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Abstract

Spectral flow is a classical notion of functional analysis and differential geometry which was
given different interpretations as Fredholm index, Witten index, and Maslov index. The classical
theory treats spectral flow outside essential spectrum. Inside essential spectrum, the spectral
shift function could be considered as a proper analogue of spectral flow, but unlike spectral flow,
the spectral shift function is not an integer-valued function.

In this paper it is shown that the notion of spectral flow admits a natural extension for
a.e. value of the spectral parameter inside essential spectrum too, and an appropriate theory is
developed. The definition of spectral flow inside essential spectrum given in this paper applies
to classical spectral flow and thus provides one more new alternative definition of it.

One of the results of this paper asserts that for trace class self-adjoint perturbations of self-
adjoint operators the following four integer-valued functions are equal almost everywhere. The
common value of these functions is spectral flow inside essential spectrum by definition.

1) Singular spectral shift function.
2) Singular part of the Pushnitski µ-invariant.
3) The so-called total resonance index.
4) The so-called total signature of resonance matrices.

Equality of the third and the fourth functions is proved under much weaker assumptions which
cover Schrödinger operators. Some applications of this result are given.
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1. Introduction

This paper develops the theory of spectral flow inside essential spectrum. In order to put

the results into context, in this introduction a quick survey is given of relevant parts of

the theory of spectral flow, the mathematical theory of scattering, and related notions,

from the perspective of this paper. In fact, the introduction and the main body of the

paper are quite independent; the reader may choose to omit reading this introduction (as

long as he/she does not ask what is the point and origin of the results of the paper), or

treat the introduction as an independent survey. This also explains the relatively large

size of this introduction.

1.1. Spectral flow. In this subsection we briefly mention several papers on differential

geometry and operator theory where the notion of spectral flow was introduced and

studied. The subsection can safely be skipped, if necessary.

Spectral flow was introduced by M. Atiyah, V. Patodi and I. M. Singer [APS, APS2], as

the intersection number of eigenvalues of a continuous path Du, 0 ≤ u ≤ 1, of elliptic self-

adjoint pseudo-differential operators on a compact manifold with the line λ = −ε, where

ε is a small positive number. Atiyah, Patodi and Singer [APS2] remarked that the spectral

flow could in fact be defined for any continuous path of self-adjoint Fredholm operators.

The essential spectrum of a self-adjoint Fredholm operator does not contain zero, and

this allows one to define the spectral flow formally as the net number of eigenvalues

crossing 0 in the positive direction, where it is assumed that if an eigenvalue crosses 0 in

the negative direction then its contribution to the spectral flow is negative. I. M. Singer

suggested in 1974 that it should be possible to express the spectral flow as an integral

of a one-form defined in terms of the path of operators. Such an analytic formula was

established by E. Getzler [Ge]:

sf(D, g−1Dg) =
1√
π

∫ 1

0

Tr(Ḋue
−D2

u) du, (1.1.1)

where D is a self-adjoint operator of an odd θ-summable Fredholm module (see [C] for

definition) (A,H, D) over a Banach ∗-algebra A, g is a representative of an element [g]

of the odd K-theory group K1(A) (see e.g. [Bl, §8] or [Mu, Chapter 7] for definition),

and Du = (1 − u)D + ug−1Dg. For example by [Ge], in the case when H = L2(T, dθ),
A = C(T), D = 1

i
d
dθ , and [g] is the class of the function einθ, one has Du = D + nuI,

where I is the identity operator, so that σ(Du) = {k + nu : k ∈ Z}. Thus, as u changes

from 0 to 1, each real number including zero is crossed by n simple eigenvalues of Du in

the positive direction, and therefore sf(D, g−1Dg) = n.

[6]



1.1. Spectral flow 7

For a norm-continuous path F : [a, b] → B(H) of self-adjoint Fredholm operators

where B(H) is the algebra of bounded operators, J. Phillips [Ph, Ph2] gave an alternative

definition of spectral flow:

sf({Ft}) =

n∑
i=1

ec(Pti−1
, Pti),

where Pt = EFt[0,∞) is the spectral projection of Ft corresponding to the interval [0,∞)

and ec(P,Q) is the essential co-dimension of a Fredholm pair of projections P,Q (see

[ASS] for definition, see also [AS, K, Ka3]), which is defined as the Fredholm index of

the operator PQ : QH → PH. It was shown in [Ph, Ph2] that this definition of spectral

flow is correct, that it is independent of the choice of small enough partitions and that it

is homotopically invariant. The spectral flow sf(F0, F1) for a pair of Fredholm operators

F0 and F1 with compact difference is then defined by the above formula for the straight

path (1− t)F0 + tF1 connecting F0 and F1, and for a pair of self-adjoint operators D0, D1

with compact resolvents and bounded difference the spectral flow is defined by

sf(D0, D1) = sf(φ(D0), φ(D1)),

where φ(x) = x(1 + x2)−1/2.

The analytic formula (1.1.1) was generalized by A. Carey and J. Phillips [CP, CP2],

who in particular proved the following formula [CP2, Corollary 8.10] for the spectral flow

for two θ-summable operators D0 and D1:

sf(D0, D1) =
1√
π

∫ 1

0

Tr

(
dDt

dt
e−D

2
t

)
dt+ η1(D1)− η1(D0)

+ 1
2 Tr([ker(D1)])− 1

2 Tr([ker(D0)]), (1.1.2)

where [ker(Dj)] is the projection onto the kernel of Dj and where the real number

η1(D) =
1√
π

∫ ∞
1

Tr(De−tD
2

)
dt√
t

is the so-called η-invariant of Dj , a notion introduced for self-adjoint elliptic operators on

compact manifolds by Atiyah, Patodi and Singer [APS2]. A formula analogous to (1.1.2)

was also established for p-summable operators. It was moreover shown in [CP2] that

the one-form on the affine space of θ-summable self-adjoint operators {D0 + A : A is a

bounded self-adjoint operator} given by

αD(A) =
1√
π

Tr(Ae−D
2

)

is exact.

The nature of integral formulas for the spectral flow such as (1.1.1), (1.1.2) was

clarified in [ACS], where it was proved [ACS, (35)] that for any two self-adjoint operators

D0 and D1 with compact resolvent such that D1 −D0 is bounded we have

sf(λ;D0, D1) = ξD1,D0(λ) + 1
2 Tr([ker(D1 − λ)])− 1

2 Tr([ker(D0 − λ)]), (1.1.3)

where ξD1,D0
(λ) is the so-called spectral shift function. The formula (1.1.3) is quite general

in the sense that firstly it allows one to recover integral formulas for spectral flow by

averaging over an appropriate probability distribution φ(λ), which in the case of the
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formulas of Getzler (1.1.1) and Carey–Phillips (1.1.2) is the Gaussian, and secondly,

unlike other integral formulas it does not impose any summability conditions on the

operators D0 and D1.

Though in [ACS] the operators Dr were assumed to have compact resolvent, the same

technique of proof shows that a connection between the spectral flow and the spectral

shift function given by (1.1.3) holds for norm-continuous pathsDr of self-adjoint operators

with trace class difference if λ does not belong to the common essential spectrum of the

operators Dr (see also [Pu4]).

1.2. Spectral shift function. The works on spectral flow discussed above were written

by geometers, who were interested in it primarily as a topological invariant and in its

connections with other topological invariants, such as Chern character (see e.g. [KN, We]

for definition). See also, for instance, [BCPRSW, BF, BLP, CPRS, CPRS2, CPRS3, CM].

A notion closely related to spectral flow appeared in 1952 in the work of I. M. Lifshitz [L].

He introduced and developed a formalism for the spectral shift function ξ(λ) of a pair of

self-adjoint operators H0 and H1 with finite rank difference V = H1 −H0. The function

ξ(λ) in [L] was defined by

ξ(λ) = Tr(EH1

λ − E
H0

λ ). (1.2.1)

In particular, Lifshitz observed that the spectral shift function formally satisfies the

following equality, called the trace formula:

Tr(f(H1)− f(H0)) =

∫ ∞
−∞

f ′(λ)ξ(λ) dλ. (1.2.2)

Lifshitz introduced the spectral shift function in connection with a problem of solid state

physics, in which the initial operator H0 is the Hamiltonian of a pure crystal and V is

the perturbation generated by a point impurity, and his work had a formal character.

A mathematically rigorous theory of the spectral shift function was created one year

later by M. G. Krĕın [Kr]. He showed that for any pair of self-adjoint operators H0 and

H1 with trace class difference V = H1 − H0 there exists a unique (up to a set of zero

measure, of course) integrable function ξ(λ) such that for all functions f from a class

which includes C2
c (R), the trace formula (1.2.2) holds. Krĕın also demonstrated by a

counter-example that (1.2.1) cannot serve as a definition of the spectral shift function,

since EH1

λ − EH0

λ may fail to be trace class. Further, a description of the largest class

of functions f for which (1.2.2) holds was given by V. V. Peller [Pel] in terms of Besov

spaces (see also [Far]). There is a large literature on the spectral shift function: see e.g.

[GM, GM2, Pu, Pu3, S].

M. Sh. Birman and M. Z. Solomyak [BS2] showed that for any self-adjoint operator H0

and any trace class self-adjoint operator V the spectral shift function ξH1,H0
(λ) satisfies

the equality

ξ(λ) =
d

dλ

∫ 1

0

Tr(V EHrλ ) dr a.e. λ, (1.2.3)

where

Hr = H0 + rV, r ∈ R,
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and where EHλ is the spectral projection of H corresponding to the interval (−∞, λ]. If

we are to interpret the spectral shift function ξ(λ) as a distribution ξ(φ), φ ∈ C∞c (R),

the Birman–Solomyak formula (1.2.3) can be rewritten as

ξ(φ) =

∫ 1

0

Tr(V φ(Hr)) dr ∀φ ∈ C∞c (R). (1.2.4)

The Birman–Solomyak formula (1.2.3) rewritten in the form (1.2.4) makes a clear connec-

tion between the integral formulas for spectral flow (1.1.1), (1.1.2), etc. and the spectral

shift function: both are integrals of one-forms

αfH(V ) = Tr(V f(H)) (1.2.5)

on a real affine space H0 +A0 of self-adjoint operators, where A0 is a real vector space

of self-adjoint operators. This connection was observed and used in [ACS] to derive a

general integral formula for the spectral flow in the case of self-adjoint operators H with

compact resolvent and A0 = Bsa(H). It was shown in [ACS] that the one-forms (1.2.5) are

exact on the affine space H+Bsa(H) for any compactly supported smooth function f , and

therefore integrals over all piecewise smooth continuous paths connecting H0 and H0 +V

coincide and are equal to the right hand side of (1.2.4).

An analogue of this result was proved in [AzS] for so-called trace compatible per-

turbations, which include self-adjoint operators with compact resolvent and bounded

perturbations, as well as arbitrary self-adjoint operators and trace class perturbations.

An affine space A = H0 +A0 of self-adjoint operators is called trace compatible if for any

H ∈ A, any perturbation V ∈ A0, and any compactly supported continuous function φ

we have V φ(H) ∈ L1(H), where L1(H) is the class of operators with finite trace. This

definition was motivated by the distribution version (1.2.4) of the Birman–Solomyak for-

mula (1.2.3), since trace compatibility is the least requirement which one needs to impose

on the operators H0 + rV to give a meaning to the integral in (1.2.4).

One of the important developments in the theory of the spectral shift function oc-

curred when V. S. Buslaev and L. D. Faddeev [BuFa] observed a connection between the

spectral shift function and the phase shift of the scattering matrix. This connection for

trace class perturbations of self-adjoint operators was established by M. Sh. Birman and

M. G. Krĕın [BK]; namely, for self-adjoint operators H0 and H1 with trace class difference

V = H1 −H0 they proved the formula

e−2πiξ(λ) = detS(λ;H1, H0), (1.2.6)

where S(λ;H1, H0) is the scattering matrix for the pair (H1, H0) (see e.g. [Y]), whose

definition is found in the next subsection, det is the Fredholm determinant (see e.g. [GK,

Chapter 4], [S2, Chapter 3] or [RS4, §XIII.7]) and ξ(λ) is the spectral shift function of

(H1, H0).

1.3. Scattering theory. The scattering operator S(H1, H0) for a pair (H1, H0) of self-

adjoint operators is defined by (see e.g. [BW, RS3, Y])

S(H1, H0) = W ∗+(H1, H0)W−(H1, H0), (1.3.1)
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where the Möller wave operators W±(H1, H0) are defined, if they exist, as the strong

operator limits

W±(H1, H0) = lim
t→±∞

eitH1e−itH0P (a)(H0), (1.3.2)

where P (a)(H0) is the orthogonal projection onto the absolutely continuous subspace

of H0 (for definition, see e.g. [RS, Theorem VII.4 and the preceding definition]). The

classical Kato–Rosenblum theorem ([Ka, R], see also [RS3, Theorem XI.8], [Y, Theorem

6.2.3]) asserts that if H1−H0 is trace class, then W±(H1, H0) exist and are therefore com-

plete (by symmetry of the condition H1−H0 ∈ L1(H)), which implies that (1.3.1) exists

as well. Completeness of wave operators means that both W+(H1, H0) and W−(H1, H0)

are partial isometries whose initial space is the absolutely continuous subspace H(a)(H0)

with respect to H0, and the final space is H(a)(H1).

One of the many versions of the spectral theorem asserts that, given a self-adjoint

operator H0, the absolutely continuous subspace H(a)(H0) admits a representation as a

direct integral of Hilbert spaces

F : H(a)(H0)→
∫ ⊕
σ̂H0

hλ ρ(dλ) (1.3.3)

such that for any f ∈ H(a)(H0) ∩ dom(H0) the equality

F(H0f)(λ) = λF(f)(λ)

holds for a.e. λ ∈ σ̂H0 , where σ̂H0 is a core of the absolutely continuous spectrum of H0,

{hλ : λ ∈ σ̂H0
} is a measurable family of Hilbert spaces, ρ is an absolutely continuous

Borel measure with Borel support σ̂H0
, and F is a unitary operator; for definition of the

direct integral of Hilbert spaces see e.g. [BW, BS].

By the Kato–Rosenblum theorem, the scattering operator S(H1, H0) is a partial isom-

etry with initial and final space H(a)(H0); further, it commutes with H0. These properties

imply (see e.g. [BÈ, BY, BY2, Y]) that in the spectral representation (1.3.3) the scattering

operator (1.3.1) is represented by a direct integral

S(H1, H0) =

∫ ⊕
σ̂H0

S(λ;H1, H0) ρ(dλ), (1.3.4)

where {S(λ;H1, H0) : λ ∈ σ̂H0
} is a measurable family of unitary operators on fibre

Hilbert spaces hλ.

The spectral parameter λ has a physical meaning of energy E; the fibre Hilbert

space hλ is often called an energy shell. Physicists call the unitary operator S(λ;H1, H0)

the on-shell scattering operator, while S(H1, H0) itself is called the off-shell scattering op-

erator (see e.g. [T, §3-b]; see also [RS3, Theorem XI.42 and the following discussion]). In

physics there is a famous stationary formula due mainly to B. Lippmann and J. Schwinger

[LSch] and Gell-Mann and Goldberger [GG] for the on-shell scattering operator (see e.g.

[T], [RS3, Theorem XI.42])

〈p′|S|p〉 = δ3(p′ − p)− 2πiδ(Ep′ − Ep)〈p′|V (1−G0(Ep + i0)V )−1|p〉
= δ3(p′ − p)− 2πiδ(Ep′ − Ep)〈p′|(V + V G(Ep + i0)V )|p〉, (1.3.5)
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which follows from a combination of [T, (3.7), (8.11) and (8.22)]. This is a version of

the stationary formula for one spinless particle, scattered by a potential V ; there are

stationary formulas for particles with a spin and for multi-particle systems as well (see

e.g. [T]).

In rigorous mathematical notation the stationary formula (1.3.5) for a self-adjoint

operator H0 and its trace class perturbation H1 = H0 + V should have been written as

S(λ;H1, H0) = 1− 2πiFλV (1−Rλ+i0(H0)V )−1F∗λ, (1.3.6)

where Fλ : H(a)(H0)→ hλ is a fibre of the unitary operator (1.3.3) (1). But, unfortunately,

the expression on the right hand side of (1.3.6) does not make sense for two reasons: firstly,

the limit of the resolvent Rλ+i0(H0) := (H0 − λ − i0)−1 does not in general exist even

in the weakest of all reasonable topologies (for a discussion of this question see e.g. [Y,

§6.1]), and secondly, the operator Fλ is not well-defined for a particular value of λ.

A mathematically rigorous version of the stationary formula (1.3.5) for the scatter-

ing matrix was established by L. D. Faddeev [Fa] (see also [LF]) in the setting of the

Friedrichs–Faddeev model [Fr, Fr2, Fr3, Y]. In that model the initial self-adjoint oper-

ator H0 is multiplication by the independent variable x in the Hilbert space L2[a, b; h],

−∞ ≤ a < b ≤ ∞, of square-integrable h-valued functions, where h is a fixed Hilbert

space, and the perturbation operator V is an integral operator

V f(x) =

∫ b

a

v(x, y)f(y) dy

with sufficiently regular kernel v : [a, b]2 → B(h). A detailed exposition of the stationary

approach to scattering theory for the Friedrichs–Faddeev model can be found in [Y,

Chapter 4].

Another important setting is short range potential scattering theory (see e.g. [Po,

Po2, I, Ka4, Ag, Ku2, Ku3]; expositions of this theory and literature can be found in

[Ag, Ku], see also [Y2]). In potential scattering theory the initial operator H0 is the

Laplace operator

H0u = −∆u (1.3.7)

on the Hilbert space L2(Rn), where the domain of H0 is the Sobolev space H2(Rn) (see e.g.

[RS2, IX.6] for definition); a short range perturbation V is multiplication by a measurable

function q : Rn → R which satisfies an estimate |q(x)| ≤ C(1 + |x|2)−ρ/2, where ρ > 1

(in [Ag] short range potentials are defined by a weaker condition of integral type). The

perturbed operator H is the Schrödinger operator

Hu(x) = −∆u(x) + q(x)u(x). (1.3.8)

In this case the spectral structure of H0 is completely transparent since it can be diago-

nalized by the Fourier transform F, that is,

H0 = F∗M|ξ|2F, (1.3.9)

(1) A sign mismatch in formulas (1.3.5) and (1.3.6) comes from the definitions of the resolvent
Rz(H) = (H − z)−1 and of the Green operator G(z) = (z −H)−1, as in [T, §8-a].
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where M|ξ|2 is multiplication by |ξ|2. So, in this case H(a)(H0) = H, and in the decom-

position (1.3.3) one can take a core of the absolutely continuous spectrum σ̂H0
to be

(0,∞), the measure ρ(dλ) to be Lebesgue measure dλ and the fibre Hilbert space hλ
to be L2(Σ√λ), where Σ√λ = {ξ ∈ Rnξ : |ξ| =

√
λ} is the sphere with surface measure

inherited from Rnξ . The scattering operator (1.3.1) for the pair (H,H0) given by (1.3.8)

and (1.3.7) exists and it admits the decomposition (1.3.4). Further, for all λ > 0 except

possibly a discrete subset e+(H) of positive values of λ, the stationary formula for the

scattering matrix holds in the form

S(λ) = 1− 2πic(λ)γ0(λ)FV (1 +Rλ+i0(H0)V )−1F∗γ♦0 (λ)

= 1− 2πic(λ)γ0(λ)F(V − V Rλ+i0(H)V )F∗γ♦0 (λ) (1.3.10)

(for details see [Ag, Ku]): Here c(λ) is a constant which occurs as a result of the change

from Cartesian coordinates to polar coordinates in the momentum space Rnξ . For any

s ∈ R let L2,s(Rn) be the weighted Hilbert space of measurable functions u : Rn → C for

which

‖u‖0,s := ‖(1 + |x|2)s/2u‖L2(Rn) <∞,

and let

Hm,s(Rn) = {u : Dαu ∈ L2,s(Rn), 0 ≤ |α| ≤ m}

be the weighted Sobolev space with norm

‖u‖m,s =
( ∑
|α|≤m

‖Dαu‖20,s
)1/2

.

A rigorous treatment of the stationary formula in potential scattering theory is based

on the following theorems, whose proofs can be found in [Ag, Ku]. In general, a form

of the Limiting Absorption Principle is of utmost importance for stationary scattering

theory.

Theorem 1.3.1. If q(x) is a short range potential, then there exists ε′ > 0 such that for

any s ∈ R and for all ε ∈ (0, ε′), multiplication by q(x) is a compact operator from the

Hilbert space H2,s(Rn) to the Hilbert space L2,1+s+ε(Rn).

Theorem 1.3.2 (The Limiting Absorption Principle for −∆; see [Ag, Theorem 4.1],

[Ku, §4.4]). Let H0 = −∆ with domain H2(Rn). For any s > 1/2 and any λ > 0 the

resolvents Rλ±iy(H0) as operators from L2,s(Rn) to H2,−s(Rn) converge in the uniform

operator topology as y → 0, so the bounded operators

Rλ±i0(H0) ∈ B(L2,s(Rn),H2,−s(Rn))

exist.

Theorem 1.3.3 (see e.g. [Ag, Theorem 3.1], [RS4, Theorem XIII.33]). Let H = −∆ + V

be a Schrödinger operator with domain H2(Rn), where V is a short range potential. The

set e+(H) of positive eigenvalues of H is a discrete subset of (0,∞), all eigenvalues from

e+(H) have finite multiplicity and the only possible limit points of e+(H) are 0 and ∞.

Theorem 1.3.4 (The Limiting Absorption Principle for −∆ + V , see [Ag, Theorem 4.2],

[Ku, §5.3]). Let H = −∆ + V be a Schrödinger operator with short range potential V .
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For any s > 1/2 and any λ > 0 not in e+(H) the resolvents Rλ±iy(H) as operators

from L2,s(Rn) to H2,−s(Rn) converge in the uniform operator topology as y → 0, so the

bounded operators

Rλ±i0(H) ∈ B(L2,s(Rn),H2,−s(Rn))

exist.

Further, for any s ∈ R the Fourier transform F is a unitary operator from L2,s(Rn)

onto Hs(Rn). For any s > 1/2 the term γ0(λ) in (1.3.10) is a well-defined bounded

operator from Hs(Rn) to L2(Σ√λ) (the trace theorem, see e.g. [Ag, §2], [Ku, Theorem

4.2.1]); namely, the operator γ0(λ) is a continuous extension of the restriction operator

C∞c (Rnξ ) 3 f 7→ f |Σ√λ ∈ L2(Σ√λ).

Finally, the bounded operator γ♦0 (λ) : L2(Σ√λ) → H−s can be defined for any s > 1/2

by

〈γ♦0 (λ)f, g〉−s,s = 〈f, γ0(λ)g〉L2(Σ√λ), (1.3.11)

where f ∈ L2(Σ√λ) and g ∈ Hs(Rn) and 〈·, ·〉−s,s is the natural pairing of Hilbert spaces

H−s(Rn) and Hs(Rn), defined by

〈f, g〉−s,s =

∫
Rn
f̂(ξ)g(ξ) dξ.

So, the stationary formula (1.3.10) acquires a precise meaning if the factors on the right

hand side are understood as acting between appropriate Hilbert spaces:

L2(Σ√λ)
γ0←− Hs̃

F←− L2,s̃
V←− H2,−s̃

Rλ+i0(H)←−−−−−− L2,s̃
V←− L2,−s

F∗←−− H−s
γ♦0←−− L2(Σ√λ),

where

s̃ = 1− s+ ε,

as long as s and ε are chosen so that s, s̃ > 1/2 and

s̃ = s− ε+ ε′.

The last equality ensures compactness of the operator V : H2,−s̃ → L2,s̃ according to

Theorem 1.3.1. For instance, one can take s = 1/2 + ε′/4 and ε = 3ε′/4.

The set e+(H) of eigenvalues of H is related to the set of points λ for which the

operator 1 +Rλ+i0(H0)V is not invertible (see e.g. proof of [Ag, Theorem 4.2]), and the

operator HEH(0,∞)\e+(H) is absolutely continuous [Ag, Theorem 6.1].

