,b(Y ) if and only if there is a uniform homeomorphism ϕ : (X, d ∧ 1) → (Y, d ∧ 1)

satisfying condition (7.1) with respect to the metrics d ∧ 1 on X and Y respectively.

But for bounded metrics, (7.1) is equivalent to ϕ : (X, d ∧ 1) → (Y, d ∧ 1) being

a Lipschitz homeomorphism. In this case, ϕ is automatically a uniform homeomor-

phism.

A map ϕ : X → Y is locally Lipschitz if for any x ∈ X, there is an open neighborhood

U of x such that ϕ is Lipschitz on the set U . If ϕ : X → Y is a bijection such that both

ϕ and ϕ−1 are locally Lipschitz, then ϕ is a local Lipschitz homeomorphism.

Theorem 8.2. Let X and Y be metric spaces. Then the following are equivalent:

(a) Liploc(X) ∼ Liploc(Y ).

(b) liploc
α (X) ∼ liploc

α (Y ).

(c) X and Y are locally Lipschitz homeomorphic.
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Proof. Suppose that ϕ : X → Y is a homeomorphism that is not locally Lipschitz. Then

there exist x0 ∈ X and sequences (xn), (x′n) converging to x0 such that xn 6= x′n for

all n and d(ϕ(xn), ϕ(x′n))/d(xn, x
′
n) → ∞. Set yn = ϕ(xn), y′n = ϕ(x′n), y0 = ϕ(x0),

X0 = (xn) ∪ (x′n) ∪ {x0} and Y0 = (yn) ∪ (y′n) ∪ {y0}. By Proposition 7.5 and the

subsequent Remark, we may assume that every f ∈ lipα(X0) extends to a function in

lipα(X).

Suppose that f ∈ lipα(X0), respectively Lip(X0). Either by choice of X0 or by [27,

Theorem 1.5.6], f extends to a function f̃ ∈ lipα(X), respectively f̃ ∈ Lip(X). In partic-

ular, f̃ ∈ liploc
α (X), respectively f̃ ∈ Liploc(X). Conversely, if h ∈ liploc

α (X), respectively

h ∈ Liploc(X), then h|X0
∈ liploc

α (X0), respectively h|X0
∈ Liploc(X0). Since X0 is com-

pact, h|X0
∈ lipα(X0), respectively h|X0

∈ Lip(X0). This proves that

lipα(X0) = {f|X0
: f ∈ liploc

α (X)} and Lip(X0) = {f|X0
: f ∈ Liploc(X)}.

Similar equalities hold with X0 and X replaced by Y0 and Y respectively. It follows from

Proposition 7.6 that there is an order isomorphism lipα(X0) ∼ lipα(Y0), respectively

Lip(X0) ∼ Lip(Y0), whose associated homeomorphism is ϕ : X0 → Y0. By [9, Theorem

2], respectively [9, Theorem 1], ϕ : X0 → Y0 is a Lipschitz homeomorphism, contrary to

the choice of (xn) and (x′n). This completes the proof of (a)⇒(c) and (b)⇒(c). Clearly,

(c)⇒(a) and (c)⇒(b).

Corollary 8.3. Let X and Y be metric spaces. The following are equivalent:

(a) Liploc
b (X) ∼ Liploc

b (Y ).

(b) liploc
α,b(X) ∼ liploc

α,b(Y ).

(c) X and Y are locally Lipschitz homeomorphic.

Proof. If Liploc
b (X) ∼ Liploc

b (Y ), then Liploc(X) ∼ Liploc(Y ) by Corollary 6.5. Thus

X and Y are locally Lipschitz homeomorphic by Theorem 8.2. This proves (a)⇒(c).

Similarly, (b)⇒(c). Clearly, (c)⇒(a) and (c)⇒(b).

A map ϕ : X → Y is locally uniformly continuous if for all x ∈ X, there exists an

open neighborhood U of x such that ϕ is uniformly continuous on U . If ϕ : X → Y is

a bijection such that both ϕ and ϕ−1 are locally uniformly continuous, then ϕ is a local

uniform homeomorphism.

Theorem 8.4. Let X and Y be metric spaces. Then U loc(X) ∼ U loc(Y ) if and only if

X and Y are locally uniformly homeomorphic.

