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The circular units and the Stickelberger ideal of
a cyclotomic field revisited

by

Radan Kučera (Brno)

Introduction. For a cyclotomic field, a basis of the group of circular
units is constructed in [3], and bases of the Stickelberger ideal and of the
group of circular units are constructed in [7]. Unfortunately the proof given
there is indirect: by some cohomological computations it is proven that
the subgroup generated by a given set of elements, which turns out to be
linearly independent later on, is of index one in the group. But this says
nothing about expressing elements in terms of the basis.

The aim of this paper is to give a direct proof which not only seems to be
shorter and easier to understand but which is also constructive in some way:
it describes a procedure allowing one to express a given element as a linear
combination of elements of the basis (see Lemma 3.2). The coefficients in this
linear combination can be found by induction, using relations (2.3) and (2.4)
together with the Ennola relations given by Theorem 2.2 (the existence of
relations of this kind was proven by Ennola [2]; their explicit form is a
subject of recent research—see [5]). Even though this theorem states only
the existence of some relations, the required element αQ could be found
explicitly as a sum of elements appearing in the proof of Proposition 2.1.

A key role in the construction in [7] of bases of the Stickelberger ideal and
of the group of circular units is played by bases of odd and even universal
ordinary distributions given in [6]. This paper describes a presentation of
these distributions; they appear here as quotients of the additive group of
the semigroup ring Z[G∗], considered as a Z[G]-module, by its submodules
I1 and I−1 described in Section 2. Theorem 2.2 plays an important role in
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Section 3 where the modules N±1 = Z[G∗]/I±1 are described in Theorem 3.6
by means of Z-bases M±1 defined before Lemma 3.1. This also allows one
to study the torsion parts of N±1; in some respects this is easier and more
straightforward in comparison with the original papers [12] and [9]. A basis
of the group of circular units of a cyclotomic field is also constructed in
[3] and [1] where the authors need to know the torsion part of the even
universal punctured distribution (in other words, the first cohomology group
of {1,−1} with coefficients in the universal punctured distribution), which
was computed by Schmidt [9] (mentioned in [11, before 12.18]); so again our
approach seems to be shorter and in some sense easier.

Let us briefly explain the connection to cyclotomic fields. Taking any
cyclotomic field K, or even more generally any compositum of imaginary
abelian fields Kp such that each Kp is ramified at only one prime p, the
absolute Galois group G = Gal(K/Q) is the direct product of its inertia
subgroups Gp ∼= Gal(Kp/Q). Each Gp contains a distinguished element jp
of order 2 given in Gal(Kp/Q) by complex conjugation. We enlarge each
group Gp to a semigroup G∗p by adding a new element g∗p, and define G∗

as the direct product of all semigroups G∗p. Then the modules N±1 can
be used to describe the Stickelberger ideal of K and the group of circu-
lar units of K as follows: The Stickelberger ideal of K is defined as the
intersection S = Z[G] ∩ S ′ where S ′ ⊂ Q[G] is a Z[G]-module isomorphic
to Z ⊕ (N−1/Tor(N−1)). Similarly, the Z[G]-modules of circular units and
numbers of K can be described by N1: denoting by C, D, and E the groups
of circular units, circular numbers, and all units of K, respectively, by def-
inition, C = D ∩ E and Z ⊕ (D1+j/〈P 〉) ∼= N1/Tor(N1), where j ∈ G is the
complex conjugation and 〈P 〉 ⊆ Q× is the subgroup generated by the primes
ramifying in K/Q. This allows us to describe Z-bases of D and C in The-
orem 4.2 and Corollary 4.3, and a Z-basis of S ′ in Theorem 6.2. Moreover
we obtain a presentation of D in Theorem 4.5. This presentation, which has
not appeared in the literature yet, seems to be a useful tool in the study of
circular numbers and units.

1. An auxiliary result on a group ring. This section is devoted to
a result on the integral group ring over a finite abelian group of even order
which appears to be useful in the next section.

Lemma 1.1. Let G be a finite abelian group, and j ∈ G be an element
of order 2, i.e. j 6= 1 and j2 = 1. Then there is a set T ⊆ G and, for each
σ ∈ G, a fixed Rσ ∈ Z[G] such that

(i) R1 = 0 and Rj =
∑

ρ∈T ρ;
(ii) 1 ∈ T and for any σ ∈ G we have σ ∈ T if and only if jσ /∈ T ;

(iii) for any σ, τ ∈ G we have (1− τ)Rσ = (1− σ)Rτ .
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Proof. We can write G = H×H ′, where H is the 2-Sylow subgroup of G
and H ′ is the subgroup of all elements of odd order. The well-known theorem
on the structure of finite abelian groups says that there are x1, . . . , xn ∈ H
such that each xi is of order 2ai , where 1 ≤ a1 ≤ · · · ≤ an, and H =
〈x1, . . . , xn〉 ∼= 〈x1〉× · · ·× 〈xn〉 is of order 2a1+···+an . As j ∈ H is of order 2,

there are unique e1, . . . , en ∈ {0, 1}, not all zero, such that j =
∏n
i=1 x

ei2
ai−1

i .

Set c = min{i; ei 6= 0} and z =
∏n
i=c x

ei2
ai−ac

i . Then z2
ac−1

= j and so z is
of order 2ac . Moreover H = 〈z, x1, . . . , xc−1, xc+1, . . . , xn〉. Let

H ′′ = 〈{x1, . . . , xc−1, xc+1, . . . , xn} ∪H ′〉.
Then any σ ∈ G can be uniquely written in the form σ = zi · h, where
0 ≤ i < 2ac and h ∈ H ′′, and we define

Rσ =
(∑
l∈H′′

l
)
·
i−1∑
k=0

zk,

where for i = 0 we have an empty sum, which should be understood as 0.
Let

T = {zk · l; 0 ≤ k < 2ac−1, l ∈ H ′′}.
It is easy to see that conditions (i) and (ii) are satisfied.

To prove (iii), let σ = zs ·u and τ = zt ·v, where 0 ≤ s < 2ac , 0 ≤ t < 2ac ,
u, v ∈ H ′′. Then

(1− τ)Rσ = (1− zt · v) ·
( ∑
h∈H′′

h
)
·
(s−1∑
k=0

zk
)

= (1− zt) ·
( ∑
h∈H′′

h
)
·
(s−1∑
k=0

zk
)

= (1− z) ·
( t−1∑
k=0

zk
)
·
( ∑
h∈H′′

h
)
·
(s−1∑
k=0

zk
)
,

which is symmetric with respect to σ ↔ τ , so (iii) follows.

2. The relation modules I1 and I−1. Suppose that we have a fi-
nite abelian group Gp with an element jp ∈ Gp of order 2 for each p in
a non-empty linearly ordered finite set (P,≤). Let G =

∏
p∈P Gp be the

product of these groups. For each p ∈ P we shall identify Gp with the
corresponding subgroup of G. Then for each p ∈ P there are Tp ⊆ Gp and
Rσ ∈ Z[Gp] ⊆ Z[G] for each σ ∈ Gp given by Lemma 1.1. There is no danger
of confusion as Gp ∩Gq = {1} if p 6= q and R1 = 0.

For each p ∈ P we enlarge Gp by a new element g∗p to get an abelian
semigroup G∗p = Gp ∪ {g∗p}, where u · g∗p = g∗p for any u ∈ G∗p. These new
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elements depend on p; we assume g∗p 6= g∗q for p 6= q. Let G∗ =
∏
p∈P G

∗
p be

the product of these semigroups. Then the additive group of the semigroup
ring Z[G∗] is a Z[G]-module (the action of G is by multiplication). We have
the following isomorphism of Z[G]-modules:

(2.1) Z[G∗] ∼=
⊕
Q⊆P

Z
[∏
p∈Q

Gp

]
where, for each Q ⊆ P , the product

∏
p∈P−Q g

∗
p is sent to the element

having 1 in the Qth summand and 0’s everywhere else; the action of G on
Z
[∏

p∈QGp
]

is via the projection G→
∏
p∈QGp.