A mathematically rigorous version of the stationary formula (1.3.6) for arbitrary self-

adjoint trace class perturbations of arbitrary self-adjoint operators was proved in [BÈ]

(see also [Y]). To give (1.3.6) a rigorous meaning, one needs to introduce an artificial

factorization of the perturbation operator V . Assuming that V is trace class, one can

write V in the form G∗JG, where G is a Hilbert–Schmidt operator acting from the

Hilbert space H to possibly another Hilbert space K and where J is a bounded operator

on K. Using the factorization V = G∗JG, the formal formula (1.3.6) can be rewritten as

S(λ;H1, H0) = 1− 2πi (FλG
∗) J(1−GRλ+i0(H0)G∗J)−1GF∗λ, a.e. λ ∈ R,

or, introducing the notation

Z0(λ;G) = FλG
∗ (1.3.12)
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and

Tλ+i0(H0) = GRλ+i0(H0)G∗,

as

S(λ;H1, H0) = 1− 2πiZ0(λ;G)J(1− Tλ+i0(H0)J)−1Z∗0 (λ;G), a.e. λ ∈ R. (1.3.13)

In this formula the two hindrances mentioned above are overcome: the abstract Limiting

Absorption Principle (proved in [BÈ, Br]; see Theorem 2.5.2 below) asserts that the limit

Tλ+i0(H0) exists in Hilbert–Schmidt norm for a.e. λ, and the product Z0(λ;G) = FλG
∗

also makes sense for a.e. λ as an operator from K to hλ, and moreover this product is

Hilbert–Schmidt.

Nevertheless, it should be noted that while S(λ;H1, H0) is defined by the right hand

side of (1.3.13) for almost every value of λ, still for no particular choices of λ ∈ R is

the operator S(λ;H1, H0) well-defined. The source of this uncertainty is in the factor

Z0(λ;G), whose definition (1.3.12) involves the unitary operator F from (1.3.3). This

uncertainty is not possible to eradicate, since in (1.3.3) the choice of a core σ̂ of the

absolutely continuous spectrum is arbitrary, partially due to the possible presence of

pure point and singular continuous spectra, and the measure ρ can be replaced by any

other measure of the same spectral type. This was not considered as a hindrance in

abstract scattering theory, in which one works as a rule with two operators, initial H0

and perturbed H1. However, in [Az], in an attempt to find an operator version of the

Birman–Krĕın formula (1.2.6), the following formula was derived:

S(λ;H1, H0) = Texp

(
−2πi

∫ 1

0

w+(λ;H0, Hr)Zr(λ;G)JZ∗r (λ;G)w+(λ;Hr, H0) dr

)
,

(1.3.14)

where the subscript r on Zr indicates that in (1.3.12) the unitary operator F is from

the spectral representation of Hr = H0 + rV , and where the so-called wave matrix (see

e.g. [Y])

w±(λ;H1, H0) : hλ(H0)→ hλ(H1)

is taken from the direct integral representation of the wave operator W±(H1, H0):

W±(H1, H0) =

∫ ⊕
σ̂H0

w±(λ;H1, H0) ρ(dλ), (1.3.15)

analogous to the spectral representation (1.3.4) of the scattering operator S(H1, H0). (For

a rigorous definition and basic properties of the chronological exponential Texp(
∫ b
a
A(s) ds)

of a path of trace class operators A(s) continuous in trace class norm which were used

in the proof of (1.3.14) see [Az3, Appendix A]; for a formal definition of Texp see e.g.

[BoSh, Chapter 4].)

The proof of (1.3.14) relies on the validity of the stationary formula (1.3.13) for a

continuous family {Hr : r ∈ [0, 1]} of operators, and more importantly, it requires the

operators w+(λ;Hr, H0) and Zr(λ;G) to be well-defined for a continuous set [0, 1] of

values of r. For this reason, the proof of (1.3.14) only works under stringent conditions

on H0 and V which ensure the existence of w+(λ;Hr, H0) and Zr(λ;G). As discussed
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above, these conditions which were postulated in [Az] hold for a class of short-range

Schrödinger operators.

Further, it was observed in [Az] that, provided S(λ;H1, H0) − 1 is trace class, the

equality (1.3.14) implies the following modified Birman–Krĕın formula:

e−2πiξ(a)(λ) = detS(λ;H1, H0), a.e. λ ∈ R, (1.3.16)

where the function ξ(a)(λ) = ξ
(a)
H1,H0

(λ), called in [Az] the absolutely continuous spec-

tral shift function, can be defined as the density of the absolutely continuous measure

ξ(a)(φ), φ ∈ Cc(R), given by

ξ(a)(φ) =

∫ 1

0

Tr(V φ(H(a)
r )) dr, φ ∈ Cc(R). (1.3.17)

Here the self-adjoint operator H
(a)
r is the absolutely continuous part of Hr. Analogously,

one can define the singular spectral shift function ξ(s)(λ), the density of the absolutely

continuous measure ξ(s)(φ), φ ∈ Cc(R), defined by

ξ(s)(φ) =

∫ 1

0

Tr(V φ(H(s)
r )) dr, φ ∈ Cc(R), (1.3.18)

where the self-adjoint operator H
(s)
r is the singular part of Hr. One can note that the

definitions of ξ(a) and ξ(s) are modifications of the Birman–Solomyak formula (1.2.4) for

the spectral shift function ξ, and these functions are related by

ξ = ξ(a) + ξ(s), (1.3.19)

which is an immediate consequence of (1.2.4), (1.3.17) and (1.3.18). In particular, absolute

continuity of the measure ξ(s) follows from (1.3.19).

Now, the Birman–Krĕın formula (1.2.6) combined with (1.3.16) implies e−2πiξ(s)(λ) =1

for a.e. λ, that is,

ξ(s)(λ) ∈ Z for a.e. λ ∈ R. (1.3.20)

By Weyl’s theorem on stability of the essential spectrum of a self-adjoint operator under

relatively compact perturbations (see e.g. [Ka2, §IV.5.6], [RS4, §XIII.4]), the essential

spectra of all operators Hr = H0 + rV are identical. Hence, it follows from (1.3.17) that

ξ(a) vanishes outside the common essential spectrum of the operators Hr. Therefore,

outside the essential spectrum the singular spectral shift function ξ(s) coincides with

the spectral shift function; equivalently, it coincides with the spectral flow. But unlike

the spectral flow, the singular spectral shift function is still defined inside the essential

spectrum as an a.e. integer-valued function. On the basis of this observation, it was

suggested in [Az] (see also [Az3]) that the singular spectral shift function should be

regarded as a natural extension of the spectral flow into the essential spectrum. This

definition of spectral flow inside the essential spectrum has a significant drawback in the

sense that the definition (1.3.18) is hard to work with, since it requires diagonalization

of a continuous family of self-adjoint operators.

In [Az4] a new equivalent definition of spectral flow inside essential spectrum, called

total resonance index, was given. The total resonance index coincides with the singular

spectral shift function ξ(s)(λ) for a.e. λ, but unlike ξ(s)(λ) the resonance index is quite
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tangible and easy to work with. It is defined as the difference of two non-negative inte-

gers N+ and N−, and it makes sense outside the essential spectrum too, thus providing

a new definition of spectral flow. In this paper we also show that the resonance index is

equal to the signature of a finite-rank self-adjoint operator naturally associated with the

data (λ;H,V ).

These considerations, however, are based on the formula (1.3.14). A rigorous justifi-

cation and a proof of this formula, given in [Az3] for trace class perturbations, required

development of a new approach to stationary scattering theory. It turns out that (1.3.14)

holds under much weaker conditions; the proof is based on an adjustment of this new

approach, which is discussed in the next subsection.

1.4. Constructive approach to stationary scattering theory. In one of the basic

settings of abstract mathematical scattering theory one studies an arbitrary initial self-

adjoint operator H0 and a relatively trace class perturbation H1 = H0 +V of H0. In this

setting not only the proof of (1.3.14) given in [Az] does not work, but the formula itself

does not make sense, since for any fixed value of the coupling constant r the ingredients

of this formula such as w+(λ;H0, Hr) and Zr(λ;G) are defined only for a.e. λ. Indeed,

the right hand side of (1.3.14), which involves a continuous family of such operators, may

be defined only for a set of values of λ which can potentially be as small as the empty set;

more importantly, whatever this set is, one has no control over it. This is apparently a

serious hindrance in any attempt to give a meaning to and to prove the formula (1.3.14).

In fact, a proof of (1.3.14) for arbitrary self-adjoint trace class perturbations of arbitrary

self-adjoint operators requires new definitions of basic notions and new proofs of basic

theorems of abstract scattering theory. There are several reasons for this. Firstly, the

definition of the operator Zr(λ;G) involves the operator Fλ from the spectral represen-

tation (1.3.3) for the operator Hr, and for this reason the set of values of the spectral

parameter λ for which Zr(λ;G) is defined cannot be pinpointed: it is an arbitrary core

of the spectrum of Hr. Secondly, in the classical approach to abstract scattering theory

[BÈ, Y], the scattering matrix S(λ;H1, H0) cannot be defined for a fixed single λ. This

is analogous to the fact that while the notion of a measurable function makes perfect

sense, its value at a given point does not. Thirdly, if one traces out a proof given in e.g.

[BÈ, Y] of a formula involving the scattering matrix S(λ;H1, H0), such as (1.3.13), then

one finds that in numerous steps of the proof one throws away from an initial core of

the absolutely continuous spectrum σ̂H0 several finite and/or countable families of null

sets. It is necessary to stress here that firstly an initial core of the absolutely continuous

spectrum is chosen arbitrarily and it is not a constructive object, and secondly, the null

sets that are thrown away depend on arbitrarily chosen objects, with no clear connections

to the main objects of study, namely, the operators H0 and V .

An approach to scattering theory which partly addresses this issue was given by

Kato and Kuroda [KK]. They construct wave matrices w±(λ;H1, H0) for a set of full

Lebesgue measure which depends on a fixed vector space X in the Hilbert space. However,

in [KK] only a fixed pair of self-adjoint operators (H1, H0) is studied, and it remains

unclear how the theory presented could be applied to prove (1.3.14) and (1.3.20). On the

other hand, numerous monographs and surveys on mathematical scattering theory, e.g.
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[BW, RS3, Y, BY2], which appeared after the publication of [KK], do not discuss this

problem.

An approach to scattering theory for trace class perturbations of arbitrary self-adjoint

operators was developed in [Az3] with primary aim to give a meaning to and to prove for-

mula (1.3.14) for the scattering matrix S(λ;H1, H0). Unlike the conventional approach of

[BÈ, Y], in [Az3] one first defines the wave matrices w±(λ;H1, H0) and the scattering ma-

trix S(λ;H1, H0) for all values of λ from an explicit set Λ of full Lebesgue measure, which

is defined beforehand, while the wave operators W±(H1, H0) and the scattering operator

S(H1, H0) thus become derivative objects which are defined by (1.3.15) and (1.3.4). Fur-

ther, in constructing the theory, not a single number from Λ is removed, and all objects

are explicitly constructed, in contrast to the conventional scattering theory. The main

steps of this theory are described below. The proofs are given in [Az3] in the case of a

trace class perturbation V and will appear in [AzD] in the general case; see also [Az6] for

the general case.

I. The main data for constructing a scattering theory are a self-adjoint operator H0

on a Hilbert space H and a self-adjoint perturbation operator V . The pair (H0, V ) is

assumed to be compatible in a sense specified below. Besides these data, one needs an

additional structure, namely a rigging operator F , which is a closed operator with trivial

kernel and co-kernel which acts from H to some auxiliary Hilbert space K, such that V

admits a well-defined decomposition V = F ∗JF with a bounded self-adjoint operator

J on K. All objects of the scattering theory discussed below depend only on the data

(H0, V, F ).

The pair (H0, F ) must be such that the operator

Tz(H0) := FRz(H0)F ∗ = F (H0 − z)−1F ∗,

called the sandwiched resolvent, is well-defined and compact for non-real z.

II. The next step is to define the set of values of λ for which the wave matrices

w±(λ;H1, H0) are to be defined. We let Λ(H0, F ) be the set of all real numbers λ such

that the limits

lim
y→0

Tλ±iy(H0)

exist in the uniform norm.

To ensure existence of the spectral shift functions (1.2.6) and (1.3.17) one has to

impose an additional condition that the operator ImTz(H0) is trace class and that

lim
y→0+

ImTλ+iy(H0)

exists in trace class norm, but for the scattering theory this is not necessary and can be

done at a later stage. It turns out that, unlike the situation with the functions ξ and ξ(a),

to be able to define ξ(s) one probably does not need a trace class condition.

The set Λ(H0, F ) is assumed to have full Lebesgue measure. In certain important cases

this assumption holds. The corresponding theorems are called the Limiting Absorption

Principle. Two of the main cases for which the principle holds are:
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1. an arbitrary self-adjoint operator H0 and a Hilbert–Schmidt rigging operator F (see

e.g. [Y, Theorems 6.1.5 and 6.1.9]), and

2. a Schrödinger operator H0 = −∆ + V0 and a rigging operator F =
√
|V |, where V0

and V are short range potentials (Theorems 1.3.2 and 1.3.4).

The role of Λ(H0, F ) in the constructive approach to stationary scattering theory is

about the same as the role of (0,∞) \ e+(H) from Theorem 1.3.3 in potential scattering

theory. But while the structure of e+(H) is quite simple (see Theorem 1.3.3), the set

R \ Λ(H0, F ) is more or less an arbitrary set of Lebesgue measure zero; for instance,

the singular operator HEHR\Λ(H0,F ) may contain, in the worst scenario, everywhere dense

pure point and singular continuous spectra.

III. Since the wave operators w±(λ;H1, H0) act between the fibre Hilbert spaces

hλ(H0) and hλ(H1), the next logical step is the construction of fibre Hilbert spaces of the

spectral representation (1.3.3) and the direct integral on the right hand side of (1.3.3).

The fibre Hilbert space hλ(H0) is defined as a (closed) subspace of K by

hλ(H0) = im
√

ImTλ+i0(H0), (1.4.1)

the closure of the image of the compact non-negative operator
√

ImTλ+i0(H0). The

family of Hilbert spaces

{hλ(H0) : λ ∈ Λ(H0, F )}

is measurable, where as a measurability base one can take orthogonal projections of

vectors from an orthonormal basis of K onto hλ(H0) ⊂ K. Hence, one can define a direct

integral of Hilbert spaces H(H0) by the formula

H(H0) =

∫ ⊕
Λ(H0,F )

hλ(H0) dλ. (1.4.2)

The complement of the set Λ(H0, F ) is a support of the singular spectrum of H0 in the

sense that the operator H0E
H0

Λ(H0,F ) is absolutely continuous. In other words, the singular

spectrum of H0 including all eigenvalues of H0 is left out from Λ(H0, F ). The dimensions

of hλ(H0) can be finite including zero. A core of the absolutely continuous spectrum of

H0 can be defined by

σ̂H0
= {λ ∈ Λ(H0, F ) : dim hλ(H0) > 0}. (1.4.3)

In particular, a measure ρ from the spectral representation (1.3.3) has the same spectral

type as the restriction of Lebesgue measure dλ to σ̂H0
. Therefore, if one wishes, in the

direct integral (1.4.2) the set Λ(H0, F ) can be replaced by the core (1.4.3), but it is more

convenient to work with Λ(H0, F ) itself.

IV. The next step is the construction of the unitary isomorphism F from the spectral

representation (1.3.3) and its fibre Fλ. To distinguish the non-constructive object F from

its constructive counterpart to be defined, the latter is denoted by E. By definition, for

any vector φ from the dense linear manifold

F ∗K =: H+ ⊂ H
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the value of Eλ(H0) at φ is defined by

Eλ(H0)φ = π−1/2
√

ImTλ+i0(H0)ψ ∈ hλ(H0), (1.4.4)

where ψ is the unique vector from K such that φ = F ∗ψ. Justification of these definitions

is given by the following theorem.

Theorem 1.4.1. Let H0 be a self-adjoint operator on a Hilbert space H with a rigging

operator F : H → K. The linear operator E = E(H0) which acts from the dense sub-

space H+ = F ∗K of H to the direct integral Hilbert space (1.4.2) and which is defined

by

E(F ∗ψ)(λ) = Eλ(H0)(F ∗ψ) = π−1/2
√

ImTλ+i0(H0)ψ

is a bounded operator whose continuous extension to H is a surjective isometric operator

with initial subspace H(a)(H0). In particular, E is a natural isomorphism of the Hilbert

spaces H(a)(H0) and (1.4.2) provided there is a fixed rigging operator F in H compatible

with H0. Moreover, the restriction of H0 to its absolutely continuous subspace H(a)(H0)

in the representation of the latter by the direct integral (1.4.2) acts as follows: for any

f ∈ H(a)(H0) and for a.e. λ ∈ Λ(H0, F ),

E(H0f)(λ) = λE(f)(λ). (1.4.5)

In other words, the operator E and the direct integral (1.4.2) diagonalize the absolutely

continuous part of the self-adjoint operator H0.

If a vector f belongs to the image of F ∗, then (1.4.5) holds for all λ ∈ Λ(H0, F ).

Theorem 1.4.1 is in fact the spectral theorem for the absolutely continuous part of a

self-adjoint operator. The importance of Theorem 1.4.1 comes from the fact that it gives

an explicit diagonalization of the absolutely continuous part of an arbitrary self-adjoint

operator. This is a difficult problem; for instance, in the case of potential scattering,

while the free Hamiltonian H0 = −∆ is easily diagonalized by the Fourier transform

(see (1.3.9)), diagonalization of the Schrödinger operator H = −∆ + V requires, or in

essence is equivalent to, calculation of the wave matrices (see e.g. [RS3, (83)], [T, §10-a,

(10.2)]) so that, in fact, often the wave operators are defined via eigenfunction expansion

of the perturbed operator. Compared to this situation, in Theorem 1.4.1 the self-adjoint

operator H0 is arbitrary. This is a key circumstance, since once explicit eigenfunction

expansions of an operator H0 and of its perturbation H = H0 +V are found, one may try

to define the wave matrices by a formula analogous to [RS3, (83)] or [T, §10-a, (10.2)].

Having said this, the bulk of Theorem 1.4.1 is the Limiting Absorption Principle.

The operator Eλ(H0) which acts from H to hλ(H0) makes perfect sense for all values

of λ from the full set Λ(H0, F ). In this regard, it is different from Fλ of (1.3.3). The

operator Eλ(H0) will be called the evaluation operator. Theorem 1.4.1 implies that the

operator (1.3.12) can be unambiguously defined for all λ ∈ Λ(H0, F ) by

Z0(λ;F ) = Eλ(H0)F ∗.

But, actually, this formula makes the operator Z0(λ;F ) redundant, since the operator

Eλ(H0) on the right hand side is unambiguously defined for an explicit set Λ(H0, F ) of

full Lebesgue measure.
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V. Once the fibre Hilbert spaces hλ(H0) have been constructed, one can define wave

matrices

w±(λ;H1, H0) : hλ(H0)→ hλ(H1), (1.4.6)

for all real λ in Λ(H0, F )∩Λ(H1, F ). Initially, w±(λ;H1, H0) is defined as a form on the

dense subspace

Eλ(H1)F ∗K × Eλ(H0)F ∗K

of the direct product hλ(H1)×hλ(H0) by [Az3, Definition 5.2.1]: for any F ∗f, F ∗g ∈ F ∗K,

〈Eλ(H1)F ∗f, w±(λ;H1, H0)Eλ(H0)F ∗g〉 =

〈
f, [1− Tλ∓i0(H1)J ]

1

π
ImTλ+i0(H0)g

〉
.

(1.4.7)

The idea to define the wave matrices by a formula similar to (1.4.7) was taken from [Y,

Definition 2.7.2].

Theorem 1.4.2.

(1) For any λ ∈ Λ(H0, F ) ∩ Λ(H1, F ) the formula (1.4.7) correctly defines a bounded

operator (1.4.6). Moreover, this operator is unitary.

(2) For any three values, not necessarily distinct, r1, r2, r3 of the coupling constant r such

that

λ ∈ Λ(Hr1 , F ) ∩ Λ(Hr2 , F ) ∩ Λ(Hr3 , F )

the following multiplicative property holds:

w±(λ;Hr3 , Hr1) = w±(λ;Hr3 , Hr2)w±(λ;Hr2 , Hr1).

In particular, for any λ ∈ Λ(H0, F ),

w±(λ;H0, H0) = 1,

and for any λ ∈ Λ(H0, F ) ∩ Λ(H1, F ),

w∗±(λ;H1, H0) = w±(λ;H0, H1).

VI. Once the wave matrices w±(λ;H1, H0) are defined and their basic properties are

proved, one can define the wave operators

W±(H1, H0) : H(H0)→ H(H1) (1.4.8)

by a formula similar to (1.3.15):

W±(H1, H0) =

∫ ⊕
Λ(H0,F )∩Λ(H1,F )

w±(λ;H1, H0) dλ. (1.4.9)

Here instead of the absolutely continuous subspaces H(a)(H0) and H(a)(H1), between

which the wave operators act, one can use the Hilbert spaces H(H0) and H(H1) defined

by (1.4.2), since according to Theorem 1.4.1 the Hilbert spaces H(a)(H) and H(H) are

naturally isomorphic via the unitary operator E(H). The following theorem demonstrates

that (1.4.9) coincides with the classical definition (1.3.2).

Theorem 1.4.3. The wave operators defined by (1.4.9) and (1.4.7) are equal to the right

hand side of (1.3.2).
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Further, Theorems 1.4.1 and 1.4.2 immediately imply well-known properties of the

wave operators [Az3, Theorems 5.4.1, 5.4.2, Corollary 5.4.3]:

1. The wave operators (1.4.8) are unitary as operators from H(H0) to H(H1).

2. (Multiplicative property) For any real numbers r1, r2, r3, not necessarily distinct,

W±(Hr3 , Hr1) = W±(Hr3 , Hr2)W±(Hr2 , Hr1).

3. W ∗±(H1, H0) = W±(H0, H1).

4. W±(H0, H0) is the identity operator on H(H0).

5. H1W±(H1, H0) = W±(H1, H0)H0 (intertwining property).

6. For any bounded measurable function h on R,

h(H1)W±(H1, H0) = W±(H1, H0)h(H0).

7. The absolutely continuous parts of H0 and H1 are unitarily equivalent (Kato–Rosen-

blum theorem).

VII. The scattering matrix S(λ;H1, H0) is defined as an operator hλ(H0) → hλ(H0)

for all λ ∈ Λ(H0, F ) ∩ Λ(H1, F ) by (see [Az3, Definition 7.1.1]):

S(λ;H1, H0) = w∗+(λ;H1, H0)w−(λ;H1, H0). (1.4.10)

Note that in the conventional approach this is a theorem (see e.g. [Y]) which is proved for

a.e. λ from an unspecified set of full measure. Many well-known properties of S(λ;H1, H0)

such as unitarity follow immediately from this definition and Theorem 1.4.2 [Az3, Theo-

rem 7.1.2]. The scattering operator S(H1, H0) is defined by

S(H1, H0) =

∫ ⊕
Λ(H0,F )∩Λ(H1,F )

S(λ;H1, H0) dλ. (1.4.11)

Equalities (1.4.9) and (1.4.11) imply the classical definition (1.3.1) of S(H1, H0).

VIII. Now we return to (1.3.14). Before proceeding, one needs to give a meaning to

the right hand side of the formula. This raises the following question: if Hr = H0 + rV

and if λ ∈ Λ(H0, F ), for which values of r does one have

λ ∈ Λ(Hr, F )? (1.4.12)

This question is important, since the wave matrices w±(λ;Hr, H0) and the scattering ma-

trix S(λ;Hr, H0) are defined for those values of r for which (1.4.12) holds. The following

well-known theorem answers this question; for a proof see e.g. [Az3, Theorem 4.1.11].

Theorem 1.4.4. Let H0 be a self-adjoint operator on a Hilbert space H with a rigging

operator F : H → K, let V = F ∗JF , where J is a bounded operator on K, and let

Hr = H0 + rV . If λ ∈ Λ(H0, F ) (so in particular Tλ+i0(H0) exists and is compact), then

for any r ∈ R the number λ belongs to Λ(Hr, F ) if and only if one (and hence each) of

the following four operators is invertible:

1 + rJTλ±i0(H0), 1 + rTλ±i0(H0)J.