Proof. Let T : U loc(X)→ U loc(Y ) be an order isomorphism such that T0 = 0. Represent

T as Tf(y) = Φ(y, f(ϕ−1(y))) for all f ∈ U loc(X) and all y ∈ Y , where ϕ : X → Y

is a homeomorphism and Φ(y, ·) : R → R is an increasing homeomorphism for all

y ∈ Y . Suppose that ϕ is not locally uniformly continuous. There exists x0 ∈ X

such that ϕ is not uniformly continuous on any open neighborhood of x0. Set y0 =

ϕ(x0) and r0 = 1. Assume that rn−1 > 0 has been chosen for some n ∈ N. Since

Φ(y, 1/n) is a continuous function of y and Φ(y0, 1/n) > 0, there exists 0 < Rn <

rn−1 such that Φ(y, 1/n) < 2Φ(y0, 1/n) for all y ∈ B(y0, Rn). As ϕ is not uniformly

continuous on ϕ−1(B(y0, Rn/2)), there are sequences (unk )k, (v
n
k )k in ϕ−1(B(y0, Rn/2))

such that d(unk , v
n
k ) → 0 and infk d(ϕ(unk ), ϕ(vnk )) > 0. Obviously, neither (ϕ(unk ))k nor
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(ϕ(vnk ))k can have a convergent subsequence. By using further subsequences, we may

assume that (ϕ(unk ))k ∪ (ϕ(vnk ))k is separated and that there exists rn > 0 such that

d(ϕ(unk ), y0), d(ϕ(vnk ), y0) > 2rn for all k. Since (Φ(ϕ(unk ), 1/n))k is bounded above by

2Φ(y0, 1/n), there exists a uniformly continuous function gn : Y → R such that gn(y) = 0

if

y /∈ Ann(y0, rn, Rn), gn(ϕ(unk )) = Φ(ϕ(unk ), 1/n), gn(ϕ(vnk )) = 0 for all k

and ‖gn‖∞ ≤ 2Φ(y0, 1/n). Note that Φ(y0, 1/n)→ 0 and the functions (gn) are pairwise

disjoint. Hence the pointwise sum g =
∑
gn is well-defined and uniformly continuous

on Y . In particular, g ∈ U loc(Y ). Therefore, f = T−1g ∈ U loc(X). However, for all n

and k, we have f(unk ) = 1/n and f(vnk ) = 0. It follows that f is not locally uniformly

continuous on any neighborhood of x0. This completes the proof of the “only if” part of

the theorem. The converse is clear.

Arguing as in Corollary 8.3, we have the following corollary.

Corollary 8.5. Let X and Y be metric spaces. Then U loc
b (X) ∼ U loc

b (Y ) if and only if

X and Y are locally uniformly homeomorphic.

The tables below summarize the comparison results obtained in Chapters 6–8. The

numbers refer to the theorems where the relevant results are found. Note that by symme-

try considerations, some sites in the tables are left empty. The open cases are indicated

with “?” (see the introduction).

Table 1

Cp(Y ) Cpb (Y ) Cp(Y ) Cpb (Y ) Cp∗ (Y )

Cp(X) ? 6.7(b) 6.41 6.7(b) 6.7(b)
Cpb (X) ? 6.7(b) 6.42 6.43

Cp(X) ? 6.7(c) 6.43

Cpb (X) ? 6.43

Cp∗ (X) ?

Table 2

C(Y ) Cb(Y ) U(Y ) Ub(Y ) U loc(Y ) U loc
b (Y ) Lip(Y ), Lipb(Y )

C(X) 8.1(a) 6.7(a) 6.15(a) 6.7(a) 6.15(b) 6.7(a) 6.13(b)
Cb(X) 8.1(a) 6.15(c) 6.15(a) 6.7(a) 6.15(b) 6.13(c)
U(X) 8.1(f) 6.39 6.15(a) 6.15(c) 6.21
Ub(X) 8.1(g) 6.7(a) 6.15(a) 6.21

U loc(X) 8.4 6.7(a) 6.13(b)

U loc
b (X) 8.5 6.13(c)

Lip(X), Lipb(X) 5.5, 8.1(b), (c)
Cp(X) 6.8 6.8 6.8 6.8 6.8 6.8 6.8
Cpb (X) 6.8 6.8 6.8 6.8 6.8 6.8 6.8