For any subset A ⊆ G we define S(A) =
∑

h∈A h. Lemma 1 gives

(2.2) (1 + jp)Rjp = S(Gp)

for each p ∈ P .

Fix ε ∈ {1,−1}. For any distinct p, q ∈ P we fix σp,q ∈ Gq. The σp,q
play the role of Frobenius automorphisms (more precisely, in Section 4, the
Frobenius automorphism of p acts as

∏
q∈P−{p} σ

−1
p,q ).

Let Iε be the Z[G]-submodule of Z[G∗] generated by

(2.3)
(
S(Gp)− g∗p ·

(
1−

∏
q∈P−{p}

σp,q

))
·
∏
q∈V

g∗q

for all p ∈ P and V ⊆ P − {p}, and by

(2.4)
(

1− ε
∏
p∈P

jp

)
·
∏
q∈V

g∗q

for all V ⊆ P (an empty product for V = ∅ is understood as 1). Warning: Iε is
not an ideal of the semigroup ring Z[G∗], for example supposing P = {1, 2},
σ1,2 = σ2,1 = 1, we have S(G1) ∈ I−1 but g∗1 · S(G1) = |G1|g∗1 /∈ I−1. Indeed,
in this case I−1 is the Z[G]-submodule generated by S(G1), S(G1)g

∗
2, S(G2),

S(G2)g
∗
1, 1 + j1j2, (1 + j2)g

∗
1, (1 + j1)g

∗
2, 2g∗1g

∗
2, so each

∑
h∈G∗ ahh ∈ I−1

satisfies ag∗1 = aj2g∗1 .

For any non-empty Q ⊆ P , let G′Q =
⋃
p∈Q(g∗p

∏
q∈P−Q g

∗
q )G

∗ be the

set of all elements of G∗ that are divisible by g∗p
∏
q∈P−Q g

∗
q for at least one

p ∈ Q. It is easy to see that Z[G′Q] is the ideal of the semigroup ring Z[G∗]

generated by {g∗p
∏
q∈P−Q g

∗
q ; p ∈ Q}. By definition, Z[G′∅] = {0}.

We shall use congruence modulo the Z[G]-module Iε + 2Z[G′Q] even
though it is not an ideal of Z[G∗]; the congruence α ≡ β simply means
α− β ∈ Iε + 2Z[G′Q]. The following proposition will be used to derive The-
orem 2.2 which is a key tool in Section 3.

Proposition 2.1. If Q ⊆ P satisfies (−1)|Q| = −ε then for any integer
n ≥ 0 we have the following congruence modulo Iε + 2Z[G′Q]:
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(2.5) 2
( ∏
q∈P−Q

g∗q

) ∏
w∈Q

Rjw ≡
( ∏
q∈P−Q

g∗q

)∑
u

(( ∏
1≤i≤n
2 - i

ju(i)

)
·
∑
p

(( n∏
i=1

g∗p(i)

)

·
( n∏
i=1

∏
v∈Q−(ũ∪ p̃)

v<p(i)

jv

)( n∏
i=1

∏
t∈Q−p̃
t<u(i)

σp(i),t

)( n∏
i=1

Rσp(i),u(i)

)

·
( ∏
w∈Q−(ũ∪ p̃)

Rjw

)(
1 + ε

∏
x∈Q−(ũ∪ p̃)

jx

)))
,

where, in the first sum, u runs through the set of all isotone injective map-
pings u : {1, . . . , n} → Q while the second sum is taken over all injective
mappings p : {1, . . . , n} → Q such that the images ũ = u({1, . . . , n}) and
p̃ = p({1, . . . , n}) are disjoint.

Proof. We shall use induction on n. If n = 0 then the right hand side
of (2.5) is equal to( ∏
q∈P−Q

g∗q

)(∏
w∈Q

Rjw

)(
1+ε

∏
x∈Q

jx

)
=
( ∏
q∈P−Q

g∗q

)(∏
w∈Q

Rjw

)(
1+ε

∏
x∈P

jx

)
.

Since (
1 + ε

∏
x∈P

jx

)( ∏
q∈P−Q

g∗q

)
≡ 2
( ∏
q∈P−Q

g∗q

)
(mod Iε)

due to (2.4), the assertion is proven for n = 0.
Now we need to show that the right hand side for any given n ≥ 0

is congruent modulo Iε + 2Z[G′Q] to the right hand side for n + 1. Since

(−1)|Q| = −ε and |ũ ∪ p̃| = 2n, we have (−1)|Q−(ũ∪ p̃)| = −ε and so

1 + ε
∏

x∈Q−(ũ∪ p̃)

jx =
∑

x∈Q−(ũ∪ p̃)

(1 + jx)
∏

v∈Q−(ũ∪ p̃)
v<x

(−jv).

We can include the sum over all x into the sum over all injective map-
pings p by the following procedure: enlarge the domain of p from {1, . . . , n}
to {1, . . . , n + 1} and define p(n + 1) = x. Using jx(1 + jx) = 1 + jx,
(1 + jx)Rjx = S(Gx), and σp(i),xS(Gx) = S(Gx), we obtain on the right
hand side of (2.5)( ∏
q∈P−Q

g∗q

)∑
u

(( ∏
1≤i≤n
2 - i

ju(i)

)∑
p

( n∏
i=1

∏
v∈Q−(ũ∪ p̃)

v<p(i)

jv

)( ∏
v∈Q−(ũ∪ p̃)
v<p(n+1)

(−jv)
)

·
( n∏
i=1

g∗p(i)

)( n∏
i=1

∏
t∈Q−p̃
t<u(i)

σp(i),t

)( n∏
i=1

Rσp(i),u(i)

)( ∏
w∈Q−(ũ∪ p̃)

Rjw

)
S(Gp(n+1))

)
,
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with the second sum taken over all injective mappings p : {1, . . . , n+ 1} →
Q − ũ. Since all the other factors belong to Z[G], we can use the following
congruence modulo Iε given by (2.3):( ∏

q∈P−Q
g∗q

)( n∏
i=1

g∗p(i)

)
S(Gp(n+1))

≡
( ∏
q∈p̃∪ (P−Q)

g∗q

)(
1−

∏
r∈P−{p(n+1)}

σp(n+1),r

)
.

It is easy to see that( ∏
q∈p̃∪ (P−Q)

g∗q

)
·
(

1−
∏

r∈P−{p(n+1)}

σp(n+1),r

)
=
( ∏
q∈p̃∪ (P−Q)

g∗q

)
·
(

1−
∏

r∈Q−p̃
σp(n+1),r

)
=
( ∏
q∈p̃∪ (P−Q)

g∗q

)
·
∑

r∈Q−p̃
(1− σp(n+1),r)

∏
t∈Q−p̃
t<r

σp(n+1),t.