In particular, the set of r for which λ /∈ Λ(Hr, F ) is a discrete subset of the real line.

The set {r ∈ R : λ /∈ Λ(Hr, F )} is of importance; its elements will be called the

resonance points of the triple (λ;H0, V ), the set itself will be called the resonance set
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and will be denoted by R(λ;H0, V ). This set depends on the rigging operator F too, but

this dependence will not be indicated in the notation. One of the reasons λ may fail to

belong to Λ(Hr, F ) is that λ may be an eigenvalue of Hr [Az3, Proposition 4.1.10].

Theorem 1.4.4 states that the perturbed operator Hr = H0 + rV has a coupling

constant regularity property. This was already observed by N. Aronszajn [Ar] (see also

[AD]) in the study of boundary value perturbations of singular Sturm–Liouville equations.

Later, coupling constant regularity for general rank-one perturbations was used by B. Si-

mon and T. Wolff [SW], Simon [S2, Chapters 12,13] and others (e.g. [RMS, RJMS, Gor];

see [S2] for more references) in a study of the singular continuous spectrum and Anderson

localization for random Hamiltonians.

A corollary of Theorem 1.4.4 is that the operators

Eλ(Hr), w±(λ;Hr, H0) and S(λ;Hr, H0)

are defined for all r outside the discrete resonance set R(λ;H0, V ).

Now we are in a position to present the stationary formula for the scattering matrix.

Theorem 1.4.5. Let λ ∈ Λ(H0, F ). For all r /∈ R(λ;H0, V ) the scattering matrix S(λ;

Hr, H0), defined by (1.4.10) as an operator on the fibre Hilbert space (1.4.1), satisfies

S(λ;Hr, H0) = 1− 2i
√

ImTλ+i0(H0) rJ(1 + rTλ+i0(H0)J)−1
√

ImTλ+i0(H0). (1.4.13)

The right hand side of (1.4.13), known as a modified scattering matrix, is defined on

the whole auxiliary Hilbert space K, and it is not difficult to check by a direct calculation

that it is a unitary operator on the whole Hilbert space. The equality (1.4.13) shows

that its right hand side can be interpreted as a proper scattering matrix, given that

the fibre Hilbert space is defined by (1.4.1). Recalling the definition of the evaluation

operator (1.4.4), the equality (1.4.13) can be rewritten in more familiar terms as follows:

S(λ;Hr, H0) = 1− 2πiEλ(H0)F ∗rJ(1 + rTλ+i0(H0)J)−1FE∗λ(H0). (1.4.14)

Remark 1.4.6. The expression E∗λ(H0) itself does not make sense since Eλ(H0) as an

operator H → hλ(H0) with domain F ∗K as defined by (1.4.4) is not in general closable,

but the product FE∗λ(H0) is a well-defined compact operator from the Hilbert space

hλ(H0) to the Hilbert space K for every λ ∈ Λ(H0, F ); for details see [Az3, §§2.6, 2.15, 5.1].

The formula (1.4.14) coincides with (1.3.13), but, unlike the latter, in (1.4.14) the

full set Λ(H0, F )∩Λ(Hr, F ) of values of λ (energy) for which it makes sense is explicitly

given. Finally, (1.4.14) can be written as (see [Az3, (7.6)])

S(λ;Hr, H0) = 1− 2πiEλ(H0) rV (1 + rRλ+i0(H0)V )−1E♦λ (H0),

provided the operators Eλ(H0), V and Rλ+i0(H0) are interpreted as acting between the

appropriate pairs of Hilbert spaces H−, H+ and hλ (see [Az3, §§5.1, 2.15] for details):

hλ
Eλ(H0)←−−−−− H+

V←− H−
Rλ+i0(H0)←−−−−−−− H+

V←− H−
E♦λ (H0)
←−−−−− hλ.

Here E♦λ (H0) is a modified adjoint (see [Az3, §2.6.1]), defined by

〈E♦λ (H0)f, g〉−1,1 = 〈f,Eλ(H0)g〉hλ , f ∈ hλ, g ∈ H+.
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This definition is an abstract version of (1.3.11); for definition of the Hilbert spaces H±
see also p. 47.

Theorem 1.4.5 allows us to overcome a hindrance on the way to a proof of (1.3.14).

Theorem 1.4.7 ([Az3, Theorem 7.3.4]). For all λ from the set Λ(H0, F ) ∩ Λ(H1, F ) of

full Lebesgue measure,

S(λ;H1, H0)

= Texp

(
−2πi

∫ 1

0

w+(λ;H0, Hr)Eλ(Hr)F
∗JFE∗λ(Hr)w+(λ;Hr, H0) dr

)
. (1.4.15)

This yields the following theorem.

Theorem 1.4.8 ([Az3, Corollary 8.2.5]). Let H0 be a self-adjoint operator, let V be a

trace class self-adjoint operator and let Hr = H0 + rV . For a.e. λ ∈ R,

detS(λ;H1, H0) = e−2πiξ(a)(λ),

where ξ(a)(λ) is the absolutely continuous spectral shift function defined as the density of

the absolutely continuous measure (1.3.17).

This formula, combined with Birman–Krĕın’s formula (1.2.6), implies that the sin-

gular spectral shift function ξ(s)(λ) of the pair (H0, H1) defined as the density of the

measure (1.3.18) is a.e. integer-valued (see (1.3.20)). In fact, in [Az3] another proof of

(1.3.20) was given, so that the Birman–Krĕın formula becomes its corollary. This proof

is relevant to the content of the present paper; for this reason its main idea is outlined

in the next paragraphs.

Let U(r), r ∈ [a, b], be a path of unitary operators such that U(a) = 1, U(r) − 1 is

trace class for all r ∈ [a, b], and the function r 7→ U(r) − 1 is continuous in trace class

norm. These conditions imply that the spectrum of U(r) consists of isolated eigenvalues

on the unit circle with 1 as the only point in the essential spectrum of U(r). As r

decreases from b to a, the eigenvalues of U(r) converge continuously to 1. So, given a

point eiθ, θ ∈ [0, 2π), on the unit circle, one can calculate the spectral flow through the

point eiθ, which, following [Pu2], is called the µ-invariant of the path U(r).

The scattering matrix S(λ;H1, H0) for any given λ from the full set Λ(H0, F ) ∩
Λ(H1, F ) is a unitary matrix from the class 1 + L1(hλ(H0)) (that is, S(λ;H1, H0) − 1

is a trace class operator on hλ(H0)). There exist two natural paths which continuously

connect the scattering matrix S(λ;H1, H0) to the identity operator on hλ(H0). In the first

path one changes the imaginary part of the spectral parameter y = Im z in the stationary

formula (1.4.14) or (1.4.13) for the scattering matrix from ∞ to 0:

[0,∞] 3 y 7→ S(λ+ iy;H1, H0)

= 1− 2πiEλ+iy(H0)F ∗J(1 + Tλ+iy(H0)J)−1FE∗λ+iy(H0), (1.4.16)

where, in accordance with (1.4.4),

Eλ+iy(H0)F ∗ = π−1/2
√

ImTλ+iy(H0).

One can show that this path is continuous in trace class norm. In order to get the second
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way of connecting S(λ;H1, H0) to the identity operator the following theorem (initially

observed in [Az2]) is used.

Proposition 1.4.9 ([Az3, Proposition 7.2.5]). The scattering matrix S(λ;Hr, H0) as a

meromorphic function of r admits analytic continuation to the real axis.

Remark 1.4.10. In [Az3] this proposition in fact precedes Theorem 1.4.7 and is used

in its proof. Indeed, though the integrand of the chronological exponential in (1.4.15) is

defined for all r outside the discrete resonance set R(λ;H0, V ), to define the chronological

exponential itself one needs the integrand to be continuous in trace class norm.

Proposition 1.4.9 provides the second way of continuously connecting the scattering

matrix S(λ;H1, H0) to the identity operator via the continuous mapping

[0, 1] 3 r 7→ S(λ;Hr, H0) ∈ 1 + L1(hλ(H0)). (1.4.17)

The µ-invariant of the path (1.4.16) was introduced in [Pu2] where it was denoted by

µ(θ, λ;H1, H0), θ ∈ [0, 2π). The µ-invariant of the path (1.4.17) was introduced in [Az2,

Az3] where it was denoted by µ(a)(θ, λ;H1, H0). The relations of these µ-invariants to

the spectral shift functions ξ, ξ(a) and ξ(s) are given by the following theorems.

Theorem 1.4.11 ([Pu2]). For a.e. λ ∈ R,

ξH1,H0
(λ) = − 1

2π

∫ 2π

0

µ(θ, λ;H1, H0) dθ.

Theorem 1.4.12 ([Az3, Theorem 9.2.2]). For a.e. λ ∈ R,

ξ
(a)
H1,H0

(λ) = − 1

2π

∫ 2π

0

µ(a)(θ, λ;H1, H0) dθ.

Theorem 1.4.13 ([Az3, Theorem 9.7.3]). The difference

µ(s)(θ, λ;H1, H0) := µ(θ, λ;H1, H0)− µ(a)(θ, λ;H1, H0)

does not depend on the angle θ, and for a.e. λ ∈ R it is equal to minus the density,

−ξ(s)(λ;H1, H0), of the singular spectral shift measure ξ(s)(φ) as defined by (1.3.18). In

particular, ξ(s)(λ;H1, H0) is almost everywhere integer-valued.

Theorem 1.4.11 of A. Pushnitski was given a new proof in [Az3, Theorem 9.6.1].

Theorems 1.4.13 and 1.4.8 give a new proof of the Birman–Krĕın formula (1.2.6).

The last assertion of Theorem 1.4.13 justifies calling the function ξ(s)(λ) the spectral

flow inside the essential spectrum, since ξ(s)(λ) coincides with the spectral flow outside

the essential spectrum and it is a.e. integer-valued inside the essential spectrum as well.

The following diagram demonstrates the relationship between the µ- and µ(a)-invar-

iants. In this diagram for a fixed real λ we consider the scattering matrix S(λ+iy;Hr, H0)

as a function of (r, y), where r is the coupling constant and y is the imaginary part of

the spectral parameter.
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The three points rλ, r
′
λ, r
′′
λ represent resonance points from [0, 1]. A comment on the figure:

S(r, y) := S(λ + iy;Hr, H0) is continuous in the rectangle except at the resonance points. On
the left r = 0 and upper y = ∞ rims of this rectangle, S(λ + iy;Hr, H0) = 1. Next, µ(θ, λ) is
the spectral flow of eigenvalues of S(r, y) through eiθ corresponding to any path which connects
(1, 0) to the left or the upper rim as long as it avoids the resonance points. Finally, µ(a)(θ, λ) is
the spectral flow of eigenvalues of S(λ;Hr, H0) as r goes from 1 to 0.

The operators S(λ;Hr, H0) and S(λ+ i0;Hr, H0) are identical outside the resonance

points in [0, r]. The group U1 of unitary operators of the form “1 + trace class” has a

non-trivial homotopical structure, and the difference between S(λ;Hr, H0) and S(λ+ i0;

Hr, H0) is revealed in the way one connects them to the base point 1 of U1.

The functions ξ(λ), ξ(a)(λ) and ξ(s)(λ) are integrable, and in general one cannot talk

about their value at a given point λ. But Theorems 1.4.11–1.4.13 allow one to define

values of these functions explicitly on the set

Λ(H0, F ) ∩ Λ(H1, F ) (1.4.18)

of full measure, because the right hand sides of the equalities in these theorems are well-

defined for all λ from (1.4.18). This is an important point, since if the perturbed operator

H1 is replaced by Hr = H0 + rV with an arbitrary real number r, then for every fixed

value of λ from Λ(H0, F ) the expressions

ξ(λ;Hr, H0), ξ(a)(λ;Hr, H0) and ξ(s)(λ;Hr, H0)

can be considered as functions of the coupling constant r. Their behaviour is explained

by the following theorem.

Theorem 1.4.14 ([Az3, Proposition 8.2.3, Theorem 9.7.6, Corollary 9.7.7]). For every λ

from the set Λ(H0, F ) of full Lebesgue measure the following assertions hold:

(1) The function r 7→ ξ(a)(λ;Hr, H0) is analytic in a neighbourhood of R.

(2) The function r 7→ ξ(s)(λ;Hr, H0) is a locally constant integer-valued function with a

discrete set of discontinuity points which coincides with the resonance set R(λ;H0, V )

(see Theorem 1.4.4 and the paragraph after it for the definition).

(3) As a consequence, r 7→ ξ(λ;Hr, H0) is a piecewise continuous locally analytic function

and its discontinuity points are resonance points of (λ;H0, V ).

1.5. Resonance index. Theorem 1.4.14 implies, in particular, that if for λ ∈ Λ(H0, F )

there are no resonance points in an interval [a, b], then ξ(a)(λ;Hb, Ha) = ξ(λ;Hb, Ha). It
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also suggests that the integer jump of the singular spectral shift function ξ(s)(λ;H1, H0)

at a resonance point rλ ∈ [0, 1] should depend only on the triple (λ;Hrλ , V ). Indeed, to

a triple (λ;Hrλ , V ) one can assign an integer number, which in this paper is called the

resonance index and is denoted by

indres(λ;Hrλ , V ).

This number is defined as follows. Firstly, by Theorem 1.4.4 a real number rλ is a reso-

nance point of (λ;H0, V ) if and only if

σλ = −r−1
λ

is an eigenvalue of the compact operator Tλ+i0(H0)J . Further, rλ is a pole of the mero-

morphic factor

(1 + rTλ+i0(H0)J)−1

which is part of the stationary formula (1.4.14) for the scattering matrix S(λ;Hr, H0).

Still, according to Proposition 1.4.9, S(λ;Hr, H0) does not have a singularity at r = rλ.

This is due to the fact that this singularity belongs to the singular subspace of H0, which

is eliminated by the factors Eλ(H0)F ∗ and FE∗λ(H0) of the stationary formula. In order

to reveal this hidden singularity, one has to shift the spectral parameter λ + i0 slightly

off the real axis. Since σλ is an isolated eigenvalue of the compact operator Tλ+i0(H0)J ,

it is stable but it may split into several eigenvalues

σ1
λ+iy, . . . , σ

N
λ+iy, (1.5.1)

where N is the multiplicity of σλ, which are therefore eigenvalues of the compact operator

Tλ+iy(H0)J from the group of σλ. It is well-known and not difficult to show that none of

the shifted eigenvalues (1.5.1) is a real number. Therefore, the following definition makes

sense: the resonance index indres(λ;Hrλ , V ) is the difference

N+ −N−, (1.5.2)

where N+ (respectively, N−) is the number of shifted eigenvalues of the group of σλ in

the upper (respectively, lower) complex half-plane. This definition is correct in the sense

that it does not depend on the choice of the initial operator H0, as the following lemma

with a simple proof asserts.

Lemma 1.5.1. Let λ ∈ Λ(H0, F ). Let a real number s be such that λ also belongs to the

full set Λ(Hs, F ). Further, let rλ be a real resonance point of (λ;H0, V ) (that is, λ /∈
Λ(Hrλ , F )). Then the real number σλ(s) = (s − rλ)−1 is an eigenvalue of Tλ+i0(Hs)J

of the same algebraic multiplicity N as that of the eigenvalue σλ(0) = (0 − rλ)−1 of

Tλ+i0(H0)J , and if λ is shifted off the real axis to λ + iy with a small and positive y,

then the number of split eigenvalues from the group of (s − rλ)−1 in the upper complex

half-plane is equal to N+.

-

N+ = 5

N− = 2

bs
s s ss
ss��

�1

rλ



1.5. Resonance index 27

Introduction of this notion is justified by the following theorem; see [Az4, Theorem 3.8].

Since [Az4] is not published, an outline of the proof is given in Section 6.

Theorem 1.5.2. Let H0 be a self-adjoint operator on a Hilbert space H with a Hilbert–

Schmidt rigging operator F : H → K. Let V be a trace class self-adjoint operator which

admits a decomposition V = F ∗JF with a bounded operator J on K, and let a < b. Then

for every real number λ from the set Λ(Ha, F ) ∩ Λ(Hb, F ) of full Lebesgue measure we

have

ξ(s)(λ;Hb, Ha) =
∑
rλ

indres(λ;Hrλ , V ), (1.5.3)

where the sum is taken over all resonance points rλ of (λ;H0, V ) in [a, b].

In other words, as r changes from a to b, the locally constant function

[a, b] 3 r 7→ ξ(s)(λ;Hr, Ha)

jumps at every resonance point rλ ∈ [a, b] by indres(λ;Hrλ , V ). Theorem 1.5.2 gives a

computable and tangible representation for values of the function ξ(s)(·;Hb, Ha), which

is initially defined as the density of the singular spectral shift measure (1.3.18), and as

such seems to be difficult to handle (indeed, (1.3.18) requires in particular calculation

of the singular parts of a continuous family of self-adjoint operators). In particular, this

theorem allows us to prove the following [Az4, Theorem 4.3]:

Theorem 1.5.3. There exist a self-adjoint operator H0 and a rank-one self-adjoint oper-

ator V such that the pair (H0, V ) is irreducible and the restriction of the singular spectral

shift function ξ(s)(·;H0 + V,H0) to the absolutely continuous spectrum σa.c.(H0) is a

non-zero element of L1(σa.c.(H0), dx).

The construction of such a pair may be uninteresting, but at least this theorem shows

that the decomposition (1.3.19) is non-trivial.

The expression on the right hand side of (1.5.3) will be called the total resonance index

for the pair (Ha, Hb). For λ outside the essential spectrum of H0, the singular spectral

shift function coincides with the spectral flow, and therefore it follows from (1.5.3) that

the total resonance index provides a new definition of the spectral flow. Moreover, the

notion of the resonance index which was discovered in the course of the study of the

singular spectral shift function makes sense even in finite dimensions. The resonance

index represents a new approach to calculation of spectral flow, which is in essence the

“flow of eigenvalues”. Indeed, in order to find out how many eigenvalues of a path of self-

adjoint operators {H0 + rV : 0 ≤ r ≤ 1} crossed in the positive direction a fixed point λ

outside of the spectra of the initial H0 and the final H1, one can either try to keep track

of each eigenvalue and count how many times and in which direction it crossed λ, or

instead one can try to detect “times” (coupling constants) rλ for which the event “λ is

an eigenvalue of Hrλ” occurs and then to decide where the eigenvalue has come from and

where it is going to.

The first approach requires continuous enumeration of eigenvalues (which for general

continuous paths is not a trivial problem even in finite dimensions, see [Ka2, §II.5.2]), but

inside the essential spectrum this approach does not work since eigenvalues embedded into
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the essential spectrum are extremely unstable (for some striking examples see e.g. [S2,

§12.5]). In the second approach a detector of eigenvalues needs to be told how to decide

in which direction a detected eigenvalue is moving. The answer is to tell the counter:

calculate the resonance index of the triple (λ;Hrλ , V ), that is, choose any real s such

that λ is not an eigenvalue of Hs and find those eigenvalues of the operator

Rλ+iy(Hs)V (1.5.4)

with a very small y > 0 which are close to (s − rλ)−1. Then the difference N+ − N−
of the eigenvalues in C+ and C− will give the net number of eigenvalues crossing λ in

the positive direction at “time” r = rλ. Remarkably, this algorithm works equally well

for eigenvalues embedded into the essential spectrum, so even if an eigenvalue appears

suddenly from the continuous spectrum and then dissolves in it immediately afterwards,

one is still able to determine which direction it appeared from and in which direction

it dissolved. The difference is that the condition “λ is an eigenvalue of Hr” should be

replaced by λ /∈ Λ(Hr, F ), or equivalently, r ∈ R(λ;H0, V ). As a consequence, to define

the spectral flow inside the essential spectrum one has to consider singular points instead

of eigenvalues, as a non-trivial spectral flow inside the essential spectrum may be a result

of moving the singular continuous spectrum.

Finally, we discuss the origin of the terminology “resonance points”, “resonance index”

etc. used in this paper. This paragraph of the introduction has a formal character as it

frequently refers to physical concepts and phenomena; its partial aim is to explain/justify

usage of the word “resonance”, though this formal and remote connection with quantum

scattering may be found interesting. The justification of this terminology can be even

more necessary since the word “resonance” has several meanings, and this word is used

in this paper since it is associated with a quantum scattering phenomenon. A resonance

in quantum scattering is associated with a sharp variation of the scattering cross-section

as a function of energy (see e.g. [Bö, §XVIII.6]). The value of the energy λ0 of a projectile

at which this sharp variation occurs is called the resonance energy.

Physicists associate resonances with other phenomena (see e.g. [RS4, §XII.6], [T,

Chapter 13] or [Bö, §XVIII.6, more specifically, see e.g. the last sentence on p. 431 of

that section and (6.1)]):

1. poles of the scattering matrix as a function of energy which are close to the real axis,

2. a rapid increase of a scattering phase θj(λ) (= 2δl(E) in physical notation) by 2π as

the energy λ, of a projectile crosses a resonance value λ0,

3. existence of a quasi-stationary (or meta-stable) state with energy λ0, and finally

4. a time delay for the interval of time between the moments of entering and leaving

the interaction region around the target by the projectile compared to the same time

interval for a non-interacting projectile.

These phenomena are non-trivially related to one another and to the fact that at a reso-

nance energy the projectile can be captured by the target into a nearly bound meta-stable

“target-projectile” state (see e.g. introduction to [T, Chapter 13]). These phenomena ex-

cept the time delay will have mathematical analogues in our setting if one fixes the value

of energy λ and considers the coupling constant r as a variable:
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1◦ a resonance point rλ is a real pole of the factor (1+rTλ+i0(H0)J)−1 from the stationary

formula (1.4.13) for the scattering matrix,

2◦ Theorem 1.4.13 and (1.5.3) express the fact that as the coupling constant r crosses a

resonant value rλ, at least one of the scattering phases jumps by a multiple of 2π,

3◦ by Theorem 1.4.4 the value r of the coupling constant at a given energy λ is resonant

if and only if the equation

(1 + rJTλ+i0(H0))ψ = 0 (1.5.5)

has a non-trivial solution ψ, which can be interpreted as a quasi-stationary state.

Further, unlike the physical resonances, in this paper an idealized situation is consid-

ered in the sense that (1) the pole of the scattering matrix is not near the real axis, but

exactly on it, (2) the scattering phase does not change rapidly by 2π at a resonance point,

but jumps by a multiple of 2π, and finally (3) while a physical quasi-stationary state is

nevertheless a scattering state in the sense that sooner or later the projectile leaves the

target and can be observed, the quasi-stationary state represented by a solution of (1.5.5)

is not a scattering state, in the sense that it does not belong to the fibre Hilbert space

hλ(Hr). The latter may be attributed to the possibility that in this idealized situation,

i.e. a pole exactly on the real axis, the projectile gets captured by the target and never

leaves it; see e.g. Pearson’s example in [RS3, §XI.4, p. 70], which shows that this scenario

is mathematically possible. This is also in accordance with a physical fact that time de-

lay is proportional to the inverse width 1/Γ of the resonance bump (= imaginary part

of the resonance pole), which (the width Γ) is zero (see e.g. [T, (13.10)], [Bö, §XVIII.6,

p. 432]).

1.6. Main results. We assume the following:

1. H and K are separable complex Hilbert spaces, and F : H → K is a closed opera-

tor with zero kernel and co-kernel. The operator F will be called the rigging opera-

tor.

2. H0 is a self-adjoint operator on H with dense domain D such that D ⊂ dom(F ) and

the operator

Tz(H0) := FRz(H0)F ∗

is compact for some non-real z, where Rz(H0) = (H0 − z)−1 is the resolvent of H0.

If this operator is compact for some non-real z then it is compact for any z from the

complement of the essential spectrum of H0.

3. A0 is a real vector space of self-adjoint operators on H such that any operator V

from A0 satisfies these assumptions:

(a) V admits a factorization V = F ∗JF , where J is a bounded operator on K, such

that

JFD ⊂ dom(F ∗);

(b) assumption (a) implies that the domain of V contains D; we assume that V is

essentially self-adjoint on D;
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(c) V is a relatively compact perturbation of H0, that is, the product V Rz(H0) is

compact.