Cp(X) 6.8 6.8 6.8 6.8 6.8 6.8 6.8

Cpb (X) 6.8 6.8 6.8 6.8 6.8 6.8 6.8

Cp∗ (X) 6.8 6.8 6.8 6.8 6.8 6.8 6.8
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Table 3

Liploc(Y ) Liploc
b (Y ) lipα(Y ) lipα,b(Y ) liploc

α (Y ) liploc
α,b(Y )

C(X) 6.13(a) 6.13(a) 6.13(b) 6.13(b) 6.13(a) 6.13(b)
Cb(X) 6.13(b) 6.13(a) 6.24(a) 6.13(c) 6.13(b) 6.13(a)
U(X) 6.15(e) 6.15(d) 6.30 6.30 6.15(e) 6.15(d)
Ub(X) 6.13(b) 6.15(e) 6.24(a) 6.24(a) 6.13(b) 6.15(e)

U loc(X) 6.13(a) 6.13(b) 6.13(b) 6.13(b) 6.13(a) 6.13(b)

U loc
b (X) 6.13(b) 6.13(a) 6.24(a) 6.13(c) 6.13(b) 6.13(a)

Lip(X) Lipb(X) 6.7(a) 6.16 6.21 6.21 6.17(b) 6.17(c)

Liploc(X) 8.2 6.7(a) 6.17(b) 6.17(a) 6.17(a) 6.17(b)

Liploc
b (X) 8.3 6.24(a) 6.17(a) 6.17(b) 6.17(a)

lipα(X) 7.14 6.34 6.15(c) 6.33
lipα,b(X) 8.1(e) 6.7(a) 6.16

liploc
α (X) 8.2 6.7(a)

liploc
α,b(X) 8.3

Cp(X) 6.8 6.8 6.8 6.8 6.8 6.8
Cpb (X) 6.8 6.8 6.8 6.8 6.8 6.8

Cp(X) 6.8 6.8 6.8 6.8 6.8 6.8

Cpb (X) 6.8 6.8 6.8 6.8 6.8 6.8

Cp∗ (X) 6.8 6.8 6.8 6.8 6.8 6.8

9. Appendix

At certain strategic points in this paper, we invoked results from [9] concerning order

isomorphisms between spaces of Lipschitz and little Lipschitz functions, respectively (see

Theorems 5.4 and 7.1, which were made use of in the proofs of Theorems 5.5 and 7.14

(via Corollary 7.7), respectively). In order to make the discussion self-contained, here we

include proofs of these results in the style of the present paper.

Let X be a complete metric space with finite diameter. Recall that for f ∈ Lip(X),

the Lipschitz constant of f is defined as

L(f) = sup

{
|f(x)− f(y)|

d(x, y)
: x, y ∈ X, x 6= y

}
.

Then Lip(X) is a Banach space under the norm ‖f‖ = ‖f‖∞ ∨ L(f). For 0 < α < 1,

lipα(X) is a closed subspace of Lip(X, dα) and hence is a Banach space in its own right.

The Lipschitz constant with respect to the metric dα is denoted by Lα(·).
Lemma 9.1. Let X and Y be complete metric spaces with finite diameter and let 0 <

α < 1. Let T : Lip(X) → Lip(Y ), respectively T : lipα(X) → lipα(Y ), be an order

isomorphism. Denote by B the closed unit ball in Lip(X), respectively lipα(X). For any

N ∈ N, the set T (NB) is a closed set in Lip(Y ), respectively lipα(Y ).

Proof. By Examples B(b) and C(c), we see that Theorems 4.3 and 4.5 apply to the

map T . Hence there are a homeomorphism ϕ : X → Y and a map Φ : Y × R → R such

that Φ(y, ·) is an increasing homeomorphism for each y, and that

Tf(y) = Φ(y, f(ϕ−1(y)))
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for all y ∈ Y and all f ∈ Lip(X), respectively f ∈ lipα(X). In particular, if (fn) is a

sequence in Lip(X), respectively lipα(X), such that (Tfn) converges to some Tf , then

(fn(x)) converges to f(x) for each x ∈ X. Suppose that (fn) is a sequence in NB such

that (Tfn) converges to some g. Since T is onto, there exists f such that g = Tf . By the

above, f(x) = lim fn(x) for each x ∈ X. Thus

‖f‖∞ ≤ sup
n
‖fn‖∞ ≤ N

and

|f(x)− f(y)| ≤ sup
n
|fn(x)− fn(y)| ≤

{
Nd(x, y) if T : Lip(X)→ Lip(Y ),

Ndα(x, y) if T : lipα(X)→ lipα(Y ).