Using
∏
q∈p̃∪ (P−Q) g

∗
q ∈ Z[G′Q] we can modify modulo Iε + 2Z[G′Q] the pre-

vious version of the right hand side of (2.5) to get

∑
u

(( ∏
1≤i≤n
2 - i

ju(i)

)∑
r∈Q

∑
p

( ∏
q∈p̃∪ (P−Q)

g∗q

)(n+1∏
i=1

∏
v∈Q−(ũ∪ p̃)

v<p(i)

jv

)( ∏
t∈Q−p̃
t<r

σp(n+1),t

)

·
( n∏
i=1

∏
t∈Q−p̃
t<u(i)

σp(i),t

)( n∏
i=1

Rσp(i),u(i)

)( ∏
w∈Q−(ũ∪ p̃)

Rjw

)
(1− σp(n+1),r)

)
,

where the third sum is taken over all injective mappings p : {1, . . . , n+1} →
Q− (ũ ∪ {r}). If r = u(i) for some i then using

(1− σp(n+1),r)Rσp(i),u(i) = (1− σp(i),r)Rσp(n+1),u(i)

by Lemma 1.1, we see by the symmetry p(i) ↔ p(n + 1) that each such
summand appears twice. Due to the factor

∏
q∈p̃∪ (P−Q) g

∗
q ∈ Z[G′Q] we can

ignore all these summands, in other words, the sum over all r ∈ Q is con-
gruent modulo Iε + 2Z[G′Q] to the sum over all r ∈ Q − ũ. As the product∏
w Rjw contains the factor Rjr , we can use the identity

(1− σp(n+1),r)Rjr = (1− jr)Rσp(n+1),r

due to Lemma 1.1 and the identity jr(1 − jr) = −(1 − jr) allowing us to
add the condition v 6= r in the previous product of jv’s, again working
modulo 2Z[G′Q].
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Recall that the mapping u is isotone and injective, so u(1) < · · · < u(n)
and in fact we can split the sum over all r ∈ Q − ũ into n + 1 sums.
Letting s ∈ {0, 1, . . . , n} we have the sum over all r < u(1) for s = 0,
the sums over all r such that u(s) < r < u(s + 1) for s = 1, . . . , n − 1,
and finally the sum over all r > u(n) for s = n. We want to enlarge
the domain of u from {1, . . . , n} to {1, . . . , n + 1} by introducing a new
value u(n + 1) = r. But to get an isotone mapping we must permute the
values of u and p in the same way: let u′, p′ : {1, . . . , n + 1} → Q sat-
isfy u′(i) = u(i) and p′(i) = p(i) if i ≤ s, and u′(i + 1) = u(i) and
p′(i + 1) = p(i) if s < i ≤ n. Finally let u′(s + 1) = u(n + 1) and
p′(s+ 1) = p(n+ 1).

Since ju(s+1)(1− ju(s+1)) = −(1− ju(s+1)), working modulo 2Z[G′Q], the
right hand side of our identity is changed into

∑
u

(∑
p

( ∏
q∈p̃∪ (P−Q)

g∗q

)(n+1∏
i=1

∏
v∈Q−(ũ∪ p̃)

v<p(i)

jv

)(n+1∏
i=1

∏
t∈Q−p̃
t<u(i)

σp(i),t

)

·
(n+1∏
i=1

Rσp(i),u(i)

)( ∏
w∈Q−(ũ∪ p̃)

Rjw

))

·
( n∑
s=0

( ∏
1≤i≤s
2 - i

ju(i)

)( ∏
s+1≤i≤n+1

2 | i

ju(i)

)
(1− ju(s+1))

)
,

where the first sum is now taken over all isotone and injective mappings
u : {1, . . . , n+ 1} → Q, while the second sum is over all injective mappings
p : {1, . . . , n+ 1} → Q− ũ. Using j2u(i) = 1, we have

n∑
s=0

( ∏
1≤i≤s
2 - i

ju(i)

)
·
( ∏
s+1≤i≤n+1

2 | i

ju(i)

)
· (1− ju(s+1))

=
( ∏
1≤i≤n+1

2 - i

ju(i)

)
·
n∑
s=0

(( n+1∏
i=s+1

ju(i)

)
(1− ju(s+1))

)

=
( ∏
1≤i≤n+1

2 - i

ju(i)

)
·
n∑
s=0

(( n+1∏
i=s+1

ju(i)

)
−
( n+1∏
i=s+2

ju(i)

))

=
( ∏
1≤i≤n+1

2 - i

ju(i)

)
·
(
−1 +

n+1∏
i=1

ju(i)

)
.
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Finally 2
∏
q∈p̃∪ (P−Q) g

∗
q ∈ 2Z[G′Q], and using (2.4) we get( ∏

q∈p̃∪ (P−Q)

g∗q

)
·
(

1 +
∏
w∈ũ

jw

)
≡
( ∏
q∈p̃∪ (P−Q)

g∗q

)
·
(

1 + ε
∏

x∈P−ũ
jx

)
=
( ∏
q∈p̃∪ (P−Q)

g∗q

)
·
(

1 + ε
∏

x∈Q−(ũ∪ p̃)

jx

)
modulo Iε, giving the right hand side of (2.5) for n+ 1.

Theorem 2.2. For each Q ⊆ P satisfying (−1)|Q| = −ε there is αQ ∈
Z[G′Q] such that

2αQ − 2
( ∏
q∈P−Q

g∗q

) ∏
p∈Q

Rjp ∈ Iε.

Proof. The right hand side of the formula in Proposition 2.1 is zero for
any n > 1

2 |Q| and so there is αQ ∈ Z[G′Q] as desired.

3. The modules N1 = Z[G∗]/I1 and N−1 = Z[G∗]/I−1. Recall that
for each p in a non-empty linearly ordered finite set (P,≤) we have a finite
abelian group Gp with an element jp ∈ Gp of order 2, and a set Tp with
1 ∈ Tp ⊆ Gp and such that, for any σ ∈ Gp, σ ∈ Tp if and only if σjp /∈ Tp.
Moreover, Gp is enlarged by a new element g∗p to an abelian semigroup
G∗p = Gp ∪ {g∗p}, where u · g∗p = g∗p, for any u ∈ G∗p. We also have the

corresponding products G =
∏
p∈P Gp and G∗ =

∏
p∈P G

∗
p. For each p ∈ P

there is a projection πp : G∗ → G∗p, so g =
∏
p∈P πp(g) for any g ∈ G∗.

For each g ∈ G∗ we define the following subsets of P :

X(g) = {p ∈ P ; πp(g) = g∗p},
U(g) = {p ∈ P ; πp(g) = 1},
V (g) = {p ∈ P ; πp(g) = jp},
W (g) = U(g) ∪ V (g).

If X(g) ∪W (g) 6= P , we set

c(g) = max
(
P − (X(g) ∪W (g))

)
.

For each ε ∈ {1,−1} we define a subset Mε ⊆ G∗ as follows: for any g ∈ G∗
we declare g ∈Mε if and only if V (g) = ∅ and either

X(g) ∪W (g) = P and (−1)|U(g)| = ε,

or

X(g) ∪W (g) 6= P and πc(g)(g) ∈ Tc(g).

Lemma 3.1. We have |M1| = |M−1| = 1
2 |G|.
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Proof. Since |G∗p−{jp}| = |Gp|, the set of all g ∈ G∗ satisfying V (g) = ∅
contains exactly |G| elements. This set splits into two subsets according to
whether g satisfies X(g)∪W (g) = P or not. The condition (−1)|U(g)| = ε is
fulfilled by exactly half of the g satisfying both V (g) = ∅ and X(g) ∪W (g)
= P . Similarly the condition πc(g)(g) ∈ Tc(g) is fulfilled by exactly half of
the g for which both V (g) = ∅ and X(g) ∪W (g) 6= P , because |Tp − {1}| =
1
2 |Gp − {1, jp}|.

We set

z(g) =

{
0 if X(g) ∪W (g) 6= P and πc(g)(g) ∈ Tc(g),
1 otherwise

and define an ordering � on G∗ as follows: for any g, h ∈ G∗ we have g ≺ h
if exactly one of the following four cases holds:

• X(g) ) X(h);
• X(g) = X(h) and W (g) (W (h);
• X(g) = X(h), W (g) = W (h), and z(g) < z(h);
• X(g) = X(h), W (g) = W (h), z(g) = z(h), and V (g) ( V (h).