4. A is the real affine space H0 +A0. The previous assumptions imply that all operators

from the affine space A have common domain D and, according to the second resolvent

identity, for any operator H from A the sandwiched resolvent

Tz(H) = FRz(H)F ∗

is compact, where z is a non-real number. Hence, all operators from A satisfy the same

assumptions, and there is no distinguished element of A.

5. Since perturbations V ∈ A0 are relatively compact, by Weyl’s theorem, all opera-

tors from A have common essential spectrum, which we denote by σess(A) or simply

σess.

6. Let H0 ∈ A. The set Λ(H0, F ) of real λ such that the norm limit

Tλ+i0(H0) := lim
y→0+

Tλ+iy(H0)

exists, and therefore is compact, has full Lebesgue measure. This is the main assump-

tion, called the Limiting Absorption Principle. We denote by Λ(A, F ) the union of

all sets Λ(H,F ), H ∈ A. Numbers from the full set Λ(A, F ) will be called essentially

regular for A.

An operator H ∈ A will be called λ-regular or regular at λ if λ ∈ Λ(H,F ); otherwise,

H will be called λ-resonant or resonant at λ.

Mainly we shall work with one operator H0 from the real affine space A, one pertur-

bation operator V from the real vector space A0 and one value λ ∈ Λ(H0, F ). By Hr,

where r is a real number, we denote the operator H0 + rV . The set of all real r such that

λ /∈ Λ(Hr, F ) is denoted by R(λ;H0, V ) and called the resonance set. It is not difficult

to show that R(λ;H0, V ) is a discrete subset of R, that is, it has no accumulation points.

A real number r will be called resonant (respectively, regular) at λ if Hr is resonant

(respectively, regular) at λ. The set R(λ;H0, V ) also depends on F , but this dependence

will not be indicated.

If the rigging operator F is bounded, then one can take A0 to be the vector space

F ∗Bsa(K)F = {F ∗JF : J ∈ Bsa(K)}, where Bsa(K) is the algebra of all bounded self-

adjoint operators on K. But to allow some flexibility, we shall not impose any other

conditions on the real vector space A0 of self-adjoint perturbations.

Let Π be the disjoint union of C\σess and of two copies Λ(A, F )+ i0 and Λ(A, F )− i0
of Λ(A, F ):

Π = (C \ σess) ∪ (Λ(A, F ) + i0) ∪ (Λ(A, F )− i0).

If λ /∈ σess, then λ = λ+ i0 = λ− i0, but otherwise λ+ i0 6= λ− i0. Thus, the operator

Tz(Hr) as a function of z is defined on Π except at those z = λ ± i0 for which r is a

resonance point.

For z ∈ Π let
Az(s) = Tz(Hs)J, Bz(s) = JTz(Hs).

Given z ∈ Π, a number rz ∈ C is called a resonance point corresponding to z if rz is a
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pole of the meromorphic function s 7→ Az(s). We define the vector spaces

Υk
z(rz) = {u ∈ K : (1 + (rz − s)Tz(Hs)J)ku = 0}, Υz(rz) =

⋃
k=1,2,...

Υk
z(rz),

Ψk
z(rz) = {ψ ∈ K : (1 + (rz − s)JTz(Hs))

kψ = 0}, Ψz(rz) =
⋃

k=1,2,...

Ψk
z(rz),

and idempotents

Pz(rz) =
1

2πi

∮
C(σz(s))

(σ −Az(s))−1 dσ, Qz(rz) =
1

2πi

∮
C(σz(s))

(σ −Bz(s))−1 dσ,

where C(σz(s)) is a small circle enclosing the eigenvalue σz(s) = (s − rz)−1 of Az(s),

such that there are no other eigenvalues inside or on the circle. These vector spaces and

idempotents do not depend on the choice of s ∈ R, as long as, for z ∈ ∂Π, the operator

Az(s) exists (Propositions 3.1.2 and 3.2.1). Many properties of Υk
z(rz) and Pz(rz) are

similar to those of Ψk
z(rz) and Qz(rz); for this reason only properties of the former are

given. The idempotent Pz(rz) satisfies

Pz(rz) =
1

2πi

∮
C(rz)

Az(s) ds

(see (3.2.6)), and for any two different resonance points r1
z and r2

z (see (3.2.8)),

Pz(r
1
z)Pz(r

2
z) = 0.

With every resonance point rz the following three non-negative integers are associated,

called respectively the geometric multiplicity, algebraic multiplicity and order of rz:

m = dim Υ1
z(rz), N = dim Υz(rz), d = min{k ∈ N : Υk

z(rz) = Υz(rz)}.

A number rz is resonant for z if and only if r̄z is resonant for z̄, in which case the numbers

m,N, d are the same for rz and r̄z.

The nilpotent operators Az(rz) and Bz(rz) are defined by

Az(rz) =
1

2πi

∮
C(rz)

(s− rz)Az(s) ds, Bz(rz) =
1

2πi

∮
C(rz)

(s− rz)Bz(s) ds,

where C(rz) is a small contour which encloses the resonance point rz and no other

resonance points.

Section 3 also contains an exposition of other properties of the idempotents Pz(rz)

and Qz(rz) and the nilpotent operators Az(rz) and Bz(rz) which are used repeatedly

throughout this paper, such as

(Pz(rz))
∗ = Qz̄(r̄z), (Az(rz))

∗ = Bz̄(r̄z),

JPz(rz) = Qz(rz)J, JAz(rz) = Bz(rz)J.

Further, for a fixed z ∈ Π, Az(s) is a meromorphic function of s whose poles are exactly

the resonance points corresponding to z. The Laurent expansion of Az(s) at a pole rz is

Az(s) = Ãz,rz (s) +
1

s− rz
Pz(rz) +

1

(s− rz)2
Az(rz) + · · ·+ 1

(s− rz)d
Ad−1
z (rz),

where Ãz,rz (s) is the holomorphic part.
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In Section 4 we study the relationship between eigenvectors of Hrλ corresponding to

an eigenvalue λ and resonance vectors of order 1.

Theorem 1.6.1 (Theorem 4.1.1). Let λ be an essentially regular point, let H0 ∈ A be

a λ-regular operator, let V ∈ A0, let rλ be a real resonance point of (λ;H0, V ) and

let r be a regular point of (λ;H0, V ). If λ is an eigenvalue of Hrλ = H0 + rλV with

eigenvector χ ∈ D = dom(H0), then u = Fχ is a resonance vector of order 1, that is,

(1 + (rλ − r)Tλ+i0(Hr)J)u = 0.

Corollary 1.6.2 (Corollary 4.1.2). If λ is an essentially regular point, then the geomet-

ric multiplicity of λ as an eigenvalue of the self-adjoint operator Hrλ = H0 + rλV does

not exceed the dimension of the vector space Υ1
λ+i0(rλ), that is,

dimVλ ≤ dim Υ1
λ+i0(rλ),

where Vλ is the eigenspace of Hrλ corresponding to λ.

Theorem 1.6.3 (Theorem 4.2.1). If λ is an eigenvalue of infinite multiplicity for at

least one self-adjoint operator H from the affine space A = H0 + A0, then λ is not an

essentially regular point of the pair (A, F ), that is, λ /∈ Λ(A, F ).

Now we return to the discussion of spectral flow inside essential spectrum. Since inside

the essential spectrum a non-trivial spectral flow can be generated in absence of any

eigenvalues, the notion of multiplicity of an eigenvalue needs to be properly generalized.

To this end, the following is used

Theorem 1.6.4 (Theorem 4.3.2). Let λ be a real number which does not belong to the

essential spectrum and let rλ be a real resonance point of the triple (λ;H0, V ) (that is,

λ is an eigenvalue of Hrλ). Let s be any non-resonant point of (λ;H0, V ). The rigging

operator F is a linear isomorphism of the vector space Vλ of eigenvectors of Hrλ cor-

responding to the eigenvalue λ and the vector space Υ1
λ+i0(rλ) of eigenvectors of the

operator Tλ+i0(Hs)J corresponding to the eigenvalue (s− rλ)−1.

Theorems 1.6.1 and 1.6.4 give a rationale to call the integer number dim Υ1
λ+i0(rλ)

the multiplicity of the singular spectrum of the self-adjoint operator Hrλ at λ. That this

is a reasonable definition is further confirmed by the U-turn Theorem 1.6.14.

Theorem 1.6.5 (Theorem 4.4.1). If Hrλ is resonant at an essentially regular point λ,

then the vector space

Υ1
λ+i0(rλ) = Υ1

λ(Hrλ , V )

does not depend on the regularizing operator V .

In Section 5 we introduce a classR of finite-rank operators which do not have non-zero

real eigenvalues. The so-called R-index for operators A of class R is defined as

R(A) = N+ −N−,

where N+ and N− are the numbers of eigenvalues of A in the upper (C+) and lower (C−)

half-plane respectively. Some elementary properties of the R-index and a new proof of

Krĕın’s theorem [Kr]

R(Rz(H)V ) = sign(V ),
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where H is a self-adjoint operator and V is a finite rank self-adjoint operator, are

given.

Further, in Section 5 the resonance index of the triple (λ;Hrλ , V ) is introduced, which

can be defined by

indres(λ;Hrλ , V ) = R(Aλ+iy(s)Pλ+iy(rλ)) for all small enough y.

Given a finite set Γ = {r1
z , . . . , r

M
z } of resonance points corresponding to z ∈ Π, we denote

by Pz(Γ) and Qz(Γ) the idempotents

Pz(Γ) =
∑
rz∈Γ

Pz(rz) and Qz(Γ) =
∑
rz∈Γ

Qz(rz).

We denote by Γ̄ the set {r̄1
z , . . . , r̄

M
z }.

The following theorem is one of the main technical results of this paper.

Theorem 1.6.6 (Theorem 7.1.4). If Γ = {r1
z , . . . , r

M
z } is a finite set of resonance points

with positive imaginary part corresponding to a non-real number z, then the operator

Im z Qz̄(Γ̄)JPz(Γ)

is non-negative and its rank is equal to the rank of Pz(Γ).

Theorem 1.6.7 (Theorem 7.2.1). If Γ = {r1
z , . . . , r

M
z } is a finite set of resonance points

corresponding to a non-real number z, then the signature of the finite-rank self-adjoint

operator

Qz̄(Γ̄)JPz(Γ)

is equal to the R-index of the operator

Im z Az(s)Pz(Γ).

Theorems 1.6.6 and 1.6.7 are non-trivial even when dimH <∞, that is, for matrices.

In Section 8 we prove the following

Proposition 1.6.8. Let λ be an essentially regular point, let {H0 + rV : r ∈ R} be a line

regular at λ, let rλ be a real resonance point of the path {H0 + rV : r ∈ R} at λ and let k

be a positive integer. If uλ±i0(rλ) ∈ Υλ±i0(rλ) is a resonance vector of order k ≥ 1 at

λ± i0, then for all non-resonant values of s,

〈Juλ±i0(rλ), ImTλ±i0(Hs) Juλ±i0(rλ)〉 =
c±2

(s− rλ)2
+ · · ·+ c±k

(s− rλ)k
, (1.6.1)

where, in case k ≥ 2, for j = 2, . . . , k,

c±j = Im〈uλ±i0(rλ), JAj−1
λ±i0(rλ)uλ±i0(rλ)〉 = − Im〈uλ±i0(rλ), JAj−1

λ∓i0(rλ)uλ±i0(rλ)〉.

In particular, if uλ±i0(rλ) ∈ Υλ±i0(rλ) is a resonance vector of order 1, then

〈Juλ±i0(rλ), ImTλ±i0(Hs) Juλ±i0(rλ)〉 = 0.

Further, in Section 8 we introduce and study the so-called vectors of type I. These are

vectors which satisfy any of the following equivalent conditions.
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Theorem 1.6.9. Let rλ be a real resonance point of the line γ = {Hr : r ∈ R}, corre-

sponding to a real number λ ∈ Λ(γ, F ). Let u ∈ K. The following assertions are equivalent:

(1) u ∈ Υλ+i0(rλ) and for all non-resonant real numbers s,√
ImTλ+i0(Hs) Ju = 0.

(2) u ∈ Υλ−i0(rλ) and for all non-resonant real numbers s,√
ImTλ+i0(Hs) Ju = 0.

(3) u ∈ Υλ+i0(rλ) and for all non-resonant real numbers s,

Aλ+i0(s)u = Aλ−i0(s)u.

(4) u ∈ Υλ−i0(rλ) and for all non-resonant real numbers s,

Aλ+i0(s)u = Aλ−i0(s)u.

(5) u ∈ Υλ+i0(rλ) or u ∈ Υλ−i0(rλ) and for all j = 0, 1, . . . , d − 1, where d is the order

of rλ,

Aj
λ+i0(rλ)u = Aj

λ−i0(rλ)u.

(6) u ∈ Υλ+i0(rλ) and there exists a non-resonant real number r such that for all j =

0, 1, 2, . . . ,

(Aλ+i0(r)−Aλ−i0(r))Aj
λ+i0(rλ)u = 0.

(7) u ∈ Υλ−i0(rλ) and there exists a non-resonant real number r such that for all j =

0, 1, 2, . . . ,

(Aλ+i0(r)−Aλ−i0(r))Aj
λ−i0(rλ)u = 0.

(8) u ∈ Υλ+i0(rλ) and all the coefficients c+j in (1.6.1) are zero.

(9) u ∈ Υλ−i0(rλ) and all the coefficients c−j in (1.6.1) are zero.

The set ΥI
λ+i0(rλ) of vectors which satisfy any of these equivalent conditions is a vector

subspace of Υλ+i0(rλ) ∩ Υλ−i0(rλ), and the vector space ΥI
λ+i0(rλ) is invariant with

respect to both Aj
λ+i0(rλ) and Aj

λ−i0(rλ).

For the nilpotent operator Az(rz) on Υz(rz) there exists a Jordan basis (u
(j)
ν ), ν =

1, . . . ,m, j = 1, . . . , dν , where we assume that d1 ≥ · · · ≥ dm, that is, a basis of Υz(rz)

such that Az(rz)u
(j)
ν = u

(j−1)
ν ; where u

(0)
ν = 0. Every Jordan basis (u

(j)
ν ) induces a

decomposition

Υz(rz) = Υ[1]
z (rz) u · · ·u Υ[m]

z (rz),

where Υ
[ν]
z (rz) is the linear span of u

(1)
ν , . . . , u

(dν)
ν and where u denotes direct sum of

linear spaces. We call it a Jordan decomposition of Υz(rz).

Proposition 1.6.8 and Theorem 1.6.9 are used to prove the following theorem which

in its turn is essentially used in Section 10.

Theorem 1.6.10. If a resonance vector u(k) ∈ Υλ±i0(rλ) has order k then the vectors

u(1), . . . , u(dk/2e)

are of type I, where dk/2e is the smallest integer not less than k/2, and u(j) =Ak−j
λ±i0(rλ)u(k).
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For example, assume that the geometric multiplicity m is 12 and the order d is 6. If

a Jordan basis (u
(j)
ν ) of Υλ+i0(rλ) is represented by the Young diagram

u
(1)
1

u
(2)
1

u
(3)
1

u
(4)
1

u
(5)
1

u
(6)
1

u
(1)
2

u
(2)
2

u
(3)
2

u
(4)
2

u
(5)
2

u
(6)
2

u
(1)
3

u
(2)
3

u
(3)
3

u
(4)
3

u
(5)
3

u
(6)
3

u
(1)
4

u
(2)
4

u
(3)
4

u
(4)
4

u
(5)
4

u
(1)
5

u
(2)
5

u
(3)
5

u
(4)
5

u
(5)
5

u
(1)
6

u
(2)
6

u
(3)
6

u
(1)
7

u
(2)
7

u
(3)
7

u
(1)
8

u
(2)
8

u
(1)
9

u
(2)
9

u
(1)
10 u

(1)
11 u

(1)
12

then according to Theorem 1.6.10 all vectors shown in the Young diagram

u
(1)
1

u
(2)
1

u
(3)
1

u
(1)
2

u
(2)
2

u
(3)
2

u
(1)
3

u
(2)
3

u
(3)
3

u
(1)
4

u
(2)
4

u
(3)
4

u
(1)
5

u
(2)
5

u
(3)
5

u
(1)
6

u
(2)
6

u
(1)
7

u
(2)
7

u
(1)
8 u

(1)
9 u

(1)
10 u

(1)
11 u

(1)
12

are of type I.

In Section 9 we prove that the resonance index is equal to the signature of the reso-

nance matrix.

Theorem 1.6.11 (Theorem 9.1.1). The idempotents Pλ±i0(rλ) are linear isomorphisms

of the vector spaces Υλ∓i0(rλ) and Υλ±i0(rλ).

Theorem 1.6.11 is used in the proof of the following theorem, which is one of the main

results of this paper.

Theorem 1.6.12 (Theorem 9.2.1). For any real resonance point rλ,

sign(Qλ∓i0(rλ)JPλ±i0(rλ)) = indres(λ;Hrλ , V ).

In Section 10 we prove Theorem 1.6.14 which is one of the main results of this paper.

It is a corollary to Theorem 1.6.12 and the following

Theorem 1.6.13 (Theorem 10.1.5). If rλ is a real resonance point corresponding to z =

λ± i0, then

|sign(Qλ∓i0(rλ)JPλ±i0(rλ))| ≤ dim Υ1
λ+i0(rλ).

Theorem 1.6.14 (Theorem 10.1.6). For all real resonance points rλ,

|indres(λ;Hrλ , V )| ≤ dim Υ1
λ+i0(rλ).

Theorem 1.6.14 has the following meaning: the increment of the spectral flow inside

essential spectrum which occurs at a real resonance point rλ cannot be greater than the

multiplicity of the singular spectrum of Hrλ at λ.
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The numbers N± from the definition of the resonance index give more information

about the behaviour of points of the singular spectrum than the difference N+−N−. Strik-

ing a shop-keeper’s doorbell, a customer may open the door and leave without entering

the shop. In this case the doorbell rings but the number of customers in the shop remains

the same (that is, the increment of the spectral flow is zero). In other words, a ring of

the doorbell condition r ∈ R(λ;H0, V ) does not necessarily mean that an “eigenvalue”

crossed λ, e.g., if λ is outside the essential spectrum, an eigenvalue can make a U-turn

at λ. Theorems 1.5.2 and 1.6.14 imply that if there is an eigenvalue λj(r) of a path Hr

making a U-turn at λ when r = rλ, then N+, N− > 0 so that the contributions of that

eigenvalue to N+ and N− cancel each other. In particular, if the eigenvalue λj(rλ) = λ of

Hrλ making a U-turn is non-degenerate, then N+ = N− so that indres(λ;Hrλ , V ) is zero.

On p. 106 of this paper eight diagrams are given which correspond to eight qualitatively

different eigenvalue behaviours in case N+ = 5 and N− = 2.

The main result of Section 11 is Theorem 11.2.7. Its proof relies on certain algebraic

relations between the operators Pλ±i0(rλ) and Aλ±i0(rλ) which are proved in that section.

A real resonance point rλ will be said to have property C if the vector spaces Υλ±i0(rλ)

admit Jordan decompositions

Υλ+i0(rλ) = Υ
[1]
λ+i0(rλ) u · · ·u Υ

[m]
λ+i0(rλ), Υλ−i0(rλ) = Υ

[1]
λ−i0(rλ) u · · ·u Υ

[m]
λ−i0(rλ)

such that for all ν = 1, . . . ,m,

Pλ+i0(rλ)Υ
[ν]
λ−i0(rλ) = Υ

[ν]
λ+i0(rλ) and Pλ−i0(rλ)Υ

[ν]
λ+i0(rλ) = Υ

[ν]
λ−i0(rλ).

Theorem 1.6.15 (Theorems 11.2.7 and 11.2.8). For any z = λ ± i0 ∈ ∂Π, for any real

resonance point rλ ∈ R with property C corresponding to z and for any j = 1, 2, . . . :

(1) the restriction of the idempotent operator Pλ±i0(rλ) to Υj
λ∓i0(rλ) is a linear isomor-

phism of Υj
λ∓i0(rλ) and Υj

λ±i0(rλ),

(2) the idempotent Qλ±i0(rλ) is a linear isomorphism of Ψj
λ∓i0(rλ) and Ψj

λ±i0(rλ) for

all j = 1, 2, . . . .

In other words, for points rλ with property C, for all j = 1, 2, . . . we have commutative

diagrams of linear isomorphisms:

Ψj
λ+i0(rλ) Υj

λ+i0(rλ)
Joo

Ψj
λ−i0(rλ)

Qλ+i0(rλ)

OO

Υj
λ−i0(rλ)

Joo

Pλ+i0(rλ)

OO
Ψj
λ+i0(rλ)

Qλ−i0(rλ)

��

Υj
λ+i0(rλ)

Joo

Pλ−i0(rλ)

��
Ψj
λ−i0(rλ) Υj

λ−i0(rλ)
Joo

Real resonance points for which the conclusion of this theorem holds are called points

with property U . Thus, property C implies property U . Plainly, every point of geometric

multiplicity 1 has property C and therefore property U too. We conjecture that every

real resonance point has properties C and U .

In Section 12 we consider some questions of independence from the choice of the

rigging operator F .



1.6. Main results 37

Theorem 1.6.16 (Theorem 12.1.2). The resonance index indres(λ;H,V ) does not depend

on the choice of the rigging operator F as long as λ is essentially regular for the pair

(A, F ), where A = {H + rV : r ∈ R} and V is a regularizing direction for an operator H

which is resonant at λ.

In Section 13 we study the class of so-called real resonance points of type I. By defi-

nition, a real resonance point rλ is of type I if all resonance vectors satisfy at least one

and therefore all assertions of Theorem 1.6.9.

Theorem 1.6.17 (Theorem 13.1.9). Let λ be an essentially regular point for (A, F ).

Let H0 ∈ A be regular at λ and let V ∈ A0. Let rλ ∈ R be a real resonance point of

the path {H0 + rV : r ∈ R}. The following assertions are all equivalent to rλ being of

type I:

(i±) For any regular point r,
√

ImTλ+i0(Hr) JPλ±i0(rλ) = 0.

(i∗±) There exists a regular point r such that
√

ImTλ+i0(Hr) JPλ±i0(rλ) = 0.

(ii±) For any regular point r,
√

ImTλ+i0(Hr)Qλ±i0(rλ) = 0.

(ii∗±) There exists a regular point r such that
√

ImTλ+i0(Hr)Qλ±i0(rλ) = 0.

(iii±) The meromorphic function

w±(s) :=
√

ImTλ+i0(H0) [1 + sJTλ±i0(H0)]−1

is holomorphic at s = rλ.

(iii′±) The meromorphic function

w±(s)J =
√

ImTλ+i0(H0) J [1 + sTλ±i0(H0)J ]−1

is holomorphic at s = rλ.

(iv±) The meromorphic function

w†±(s) = [1 + sTλ∓i0(H0)J ]−1
√

ImTλ+i0(H0)

is holomorphic at s = rλ.

(v±) The residue of the function w±(s) at s = rλ is zero.

(vi±) For all ±-resonance vectors the real numbers c−j from Proposition 8.1.1 are all

zero.

(vii) The function s 7→ ImTλ+i0(Hs) is holomorphic at s = rλ.

(viii) The function s 7→ J ImTλ+i0(Hs)J is holomorphic at s = rλ.

Moreover, the assertions obtained from (i±)–(ii±) and (i∗±)–(ii∗±) by removing the square

root are also equivalent to those above.

The following theorem shows that being of type I is a generic property of real resonance

points.

Theorem 1.6.18 (Theorems 13.2.1–13.2.3). Let λ be an essentially regular point, let

H0 ∈ A and let V ∈ A0 be a regularizing direction at λ. Let rλ be a real resonance point

of (λ;H0, V ). If at least one of the following three conditions holds:
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(1) λ does not belong to the (necessarily common) essential spectrum of operators from A,

(2) the order of rλ is equal to 1,

(3) the operator V is non-negative or non-positive,

then rλ is a point of type I.