Hence ‖f‖ ≤ N . Therefore, g ∈ T (NB). This proves that T (NB) is closed, as required.

Lemma 9.2. Let X and Y be complete metric spaces with finite diameter and let 0 <

α < 1. Assume that T : Lip(X) → Lip(Y ), respectively T : lipα(X) → lipα(Y ), is an

order isomorphism with associated homeomorphism ϕ. If (xn) and (x′n) are sequences in

X such that (xn) is separated, then there is a constant C < ∞ such that d(xn, x
′
n) ≤

Cd(ϕ(xn), ϕ(x′n)) for all n.

Proof. We may assume that T0 = 0. As in the proof of Lemma 9.1, T has a representation

of the form

Tf(y) = Φ(y, f(ϕ−1(y))).

Let 1 denote the constant function with value 1 on Y . Since X has finite diameter, there

exists r > 0 such that T−11(x) ≤ r for all x ∈ X. Set yn = ϕ(xn) and y′n = ϕ(x′n). By way

of contradiction, let us assume that d(xn, x
′
n)/d(yn, y

′
n) → ∞. By taking subsequences,

we may further assume that either d(xn, x
′
n)→ 0 or (xn)∪ (x′n) is a separated set. In the

latter case, there is a function f ∈ Lip(X) ⊆ lipα(X) such that f(xn) = r and f(x′n) = 0

for all n. From the representation of T and the fact that T0 = 0,

Tf(yn) = Φ(yn, r) ≥ Φ(yn, T
−11(xn)) = 1 and Tf(y′n) = 0

for all n. Since Tf ∈ lipα(Y ), we have inf d(yn, y
′
n) > 0. As X has finite diameter, it

would be impossible for d(xn, x
′
n)/d(yn, y

′
n) to diverge to ∞.

It remains to consider the case where d(xn, x
′
n)→ 0. Choose a nonzero null sequence

(tn) such that tnCn → ∞, where Cn = d(xn, x
′
n)/d(yn, y

′
n). For T : Lip(X) → Lip(X)

let an = d(xn, x
′
n), while for T : lipα(X)→ lipα(Y ) let an = tαnd(xn, x

′
n)α. Take kn to be

the smallest integer ≥ r/an. Since

Φ(yn, knan) ≥ Φ(yn, r) ≥ 1 and Φ(yn, 0) = 0,

there exists an integer 1 ≤ jn ≤ kn such that

Φ(yn, jnan)− Φ(yn, (jn − 1)an) ≥ 1

kn
.

Thus, taking un to be either (jn − 1)an or jnan, we may arrange that

|Φ(yn, un)− Φ(y′n, jnan)| ≥ 1

2kn
. (9.1)
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Define f(xn) = un and f(x′n) = jnan for all n ∈ N. Then f extends to a function in

Lip(X), respectively lipα(X). (For the latter case, one may appeal to Proposition 7.5

after taking a suitable subsequence.) Hence Tf ∈ Lip(Y ), respectively Tf ∈ lipα(Y ). By

(9.1), we have |Tf(yn)− Tf(y′n)| ≥ 1/(2kn). In the case of Lip(Y ),

|Tf(yn)− Tf(y′n)|
d(yn, y′n)

≥ 1

2knd(yn, y′n)
≥ an

4rd(yn, y′n)
=
Cn
4r

for sufficiently large n (such that kn ≤ 2r/an). In the case of lipα(Y ),

|Tf(yn)− Tf(y′n)|
d(yn, y′n)α

≥ 1

2knd(yn, y′n)α
≥ an

4rd(yn, y′n)α
=

(tnCn)α

4r

for sufficiently large n. Since supCn = sup(tnCn) =∞, both of these inequalities lead to

a contradiction.

Theorem 9.3. Let X and Y be complete metric spaces with finite diameter and let

0 < α < 1. If Lip(X) is order isomorphic to Lip(Y ), or if lipα(X) is order isomorphic

to lipα(Y ), then X and Y are Lipschitz homeomorphic.