Then g � h means g ≺ h or g = h.
In Section 2, for any ε ∈ {1,−1} we have defined the Z[G]-submodules

Iε of Z[G∗] generated by (2.3) and (2.4). Let Nε = Z[G∗]/Iε and let Tor(Nε)
be the submodule of elements of finite order in Nε. Finally, let j =

∏
p∈P jp;

we have X(jg) = X(g) and W (jg) = W (g) for any g ∈ G∗.
Lemma 3.2. Let ε ∈ {1,−1} and h ∈ G∗, h /∈ Mε. Then h + Iε ∈ Nε

is a sum of an element belonging to Tor(Nε) and a Z-linear combination of
elemens g + Iε where g ∈ G∗ with g ≺ h.

Proof. We shall distinguish the following four cases:
1. Assume X(h) ∪ W (h) 6= P and z(h) = 0. Since h /∈ Mε, we have

V (h) 6= ∅; denote p = minV (h). Then p /∈ X(h) and due to (2.3) we have

(3.1)
(
S(Gp)− g∗p ·

(
1−

∏
q∈P−{p}

σp,q

))
· h ∈ Iε.

Since X(g∗ph) = X(g∗ph
∏
q∈P−{p} σp,q) = X(h) ∪ {p}, we get g∗ph ≺ h and

g∗ph
∏
q∈P−{p} σp,q ≺ h. For any k ∈ Gp with 1 6= k 6= jp, we have X(kh) =

X(h) and W (kh) = W (h) − {p}, so kh ≺ h. Moreover X(jph) = X(h),
W (jph) = W (h), c(jph) = c(h) 6= p and so z(jph) = z(h), and finally
V (jph) = V (h)− {p}. Hence jph ≺ h.

2. Assume X(h) ∪ W (h) 6= P and z(h) = 1. Then X(jh) = X(h),
W (jh) = W (h), c(jh) = c(h) and so z(jh) = 0. This gives jh ≺ h and we
can use (1− εj)h ∈ Iε due to (2.4).

3. Assume X(h)∪W (h) = P and V (h) = ∅; then h =
∏
p∈X(h) g

∗
p. Since

h /∈ Mε, we have (−1)|U(h)| = −ε, and Theorem 2.2 gives αU(h) ∈ Z[G′U(h)]
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such that

(3.2)
(
αU(h) − h ·

∏
p∈U(h)

Rjp

)
+ Iε ∈ Tor(Nε).

Then αU(h) is a Z-linear combination of g ∈ G∗ having X(g) ) X(h); these
g’s satisfy g ≺ h. It is easy to see that h

∏
p∈U(h)Rjp is the sum of all

g ∈ G∗ satisfying πp(g) = g∗p for each p ∈ X(h) and πp(g) ∈ Tp for each
p ∈ U(h) = P − X(h). One of those g’s equals h and the others satisfy
X(g) = X(h) and W (g) (W (h), which means g ≺ h.

4. Assume X(h)∪W (h) = P and V (h) 6= ∅. Denoting p = minV (h), we
can use (3.1) again. As in the first case we have g∗ph ≺ h, g∗ph

∏
q∈P−{p} σp,q

≺ h, and kh ≺ h for each k ∈ Gp with 1 6= k 6= jp. Since X(jph) = X(h),
W (jph) = W (h), z(jph) = 1 = z(h), and V (jph) = V (h) − {p}, we get
jph ≺ h.

The lemma follows as each h satisfies exactly one of the previous cases.

Proposition 3.3. The image of Mε generates Nε/Tor(Nε) as a Z-
module.

Proof. Lemma 3.2 implies by induction with respect to the ordering �
that the image of any h ∈ G∗ in Nε/Tor(Nε) is generated by the image of
Mε ∩ {g ∈ G∗; g � h}.

Corollary 3.4. For any ε ∈ {1,−1},
rankZNε ≤ 1

2 |G|.

Proof. This follows from Proposition 3.3 and Lemma 3.1.

Let I0 be the Z[G]-submodule of Z[G∗] generated by (2.3) for all p ∈ P
and all V ⊆ P−{p}, and let N0 = Z[G∗]/I0. Moreover, let U ′ be the module
defined in [4] for I = P , Tp = Gp, and λ−1p =

∏
q∈P−{p} σp,q, i.e. U ′ ⊆ Q[G]

is the Z[G]-module generated by

ρ′N = S
(∏
p∈N

Gp

)
·
∏

i∈P−N

(
1− |Gi|−1λ−1i S(Gi)

)
for all N ⊆ P .

Lemma 3.5. Let γ : Z[G∗] → U ′ be the Z[G]-linear map determined by
γ(
∏
p∈N g

∗
p) = ρ′N for each N ⊆ P . Then γ is surjective and ker γ = I0,

hence N0
∼= U ′ has no Z-torsion. Moreover I0 = I1 ∩ I−1, and so the

natural Z[G]-linear map δ : N0 → N1 ⊕ N−1, determined by δ(α + I0) =
(α+ I1, α+ I−1), is injective.

Proof. The definition of ρ′N implies that gρ′N = ρ′N for any g ∈
∏
p∈N Gp,

and (2.1) implies that γ is well-defined. For any p ∈ P and V ⊆ P −{p} we
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have

γ
(
S(Gp)

∏
q∈V

g∗q−
(
1−

∏
q∈P−{p}

σp,q
) ∏
q∈V ∪{p}

g∗q

)
= S(Gp)ρ

′
V −(1−λ−1p )ρ′V ∪{p}

and the presentation of U ′ given in [4, Corollary 1.6(i)] implies that I0 =
ker γ and so N0

∼= U ′ ⊆ Q[G] has no Z-torsion.
It is clear that I0 ⊆ I1 ∩ I−1 and so δ is well-defined. For any β ∈ Iε we

have (1 + εj)β ∈ I0 because 1 + εj kills the generators (2.4). Hence for any
β ∈ I1∩I−1 we have 2β = (1+j)β+(1−j)β ∈ I0 and ker δ = (I1∩I−1)/I0
is 2-elementary. Since N0 has no Z-torsion, δ is injective.

Theorem 3.6. For any ε ∈ {1,−1}, Tor(Nε) is a 2-elementary group
and the image of Mε is a Z-basis of Nε/Tor(Nε). Hence we can decompose
the Z-module Nε into the following direct sum of Z-modules:

Nε = Tor(Nε)⊕
⊕
x∈Mε

(x+ Iε)Z.

Proof. We have (1− j)Z[G∗] ⊆ I1 and (1 + j)Z[G∗] ⊆ I−1 due to (2.4).
For any u, v ∈ Z[G∗] let

w = (1 + j)u+ (1− j)v = 2u+ (1− j)(v − u) = 2v + (1 + j)(u− v).

Then δ(w + I0) = (2u + I1, 2v + I−1). Hence if u + I1 ∈ Tor(N1) and
v + I−1 ∈ Tor(N−1) then (2u + I1, 2v + I−1) is an element of finite order
in δ(N0), which has no Z-torsion due to Lemma 3.5. Hence 2u ∈ I1 and
2v ∈ I−1. Both Tor(N1) and Tor(N−1) are 2-elementary. Since δ is injective,

(3.3) rankZN1 + rankZN−1 ≥ rankZ Z[G∗]/I0 = rankZ U
′ = |G|

by using [4, Remark 1.4], and we have equality in Corollary 3.4. The theorem
follows from Lemma 3.1 and Proposition 3.3.