For every real resonance point rλ of type I the idempotents Pλ+i0(rλ) and Pλ−i0(rλ)

coincide. We say that a real resonance point rλ has property S if the kernels of Pλ+i0(rλ)

and Pλ−i0(rλ) coincide.

Proposition 1.6.19 (Proposition 13.3.1). Let λ be an essentially regular point and let rλ
be a real resonance point of (λ;H0, V ). The following assertions are equivalent:

(i) rλ has property S.

(ii) Pλ+i0(rλ)Pλ−i0(rλ) = Pλ+i0(rλ) and Pλ−i0(rλ)Pλ+i0(rλ) = Pλ−i0(rλ).

(iii) imQλ+i0(rλ) = imQλ−i0(rλ).

(iv) Qλ+i0(rλ)Qλ−i0(rλ) = Qλ−i0(rλ) and Qλ−i0(rλ)Qλ+i0(rλ) = Qλ+i0(rλ).

(v) Qλ−i0(rλ)JPλ+i0(rλ) = JPλ+i0(rλ).

(vi) Qλ+i0(rλ)JPλ−i0(rλ) = JPλ−i0(rλ).

(vii) Qλ−i0(rλ)JPλ+i0(rλ) = Qλ−i0(rλ)J .

(viii) Qλ+i0(rλ)JPλ−i0(rλ) = Qλ+i0(rλ)J .

(ix) Qλ−i0(rλ)JPλ+i0(rλ) = Qλ+i0(rλ)JPλ−i0(rλ).

Proposition 1.6.20 (Proposition 13.3.2). Every real resonance point of type I has prop-

erty S. There are real resonance points which do not have property S, and there are points

with property S which are not of type I.

Let us say that a real resonance point rλ has property P if Pλ+i0(rλ) = Pλ−i0(rλ).

The relations between real resonance points with different properties are given in the

following diagram, where arrows stand for implications:

λ /∈ σess

%%
V ≥ 0 // d = 1 // type I //

��yy

P // S

m = 1 // C // U

d ≤ 2

99

In Section 14 we study the behaviour of a non-degenerate eigenvalue embedded into

the essential spectrum under a regularizing perturbation V . In particular, we construct

real resonance points which do not have property S, and real resonance points with

property S, but without property P .

Assume that λ is an eigenvalue of a self-adjoint operator Hrλ with eigenvector χ.

Then the Hilbert space H on which Hrλ acts can be represented as

H = Ĥ ⊕ C,



1.6. Main results 39

so that the operator Hrλ takes the form

Hrλ =

(
Ĥrλ 0

0 λ

)
,

where Ĥrλ is the restriction of Hrλ to Ĥ. Let

V =

(
V̂ v̂

〈v̂, ·〉 α

)
be the representation of the operator V . We assume that the rigging operator F : H → K
has a representation

F =

(
F̂ 0

0 1

)
.

In this case V = F ∗JF , where J has a representation

J =

(
Ĵ ψ̂

〈ψ̂, ·〉 α

)
such that V̂ = F̂ ∗Ĵ F̂ and v̂ = F̂ ∗ψ̂. The vector ψ̂ is related to the eigenvector χ by

ψ̂ = JFχ− αFχ. Finally, we assume that λ is a regular point of (Ĥrλ , F̂ ):

λ ∈ Λ(Ĥrλ , F̂ ). (1.6.2)

Let

ûz(s) = F̂Rz(Ĥs)F̂
∗ψ̂,

where Tz(Ĥs) = F̂Rz(Ĥs)F̂
∗, and let Âz(s) = Tz(Ĥs)Ĵ . The operator Aλ+i0(rλ) does

not exist since λ is an eigenvalue of Hrλ and therefore λ /∈ Λ(Hrλ , F ), but the sliced

operator Âλ+i0(rλ) and the vector ûλ+i0(rλ) exist due to (1.6.2).

The following lemma and theorem describe the properties of the real resonance point rλ.

Lemma 1.6.21. The order of the real resonance point rλ is greater than 1 if and only if

α = 0. In that case the vector space Υ2
λ+i0(rλ) is two-dimensional and is generated by

the vectors (
0

1

)
and

(
ûλ+i0(rλ)

0

)
,

which have orders 1 and 2 respectively.

Theorem 1.6.22 (Theorem 14.2.11). Let d be an integer greater than 1. The order of

the real resonance point rλ is equal to d if and only if the vectors

ûλ+i0(rλ), Âλ+i0(rλ)ûλ+i0(rλ), . . . , Âd−3
λ+i0(rλ)ûλ+i0(rλ)

are orthogonal to ψ̂ but Âd−2
λ+i0(rλ)ûλ+i0(rλ) is not. In that case for all j = 1, . . . , d the

vector space Υj
λ+i0(rλ) is j-dimensional and is generated by the vectors(

0

1

)
,

(
ûλ+i0(rλ)

0

)
,

(
Âλ+i0(rλ)ûλ+i0(rλ)

0

)
, . . . ,

(
Âj−2
λ+i0(rλ)ûλ+i0(rλ)

0

)
,

which have orders 1, . . . , j respectively.
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The following diagram shows the interdependence of Sections 2–14. A dashed arrow

means that the dependence is of notational and terminological character. In particular,

Section 14 is almost independent of the other sections, but motivation for it comes from

the previous ones. The core of this paper are Sections 6, 7, 9 and 10. Having said this,

ideologically all sections are interconnected in the sense that they represent different

aspects of the same subject given in the title of this paper.

2 //

��

3 //

�� ��

��

8 //

��

��

��

9

��
4 7

??

10

��

5

OO

GG

��

GG

��

11

6 12

13

In Section 15 some open problems are stated. Finally, for the reader’s convenience

there is a detailed index.

1.7. Future work

1.7.1. Singular spectral shift function for relatively trace class perturbations.

So far the property (1.3.20) of the singular spectral shift function has been proved for

trace class perturbations. There is a paper in preparation [AzD] in which this result will

be proved for relatively trace class perturbations. A special case of this result is

Theorem 1.7.1. Let H0 = −∆ + V0(x) be a Schrödinger operator acting on L2(Rν),

where ν = 1, 2 or 3 and where V0(x) is a bounded measurable real-valued function. Let V

be the operator of multiplication by a real-valued measurable function V (x) such that

|V (x)| ≤ const(1 + |x|2)−ν/2−ε for some ε > 0, and let Hr = H0 + rV . Let

ξ(s)(φ) =

∫ 1

0

Tr(V φ(H(s)
r )) dr, φ ∈ Cc(R),

where H
(s)
r is the singular part of Hr. Then ξ(s) is an absolutely continuous measure

whose density ξ(s)(λ) (denoted by the same symbol) is integer-valued for a.e. λ.

The bulk of the proof of this theorem is a modification to relatively trace class per-

turbations of the approach to scattering theory given in [Az3] and discussed in this

introduction. This modification was given in [Az6] with the aim to prove Theorem 1.7.1.

For reasons mentioned in this introduction classical approaches to scattering theory do

not allow one to prove this theorem.

There is a work in progress aimed at proving an analogue of Theorem 1.7.1 for n-

dimensional Schrödinger operators.
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1.7.2. Resonance index and singular µ-invariant. For trace class perturbations the

singular spectral shift function admits three other equivalent descriptions, as the singular

µ-invariant, the total resonance index and the total signature of the resonance matrix.

These three definitions do not require the perturbation to be trace class or to be relatively

trace class: all we need to assume is that the perturbation is relatively compact and that

the Limiting Absorption Principle holds. In this paper it is shown that the resonance

index and the signature of resonance matrix are equal under these two conditions. In

[Az5] it is proved that the singular µ-invariant is equal to the total resonance index under

the same conditions.

1.7.3. Resonance index outside the essential spectrum. The theory of the reso-

nance index given in this paper applies to the spectral flow outside the essential spectrum.

Outside the essential spectrum one can consider many questions which do not make sense

inside the essential spectrum. There is work in progress where these questions will be

studied.



2. Preliminaries

2.1. Operators on a Hilbert space. Details concerning the material of this section

can be found in [GK, Ka2, RS, S2]. A partial aim of these preliminaries is to fix notation

and terminology.

Throughout this paper, R is the field of real numbers and C is the field of complex

numbers. The calligraphic letters H and K will denote complex separable Hilbert spaces,

which can be finite- or infinite-dimensional. The scalar product 〈·, ·〉 is assumed to be

linear with respect to the second argument and anti-linear with respect to the first. If

it is necessary to distinguish the Hilbert spaces H and K, the former will be called the

main Hilbert space, and the latter the auxiliary Hilbert space; note, however, that most

of the operators considered in this paper act on K rather than on H. The letter H with

possible subscripts will denote a self-adjoint operator on H. The letter F will always

denote a fixed densely defined closed operator from H to K which has trivial kernel

and co-kernel. The letter Λ with arguments will always denote a measurable subset of

R of full Lebesgue measure. Throughout this paper the word “operator” means a linear

operator.

The letter V will be used to denote a self-adjoint operator on H with some conditions

imposed on it. We shall consider a perturbation Hr = H0 + rV of a self-adjoint oper-

ator H0 by a real multiple of V ; the multiple itself, called a coupling constant, will be

denoted by the letter s or r (with possible subscripts).

A subset A of a metric space X is discrete if the intersection of A with any compact

subset of X is finite.

If L1 and L2 are closed subspaces of a Hilbert space such that L1∩L2 = {0}, then we

denote by L1 u L2 the direct sum of L1 and L2. If in addition L1 and L2 are orthogonal

then their direct sum is denoted by L1 ⊕ L2.

The kernel of an operator A is denoted by ker(A), and im(A) will denote the range or

the image of A. The resolvent set ρT of a densely defined closed operator T on a Hilbert

space H consists of all complex numbers z such that T − z is a bijection of dom(T )

onto H; for such z the bounded inverse

Rz(T ) = (T − z)−1,

called the resolvent of T , exists. The spectrum σT or σ(T ) of a densely defined closable

operator T on a Hilbert space is the complement of the resolvent set. For two bounded

operators S and T one has (see e.g. [BR, Proposition 2.2.3])

σST ∪ {0} = σTS ∪ {0}. (2.1.1)

[42]
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Let T be a closed operator on a Hilbert space K and let z ∈ C. Non-zero vectors u

from K such that (T − z)ku = 0 for some k = 1, 2, . . . are called root vectors of T

corresponding to the eigenvalue z. A point z of the spectrum of T is called an isolated

eigenvalue of finite algebraic multiplicity if z is an isolated point of σ(T ) and if the

algebraic multiplicity µT (z) of z defined by

µT (z) := dim{u ∈ K : ∃k ∈ Z+ (T − z)ku = 0}
is finite. The set of all isolated eigenvalues of finite algebraic multiplicity of an operator T

is denoted by σd(T ). If T is compact, the function µT of z will be called the eigenvalue

counting measure of T . If S and T are bounded operators such that ST and TS are both

compact, then the following stronger version of (2.1.1) holds:

µST |C\{0} = µTS |C\{0}. (2.1.2)

Further, for any compact operator T ,

µT∗ = µ̄T , (2.1.3)

where µ̄T (z) = µT (z̄).

A closed operator T is said to be Fredholm if the range of T is a closed subspace of

finite co-dimension and the kernel of T is finite-dimensional (see [Ka2, IV.5.1]). A bounded

operator T is Fredholm if and only if there exists a bounded operator S such that the

operators ST −1 and TS−1 are compact; such an operator S is called a parametrix of T .

In other words, bounded Fredholm operators are invertible up to compact operators. By

definition, the essential spectrum σess(T ) of a closed operator T consists of all complex

numbers z such that the operator T − z is not Fredholm; in this regard note that in

[Ka2, §IV.5] the essential spectrum is defined as the set of all complex numbers z such

that the operator T − z is not semi-Fredholm. There are also other definitions, but they

all coincide for self-adjoint operators. Since in this paper we shall be concerned with the

essential spectrum of self-adjoint operators and of their relatively compact perturbations,

this definition suffices. The essential spectrum of a self-adjoint operator H admits another

characterization: the essential spectrum of H is the spectrum of H from which all isolated

eigenvalues of finite multiplicity are removed. In general,

σess(T ) ⊂ σ(T ) \ σd(T ),

but this inclusion may be strict [Ka2].

Let H and V be two self-adjoint operators on a Hilbert space H. Then V is said to be

relatively compact with respect to H if Rz(H)V is a bounded operator on dom(V ) ⊂ H
for some z ∈ ρH such that its continuous extension to H is a compact operator. In this

case the operator Rz(H)V is bounded with compact extension for any z ∈ ρH . Weyl’s

theorem asserts that the essential spectrum of a self-adjoint operator is stable under

relatively compact perturbations (see e.g. [Ka2, §IV.5.6], [RS4, §XIII.4]).

The spectrum of a closed operator T on a Hilbert space is upper semicontinuous: for

any neighbourhood O of the spectrum of T there exists δ > 0 such that for all bounded S

with ‖S‖ < δ the spectrum of S + T is a subset of O.

In general, the spectrum is not continuous in the sense that for a bounded operator T

there may exist z ∈ σ(T ) and a neighbourhood O of z such that for any δ > 0 there

exists a bounded operator S with ‖S‖ < δ such that σ(T + S) ∩O = ∅.
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For brevity, the identity operator on a Hilbert space is denoted by 1; in particular,

the scalar operator of multiplication by a number c will be denoted by c instead of cI. An

idempotent operator is a bounded operator P such that P 2 = P . If A and B are bounded

operators such that z /∈ σAB ∪ {0}, then

(z −AB)−1A = A(z −BA)−1. (2.1.4)

The condition z /∈ σAB ∪ {0} implies that z /∈ σBA, so that the right hand side of the

above equality makes sense. Hence, the equality itself follows from the obvious equality

A(z −BA) = (z −AB)A.

The real ReA and imaginary ImA parts of a bounded operator A on a Hilbert space

are defined by

ReA =
A+A∗

2
and ImA =

A−A∗

2i
.

The Rank of an operator A is the dimension of the image of A. The signature sign(A) of

a finite-rank self-adjoint operator A is the integer defined as follows:

sign(A) = rankA+ − rankA−, (2.1.5)

where A+ (respectively, A−) is the positive (respectively, negative) part of A. In this

regard note that, given a self-adjoint operator A, the word “signature” is also used for

the operator f(A), where f(x) is the sign-function, but in this paper this notion will not

be used and therefore there is no danger of confusion.

Lemma 2.1.1. If A is an operator of rank N <∞, then there exists ε > 0 such that for

any operator B of norm less than ε the inequality rank(A+B) ≤ N implies the equality

rank(A+B) = N .

In other words, small enough perturbations of finite rank operators which do not

increase the rank preserve the rank. This lemma is a direct consequence of the upper

semicontinuity of spectrum.

Lemma 2.1.2. Let M be a finite-rank self-adjoint operator on a Hilbert space K. If L is

a vector subspace of K such that for any non-zero f ∈ L the scalar product 〈f,Mf〉 is

positive, then

dimL ≤ rankM+.

Proof. Let M+ be the vector space spanned by the eigenvectors of M corresponding to

positive eigenvalues and assume contrary to the claim that dimL > dimM+. Then the

intersectionM⊥+∩L is a vector subspace of dimension at least 1. If f is a non-zero vector

from M⊥+ ∩ L, then 〈f,Mf〉 > 0 since f ∈ L and 〈f,Mf〉 ≤ 0 since f ∈M⊥+.

Lemma 2.1.3. Let M be a self-adjoint finite rank operator on a Hilbert space K and let

F : H → K be a closed operator with zero kernel and co-kernel. If im(M) ⊂ dom(F ∗) and

if im(M) = im(MF ), then the product F ∗MF is a well-defined finite-rank self-adjoint

operator such that

rank(M) = rank(F ∗MF ) and sign(M) = sign(F ∗MF ).

Proof. Let M+ (respectively, M−) be the vector space spanned by the eigenvectors

of M corresponding to positive (respectively, negative) eigenvalues of M , and let M =
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M+ ⊕M−. Since im(M) ⊂ dom(F ∗), the product F ∗MF is well-defined. Since F ∗ has

zero kernel and im(M) = im(MF ), the ranks of the operators F ∗MF andM are the same.

Further, the equality im(M) = im(MF ) implies that there exist vector spaces L± such

that L± = F−1M± and dimM± = dimL±. For any non-zero vector f = F−1g ∈ L+,

where g ∈M+, we have

〈f, F ∗MFf〉 = 〈Ff,MFf〉 = 〈g,Mg〉 > 0.

It follows from this and Lemma 2.1.2 that dimL+ = dimM+ is not greater than the

rank of the positive part of F ∗MF . Similarly, one shows that dimM− is not greater than

the rank of the negative part of F ∗MF . Combining this with the equality rank(M) =

rank(F ∗MF ) implies that sign(M) = sign(F ∗MF ).

If T is a compact operator on a Hilbert space, then the s-numbers s1(T ), s2(T ), . . .

of T are the eigenvalues of the compact operator |T | :=
√
T ∗T listed in non-increasing

order, with each eigenvalue repeated according to its multiplicity. Let p ∈ [1,∞]. The

notation Lp(H) means the class of all compact operators T acting on H such that the

p-norm ‖T‖p of T , defined by

‖T‖pp :=

∞∑
n=1

sn(T )p if p <∞, ‖T‖∞ := s1(T ) = ‖T‖ if p =∞,

is finite. The linear space Lp(H) with this norm is an invariant operator ideal [GK],

called the pth Schatten ideal. This means, in particular, that if T ∈ Lp(H) and if A,B

are bounded operators, then ATB ∈ Lp(H) and ‖ATB‖p ≤ ‖A‖ ‖T‖p‖B‖. The ideal L∞
consists of all compact operators on H. Operators from the first Schatten ideal L1(H)

are called trace class operators, and those from the second Schatten ideal L2(H) are

called Hilbert–Schmidt operators. The trace class norm ‖T‖1 of a trace class operator T

is equal to Tr(|T |), and the Hilbert–Schmidt norm ‖T‖2 of a Hilbert–Schmidt operator T

is equal to
√

Tr(|T |2). The trace Tr: L1(H)→ C is a linear continuous functional, defined

for trace class operators by Tr(T ) =
∑∞
n=1〈φn, Tφn〉, where {φn}∞n=1 is an orthonormal

basis of H. If A,B are bounded operators such that AB and BA are trace class, then

Tr(AB) = Tr(BA).

Further, for any trace class operator T we have Tr(T ∗) = Tr(T ). For any trace class

operator T the sequence {λj(T )}∞j=1 of eigenvalues of T is summable; the Lidskĭı theorem

asserts that

Tr(T ) =

∞∑
j=1

λj(T ). (2.1.6)

Lemma 2.1.4. Let p ≥ 1. If A,A1, A2, . . . is a sequence of finite-rank operators on a

Hilbert space such that the sequence of ranks of An is bounded, then An converges to A

as n→∞ in the uniform norm if and only if An converges to A in p-norm as n→∞.

Proof. If N is the largest of the ranks of the operators A,A1, A2, . . . , then

‖A‖ ≤ ‖A‖p ≤ N‖A‖.
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2.2. Analytic operator-valued functions. For definition and a detailed study of

vector-valued holomorphic functions see e.g. [HPh, Ka2, RS]. Let T (κ) be a single-valued

holomorphic function with values in bounded operators; assume that T (κ) is defined in

some domain G of the complex plane off a discrete set of singular points. In a deleted

neighbourhood 0 < |κ − κ0| < δ of a singular point κ0 ∈ G the function T (κ) admits a

Laurent expansion at κ0,

T (κ) = T̃ (κ) +

∞∑
j=1

(κ− κ0)−jTj , (2.2.1)

where T̃ (κ) is a function of κ holomorphic in the neighbourhood of κ0 (including κ0)

and T1, T2, . . . are some bounded operators. A function T defined on G is said to be

meromorphic in G if it is holomorphic everywhere on G except possibly on a discrete

subset of singular points, such that at each singular point κ0 the sum in its Laurent

expansion (2.2.1) is finite.

Theorem 2.2.1 (Analytic Fredholm alternative). Let G be an open connected subset

of C. Let T : G → L∞(H) be a holomorphic family of compact operators in G. If the

operators 1 + T (κ) are all invertible at some point κ1 ∈ G, then they are invertible at all

points of G except on the discrete set

N := {κ ∈ G : −1 ∈ σ(T (κ))}.

Further, the operator-function F (κ) := (1 + T (κ))−1 is meromorphic in G and the set

of its poles is N. Moreover, in the Laurent expansion of F (κ) in a neighbourhood of any

point κ0 ∈ N the coefficients of negative powers of κ− κ0 are finite-rank operators.

For a proof of this theorem see e.g. [RS, Theorem VI.14], [Y, Theorem 1.8.2].

2.3. Divided differences. If f(s) is a function of one variable, then the divided differ-

ence of f of first order is the function

f [1](s1, s2) =
f(s2)− f(s1)

s2 − s1
.

The divided difference of f of order k is the function f [k](s1, . . . , sk+1) of k+ 1 variables

s1, . . . , sk+1 which is defined inductively by

f [k](s1, . . . , sk+1) =
f [k−1](s2, . . . , sk+1)− f [k−1](s1, . . . , sk)

sk+1 − s1
.

We shall use two facts about divided differences; the proofs can be found in e.g. [Ba]:

Lemma 2.3.1. The divided difference of order k − 1 of f is equal to

f [k−1](s1, . . . , sk) =

k∑
j=1

f(sj)

k∏
i=1, i 6=j

1

sj − si
.

Lemma 2.3.2. The divided difference of order k − 1 of f is zero if and only if f is a

polynomial of degree ≤ k − 2.
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2.4. Rigged Hilbert spaces. A rigging of a Hilbert space H is a triple (X,H, X∗)
where X is a normed or more generally a locally convex space, and X∗ is its dual such

that X is continuously embedded into H and H is continuously embedded into X∗ and

the embeddings have dense ranges (see e.g. [BeSh]). The rigging normed space X is often

introduced as the range of a certain operator acting on H. In this case it is possible

to consider the operator itself as the rigging. In this paper we follow this view-point.

Further, the normed space X can itself be a Hilbert or pre-Hilbert space. In this case

elements f, g, . . . of X can be considered as elements of both X∗ via the Riesz–Fisher

theorem and of H via the natural embedding X ↪→ H, and then it is assumed that

〈f, g〉H = 〈f, g〉(X,X∗), where 〈f, g〉(X,X∗) is the value of g ∈ X∗ at f ∈ X. The number

〈f, g〉(X,X∗) is often denoted by 〈f, g〉1,−1.

A rigging operator F on a Hilbert space H is a closed operator from H to another

Hilbert space K with trivial kernel and co-kernel. Endowing a Hilbert space H with a

rigging operator F generates a triple of Hilbert spaces

H+, H, H−, (2.4.1)

where H+ is the completion of im(|F |) endowed with the scalar product

〈f, g〉H+
= 〈|F |−1f, |F |−1g〉H

and H− is the completion of dom(|F |) endowed with the scalar product

〈f, g〉H− = 〈|F |f, |F |g〉H.

Similarly, the operator F ∗ considered as a rigging operator in K generates a triple of

Hilbert spaces

K+, K, K−.

The mapping |F | extends to an isomorphism of Hα and Hα−1, α = 0, 1. Similarly, |F ∗|
extends to an isomorphism of Kα and Kα−1, α = 0, 1. The (extension of the) rigging

operator F itself can be considered as an isomorphism

F : H ' K+ or F : H− ' K.

Similarly, F−1 can be treated as an isomorphism K+ ' H or K ' H−.

2.5. Limiting Absorption Principle. Let H and K be two complex separable Hilbert

spaces and let

F : H → K (2.5.1)

be a fixed rigging operator inH. Let A0 be a real normed space of self-adjoint operators V

of the form

V = F ∗JF, (2.5.2)

where J is an element of a real subspace of the algebra of bounded self-adjoint operators

on K. The norm on A0 is defined by ‖V ‖F = ‖J‖. Let H be a self-adjoint operator on H.

The affine space of self-adjoint operators of the form H + V , where V ∈ A0, will be

denoted by A, that is,

A = H +A0. (2.5.3)
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Here we have firstly introduced the rigging operator F , and then using it we have

introduced the affine space A. In fact, the operator F is of auxiliary nature while the

affine space A comes directly from the formulation of a problem. Hence, in practice,

given an affine space A one has to find a rigging operator F which makes the pair (A, F )

compatible in the sense that all the conditions imposed on this pair are satisfied.