Proof. As before, we may represent T in the form

Tf(y) = Φ(y, f(ϕ−1(y))).

If ϕ is not a Lipschitz homeomorphism, then, by symmetry, we may assume that there

are sequences (xn), (x′n) in X such that d(xn, x
′
n)/d(yn, y

′
n)→∞, where yn = ϕ(xn) and

y′n = ϕ(x′n). By Lemma 9.2, (xn) cannot be separated. Taking a subsequence, we may

assume that (xn) converges to some x0 ∈ X. From d(xn, x
′
n)/d(yn, y

′
n)→∞ and the fact

that X has finite diameter, both (yn) and (y′n) must converge to y0 = ϕ(x0). Thus (x′n)

converges to x0 as well. Apply Lemma 9.1 to the map T−1. Then Lip(X), respectively

lipα(X), can be written as a countable union of closed sets
⋃
n T
−1(nB′), where B′ is the

closed unit ball in Lip(Y ), respectively lipα(Y ). By the Baire Category Theorem, there

exists N such that T−1(NB′) has nonempty interior. Let B be the closed unit ball in

Lip(X), respectively lipα(X). Choose f and 0 < r < 1 such that f + 2rB ⊆ T−1(NB′);

equivalently, T (f + 2rB) ⊆ NB′. Set g1 = Tf and g2 = T (f + r). Since (g1(yn)) and

(g2(yn)) converge to g1(y0) = Φ(y0, f(x0)) and g2(y0) = Φ(y0, f(x0) + r) respectively, we

may assume that there exists c > 0 such that g2(yn) > g1(yn)+c for all n. For each n, let

an = rd(xn, x
′
n) if T : Lip(X)→ Lip(Y ), and an = rd(xn, x

′
n)α if T : lipα(X)→ lipα(Y ).

Let kn be the smallest integer ≥ r/an. Then

Φ(yn, f(xn) + knan) ≥ Φ(yn, f(xn) + r) = T (fn + r)(yn) = g2(yn)

and Φ(yn, f(xn)) = g1(yn). Thus

Φ(yn, f(xn) + knan)− Φ(yn, f(xn)) ≥ g2(yn)− g1(yn) ≥ c.

Hence there exists 1 ≤ jn ≤ kn such that

Φ(yn, f(xn) + jnan)− Φ(yn, f(xn) + (jn − 1)an) ≥ c

kn
.

Taking un to be either (jn − 1)an or jnan, we may arrange it so that

|Φ(yn, f(xn) + un)− Φ(y′n, f(xn) + jnan)| ≥ 1

2kn
. (9.2)
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Define hn : [0,∞)→ R by

hn(t) =

[
(un − jnan)t

d(xn, x′n)
∧ an

]+

.

It is evident that hn ∈ Lip[0,∞) ⊆ lipα[0,∞) and ‖hn‖∞ ≤ an. Furthermore,

L(hn) ≤ |un − jnan|
d(xn, x′n)

≤ r if T : Lip(X)→ Lip(Y )

and

Lα(hn) ≤ |un − jnan|
d(xn, x′n)α

≤ r if T : lipα(X)→ lipα(Y ).

For each n, let θn : X → R be given by θn(x) = hn(d(x, x′n)). It follows from the above

that Fn = f + jnan + θn ∈ f + 2rB. Therefore, TFn ∈ NB′. However,

TFn(yn) = Φ(yn, f(xn) + un) and TFn(y′n) = Φ(y′n, f(xn) + jnan).

In the case of T : Lip(X)→ Lip(Y ),

L(TFn) ≥ |TFn(yn)− TFn(y′n)|
d(yn, y′n)

≥ 1

2knd(yn, y′n)

≥ an
2rd(yn, y′n)

=
d(xn, x

′
n)

2d(yn, y′n)
→∞.

While in the case of T : lipα(X)→ lipα(Y ),

Lα(TFn) ≥ |TFn(yn)− TFn(y′n)|
d(yn, y′n)α

≥ 1

2knd(yn, y′n)α

≥ an
2rd(yn, y′n)α

=
d(xn, x

′
n)α

2d(yn, y′n)
→∞.

Since both of these are impossible, the proof of Theorem 9.3 is complete.
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