Lemma 3.7. Let µ1 : Z[G∗] → N1 and µ−1 : Z[G∗] → N−1 be the
projections to the quotients. For any ε ∈ {1,−1} and any Z-linear map f :
Nε → F2, where F2 = Z/2Z, there is f̃ : N−ε → F2 such that f̃ ◦µ−ε = f ◦µε.

Proof. The form of the generators (2.4) implies that 2Z[G∗] + I1 =
2Z[G∗] + I−1. Hence we have the commutative diagram

Nε
f

��

Z[G∗]
µεoo

��

µ−ε // N−ε

��
F2 Z[G∗]/(2Z[G∗] + Iε)oo Z[G∗]/(2Z[G∗] + I−ε)idoo

where the no-name vertical arrows are the projections to the quotients. For
any Z-linear map f : Nε → F2 we have 2Z[G∗] ⊆ ker(f◦µε) and the existence

of the dashed arrow follows; we obtain f̃ as the compositum of the given
maps.
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For any U ⊆ P we define yU =
∏
p∈P−U g

∗
p. If ε = −(−1)|U | then yU ∈

M−ε and yU /∈ Mε, so Lemma 3.2 for h = yU gives (3.2) and we know that
there is αU ∈ Z[G′U ] such that

cU = −αU + yU ·
∏
p∈U

Rjp ∈ Z[G∗]

satisfies cU + Iε ∈ Tor(Nε). Moreover any element of Z[G′U ] is a Z-linear
combination of h ∈ G∗ such that P −U ( X(h), and Lemma 3.2 implies by
induction with respect to � that

(3.4) yU ·
∏
p∈U

Rjp = cU +
∑

h∈Mε, X(h))P−U

ah,U · h

for suitable ah,U ∈ Z. Moreover the proof of Lemma 3.2 shows that the

Z-module Tor(Nε) is generated by {cU + Iε; U ⊆ P, (−1)|U | = −ε}. Theo-
rem 3.6 states that Tor(Nε) is a vector space over F2. But we can say even
more:

Theorem 3.8. For any ε∈ {1,−1}, the set {cU+Iε; U ⊆P, (−1)|U |=−ε}
is a basis of the vector space Tor(Nε) over F2. Hence dimF2 Tor(Nε) = 2|P |−1.

Proof. We need to show that this set is linearly independent. So assume
that there is a linear dependence, which means that there is a non-empty
subset R ⊆ {U ⊆ P ; (−1)|U | = −ε} such that

∑
W∈R(cW + Iε) = 0 in Nε.

Let us fix a maximal U ∈ R (with respect to inclusion).
Hence yU ∈ M−ε and yU /∈ Mε. Theorem 3.6 implies that there is a

unique Z-linear map f : N−ε → F2 such that

yU + I−ε /∈ ker f and Tor(N−ε) ∪ {x+ I−ε; x ∈M−ε, x 6= yU} ⊆ ker f.

Lemma 3.7 gives f̃ : Nε → F2 such that f̃ ◦ µε = f ◦ µ−ε and so

yU + Iε /∈ ker f̃ and {x+ Iε; x ∈M−ε, x 6= yU} ⊆ ker f̃ .

The left hand side of (3.4) is the sum of all elements g ∈ G∗ satisfying
πp(g) = g∗p for each p ∈ P − U and πp(g) ∈ Tp for each p ∈ U . All these g’s
belong to M−ε and one of them equals yU . Thus

(3.5) f̃
((
yU ·

∏
p∈U

Rjp

)
+ Iε

)
= 1.

Suppose that h ∈Mε∪M−ε and X(h) 6⊆ P−U . If h ∈M−ε then f̃(h+Iε) = 0

because h 6= yU . If h /∈M−ε then h = yV for some V 6⊇ U with (−1)|V | = ε.
Then (3.4) for V gives

(3.6) yV ·
∏
p∈V

Rjp = cV +
∑

g∈M−ε, X(g))P−V

ag,V · g,

where ag,V ∈ Z and cV + I−ε ∈ Tor(N−ε), so f(cV + I−ε) = 0. Then (3.6)
gives f(yV +I−ε) = 0 as all the other summands on the left hand side belong
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to M−ε and are different from yU . But h = yV and so again f̃(h+ Iε) = 0.
Then (3.4) and (3.5) imply that f̃(cU + Iε) = 1.

Hence for all h ∈ Mε ∪M−ε such that X(h) 6⊆ P − U we have obtained
f̃(h+ Iε) = 0. If W ∈ R and W 6= U , then W 6⊇ U due to the choice of U .
Thus (3.4) for W gives

(3.7) yW ·
∏
p∈W

Rjp = cW +
∑

g∈Mε, X(g))P−W

ag,W · g,

where each summand h on the left hand side satisfies h ∈M−ε and X(h) =
P −W 6⊆ P −U , and so f̃(h+ Iε) = 0. Similarly f̃(g+ Iε) = 0 for each g in
the sum on the right hand side of (3.7). Hence f̃(cW + Iε) = 0 and we have∑

W∈R
f̃(cW + Iε) = f̃(cU + Iε) = 1,

which contradicts our assumption.

4. Circular numbers. This section is devoted to the groups of circular
units and circular numbers of an abelian field K of a special type defined
below; any cyclotomic field is of this type.

Let P be a finite set of primes linearly ordered by an ordering ≤ (not
necessarily coinciding with the usual ordering of integers). For each p ∈ P let
Kp be an imaginary abelian field which is ramified only at p, so the conductor
of Kp is a power of p, say pep . Let K =

∏
p∈P Kp be the compositum of

these fields, so m =
∏
p∈P p

ep is the conductor of K. The absolute Galois
group G = Gal(K/Q) is the direct product of its inertia subgroups Gp ∼=
Gal(Kp/Q). Each Gp contains a distinguished element jp of order 2 given in
Gal(Kp/Q) by the complex conjugation. In the same way as in Sections 2
and 3 we enlarge each Gp to a semigroup G∗p by adding a new element g∗p and
define G∗ as the direct product of all the semigroups G∗p. Set g∗ =

∏
p∈P g

∗
p

and j =
∏
p∈P jp, so j is the complex conjugation on K.

Let E and W denote the group of units and the group of roots of unity
of K, respectively.

For any non-empty V ⊆ P let dV =
∏
p∈V p

ep , ζV = e2πi/dV , KV =∏
p∈V Kp, and ηV = NQ(ζV )/KV (1 − ζV ), so ηV is a unit if and only if

|V | > 1. We define the group D of circular numbers of K as the Z[G]-
module generated in K× by −1 and by all ηV for V ⊆ P , V 6= ∅. Then
the Sinnott group C of circular units of K is defined to be the intersec-
tion C = D ∩ E . It is easy to show that W is the torsion subgroup of both
C and D. (Sinnott [10] in fact used a module different from our D, which
however coincides with D′ defined by Lettl [8]; the equality C = D ∩ E is
[8, Proposition 1]. Actually, Lettl used more generators: all conjugates of all
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norms NQ(ζ)/Q(ζ)∩K(1 − ζ), where ζ = e2πi/n for an integer n |m, n > 1;
but NQ(ζ)/Q(ζ)∩K(1 − ζ) = NKV /Q(ζ)∩K(ηV ) for the set V of all primes di-
viding n.)

For each p ∈ P let νp be the valuation on K of a fixed prime ideal
above p, so νp(η{p}) = 1 and νp(p) = [Kp : Q] = |Gp|.