We frequently use the notation

Tz(H) := FRz(H)F ∗. (2.5.4)

The operator Tz(H) is often called a sandwiched resolvent.

We assume that all operators V from the real vector space A0 are relatively compact

perturbations of some operator H from the real affine spaceA, that is, dom(H) ⊂ dom(V )

and that the operator Rz(H)V is bounded and its continuous extension is compact:

the operator Rz(H)V is compact. (2.5.5)

Since all perturbation operators V = H1 −H0, where H1, H0 is any pair of operators

from A, are supposed to be relatively compact with respect to H0, this implies that H0

and H1 = H0 + V have the same domain. That is, the domains of all operators H from

the affine space A coincide; we denote this common domain by D:

for any H ∈ A, dom(H) = D. (2.5.6)

Further, since all perturbations V ∈ A0 of operators H from A are relatively compact,

Weyl’s theorem implies that all operators H from A have a common essential spectrum:

∀H0, H1 ∈ Aσess(H0) = σess(H1).

This common essential spectrum is denoted by σess. The subset σess of R depends only

on A. This allows us to talk about the essential spectrum of the affine space A.

The operator F is not assumed to be bounded; therefore, one needs to clarify the

meaning of the operators (2.5.2) and (2.5.4). The domain of any perturbation operator V

contains D:

D ⊂ dom(V ). (2.5.7)

Additionally we assume that

D ⊂ dom(F ), (2.5.8)

and that any operator J from (2.5.2) satisfies

JFD ⊂ dom(F ∗). (2.5.9)

Since by (2.5.6) for any H ∈ A the range of the resolvent Rz(H) is equal to D, and

on this subspace the operator F is defined by the assumption (2.5.8), the sandwiched

resolvent (2.5.4) is defined at least on the dense domain of F ∗. It will always be assumed

that the operator (2.5.4) is bounded on dom(F ∗) and that its continuous extension to K
is compact:

Tz(H) is compact. (2.5.10)

This also implies that, for any bounded subset ∆ of R,

FEH∆ is compact. (2.5.11)
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Indeed, by (2.5.10), the operator ImTz(H) = (F
√

ImRz(H))(F
√

ImRz(H))∗ is com-

pact, and hence so is F
√

ImRz(H). This implies (2.5.11). Using this one can show that

for a bounded rigging operator F the condition (2.5.10) implies (2.5.5).

Lemma 2.5.1. If FRz(H)F ∗ is compact for some z ∈ ρ(H), then FRw(H)F ∗ is compact

for any other w ∈ ρ(H). Further, the function C \ R 3 z 7→ Tz(H) is holomorphic.

Proof. Without loss of generality we can assume that y = Im z > 0.

If FRz(H)F ∗ is compact then so is

FRz̄(H)F ∗ = (FRz(H)F ∗)∗,

and therefore the operator

(F
√

ImRz(H))(F
√

ImRz(H))∗ = F (ImRz(H))F ∗

= (FRz(H)F ∗ − FRz̄(H)F ∗)/(2i)

is also compact. It follows that F
√

ImRz(H) is compact. Since the function

R 3 x 7→ Rz(x)/
√

ImRz(x),

where Rz(x) = (x − z)−1, is bounded (by y−1/2 as can be easily checked), the opera-

tor Rz(H)/
√

ImRz(H) is also bounded. It follows that FRz(H) is compact. Since the

function

R 3 x 7→ Rw(x)/Rz(x)

is bounded, it follows that FRw(H) is compact. Hence, so is FRz(H)Rw(H)F ∗. Since

FRz(H)Rw(H)F ∗ = (z − w)F (Rz(H)−Rw(H))F ∗

and since FRz(H)F ∗ is also compact, it follows that FRw(H)F ∗ is compact too. The

second assertion follows from the equivalence of weak and strong analyticity.

Given an operator H from the affine space A, the notation

Λ(H,F ) (2.5.12)

will stand for the set of all real numbers λ for which the limit

Tλ+i0(H) := lim
y→0+

Tλ+iy(H) exists in the uniform topology. (2.5.13)

Since (Tz(H))∗ = Tz̄(H) and since the operation of taking adjoint is continuous in the

uniform topology, it follows that the norm limit Tλ+i0(H) exists if and only if the norm

limit Tλ−i0(H) exists. Thus, if λ ∈ Λ(H,F ) then also

ImTλ+i0(H) := lim
y→0+

ImTλ+iy(H) exists in the norm topology. (2.5.14)

In fact, one often requires a stronger form of convergence for the imaginary part

ImTλ+i0(H), and this additional condition is imposed when needed.

L. A. P. Assumption. Throughout this paper we assume that the pair (H, F ) and the

affine space A satisfy the Limiting Absorption Principle: For any self-adjoint operator

H ∈ A on the Hilbert space H with rigging operator F the set (2.5.12) has full Lebesgue

measure.
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Though Λ(H,F ) has full Lebesgue measure in certain cases of interest, for the devel-

opment of the theory of spectral flow inside essential spectrum this is not quite necessary.

As long as Λ(H,F ) contains at least one point, one may study spectral flow through that

point.

As mentioned in the introduction, the L. A. P. Assumption holds for Schrödinger

operators with short range potentials. Another setting in which the L. A. P. Assumption

holds is given by the following theorem.

Theorem 2.5.2 ([BÈ, Br], [Y, Theorem 6.1.9]). If H0 is a self-adjoint operator acting

on a Hilbert space H and if F is a Hilbert–Schmidt operator from H to another Hilbert

space K, then for a.e. λ ∈ R the operator-valued function FRλ+iy(H0)F ∗ has a limit in

Hilbert–Schmidt norm as y → 0.

The Limiting Absorption Principle plays an important role in the stationary approach

to scattering theory (see [BÈ, Br, KK, Y]). Proving the Limiting Absorption Principle

in the cases of interest is a difficult problem. But for this paper it is a postulate and of

utmost importance.

2.6. λ-resonant and λ-regular operators. Given a self-adjoint operator H and a

perturbation V = F ∗JF one is usually interested in points λ for which the Limiting

Absorption Principle (2.5.13) holds. In contrast, in this work we are mainly interested in

points λ for which the Limiting Absorption Principle fails. However, there can be points λ

for which (2.5.13) fails for any operator H ∈ A. This indicates that λ is a very singular

value of the spectral parameter. We exclude such points from our study; for the present

work we are interested in those points λ for which (2.5.13) fails for some but not all

operators from A. We introduce the appropriate notation and terminology.

Let

Λ(A, F ) :=
⋃
H∈A

Λ(H,F ) ⊂ R. (2.6.1)

Since the sets Λ(H,F ), for H ∈ A, have full Lebesgue measure, so does Λ(A, F ). Any real

number in Λ(A, F ) will be called an essentially regular point [Az3, §4.2]. Points which are

not essentially regular exist; for example, an eigenvalue of infinite multiplicity cannot be

essentially regular (Theorem 4.2.1). But a real number may fail to be essentially regular

even if it is not an eigenvalue. This may happen inside the essential spectrum only, since

outside the essential spectrum all points are essentially regular. This indicates the nature

of non-essentially regular points as those of infinite singularity.

The notation

Π+ = Π+(A, F ), respectively Π− = Π−(A, F ),

will be used for the union of the open upper complex half-plane, respectively of the open

lower complex half-plane, and the set Λ(A, F ). The letter Π will denote the disjoint

union of Π+ and Π−. Thus, the boundary ∂Π of Π is the disjoint union of two copies

∂Π+ = Λ(A, F ) and ∂Π− = Λ(A, F ) of the same set. The conjugation z 7→ z̄ swaps Π+

and Π−. Elements of ∂Π± are written as λ± i0, where λ ∈ R. Elements of Π will usually

be denoted by z; the real part of z is denoted as a rule by λ, and the imaginary part of z
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by y. Thus, y ∈ (−∞, 0−] ∪ [0+,∞). The real number λ will be fixed throughout most

of this paper.

Let λ be an essentially regular point of the pair (A, F ) and let H ∈ A. We say that

the operator

H is resonant at λ, or λ-resonant, if λ /∈ Λ(H,F ). (2.6.2)

Thus, H is resonant at λ if and only if the limit (2.5.13) does not exist. Otherwise,

H is regular at λ, or λ-regular, if λ ∈ Λ(H,F ).

The set of all λ-resonant operators in A will be denoted by

R(λ;A, F ), (2.6.3)

and called the resonance set at λ. The following theorem is well-known; what may be

new is the way we interpret it.

Theorem 2.6.1. Let λ be an essentially regular point of the pair (A, F ), let H0 ∈ A
be an operator regular at λ and let V = F ∗JF ∈ A0. The following five assertions are

equivalent:

(i) The operator H0 + V is resonant at λ.

(ii±) The operator 1 + JTλ±i0(H0) is not invertible.

(iii±) The operator 1 + Tλ±i0(H0)J is not invertible.

Proof. The equivalence of (i) and (ii+) can easily be derived from the equality

Tλ+iy(H0 + V ) = [1 + Tλ+iy(H0)J ]−1Tλ+iy(H0),

which in its turn follows from the second resolvent identity (see (2.7.2) below). Equiva-

lence of (i) and the other items is proved similarly.

This theorem has the following simple but important corollary. The proof follows

verbatim that of [Az3, Theorem 4.2.5].

Theorem 2.6.2. For every essentially regular point λ ∈ R, the resonance set R(λ;A, F )

is a closed nowhere dense subset of A. Moreover, the intersection of any real-analytic

path in A with R(λ;A, F ) is either a discrete set or coincides with the path itself.

The left figure below shows what a more or less typical two-dimensional section of the

resonance set R(λ;A, F ), which has two resonance lines and two resonance points, may

look like.
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be a straight line or a path of operators in the affine space A, where Hr = H0 + rV . If

λ ∈ R is an essentially regular point of (A, F ), then according to Theorem 2.6.2 there

are two possible scenarios: all points of γ except a discrete subset are regular at λ, or

all points of γ are resonant at λ. In the first case we say that γ is regular at λ. A real

number r will be said to be a resonance point of γ at λ if Hr is resonant at λ. A regular

line γ may only have a discrete set of resonance points. We shall mainly be concerned

with only one of them which will be denoted by rλ. The right figure above shows a λ-

regular operator H0 ∈ A and a direction V ∈ A0; the line γ intersects the resonance set

R(λ;A, F ) at the point Hrλ . If an operator H ∈ A is resonant at λ, then a perturbation

V ∈ A0 will be called a regularizing direction for H at λ if the straight line γ which

passes through H in the direction of V is regular at λ. In the picture the operator Hrλ

is resonant at λ, and V is a regularizing direction for Hrλ at λ; in fact, in the case of the

figure every direction parallel to the two-dimensional section of A shown in the figure is

regularizing for Hrλ at λ.

Proposition 2.6.3. If λ ∈ Λ(A, F ) is an eigenvalue of H ∈ A, then H is resonant at λ.

The proof is the same as that of [Az3, Proposition 4.1.10]. Proposition 2.6.3 shows

one source of real resonance points, but a point r can be resonant even if λ is not an

eigenvalue of Hr.

Corollary 2.6.4. Suppose λ ∈ Λ(A, F ) \ σess(A). An operator H ∈ A is resonant at λ

if and only if λ is an eigenvalue of H.

Proof. The “if” implication follows from Proposition 2.6.3. We prove the “only if” part.

Assume the contrary: λ is not an eigenvalue of H. Since also λ /∈ σess(H), it follows

that λ belongs to the resolvent set of H. In this case the norm limit Rλ+i0(H) exists even

without sandwiching by F and F ∗, and therefore H is regular at λ.

2.7. The operators Az(s) and Bz(s). Let z ∈ Π. We shall frequently use the notation

Az(s) = Tz(Hs)J. (2.7.1)

The sandwiched version of the second resolvent identity

Tz(Hr)− Tz(Hs) = (s− r)Tz(Hr)JTz(Hs) (2.7.2)

implies

Az(r)−Az(s) = (s− r)Az(r)Az(s). (2.7.3)

From this equality one can infer that 1 + (s− r)Az(r) must be invertible. Hence,

Az(s) = (1 + (s− r)Az(r))−1Az(r), (2.7.4)

which also implies that

Az(s)Az(r) = Az(r)Az(s). (2.7.5)

Since Az(r) is compact, by the analytic Fredholm alternative (Theorem 2.2.1), the equal-

ity (2.7.4) gives a meromorphic continuation of the function Az(s) of s to the whole

complex plane C. The equality (2.7.5) also holds for this meromorphic continuation.

Moreover, Theorem 2.2.1 and (2.7.4) imply
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Lemma 2.7.1. The function (z, s) 7→ Az(s) is a meromorphic function of two complex

variables z and s in Π◦ × C ⊂ C2, where Π◦ is the interior of Π.

The equality (2.7.3) implies that

dn

dsn
Az(s) = (−1)nn!An+1

z (s). (2.7.6)

We also use the notation

Bz(s) = JTz(Hs). (2.7.7)

One can check that the following analogue of (2.7.4) holds:

Bz(s) = (1 + (s− r)Bz(r))−1Bz(r), (2.7.8)

which implies

Bz(s)Bz(r) = Bz(r)Bz(s). (2.7.9)

Using (2.7.4) and (2.7.8) one can check that

(Az(s))
∗ = Bz̄(s̄). (2.7.10)

We shall also use the following well-known equality (see e.g. [KK, p. 144], [RS3, (99)],

[Az3, (4.8)]):

ImTz(Hs) = (1 + (s− r)Tz̄(Hr)J)−1 ImTz(Hr)(1 + (s− r)JTz(Hr))
−1

= (1 + (s− r)Az̄(r))−1 ImTz(Hr)(1 + (s− r)Bz(r))−1. (2.7.11)

It holds for all real numbers s and r if z does not belong to ∂Π; otherwise, if z = λ± i0
and if the line {Hr = H0 + rV : r ∈ R} is regular at λ, then (2.7.11) holds for all

real numbers s and r outside R(λ;H0, V ). In particular, the right hand side of (2.7.11)

provides a meromorphic continuation of the left hand side as a function of s to the whole

complex plane.

Lemma 2.7.2. As y → 0, the holomorphic function Tλ+iy(Hs) of s converges to Tλ+i0(Hs)

uniformly on any compact subset of Π which does not contain resonance points corre-

sponding to λ+ i0.

In what follows, the spectra ofAz(s) andBz(s) will play an important role. Since Az(s)

and Bz(s) are compact operators, their spectra consist of isolated eigenvalues of finite

multiplicity and zero. By (2.1.2), the eigenvalue counting measures of Az(s) and Bz(s)

coincide, and therefore it suffices to consider the spectrum of Az(s). Eigenvalues of Az(s)

will be denoted by σz = σz(s). As will be seen later (Proposition 3.1.2), eigenvalues

(with their multiplicities) of Az(s) for different s are connected by a simple relation:

σz(s) = (s− rz)−1, where rz is a complex number independent of s.

Occasionally we also consider the operators

Az(s) = Rz(Hs)V and Bz(s) = V Rz(Hs). (2.7.12)

Their spectral properties are identical to those of Az(s) and Bz(s). By the Limiting

Absorption Principle Az(s) and Bz(s) have well-defined limits Aλ±i0(s) and Bλ±i0(s)

as z = λ + iy approaches λ ± i0, unlike Az(s) and Bz(s); since eventually the limit

z = λ+ iy → λ± i0 will be taken, this is the main reason to work with the former pair

of operators rather than the latter. But as long as z stays outside the real axis or outside
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the common essential spectrum of the operators Hs, practically all other properties of

these two pairs of operators are almost identical, and as a consequence they will be stated

only for Az(s) and Bz(s). Nearly all objects, such as Pz(rz),Az(rz), etc., to be introduced

later, which are naturally associated with Az(s) and Bz(s) have their analogues for Az(s)

and Bz(s); these analogues will be distinguished by underlining, e.g. P z(rz), Az(rz), etc.

The following lemma is well-known.

Lemma 2.7.3. Let s be a real number. If z is a non-real number, then the compact op-

erators Az(s), Bz(s), Az(s) and Bz(s) do not have real eigenvalues except possibly zero.

Moreover, if the operator V is non-negative (respectively, non-positive), then all eigenval-

ues of Az(s), Bz(s), Az(s) and Bz(s) belong to the open complex half-plane C± which z

belongs to (respectively, does not belong to).

However, if z belongs to ∂Π, then Az(s) and Bz(s) may have non-zero real eigenvalues.

In fact, it is these real eigenvalues of Az(s) which are of top interest for the present

paper, and with a bit of exaggeration it can be said that this paper is mainly devoted to

investigation of these real eigenvalues.
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3.1. The vector spaces Υz(rz) and Ψz(rz). Throughout this paper we assume that H0

is a self-adjoint operator from the affine space (2.5.3) and that V is a self-adjoint operator

from the real vector space A0 with factorization (2.5.2). Let λ be a fixed real number.

We assume that the line

γ := {H0 + rV : r ∈ R}

is regular at λ; by definition this means that there exists a non-resonant value of the

coupling constant r, that is, for some value of r the inclusion Hr ∈ R(λ;A, F ) fails

(equivalently, the inclusion λ ∈ Λ(Hr, F ) holds). In this case the set R(λ;H0, V ) of

resonance points rλ is a discrete subset of R, by Theorem 2.6.1.

Let z ∈ Π, let rz ∈ C and let k be a positive integer. Let s be any number for which

the operator Az(s) is defined. Then

(1 + (rz − s)Az(s))ku = 0 (3.1.1)

will be called the resonance equation of order k for the pair (z, rz). The resonance equation

of order 1 is nothing but the Lippmann–Schwinger equation.

Definition 3.1.1. A complex number rz will be called a resonance point corresponding

to z ∈ Π if the resonance equation (3.1.1) of order k = 1 has a non-zero solution.

In other words, rz is a resonance point if and only if the number

σz(s) := (s− rz)−1 (3.1.2)

is a non-zero eigenvalue of the compact operator Az(s). Real resonance points rλ were

defined in the paragraph following Theorem 2.6.2, and these definitions are consistent with

each other. It will be shown below (Proposition 3.1.2) that the definition of resonance

point does not depend on s. Hence, rz depends only on z, H0, V and, in case z ∈ ∂Π,

also on F . If z 6∈ ∂Π, then this definition does not depend on the rigging operator F ,

since in this case both operators Az(s) = FRz(Hs)F
∗J and Rz(Hs)F

∗JF = Rz(Hs)V

make sense and they have the same non-zero eigenvalues by (2.1.1).

According to the correspondence (3.1.2) between resonance points rz and eigenvalues

σz(s) of Az(s), the set of resonance points corresponding to a given z ∈ Π is a discrete

subset of C. Also, (2.7.4) shows that the resonance points corresponding to z are exactly

the poles of the meromorphic function Az(s). For this reason, resonance points may

sometimes be called poles.

Solutions of the resonance equation (3.1.1) of order k will usually be denoted by

u, uz or uz(rz) and will be called resonance vectors of order ≤ k. The order k of a

[55]
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resonance vector u is the smallest positive integer such that u is a solution of the resonance

equation (3.1.1) of order k. The order of a resonance vector will be denoted by d(u). If

necessary, we write dz(u) instead of d(u); also, instead of dλ±i0(u) we often write d±(u).

The finite-dimensional vector space of all resonance vectors of order ≤ k will be

denoted by Υk
z(rz). To be precise, one should indicate dependence of this vector space

on the operators H0, V by writing, say, Υk
z(rz;H0, V ), but since throughout this paper

the operators H0 and V are fixed, the simpler notation will be used. The same remark

applies to many other objects to be introduced later. A vector u = uz(rz) will be called

a resonance vector of order k if u is a resonance vector of order ≤ k but not a resonance

vector of order ≤ k−1. It was proved in [Az4] that the set of solutions of (3.1.1) does not

depend on s. We give here the proof for completeness and for the readers’ convenience.

Proposition 3.1.2. Let z ∈ Π and let rz be a resonance point corresponding to z. The

vector space Υk
z(rz) of solutions of (3.1.1) does not depend on s ∈ R.

Proof. We use induction on k. Let u be a solution of (3.1.1) with k = 1 for the value of

s = r, so that Az(r)u = (r − rz)−1u. It follows from this and (2.7.4) that

Az(s)u = (1 + (s− r)Az(r))−1Az(r)u =

[
1 + (s− r) · 1

r − rz

]−1
1

r − rz
u =

1

s− rz
u.

Hence, if u is a solution of (3.1.1) with k = 1 for one value of s, then u is a solution

of (3.1.1) with k = 1 for any other regular value of s too. Now assume that the assertion

is true for k = n and let u be a solution of (3.1.1) with k = n+ 1 for s = r. Then

(1 + (rz − r)Az(r))(1 + (rz − r)Az(r))nu = 0.

It follows from this and induction base, applied to the vector (1 + (rz − r)Az(r))nu, that

(1 + (rz − s)Az(s))(1 + (rz − r)Az(r))nuz = 0.

Since, by (2.7.5), the operators Az(s) and Az(r) commute, it follows that

(1 + (rz − r)Az(r))n(1 + (rz − s)Az(s))u = 0.

By the induction assumption, applied to the vector (1+(rz−s)Az(s))u, this implies that

(1 + (rz − s)Az(s))n(1 + (rz − s)Az(s))u = 0.

The sequence

Υ1
z(rz) ⊂ · · · ⊂ Υk

z(rz) ⊂ · · · ⊂ K

stabilizes. The union of the vector spaces Υ1
z(rz),Υ

2
z(rz), . . . will be denoted by Υz(rz).

A resonance point rz will be said to have order d if there are resonance vectors of

order d, but there are no resonance vectors of order d+ 1. In other words, the order d of

a resonance point rz is the integer

d = min{k ∈ N : Υk
z(rz) = Υk+1

z (rz)} = min{k ∈ N : Υk
z(rz) = Υz(rz)}. (3.1.3)

Apart from the order d, with every resonance point rz another two positive integers are

naturally associated: the geometric multiplicity m defined by

m = dim Υ1
z(rz) (3.1.4)
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and the algebraic multiplicity N defined by

N = dim Υz(rz). (3.1.5)

Obviously, d + m − 1 ≤ N . Throughout this paper the letters d, m and N will be used

only with these meanings, unless specifically stated otherwise.

The equation

(1 + (rz − s)Bz(s))kψ = 0 (3.1.6)

will be called the co-resonance equation of order k. Its solutions will be denoted by ψ, ψz
or ψz(rz) , and will be called co-resonance vectors of order ≤ k. The finite-dimensional

vector space of all co-resonance vectors of order ≤ k will be denoted by Ψk
z(rz). A co-

resonance vector ψ has order k if it has order ≤ k but not ≤ k − 1. The sequence

Ψ1
z(rz) ⊂ · · · ⊂ Ψk

z(rz) ⊂ · · · ⊂ K

stabilizes; its union will be denoted by Ψz(rz). Similarly to Proposition 3.1.2, one can

prove the following

Proposition 3.1.3. Let z ∈ Π and let rz be a resonance point corresponding to z. The

vector space Ψk
z(rz) of solutions of (3.1.6) does not depend on s ∈ R.

This proposition also follows from Proposition 3.1.2 and Lemma 3.1.4.

Lemma 3.1.4. Let z ∈ Π and let rz be a resonance point corresponding to z. The dimen-

sions of the four vector spaces

Υj
z(rz), Υj

z̄(r̄z), Ψj
z(rz) and Ψj

z̄(r̄z)

coincide for all j = 1, 2, . . . . Moreover, for all j = 1, 2, . . . and all non-resonant real

numbers s the mappings

J : Υj
z(rz)→ Ψj

z(rz) and Tz(Hs) : Ψj
z(rz)→ Υj

z(rz)

are linear isomorphisms.

In particular, the dimensions of the four vector spaces

Υz(rz), Υz̄(r̄z), Ψz(rz) and Ψz̄(r̄z)

coincide and J is a linear isomorphism of Υz(rz) and Ψz(rz).