We define a Z[G]-linear map ϑ : Z[G∗]→ D as follows: g∗ ∈ kerϑ and for
each V ( P let ϑ(

∏
p∈V g

∗
p) = ηP−V . This is well-defined by (2.1) because

ηP−V is fixed by each automorphism in
∏
p∈V Gp. Let π : D → D1+j be

defined by π(ε) = ε1+j . It is well-known that kerπ = W (see [10, Lem-
ma 4.1(i)]). The map π ◦ϑ is surjective because all generators of D1+j are in
the image. For any distinct p, q ∈ P we fix σp,q ∈ Gq in the following way: the
action of

∏
q∈P−{p} σp,q corresponds to the action of Frob(p)−1 on KP−{p},

where Frob(p) is the Frobenius automorphism of p.
For any p ∈ V ⊆ P we have the following well-known norm and mirror

relations: ∏
σ∈Gp

ησV =

{
η
1−Frob(p)−1

V−{p} if V 6= {p},
p if V = {p},

(4.1)

ηjV ≡ ηV (mod W ).(4.2)

We have D1+j ∩Q = 〈P 〉 since each number in D1+j is a totally positive
P -unit and because for any p ∈ P we have

(4.3) η
Rjp
{p} ∈ D and (η

Rjp
{p} )1+j = η

Rjp (1+jp)

{p} = p

by (2.2) and (4.1).
Let ψ : D1+j → D1+j/〈P 〉 be the projection to the quotient. We have the

following commutative diagram with exact rows and columns (the exactness
of the last row is given by the snake lemma):

0

��

0

��
0 //

��

〈P 〉 //

⊆
��

⊕
p∈P νp(p)Z //

⊆
��

0

0 // C1+j ⊆ //

��

D1+j

ψ

��

⊕
p∈P νp //

⊕
p∈P 2Z //

��

0

0 // C1+j //

��

D1+j/〈P 〉 //

��

⊕
p∈P Z/

(
1
2νp(p)Z

)
//

��

0

0 0 0
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Lemma 4.1. The quotient D1+j/〈P 〉 has no Z-torsion.

Proof. Assume that there is ε ∈ D such that ε1+j /∈ 〈P 〉 but for a
suitable positive integer n we have (ε1+j)n ∈ 〈P 〉. Take ε with the smallest
possible n. Then n is a prime. Moreover, using (4.3), we can assume that
(ε1+j)n is a positive integer such that there is p ∈ P satisfying p | (ε1+j)n and
p2 - (ε1+j)n. Since ε ∈ D, we have ε1−j ∈W , and so there is a root of unity ξ
such that ε1−j = ξ2. Then εξ−1, which belongs to an abelian field, is a root
of the irreducible polynomial x2n − (ε1+j)n ∈ Z[x]. Hence this polynomial
has an abelian splitting field, so 2n = 2, which is a contradiction.

Theorem 4.2. The set

B =
{
ϑ(u); u ∈M1, u 6= g∗

}
∪
{
ϑ
( ∏
p∈P−{q}

g∗p

)
; q ∈ P

}
is a Z-basis of D, i.e. π(B) is a basis of the free Z-module D1+j.

Proof. We know that rankZ E = 1
2 |G| − 1 and C is of finite index in E

(see e.g. [11, §8.2] or [10, Theorem 4.1]). Then the last row of the diagram
above gives

(4.4) rankZD1+j/〈P 〉 = rankZ C1+j = rankZ C = 1
2 |G| − 1.

It is enough to show that π(B) generates D1+j because the middle row of
the diagram, (4.4), and Lemma 3.1 together with g∗ ∈M1 give

rankZD1+j = |P |+ 1
2 |G| − 1 ≥ |B|.

Comparing (2.3) and (2.4) with (4.1) and (4.2) we obtain

g∗Z + I1 ⊆ ker(ψ ◦ π ◦ ϑ),

hence there is a surjective mapping

(4.5) N1 → D1+j/〈P 〉

induced by ψ ◦ π ◦ ϑ. Theorem 3.6, Lemma 3.1, g∗ ∈ M1, and (4.4) im-
ply that (ψ ◦ π ◦ ϑ)(M1 − {g∗}) is a Z-basis of D1+j/〈P 〉. By Lemma 4.1,
ψ(π(B)) generates ψ(D) = D1+j/〈P 〉, and (4.3) shows that π(B) generates
kerψ = 〈P 〉.

The previous theorem allows us to give a basis of the group C of circular
units. Recall that X(u) = {p ∈ P ; πp(u) = g∗p}. For any u ∈ G∗ − {g∗} we
have ϑ(u) = ησP−X(u), where σ =

∏
p∈P−X(u) πp(u) ∈ G. Define

ϑ̃(u) =

{
ϑ(u) = ησP−X(u) if |X(u)| < |P | − 1,

ϑ(u−
∏
p∈X(u) g

∗
p) = ησ−1P−X(u) if |X(u)| = |P | − 1.
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Corollary 4.3. The set

B̃ = {ϑ̃(u); u ∈M1, u 6= g∗}
is a Z-basis of C, i.e. π(B̃) is a basis of the free Z-module C1+j.

Proof. Theorem 4.2 implies that

(4.6)
{
ϑ̃(u); u ∈M1, u 6= g∗

}
∪
{
ϑ
( ∏
p∈P−{q}

g∗p

)
; q ∈ P

}
is a Z-basis of D. For any q, r ∈ P we have

νr

(
ϑ
( ∏
p∈P−{q}

g∗p

))
=

{
1 if r = q,

0 if r 6= q.

The left summand in (4.6) consists of units and so it is a Z-basis of the
kernel of

⊕
p∈P νp in D.

Having the surjective mapping π ◦ ϑ we shall describe its kernel to get
the following short exact sequence which gives a presentation of D1+j :

(4.7) 0 −→ ker(π ◦ ϑ)
⊆−→ Z[G∗]

π◦ϑ−−→ D1+j −→ 0.

Write the module I1 as the sum I2 + I3 where I2 is the Z[G]-module gen-
erated by the generators (2.3) for all p ∈ P and V = P − {p}, and I3 is
the Z[G]-module generated by all the other generators (2.3) and by all the
generators (2.4) with ε = 1. So I2 + I3 = I1 and

(4.8) I2 =
〈{
S(Gp) ·

∏
q∈P−{p} g

∗
q ; p ∈ P

}〉
is a Z[G]-module with the trivial action of G.

Using (4.1) we see that kerϑ contains all elements (2.3) for |V | < |P |−1.
The identity (1 + j)(1 − j) = 0 shows that ker(π ◦ ϑ) contains all elements
(2.4) with ε = 1, hence I3 ⊆ ker(π ◦ϑ). We shall need the following stronger
variant of Theorem 2.2:

Proposition 4.4. For each Q ⊆ P satisfying (−1)|Q| = −1 and |Q| > 1
there is αQ ∈ Z[G′Q] such that

2αQ − 2
( ∏
q∈P−Q

g∗q

) ∏
p∈Q

Rjp ∈ I3.

Proof. Since I2 + I3 = I1, Theorem 2.2 and (4.8) give

(4.9) 2
( ∏
q∈P−Q

g∗q

) ∏
p∈Q

Rjp −
∑
p∈P

apS(Gp) ·
∏

q∈P−{p}

g∗q ∈ 2Z[G′Q] + I3

for suitable integers ap. For any p ∈ Q, (2.2) implies

S(Gp) ·
∏

q∈P−{p}

g∗q =
(
2jpRjp + (1− jp)Rjp

)
·
∏

q∈P−{p}

g∗q ∈ 2Z[G′Q] + I3,



Circular units and the Stickelberger ideal 233

and so we can assume that ap = 0. Fix r ∈ P −Q. For any element of Z[G′Q]
we see that the coefficient of

∏
P−{r} g

∗
q is zero. The same holds true for

the product of S(Gr) and any generator of I3. Hence (4.9) shows that this
coefficient is zero also for

S(Gr) ·
∑
p∈P

apS(Gp) ·
∏

q∈P−{p}

g∗q =
∑
p∈P
|Gr| · apS(Gp) ·

∏
q∈P−{p}

g∗q ,

and so ar = 0. The proposition follows.