Proof. Let j be a positive integer and s a real number. The resonance equation (3.1.1)

implies that if u ∈ Υj
z(rz), then Ju ∈ Ψj

z(rz). Also, if Ju = 0, where u is a solution of

(3.1.1), then it follows from this equation, after expanding brackets, that u = 0. Hence,

J is an injective linear operator from Υj
z(rz) into Ψj

z(rz).

Similarly, the co-resonance equation (3.1.6) implies that if ψ ∈ Ψj
z(rz), then Tz(Hs)ψ

∈ Υj
z(rz); further, if Tz(Hs)ψ = 0, where ψ is a solution of (3.1.6), then it follows from

this equation that ψ = 0. Hence, Tz(Hs) is an injective linear operator from Ψj
z(rz) into

Υj
z(rz).

Thus, the vector spaces Υj
z(rz) and Ψj

z(rz) are linearly isomorphic and the mappings

J : Υj
z(rz)→ Ψj

z(rz) and Tz(Hs) : Ψj
z(rz)→ Υj

z(rz) are linear isomorphisms.

Further, let S = [1 + (s− rz)Az(s)]j ; then

dim Υj
z(rz) = dim kerS = dim kerS∗ = dim Ψj

z̄(r̄z),
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where the first and the third equalities directly follow from the definitions of Υj
z(rz)

and Ψj
z̄(r̄z), and the second equality follows from the fact that the Fredholm index

of S is zero, since the operator S − 1 is compact. Consequently, the dimensions of

Υj
z(rz), Υj

z̄(r̄z), Ψj
z(rz) and Ψj

z̄(r̄z) are the same.

Corollary 3.1.5. If rz is a resonance point of algebraic multiplicity N , order d and

geometric multiplicity m, corresponding to z, then r̄z is a resonance point of algebraic

multiplicity N , order d and geometric multiplicity m, corresponding to z̄.

Corollary 3.1.6. The vector spaces Υz(rz) and Υk
z(rz), k = 1, 2, . . . , are invariant

under the operator Az(s) = Tz(Hs)J for any non-resonant s ∈ R.

Lemma 3.1.7. For any non-real z and any resonance point rz corresponding to z,

Υz(rz) ⊂ FD and Ψz(rz) ⊂ JFD,

where D = dom(H0). In particular, Ψz(rz) ⊂ dom(F ∗).

Proof. An element u of Υz(rz) is a solution of the resonance equation (3.1.1). Hence, any

such vector belongs to the range of Az(s). This range is a subset of the range of FRz(Hs),

which is FD. This proves the first equality. The second equality follows similarly from

the co-resonance equation (3.1.6). Finally, the last inclusion follows from the assumption

(2.5.9).

3.2. The idempotents Pz(rz) and Qz(rz). For a given element z of Π with a cor-

responding resonance point rz ∈ C an idempotent operator Pz(rz), which acts on the

Hilbert space K and has range Υz(rz), will be defined by

Pz(rz) =
1

2πi

∮
C(σz(s))

(σ −Az(s))−1 dσ, (3.2.1)

where C(σz(s)) is a small circle enclosing the eigenvalue (3.1.2) of Az(s), so that there

are no other eigenvalues of this operator on or inside the circle. The contour integral

in (3.2.1) and in all the following formulas is taken in the uniform operator topology.

Apart from the operator Pz(rz) we shall sometimes need its modification

P z(rz) =
1

2πi

∮
C(σz(s))

(σ −Az(s))−1 dσ, (3.2.2)

where Az(s) = Rz(Hs)V . As long as the variable z is non-real, the properties of Pz(rz)

and P z(rz) are quite similar; for this reason they are given only for Pz(rz). An essential

difference between Pz(rz) and P z(rz) is that the former operator has the limit Pλ±i0(rz)

as z approaches its real part λ from above or below, while the latter may not have such a

limit. In fact, this is the main reason for considering Pz(rz) instead of P z(rz). The same

remark applies to other “underlined” versions of operators to be introduced later.

The following assertion was proved in [Az4]; its proof is given below for completeness.

Proposition 3.2.1. The idempotent operator Pz(rz) defined by (3.2.1) does not depend

on s.

Proof. Let P1 and P2 be two idempotents Pz(rz) defined for two different values s1 and

s2 of s. Since by Proposition 3.1.2 these idempotents have the same range Υz(rz), we have
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P1P2 = P2 and P2P1 = P1. Since, by (2.7.5), the operators Az(s1) and Az(s2) commute,

it follows from (3.2.1) that so do P1 and P2. Therefore,

P1 = P2P1 = P1P2 = P2.

This result also follows from Proposition 3.2.3.

We define an idempotent operator Qz(rz), which acts on the Hilbert space K and has

range Ψz(rz), by

Qz(rz) =
1

2πi

∮
C(σz(s))

(σ −Bz(s))−1 dσ, (3.2.3)

where the contour C(σz(s)) is the same as in (3.2.1). The “underlined” version of Qz(rz)

is defined by

Q
z
(rz) =

1

2πi

∮
C(σz(s))

(σ −Bz(s))−1 dσ. (3.2.4)

The proof of the following proposition is similar to that of Proposition 3.2.1.

Proposition 3.2.2. The idempotent operator Qz(rz) defined by (3.2.3) does not depend

on s.

The following equality follows from the definitions (3.2.1) and (3.2.3) of the idempo-

tents Pz(rz) and Qz(rz), norm continuity of taking the adjoint T 7→ T ∗, and (2.7.10):

(Pz(rz))
∗ = Qz̄(r̄z). (3.2.5)

Proposition 3.2.3. Let z ∈ Π and let rz be a resonance point corresponding to z. The

idempotent Pz(rz) is equal to the residue of the function Az(s) of s corresponding to the

pole rz:

Pz(rz) =
1

2πi

∮
C(rz)

Az(s) ds, (3.2.6)

where C(rz) is a small circle enclosing rz in counter-clockwise direction.

Proof. Let r be a complex number which lies outside of the circle C(rz). Then (2.7.4)

implies ∮
C(rz)

Az(s) ds =

∮
C(rz)

(1 + (s− r)Az(r))−1Az(r) ds

=

∮
C(rz)

1

s− r
(
1− (1 + (s− r)Az(r))−1

)
ds.

Since r lies outside of C(rz), the integral of 1/(s− r) vanishes. Hence,∮
C(rz)

Az(s) ds =

∮
C(rz)

1

r − s
(1 + (s− r)Az(r))−1 ds.

We make the change of variables σ = 1/(r − s). When s goes around rz in counter-

clockwise direction, so does σ around σz(r) := 1/(r − rz). Hence, from the last displayed

equality we obtain∮
C(rz)

Az(s) ds =

∮
C(σz(r))

σ(1− σ−1Az(r))
−1σ−2 dσ

=

∮
C(σz(r))

(σ −Az(r))−1 dσ = 2πiPz(rz),

where C(σz(r)) is the image of the contour C(rz) under the mapping s 7→ σ = 1/(r − s).
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Similarly one proves:

Proposition 3.2.4. Let z ∈ Π and let rz be a resonance point corresponding to z. The

idempotent Qz(rz) is equal to the residue of the function Bz(s) of s corresponding to the

pole rz:

Qz(rz) =
1

2πi

∮
C(rz)

Bz(s) ds, (3.2.7)

where C(rz) is a small circle enclosing rz in counter-clockwise direction.

The next proposition directly follows from the definition (3.2.1) and standard prop-

erties of Riesz idempotents (see [Ka2]), but nonetheless we give another proof of it.

Proposition 3.2.5. If for a given z ∈ Π the operator Az(s) has two different poles r1
z

and r2
z , then the corresponding idempotents Pz(r

1
z) and Pz(r

2
z) satisfy

Pz(r
1
z)Pz(r

2
z) = 0. (3.2.8)

Proof. Proposition 3.2.3 and (2.7.3) imply that

Pz(r
1
z)Pz(r

2
z) =

1

(2πi)2

∮
Ct(r1z)

∮
Cs(r2z)

Az(t)Az(s) dt ds

=
1

(2πi)2

∮
Ct(r1z)

∮
Cs(r2z)

Az(t)−Az(s)
s− t

dt ds, (3.2.9)

where the contours Ct(r
1
z) and Cs(r

2
z), enclosing (only) the points r1

z and r2
z respectively,

can be chosen so that they do not intersect and (therefore) do not enclose one another.

Under this choice of the contours, for any t ∈ Ct(r1
z) the function Az(t)/(s− t) of s is

holomorphic on and inside Cs(r
2
z), and therefore its integral vanishes. For an analogous

reason, the integral of Az(s)/(s− t) vanishes too.

Similarly, one shows that

Qz(r
1
z)Qz(r

2
z) = 0.

Now we record some relations between Pz(rz), Qz(rz), Tz(Hs) and J which will be used

later. Let z ∈ Π and let rz be a resonance point corresponding to z. The equality (2.1.4)

combined with the definitions (3.2.1) and (3.2.3) of the idempotents Pz(rz) and Qz(rz)

implies

JPz(rz) = Qz(rz)J, (3.2.10)

Pz(rz)Tz(Hs) = Tz(Hs)Qz(rz). (3.2.11)

From Lemma 3.1.4 and (3.2.10) we deduce

JPz(rz) = Qz(rz)JPz(rz) = Qz(rz)J. (3.2.12)

The equality

Az(s)Pz(rz) = Pz(rz)Az(s) (3.2.13)

is a direct consequence of (3.2.1).
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3.3. The nilpotent operators Az(rz) and Bz(rz). Let z ∈ Π and let rz be a resonance

point corresponding to z. We introduce a compact operator Az(rz) on the auxiliary

Hilbert space K by

Az(rz) =
1

2πi

∮
C(rz)

(s− rz)Az(s) ds, (3.3.1)

where C(rz) is a small circle which contains only one resonance point rz and which is

counter-clockwise oriented around rz. Quite often the dependence of Az(rz) on rz will

not be indicated, especially in proofs. Also, instead of Az(rz)
j we shall write Aj

z(rz).

Similarly, one introduces the operator

Bz(rz) =
1

2πi

∮
C(rz)

(s− rz)Bz(s) ds. (3.3.2)

Apart from Az(rz) and Bz(rz) we may sometimes need their “underlined” versions

Az(rz) =
1

2πi

∮
C(rz)

(s− rz)Az(s) ds, (3.3.3)

Bz(rz) =
1

2πi

∮
C(rz)

(s− rz)Bz(s) ds. (3.3.4)

But since many properties of Az(rz) and Az(rz), etc., are similar, they are given only

for Az(rz), etc.

Proposition 3.3.1. Let z ∈ Π and let rz ∈ C be a resonance point corresponding to z.

For any positive integer j,

Aj
z(rz) =

1

2πi

∮
C(rz)

(s− rz)jAz(s) ds. (3.3.5)

Proof. Let A
(j)
z be the right hand side above. We have A

(1)
z = Az(rz). The claim will

be proved if it is shown that A
(m)
z A

(k)
z = A

(m+k)
z for any positive integers m and k. We

have

A(m)
z A(k)

z =
1

(2πi)2

∮
Cs(rz)

(s− rz)mAz(s)
(∮

Ct(rz)

(t− rz)kAz(t) dt
)
ds

=
1

(2πi)2

∮
Cs(rz)

∮
Ct(rz)

(s− rz)m(t− rz)k
Az(s)−Az(t)

t− s
dt ds.

In this expression it can be assumed that the contour Cs(rz) lies strictly inside Ct(rz).

Under this choice of contours the second summand of the integrand which contains Az(t)

is holomorphic inside Cs(rz) with respect to s, and therefore its integral over Cs(rz)

vanishes:

A(m)
z A(k)

z =
1

(2πi)2

∮
Cs(rz)

∮
Ct(rz)

(s− rz)m(t− rz)k
Az(s)

t− s
dt ds

=
1

(2πi)2

∮
Cs(rz)

(s− rz)mAz(s)
(∮

Ct(rz)

(t− rz)k

t− s
dt

)
ds
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=
1

2πi

∮
Cs(rz)

(s− rz)mAz(s) · (s− rz)k ds

=
1

2πi

∮
Cs(rz)

(s− rz)m+kAz(s) ds = A(m+k)
z ,

where in the third equality the Cauchy integral formula is used.

Proposition 3.2.3 and (3.3.5) allow us to write a bit informally

Pz(rz) = A0
z(rz). (3.3.6)

With this convention, (3.3.5) holds for j = 0 too, according to (3.2.6).

Relation (2.7.5), combined with (3.2.6) and (3.3.1), implies that

Az(rz)Pz(rz) = Pz(rz)Az(rz) = Az(rz). (3.3.7)

This also follows from the general theory of operator-valued holomorphic functions [Ka2].

If r1
z and r2

z are two different resonance points corresponding to z, then

Az(r
1
z)Az(r

2
z) = 0. (3.3.8)

Indeed, Az(r
1
z)Az(r

2
z) = Az(r

1
z)Pz(r

1
z)Pz(r

2
z)Az(r

2
z) = 0, where the first equality follows

from (3.3.7) and the second from (3.2.8).

The equalities

Qz(r
1
z)Qz(r

2
z) = 0, (3.3.9)

Bz(r
1
z)Bz(r

2
z) = 0 (3.3.10)

can be proved by the same argument; they also follow from (3.2.8) and (3.3.8), by us-

ing (3.2.5) and (3.3.11). It follows from (3.3.1) and (3.3.2) that for any z ∈ Π and any

resonance point rz corresponding to z,

A∗z(rz) = Bz̄(r̄z), (3.3.11)

and since JAz(s) = Bz(s)J ,

JAz(rz) = Bz(rz)J. (3.3.12)

Similarly to (3.3.5)–(3.3.7) we have

Bj
z(rz) =

1

2πi

∮
C(rz)

(s− rz)jBz(s) ds, (3.3.13)

Qz(rz) = B0
z(rz), (3.3.14)

BzQz(rz) = Qz(rz)Bz(rz) = Bz(rz). (3.3.15)

Recall that rz is a pole of the meromorphic function Az(s) of s. Proposition 3.3.1 implies

that the Laurent series of Az(s) in a neighbourhood of rz is, for some positive integer d,

Az(s) = Ãz,rz (s) +
1

s− rz
Pz(rz) +

1

(s− rz)2
Az(rz) + · · ·+ 1

(s− rz)d
Ad−1
z (rz),

(3.3.16)

where Ãz,rz (s) is the holomorphic part of the Laurent series. It will be shown later that

d is equal to the order of rz. This Laurent series is an analogue of (2.2.1); the difference

is that (3.3.16) is a Laurent series of a function of the coupling constant, while (2.2.1)
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is a Laurent series of a function of the spectral parameter (energy). The finiteness of

the Laurent series follows from the fact that (s− rz)−1 is an isolated eigenvalue of finite

multiplicity of the compact operator Az(s). It follows from (3.3.16) that if r1
z and r2

z are

two resonance points, then

Az(s) = Ãz,r1z,r2z (s) +
1

s− r1
z

Pz(r
1
z) +

1

(s− r1
z)

2
Az(r

1
z) + · · ·+ 1

(s− r1
z)
d1

Ad1−1
z (r1

z)

+
1

s− r2
z

Pz(r
2
z) +

1

(s− r2
z)

2
Az(r

2
z) + · · ·+ 1

(s− r2
z)
d2

Ad2−1
z (r2

z), (3.3.17)

where dν is the order of rνz and where the meromorphic function Ãz,r1z,r2z (s) is holomor-

phic at r1
z and r2

z . Similarly, the expansion (3.3.17) can be written for any finite set of

resonance points r1
z , r

2
z , . . . . If the perturbation operator V has finite rank, then the set

of resonance points rz is finite and the Laurent expansion, similar to (3.3.17) but written

for the set of all resonance points, gives the Mittag–Leffler representation of the mero-

morphic function Az(s). Whether this is true for infinite-rank V is unknown to me. The

equalities (3.3.16) and (3.3.7) imply that

Ãz,rz (s)Pz(rz) = Pz(rz)Ãz,rz (s).

In fact, it will be shown later that this product is zero.

Lemma 3.3.2. Let z ∈ Π and let rz be a resonance point corresponding to z. For any

non-negative k and any non-resonance point r,∮
C(σz(r))

(σ − σz(r))k(σ −Az(r))−1 dσ

=
1

(r − rz)k

∮
C(rz)

(
s− rz
r − rz

+

(
s− rz
r − rz

)2

+ · · ·
)k
Az(s) ds, (3.3.18)

where C(σz(r)) is an anti-clockwise oriented contour which encloses the pole

σz(r) = (r − rz)−1,

and where C(rz) is an anti-clockwise oriented small enough contour which encloses only

the pole rz and such that the above series converges for all s ∈ C(rz).

Proof. This is a calculation similar to the one from the proof of Proposition 3.2.3, but it

is given here for the sake of completeness.

The contour C(rz) can be chosen as a small enough circle with centre at rz such that

the number r lies outside of it. In this case the geometric series on the right hand side of

(3.3.18) converges. We denote the right hand side by (E), and compute:

(E) =
1

(r − rz)k

∮
C(rz)

(
s− rz
r − rz

·
(

1− s− rz
r − rz

)−1)k
Az(s) ds

=
1

(r − rz)k

∮
C(rz)

(
s− rz
r − s

)k
Az(s) ds.

Now, following the proof of Proposition 3.2.3, we obtain

(E) =
1

(r − rz)k

∮
C(rz)

(
s− rz
r − s

)k
1

s− r
(
1− (1 + (s− r)Az(r))−1

)
ds.
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Since r lies outside of the contour C(rz), it follows that

(E) =
1

(r − rz)k

∮
C(rz)

(
s− rz
r − s

)k
1

r − s
(1 + (s− r)Az(r))−1 ds.

Let σ = 1/(r − s). When s goes around rz in counter-clockwise direction, so does σ

around σz(r) = 1/(r − rz). Noting that

1

(r − rz)k

(
s− rz
r − s

)k
= (σ − σz(r))k,

1

r − s
(1 + (s− r)Az(r))−1ds = (σ −Az(r))−1dσ

completes the proof.

Proposition 3.3.3. Let z ∈ Π and let rz ∈ C be a resonance point corresponding to z.

The terms with negative powers in the Laurent expansion of the function (σ − Az(r))−1

of σ at σ = σz(r) = (r−rz)−1 are linear combinations of powers of Az(rz). In particular,

taking k = 1 in (3.3.18) gives the coefficient of (σ − σz)−2 :

1

2πi

∮
C(σz(r))

(σ − σz(r))(σ −Az(r))−1 dσ = σ2
z(r)Az(rz) + σ3

z(r)A2
z(rz) + · · · .

Taking k = d−1 in (3.3.18), where d is the order of rz, gives the coefficient of (σ−σz)−d:∮
C(σz(r))

(σ − σz(r))d−1(σ −Az(r))−1 dσ = σ2d−2
z (r)Ad−1

z (rz). (3.3.19)

For other values of k the coefficient of (σ − σz)−k−1 in (3.3.18) has the form

σ2k
z (r)Ak

z(rz) + · · · , (3.3.20)

where the dots denote terms containing Aj
z(rz) with j > k.

Proof. This immediately follows from (3.3.16) and (3.3.18).

One can prove an assertion similar to Proposition 3.3.3 for the operator Bz(s).

Proposition 3.3.4. The terms with negative powers in the Laurent expansion of the

function (σ −Bz(r))−1 of σ at σ = σz(r) are linear combinations of powers of Bz(rz).

Similarly to (3.3.16) we have

Bz(s) = B̃z,rz (s) +
1

s− rz
Qz(rz) +

1

(s− rz)2
Bz(rz) + · · ·+ 1

(s− rz)d
Bd−1
z (rz),

(3.3.21)

where B̃z,rz (s) is the holomorphic part of the Laurent series.

Formulas (3.3.16), (3.3.21), (3.2.10) and (3.3.12) imply that the holomorphic parts

Ãz,rz (s) and B̃z,rz (s) satisfy

JÃz,rz (s) = B̃z,rz (s)J.
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3.4. Resonance vectors of order k. Using a polarization type argument and (2.7.3)

allows one to rewrite the left hand side of the resonance equation (3.1.1) of order k as an

expression linearly dependent on Az(sj). This is done in the following proposition, which

will prove useful.

Proposition 3.4.1. If z ∈ Π, if rz is a resonance point corresponding to z and if distinct

numbers s1, . . . , sk are non-resonant, then

k∏
j=1

[1+(rz−sj)Az(sj)] =

k∑
j=1

(sj−rz)k−1(1+(rz−sj)Az(sj))
k∏

i=1, i 6=j

(sj−si)−1. (3.4.1)

Proof. For k = 1 this equality is trivial. In the case of k = 2, the second resolvent

identity (2.7.3) implies

[1 + (rz − s)Az(s)][1 + (rz − r)Az(r)]

= 1 + (rz − s)Az(s) + (rz − r)Az(r) +
(rz − s)(rz − r)

s− r
(Az(r)−Az(s))

=
s− rz
s− r

(1 + (rz − s)Az(s)) +
r − rz
r − s

(1 + (rz − r)Az(r)), (3.4.2)

and this gives (3.4.1) for k = 2. Assuming that (3.4.1) holds for k − 1 instead of k, we

have

(E) :=

k∏
j=1

[1 + (rz − sj)Az(sj)] = (1 + (rz − sk)Az(sk))

k−1∏
j=1

[1 + (rz − sj)Az(sj)]

= (1 + (rz − sk)Az(sk))

k−1∑
j=1

(sj − rz)k−2(1 + (rz − sj)Az(sj))
k−1∏

i=1, i 6=j

(sj − si)−1.

Applying (3.4.2) to the product (1 + (rz − sk)Az(sk))(1 + (rz − sj)Az(sj)) gives

(E) =

k−1∑
j=1

(sj − rz)k−2

[
sk − rz
sk − sj

(1 + (rz − sk)Az(sk)) +
sj − rz
sj − sk

(1 + (rz − sj)Az(sj))
]

×
k−1∏

i=1, i 6=j

(sj − si)−1

=

k−1∑
j=1

(sj − rz)k−1(1 + (rz − sj)Az(sj))
k∏

i=1, i 6=j

(sj − si)−1

− (sk − rz)(1 + (rz − sk)Az(sk))
k−1∑
j=1

(sj − rz)k−2
k∏

i=1, i 6=j

(sj − si)−1.

Thus the proof will be complete if it is shown that

k∑
j=1

(sj − rz)k−2
k∏

i=1, i 6=j

(sj − si)−1 = 0. (3.4.3)

By Lemma 2.3.1, the left hand side is the divided difference of order k − 1 of f(s) =

(s− rz)k−2. Hence, (3.4.3) follows from Lemma 2.3.2.

Propositions 3.4.1 and 3.1.2 imply the following assertion.
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Theorem 3.4.2. The resonance equation (3.1.1) of order k is equivalent to any of the

following two equations:

k∏
j=1

(1 + (rz − sj)Az(sj))u = 0 (3.4.4)

or
k∑
j=1

(sj − rz)k−1(u+ (rz − sj)Az(sj)u)

k∏
i=1, i 6=j

(sj − si)−1 = 0, (3.4.5)

where s1, . . . , sk is any set of k non-resonance points.

Proof. The commutativity property (2.7.5) of Az(s) and Proposition 3.1.2 imply that the

resonance equation (3.1.1) is equivalent to (3.4.4). Proposition 3.4.1 implies that (3.4.4)

is equivalent to (3.4.5).

Theorem 3.4.3. If u(k) is a resonance vector of order k, then

Az(s)u
(k) =

k−1∑
j=0

u(k−j)

(s− rz)j+1
, (3.4.6)

where u(k−j) is a resonance vector of order k − j. Moreover,

u(k−j) = Aj
z(rz)u

(k), (3.4.7)

and thus the operator Aj
z(rz) lowers the order of a resonance vector u ∈ Υz(rz) by j,

where j = 1, 2, . . . .

In particular, the operator Az(rz) is nilpotent: Ad
z(rz) = 0, where d is the order of rz,

and the geometric multiplicity m of rz is equal to m = dim ker Az(rz).