Theorem 4.5. The kernel ker(π ◦ ϑ) in the presentation (4.7) of D1+j

is generated, as a Z-module, by I3, by g∗, and by the elements

βQ = αQ −
( ∏
q∈P−Q

g∗q

) ∏
p∈Q

Rjp

for all Q ⊆ P with odd |Q| > 1, where αQ is introduced in Proposition 4.4.

Proof. Since D1+j has no Z-torsion, Proposition 4.4 and (4.7) imply that

B = {βQ; Q ⊆ P, |Q| > 1, (−1)|Q| = −1} ⊆ ker(π ◦ ϑ).

Since the image of (M1 − {g∗}) ∪ {
∏
q∈P−Q g

∗
q ; p ∈ P} in π ◦ ϑ is a Z-basis

of D1+j due to Theorem 4.2, to prove ker(π ◦ ϑ) ⊆ I3 + 〈B ∪ {g∗}〉Z it is
enough to show that

(4.10) Z[G∗] =
〈
M1 ∪

{∏
q∈P−{p} g

∗
q ; p ∈ P

}〉
Z

+ I3 + 〈B〉Z.

This can be proven exactly in the same way as Lemma 3.2, changing I1
to I3: let us go through the four cases discussed in the proof of Lemma 3.2
to see where the generators of I2 have been used.

1. The element in (3.1) does not belong to I3 only if X(h) = P − {p}.
Then the other assumptions of this case give W (h) = ∅ and V (h) = ∅,
a contradiction.

2. The element of I1 used here belongs to I3.
3. The element in (3.2) belongs to B unless U(h) = {p} and h =∏

q∈P−{p} g
∗
q , but this h appears in (4.10).

4. The element in (3.1) does not belong to I3 only if X(h) = P − {p}.
Then V (h) = {p} and h = jp

∏
q∈P−{p} g

∗
q , so we can use (1 − jp)h ∈ I3

since jph appears in (4.10).

We have proved (4.10) and the theorem follows.

5. Galois descent. The aim of this section is to prove the following
result concerning an extension K/L of two fields satisfying the assumptions
of Section 4. We shall use the previous notation just adding the appropriate
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field as index, for example CK and CL mean the groups of circular units in K
and L, respectively. The following Galois descent property has been proven
for full cyclotomic fields by Gold and Kim [3].

Theorem 5.1. Let L ⊆ K be abelian fields, each being a compositum
of imaginary abelian fields ramified at one prime, i.e. K =

∏
p∈PK Kp and

L =
∏
p∈PL Lp, where Kp for any p ∈ PK and Lp for any p ∈ PL are

imaginary abelian fields ramified only at p. Then CL = CK ∩ L.

Proof. It is easy to see that CL ⊆ CK ∩ L, so we need to show the other
inclusion.

We can assume that either PK − PL = {q}, or PK = PL and [K : L]
is a prime. Indeed, after having proven these two special cases the general
statement can be easily obtained by induction.

In the former case K = LKq we immediately see from the definitions

that ϑ̃L(u) = ϑ̃K(ug∗q ) for any u ∈ G∗L and {ug∗q ; u ∈ M1,L} ⊆ M1,K . For

any ε ∈ CK ∩ L we have ε[K:L] = NK/L(ε) ∈ CL. Corollary 4.3 for L says
that there are unique ξ ∈WL and au ∈ Z satisfying

ε[K:L] = ξ ·
∏

u∈M1,L

u6=g∗L

ϑ̃L(u)au = ξ ·
∏

u∈M1,L

u6=g∗L

ϑ̃K(ug∗q )
au .

Since ε ∈ CK , Corollary 4.3 for K implies that [K : L] divides au for each u
and so there is ξ′ ∈WL such that

ε = ξ′ ·
∏

u∈M1,L

u6=g∗L

ϑ̃L(u)au/[K:L].

Hence ε ∈ CL and the theorem follows in this case.

To finish the proof we need to show CK ∩ L ⊆ CL when PK = PL and
[K : L] is a prime. It is enough to show that DK ∩ L ⊆ DL. Set H =
Gal(K/L) and P = PK . Our assumption on K, L implies that there is a
unique q ∈ P such that Kq 6= Lq. Then jq,K /∈ H ⊂ Gq,K and Gq,L ∼=
Gq,K/H.

We extend the restriction resK/L : GK → GL to a semigroup homo-
morphism resK/L : G∗K → G∗L by setting resK/L g

∗
p,K = g∗p,L for each p ∈ P .

On the one hand, if [K : L] is odd then the construction in Lemma 1.1
gives resK/L Tq,K = Tq,L. On the other hand, if [K : L] = 2 then defining
τ by H = {1, τ} we see that τ and jq,K are different elements of Gq,K of
order 2. In Lemma 1.1, the 2-Sylow subgroup of Gq,K is written as the direct
product 〈z〉 × H̄, where jq,K is the only element of order 2 in 〈z〉 and H̄ is
a suitable subgroup. Then either τ ∈ H̄ when again resK/L Tq,K = Tq,L, or

τ /∈ H̄ when jq,Kτ ∈ H̄, which implies resK/L Tq,K = Gq,L.
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Since we can choose any linear ordering ≤ on P , we can assume that q
is the least element of P with respect to ≤. For any u ∈ G∗K we have

(5.1) ϑL(resK/L u) =

{
ϑK(u) if πq,K(u) = g∗q,K ,∏
h∈H ϑK(hu) if πq,K(u) 6= g∗q,K .

Let

M+
1,L = (M1,L − {g∗L}) ∪

{ ∏
q∈P−{p}

g∗q,L; p ∈ P
}

be the set giving the Z-basis of DL described by Theorem 4.2, and let M+
1,K

be defined similarly. Recall that, before Lemma 3.2, we have defined the
ordering � on G∗K . We shall prove that for each h ∈ M+

1,L we can choose

kh ∈M+
1,K such that resK/L kh = h and

(5.2) ϑL(h) = ξ · ϑK(kh) · ρh,
where ξ ∈ WK and ρh is a multiplicative combination with integral coef-
ficients of ϑK(l) for those l ∈ M+

1,K , l 6= kh, which satisfy either l ≺ kh
or resK/L l = h or resK/L l = jq,Lh, the last case being possible only if

jq,Lh /∈M+
1,L. To prove (5.2) let us distinguish the following four cases:

1. Suppose πq,L(h) = g∗q,L. There is a unique kh ∈ G∗K such that resK/L kh
= h. This kh is in M+

1,K and (5.1) gives ϑL(h) = ϑK(kh).

2. Suppose πq,L(h) = 1. We have exactly [K : L] elements k ∈ G∗K satis-
fying resK/L k = h; we denote by kh the only one of them with πq,K(kh) = 1.

Then kh ∈ M+
1,K and the other k satisfy X(k) = X(h) and W (k) =

W (h) − {q} since jq,K /∈ H, and so k ≺ kh. Using (4.5) and reasoning
as in the proof of Proposition 3.3 we see that (5.1) implies (5.2).

3. Suppose πq,L(h) /∈ {1, g∗q,L} and c(h) 6= q. Again we have exactly
[K : L] elements k ∈ G∗K satisfying resK/L k = h. For each of them we have
X(k) = X(h), W (k) = W (h), so c(k) = c(h) 6= q. And since πq,K(k) 6= jq,K ,
we obtain k ∈ M+

1,K . Choosing any of these k as kh, we find that (5.1)

implies (5.2).
4. Suppose πq,L(h) /∈ {1, g∗q,L} and c(h) = q. Then X(h)∪W (h) = P−{q}

as q was chosen to be the least element of P and jq,Lh /∈ M+
1,L. Again we

have exactly [K : L] elements k ∈ G∗K satisfying resK/L k = h. For each
of them we have X(k) = X(h), W (k) = W (h), c(k) = c(h) = q, and
V (k) = V (h) = ∅. Since resK/L Tq,K is either Tq,L or Gq,L, for at least one of

these k’s we have πq,K(k) ∈ Tq,K . Each such k belongs to M+
1,K ; we choose

kh to be one of them. Now consider any k ∈ G∗K satisfying resK/L k = h and

πq,K(k) /∈ Tq,K . Then jq,Kk ∈M+
1,K . Relation (4.2) gives ϑK(jKk) ≡ ϑK(k)

(mod WK). On the one hand, if W (h) = ∅ then jKk = jq,Kk. On the other
hand, if we fix any p ∈ W (h) and set R = {r ∈ W (h); r < p} then (4.1)
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gives the following relation for t = k ·
∏
r∈R∪{q} jr,K :

(5.3)
∏

u∈Gp,K

ϑK(ut) = ϑK(g∗p,Kt) · ϑK(Frob(p)−1g∗p,Kt)
−1.

As X(g∗p,Kt) = X(Frob(p)−1g∗p,Kt) = X(kh) ∪ {p}, we have g∗p,Kt ≺ kh and

Frob(p)−1g∗p,Kt ≺ kh. If u ∈ Gp,K − {1, jp,K} then X(ut) = X(kh) and

W (ut) ( W (kh), so ut ≺ kh. Hence (5.3) implies that ϑK(t)ϑK(jp,Kt) is
a multiplicative combination of ϑK(l) with l ≺ kh. As this holds for all
p ∈ W (h), we deduce that ϑK(jKk) · ϑK(jq,Kk)±1 is such a multiplicative
combination. Using (4.5) and reasoning as in the proof of Proposition 3.3,
we see again that (5.1) implies (5.2).

We have proven (5.2) since each h satisfies exactly one of the previous
cases. But the previous construction shows even more: we haveX(kh) =X(h),
U(kh) = U(h), V (kh) = ∅ = V (h), and z(kh) = z(h), therefore for any
h1, h2 ∈M+

1,L we have

(5.4) h1 ≺ h2 ⇔ kh1 ≺ kh2 .

For any ε ∈ DK ∩ L we have ε[K:L] = NK/L(ε) ∈ DL. By Theorem 4.2
for L there are unique ξ ∈WL and ah ∈ Z satisfying

(5.5) ε[K:L] = ξ ·
∏

h∈M+
1,L

ϑL(h)ah .

As above, we need to show that [K : L] divides ah for each h ∈M+
1,L. Assume

the contrary, and among those h ∈ M+
1,L satisfying [K : L] - ah choose a

maximal h0 with respect to �. Hence [K : L] - ah0 , and [K : L] | ah for each
h ∈M+

1,L with h � h0. Using (5.2) we obtain

(5.6) ε[K:L] = ξ′ ·
∏

h∈M+
1,L

(ϑK(kh) · ρh)ah

for a suitable ξ′ ∈WK . Let us study the total exponent of ϑK(kh0) appearing
in the expression of the right hand side of (5.6) in the basis of Theorem 4.2.
The exponent ah0 is obtained for h = h0. Assume that we have a power of
ϑK(kh0) coming from ρh for some h ∈M+

1,K , h 6= h0. By the description of ρh
this means that either kh0 ≺ kh or resK/L kh0 = h or resK/L kh0 = jq,Lh, the

last case being possible only if jq,Lh /∈M+
1,L. But resK/L kh0 = h0, so h0 ≺ h

in view of (5.4), because the other two cases lead to a contradiction: h0 = h
or h0 = jq,Lh /∈M+

1,L. Our choice of h0 then gives [K : L] | ah. Therefore the

total exponent of ϑK(kh0) appearing on the right hand side of (5.6) is not
divisible by [K : L], and (5.6) contradicts Theorem 4.2 for K. This shows
that all the exponents ah in (5.5) are divisible by [K : L] and so ε ∈ DL.
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6. The Stickelberger ideal. Let K denote the field considered in
Section 4. We shall keep the notation introduced there, so for example
G = Gal(K/Q) and j ∈ G is the complex conjugation. The Stickelberger
ideal of K is the intersection S = Z[G] ∩ S ′ where S ′ ⊂ Q[G] is defined by
means of explicit generators in [10, p. 189]. Letting e− = 1

2(1− j), we have

S ′ = e−S ′ ⊕ 1
2S(G)Z and e−S ′ = ωe−U ′ (see [10, Lemma 2.1 and Corollary

of Proposition 2.2]), where ω ∈ Q[G] is defined by [10, (2.6)] and U ′ (denoted
by U in [10]) has the same meaning as in Section 3. Hence we have

Lemma 6.1. S ′ = 1
2ω(1− j)U ′ ⊕ 1

2S(G)Z.

Lemma 3.5 states that U ′ ∼= N0 and so (1 − j)U ′ ∼= (1 − j)N0. Since
(1− j)Z[G] ⊆ I1 and (1 + j)Z[G] ⊆ I−1, the injective linear map δ defined
in Lemma 3.5 satisfies δ((1−j)(α+I0)) = (0, 2(α+I−1)) for any α ∈ Z[G∗].
Therefore the restriction of δ to (1− j)N0 together with Theorem 3.6 gives
the following isomorphism of Z[G]-modules:

(1− j)U ′ ∼= (1− j)N0
∼= 2N−1 ∼= N−1/Tor(N−1).

Let ψ : N−1/Tor(N−1) → (1 − j)U ′ denote this isomorphism and let π :
Z[G∗] → N−1/Tor(N−1) be the projection to the quotient. Theorem 3.6
implies that ψ(π(M−1)) is a basis of the free Z-module (1− j)U ′. Therefore

(6.1) B =
{
1
2ω · ψ(π(u)); u ∈M−1

}
∪
{
1
2S(G)

}
is a system of generators of S ′. It is well-known that rankZ S ′ = 1+1

2 |G| = |B|
(see [10, Theorem 2.1]). Hence we have

Theorem 6.2. The set B defined by (6.1) is a basis of the free Z-
module S ′.

The previous theorem describes a basis of S ′, but we would like to get a
basis of S. It is easy to derive such a basis from B, but a formal description
is quite cumbersome. So we only outline this procedure.

We know that there is a surjective Z[G]-linear map ϕ : S ′ → W , where
W is the group of roots of unity in K, defined as follows: for any θ ∈ S ′ we
have ϕ(θ) = e2πia1 , where a1 is the coefficient of 1 ∈ G in θ =

∑
σ∈G aσσ

−1.
The kernel of ϕ is S, so S ′/S ∼= W (see [10, Proposition 2.2]).

We can decompose the cyclic group W into the direct product of cyclic
p-groups for primes p | |W | (those p are in P ∪ {2}). Let W1 denote the first
of those factors. Theorem 6.2 implies that we can fix b ∈ B such that the
projection of ϕ(b) to W1 is a generator of W1. By adding a suitable multiple
of b to any other element of B (and keeping b unchanged) we can modify the
basis B to another basis of S ′ each of whose elements except b has trivial
projection to W1 of its ϕ-image. Then we change b to |W1| · b to obtain a
basis of a subideal S1 ⊆ S which is the kernel of the composition of ϕ with
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the projection to W1. Continuing this procedure for each factor of W (so at
most |P |+ 1 times) we arrive at a basis of S.
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