Proof of Theorem 3.4.3. We use induction on k. For k = 1 the equality (3.4.6) is equiva-

lent to the resonance equation (3.1.1) of order k = 1. Assume that the assertion holds for

k = n−1 and let u = u(n) be a vector of order n. Since u satisfies the resonance equation

of order n, it follows from Theorem 3.4.2 that u satisfies (3.4.5). Hence, taking in (3.4.5)

(with k = n) s = sn we deduce that

Az(s)u =

n−1∑
j=0

u(n−j)

(s− rz)j+1
, (3.4.8)

where u(n−j), j = 0, 1, . . . , n − 1, are some vectors; we have to show that u(n−j) has

order n − j for all j = 0, 1, . . . , n − 1. Applying to both sides of (3.4.8) the operator

1 + (rz − r)Az(r) and using the commutativity (2.7.5) of Az(s) and Az(r) we obtain

Az(s)[1 + (rz − r)Az(r)]u = [1 + (rz − r)Az(r)]Az(s)u =

n−1∑
j=0

φ(n−j−1)

(s− rz)j+1
, (3.4.9)

where

φ(n−j−1) = [1 + (rz − r)Az(r)]u(n−j), j = 0, 1, . . . , n− 1, (3.4.10)

and where φ(0) = 0. Since u is a resonance vector of order n, [1 + (rz − r)Az(r)]u is a

resonance vector of order n− 1. Hence, by induction assumption, it follows from (3.4.9)



3.4. Resonance vectors of order k 67

that φ(n−j−1) has order n−j−1. Since 1+(rz−r)Az(r) decreases the order of a resonance

vector by 1, (3.4.10) implies that u(n−j) is a vector of order n− j. The proof of the first

part of the theorem is complete.

The equality (3.4.7) follows from (3.3.5) and (3.4.6).

The equality (3.4.6) can be rewritten as

Az(s)Pz(rz) =

d−1∑
j=0

(s− rz)−j−1Aj
z(rz), (3.4.11)

where d is the order of the resonance point rz.

Corollary 3.4.4. The holomorphic part Ãz,rz (s) of the meromorphic function Az(s) in

a neighbourhood of rz satisfies

Ãz,rz (s)Pz(rz) = Pz(rz)Ãz,rz (s) = 0. (3.4.12)

Proof. This follows from (3.3.16), (3.3.7) and (3.4.11).

Proposition 3.4.5. If rz is a resonance point of order d and if r and s+ r are regular

points such that |s| < |r − rz|, then

[1 + sAz(r)]
−1Pz(rz) =

d−1∑
j=0

(r − rz)−jRj
(

s

rz − r

)
Aj
z(rz), (3.4.13)

where Rj(w), j = 0, 1, 2, . . . , are some holomorphic functions given by power series cen-

tred at w = 0 with radius of convergence equal to 1.

Proof. The numbers r and s+ r are to be regular points for (3.4.13) to hold, since oth-

erwise the operator Az(r) does not exist or 1 + sAz(r) is not invertible.

It follows from (2.7.6) and (3.4.11) that

An+1
z (r)Pz(rz) =

(−1)n

n!

dn

drn

d−1∑
j=0

1

(r − rz)j+1
Aj
z(rz)

=
1

n!

d−1∑
j=0

(j + 1)(j + 2) . . . (j + n)

(r − rz)j+n+1
Aj
z(rz) =

d−1∑
j=0

Cnn+j

(r − rz)j+n+1
Aj
z(rz),

where Cnn+j is the binomial coefficient. Using this, for small enough s we have

[1 + sAz(r)]
−1Pz(rz) =

∞∑
n=0

(−s)nAnz (r)Pz(rz) =

∞∑
n=0

(−s)n
d−1∑
j=0

Cn−1
n+j−1

(r − rz)j+n
Aj
z(rz)

=

d−1∑
j=0

(r − rz)−j
∞∑
n=0

(
−s

r − rz

)n
Cn−1
n+j−1A

j
z(rz).

The functions Rj(w) =
∑∞
n=0 C

n−1
n+j−1w

n, j = 1, 2, . . . , are holomorphic with radius

of convergence 1. It follows that (3.4.13) holds for all small enough s, and therefore

by analytic continuation it holds for all s such that 1 + sAz(r) is invertible and |s| <
|r − rz|. The last displayed equality also shows that if |s| < |r − rz|, then the function
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[1 + sAz(r)]
−1Pz(rz) admits analytic continuation to non-regular points s which belong

to the disk |s| < |r − rz|.

Recall that the “underlined” versions P z(rz) and Az(rz) of Pz(rz) and Az(rz) are

defined by (3.2.2) and (3.3.3). In the following proposition we use the “underlined” op-

erators, since for “non-underlined” operators it does not make sense.

Proposition 3.4.6. For any resonance point rz corresponding to a non-real number z,

(Hrz − z)P z(rz) = −VAz(rz). (3.4.14)

Proof. From (2.7.4) we have

(1 + (s− r)Az(r))Az(s) = Az(r).

Substituting for Az(s) its Laurent expansion (3.3.16), we find a Laurent expansion of the

left hand side as a function of s. Since the right hand side is constant, all coefficients

except one in this Laurent expansion are zero. In particular, calculating the coefficient of

(s− rz)−1 we find that

(1 + (rz − r)Az(r))P z(rz) = −Az(r)Az(rz).

Multiplying both sides by Hr − z gives (3.4.14).

The equality (3.4.14) is plainly equivalent to the following proposition.

Corollary 3.4.7. Let z be a non-real number and let rz be a resonance point corre-

sponding to z. If u
(k)
z = Fχ

(k)
z is a vector of order k, then

(Hrz − z)χ(1)
z = 0,

(Hrz − z)χ(2)
z = −V χ(1)

z ,

· · ·

(Hrz − z)χ(k)
z = −V χ(k−1)

z ,

where the vectors u
(j)
z = Fχ

(j)
z satisfy (3.4.7).

3.5. The holomorphic part of Az(s). In this subsection we study the holomorphic

part Ãz,rz (s) of the Laurent expansion (3.3.16) of Az(s) at a resonance point s = rz.

Proposition 3.5.1. If z ∈ Π and if rz is a resonance point corresponding to z, then for

any non-resonant value of s we have

Ãz,rz (r) = Ãz,rz (s)(1 + (s− r)Ãz,rz (r)) (3.5.1)

as equality of two holomorphic functions of r.

Proof. Using (2.7.4) and the Laurent expansion (3.3.16) of Az(s) we have

Az(r) = Az(s)(1 + (s− r)Az(r))

= Az(s)
(

1 + (s− r)Ãz,rz (r) + (s− r)
d∑
j=1

(r − rz)−jAj−1
z

)
.

Here we consider both sides as meromorphic functions of r, so s is a fixed number. One

can see that the holomorphic part of (s − r)
∑d
j=1(r − rz)−jAj−1

z at r = rz is −Pz(rz).
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Hence, comparing holomorphic parts at r = rz of the last equality, we find that

Ãz,rz (r) = Az(s)
(
1 + (s− r)Ãz,rz (r)− Pz(rz)

)
. (3.5.2)

Formulas (3.4.12) and (3.3.7) combined with (3.3.16) imply Az(s)(1−Pz(rz)) = Ãz,rz (s)

and Az(s)Ãz,rz (r) = Ãz,rz (s)Ãz,rz (r). Combining these equalities with (3.5.2) gives

(3.5.1).

Another way to prove this proposition is to observe that, since Pz(rz) and Az(s)

commute, the kernel of Pz(rz) reduces Az(s) and by (3.3.16) the reduction is Ãz,rz (s).

Hence, the claim follows from (2.7.4) and (3.4.12). From this observation it also follows

that the kernel and range of Ãz,rz (r) do not depend on r. Using (3.5.1) and a standard

Fredholm alternative argument one can show that 1+(s−r)Ãz,rz (r) is invertible, so that

Ãz,rz (s) = (1 + (s− r)Ãz,rz (r))−1Ãz,rz (r). (3.5.3)

Similar equalities also hold for Ãz,r1z,r2z , etc.

Since rz is a pole of Az(s) the expression Az(rz) does not make sense, but the value

Ãz,rz (rz) of the holomorphic part Ãz,rz (s) at s = rz is defined. In particular,

Ãz,rz (s) = (1 + (s− rz)Ãz,rz (rz))−1Ãz,rz (rz). (3.5.4)

The equality (3.5.4) allows us to find the Taylor series of Ãz,rz (s) at s = rz:

Ãz,rz (s) = Ãz,rz (rz)− Ã2
z,rz (rz)(s− rz) + Ã3

z,rz (rz)(s− rz)
2 − · · · .

It is possible that Ãz,rz (rz) = 0, but this is very unlikely, since it would imply that

Ãz,rz (s) = 0 for all s and therefore according to (3.3.16) that rz is the only resonance

point corresponding to z.

Similar properties hold for the holomorphic part B̃z(s) of Bz(s). One can also see that

(Ãz,rz (s))
∗ = B̃z̄,r̄z (s̄) and JÃz,rz (s) = B̃z,rz (s)J.



4. Geometric meaning of Υ1
λ+i0(rλ)

This and subsequent sections are independent of each other.

In scattering theory one may distinguish three types of states: scattering states, bound

states and states with some kind of erratic behaviour, which we shall call erratic states (see

e.g. [T, RS3]). Bound states describe localized particles, while scattering states describe

particles which are free at t→ ±∞. Erratic states include trapped states, which describe

particles which are free at t → −∞ or respectively at t → ∞ but localized at t → ∞,

or respectively at t→ −∞, and as such, trapped states describe processes of capture or

respectively decay. For this reason we may sometimes refer to erratic states as trapped

states.

Bound states are eigenvectors of the full Hamiltonian H = H0 + V , so they are

attributed to point spectrum; the vector space of scattering states of a fixed energy λ

can be seen as a fibre Hilbert space hλ (on-shell Hilbert space) and thus they can be

attributed to absolutely continuous spectrum; finally, erratic states should be attributed

to singular continuous spectrum. While the states ψ of all three types are eigenvectors of

the full Hamiltonian in the sense that they satisfy the eigenvector equationHψ = λψ, only

bound states belong to the Hilbert space. Scattering and erratic states are usually called

generalized eigenvectors. For the Schrödinger operator −∆+V , the scattering and erratic

states are given by functions which do not belong to L2(Rν). In an abstract setting one

may consider a rigged Hilbert space (2.4.1) to describe generalized eigenvectors. That is,

proper eigenvectors are elements of H while generalized eigenvectors are elements of H−.

Since the rigging operator F provides natural isomorphisms of Hilbert spaces H and K+

on the one hand, and of Hilbert spaces H− and K on the other hand, one may also treat

proper eigenvectors as elements of K+ and generalized eigenvectors as elements of K.

Let H0 be a self-adjoint operator from the affine space (2.5.3) which is regular at an

essentially regular point λ, and let V ∈ A0 be a perturbation. At the discrete set of real

resonance points rλ of the triple (λ;H0, V ) the operator H0 + rλV ceases to be regular

at λ. A natural question is why this can happen. By Proposition 2.6.3, one reason is that λ

can be an eigenvalue of H0 + rλV . For λ outside the essential spectrum this is the only

reason. But if λ belongs to the essential spectrum then the operator H0 + rλV may still

fail to be regular at λ even if λ is not an eigenvalue. Intuitively, if Hr is regular at λ then

all generalized eigenvectors are scattering states which form the fibre Hilbert space hλ.

Therefore it is natural to expect that if λ is not an eigenvalue of Hr but nevertheless Hr

is not regular at λ, then the operator H0 + rλV should have trapped eigenvectors, that

is, generalized eigenvectors which are neither proper eigenvectors nor the elements of

[70]
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the Hilbert space hλ of scattering states. Results of this section formally confirm this

assertion. Namely, it is shown that the vector space

Υ1
λ+i0(rλ)

of solutions of the equation

u+ (rλ − r)Tλ+i0(Hr)Ju = 0

can be considered as a proper replacement of the vector space of proper eigenvectors in

the sense that the latter space is naturally linearly isomorphic to a subspace of Υ1
λ+i0(rλ).

The linear isomorphism is natural in the sense that it is given by the rigging operator F .

Thus, the dimension of Υ1
λ+i0(rλ) is the sum of the dimension of the vector space of

proper eigenvectors and the dimension of the factor space of trapped vectors defined up

to an eigenvector.

The eigenvalue equation for the perturbed operator Hr = H0 + rV ,

(H0 + rV )χ = λχ,

can be rewritten formally as the homogeneous Lippmann–Schwinger equation ([LSch],

see also e.g. [RS3, (81)], [T])

χ+ r(H0 − λ)−1V χ = 0. (4.0.1)

If λ lies outside the essential spectrum, then the Lippmann–Schwinger equation makes

perfect sense and is equivalent to the eigenvalue equation, but if λ belongs to the essential

spectrum, then the Lippmann–Schwinger equation should be rewritten to make sense.

One way of doing so is to factorize the perturbation V as F ∗JF , where F is an operator

acting from the main Hilbert space to an auxiliary Hilbert space K, and to rewrite the

Lippmann–Schwinger equation as an equation for a vector u = Fχ in K as follows (see

e.g. [Y, Lemma 4.7.8]):

u+ rF (H0 − λ− i0)−1F ∗Ju = 0. (4.0.2)

This can be done as long as the limiting absorption principle holds, that is, as long as the

limit operator F (H0 − λ− i0)−1F ∗ acting on K exists. The vector χ may afterwards be

recovered by χ = F−1u, but this vector may or may not belong to H. The number λ for

which (4.0.2) has a non-zero solution is an eigenvalue of H0 + V if and only if the vector

χ = F−1u exists and belongs to H, that is, iff u belongs to the range of F . But even if u

does not belong to that range, the number λ is still to be considered as a singular point

of the spectrum of Hr due to the presence of trapped states.

As a final remark we note that though a factorization F ∗JF of the perturbation V

seems to be an unnatural nuisance, which is however necessary for technical reasons, in

the current setting there is a fixed rigging operator F and the perturbation V admits a

factorization F ∗JF by the very definition.

4.1. Eigenvectors and regular resonance vectors of order 1. In this section we

shall use two well-known properties of a self-adjoint operator H: for any real number λ,

(H − λ)2

(H − λ)2 + y2
→ 1 strongly as y → 0, (4.1.1)
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and if a real number λ is not an eigenvalue of H then

y(H − λ)

(H − λ)2 + y2
→ 0 weakly as y → 0. (4.1.2)

Theorem 4.1.1. Let λ be an essentially regular point, let H0 ∈ A be a λ-regular operator,

let V ∈ A0, let rλ be a real resonance point of (λ;H0, V ) and let r be a regular point of

(λ;H0, V ). If λ is an eigenvalue of

Hrλ = H0 + rλV

with an eigenvector χ ∈ D = dom(Hrλ), then u = Fχ is a resonance vector of order 1,

that is,

(1 + (rλ − r)Tλ+i0(Hr)J)u = 0. (4.1.3)

Proof. Firstly we note that by (2.5.8) the vector Fχ is well-defined, since the domain of F

contains the common domain of operators H ∈ A. The eigenvalue equation Hrλχ = λχ

implies the equality

(Hr − λ)χ = (r − rλ)V χ. (4.1.4)

Here both sides are well-defined since Hr and Hrλ have common domain D by (2.5.6),

and by (2.5.7) the domain of V contains D. Hence, for any z with Im z 6= 0 we have

FRz(Hr)(Hr − λ)χ = (r − rλ)FRz(Hr)V χ.

Since V χ = F ∗JFχ and λ ∈ Λ(Hr, F ), by the Limiting Absorption Principle Assumption

(see (2.5.12) and (2.5.13)) the limit of the right hand side of the above equality exists in

the uniform operator topology as z = λ± iy → λ± i0 and therefore so does the limit of

the left hand side:

FRλ±i0(Hr)(Hr − λ)χ = (r − rλ)FRλ±i0(Hr)V χ.

Adding these equalities gives

F ReRλ+i0(Hr)(Hr − λ)χ = (r − rλ)F ReRλ+i0(Hr)V χ.

Since, by (4.1.1), ReRλ+iy(Hr)(Hr − λ) → 1 in the strong operator topology as y → 0,

it follows that

Fχ = (r − rλ)F ReRλ+i0(Hr)V χ. (4.1.5)

Since r is a regular point of the path {Hs | s ∈ R}, by Proposition 2.6.3, λ is not an

eigenvalue of Hr. It follows from this and (4.1.2) that

ImRλ+iy(Hr)(Hr − λ)→ 0

in the weak operator topology as y → 0. Since FE∆(Hr) is compact by (2.5.11), we get

F ImRλ+i0(Hr)(Hr − λ)χ = 0.

Combining this with (4.1.4) gives

0 = (r − rλ)F ImRλ+i0(Hr)V χ.

Multiplying this equality by i and adding it to (4.1.5), one gets

Fχ = (r − rλ)FRλ+i0(Hr)V χ.
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Since V = F ∗JF , this can be rewritten as

(1 + (rλ − r)FRλ+i0(Hr)F
∗J)Fχ = 0.

This is (4.1.3) with u = Fχ. Hence, u = Fχ is a resonance vector of order 1.

A resonance vector u will be called regular if u ∈ K+. Since the rigging operator F has

trivial kernel, Theorem 4.1.1 implies that to linearly independent eigenvectors χ1, . . . , χN
of H0 there correspond linearly independent regular resonance vectors

u1 = Fχ1, . . . , uN = FχN ∈ Υ1
λ+i0(rλ).

Hence:

Corollary 4.1.2. If λ is an essentially regular point, then the geometric multiplicity

of λ as an eigenvalue of the self-adjoint operator Hrλ = H0 + rλV does not exceed the

dimension of the vector space Υ1
λ+i0(rλ), that is,

dimVλ ≤ dim Υ1
λ+i0(rλ),

where Vλ is the eigenspace of Hrλ corresponding to the eigenvalue λ.

4.2. Example of an essentially singular point. Corollary 4.1.2 allows us to present

an example of a point λ which is not essentially regular.

Theorem 4.2.1. If λ is an eigenvalue of infinite multiplicity for at least one self-adjoint

operator H from the affine space A = H0 +A0, then λ is not an essentially regular point

of the pair (A, F ), that is, λ /∈ Λ(A, F ).

Proof. Without loss of generality it can be assumed that H = H0. Assume to the con-

trary that for some V ∈ A0 and some non-zero r ∈ R the number λ belongs to Λ(Hr, F ),

where Hr = H0 + rV . Since λ is an eigenvalue of infinite multiplicity of H0 and Vλ is

the corresponding infinite-dimensional subspace of eigenvectors, by Theorem 4.1.1 for

the non-resonant point r the linear subspace F (Vλ) consists of eigenvectors of a com-

pact operator Aλ+i0(r) = Tλ+i0(Hr)J corresponding to the eigenvalue 1/r. Since F has

trivial kernel, F (Vλ) is also infinite-dimensional. This contradicts the compactness of

Tλ+i0(Hr)J .

4.3. The case of λ 6∈ σess. So far in this section no conditions were imposed on λ except

that of essential regularity. If, however, λ lies outside the essential spectrum, then one

can prove a more refined version of Theorem 4.1.1.

Lemma 4.3.1. Let λ be an essentially regular point, let Hrλ be resonant at λ and let V be

a regularizing direction. If λ is an isolated eigenvalue of Hrλ , then all resonance vectors

of first order are regular vectors, that is, all vectors u ∈ Υ1
λ+i0(rλ) are of the form u = Fχ

for some vector χ ∈ H.

Proof. Assume that u is a resonance vector of order 1:

(1 + (rλ − r)Tλ+i0(Hr)J)u = 0. (4.3.1)

Since V is a regularizing direction, by Corollary 2.6.4 for some r the number λ belongs to

the resolvent set of Hr, so Rλ+i0(Hr) = (Hr − λ)−1 exists as a bounded operator in H.
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Hence,

χ := (r − rλ)Rλ+i0(Hr)F
∗Ju ∈ H−

is a well-defined element of H, where F ∗Ju is well-defined by (2.5.9). It follows from this

and (4.3.1) that u = Fχ. Hence, u = Fχ belongs to K+ ⊃ FH.

Theorem 4.3.2. If λ does not belong to the essential spectrum σess, then the rigging op-

erator F is a linear isomorphism of the eigenspace Vλ of Hrλ and the vector space Υ1
λ(rλ).

In particular,

dimVλ = dim Υ1
λ(rλ).

Proof. Since F has trivial kernel, it follows from Theorem 4.1.1 that F is an injective

linear mapping from Vλ to Υ1
λ(rλ). To show that F maps Vλ onto Υ1

λ(rλ), let u ∈ Υ1
λ(rλ),

so that u satisfies (4.1.3). By Lemma 4.3.1, there exists χ ∈ H such that u = Fχ. Since V

is a regularizing direction and λ is an isolated eigenvalue, the resolvent (Hr−λ)−1 exists

(as a bounded operator) for any non-resonant r. Hence, the equation (4.1.3), which is

satisfied by the vector u by definition, can be written as

u+ (rλ − r)FRλ+i0(Hr)F
∗Ju = 0,

where Rλ+i0(Hr) = (Hr − λ)−1 is a bounded operator. Replacing u by Fχ gives

Fχ+ (rλ − r)FRλ+i0(Hr)F
∗JFχ = 0.

Since F has trivial kernel, it follows that

χ+ (rλ − r)Rλ+i0(Hr)F
∗JFχ = 0.

Applying Hr − λ to both sides gives

(Hr − λ)χ+ (rλ − r)V χ = 0.

Thus, Hrλχ = λχ, that is, u = Fχ is the image of an eigenvector χ ∈ Vλ.

The statement of Theorem 4.3.2 is not final in the sense that the condition λ /∈ σess

in fact might be redundant. In this regard, see Conjecture 7 in Section 15.

4.4. Multiplicity of singular spectrum. Theorem 4.3.2 implies that if λ 6∈ σess, then

Υ1
λ(rλ) = Υ1

λ(Hrλ , V ) does not depend on V . This raises a natural question: is this true

in general? It turns out that the answer is positive. This is a simple but interesting fact,

since it allows one to introduce the multiplicity of singular spectrum at an essentially

regular point λ as the dimension of Υ1
λ(Hrλ , V ).

Theorem 4.4.1. If Hrλ is resonant at an essentially regular point λ, then the vector

space

Υ1
λ+i0(rλ) = Υ1

λ(Hrλ , V )

does not depend on the regularizing operator V ∈ A0.

Proof. To simplify formulas, without loss of generality we assume that rλ = 0.

Let V = F ∗JF and V ′ = F ∗J ′F be two regularizing operators. We have to show that

if u ∈ K satisfies

[1− FRλ+i0(H0 + V )F ∗J ]u = 0, (4.4.1)



4.4. Multiplicity of singular spectrum 75

then also

[1− FRλ+i0(H0 + V ′)F ∗J ′]u = 0. (4.4.2)

For y > 0 we have

FRλ+iy(H0 + V )F ∗Ju− FRλ+iy(H0 + V ′)F ∗J ′u

= F [Rλ+iy(H0 + V )−Rλ+iy(H0 + V ′)]F ∗Ju− FRλ+iy(H0 + V ′)F ∗[J ′ − J ]u

= F [Rλ+iy(H0 + V ′)(V ′ − V )Rλ+iy(H0 + V )]F ∗Ju− FRλ+iy(H0 + V ′)F ∗[J ′ − J ]u

= FRλ+iy(H0 + V ′)F ∗(J ′ − J)[FRλ+iy(H0 + V )F ∗Ju− u].

Since u satisfies (4.4.1), the expression in the last square brackets vanishes as y → 0+.

Since FRλ+iy(H0 + V ′)F ∗ converges in norm as y → 0+, it follows that

FRλ+i0(H0 + V )F ∗Ju− FRλ+i0(H0 + V ′)F ∗J ′u = 0.

Adding this equality to (4.4.1) we obtain (4.4.2).

Theorem 4.4.1 allows us to consider the vector space Υ1
λ+i0(rλ) as an analogue of

the vector space of eigenvectors when a point λ of the singular spectrum belongs to the

essential spectrum.

Later, in Section 10, we will show that dim Υ1
λ+i0(rλ) does not depend on the choice

of the rigging operator F either.
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5.1. R-index

Definition 5.1.1. Let K be a Hilbert space. The class R = R(K) consists of all finite-

rank operators A : K → K which satisfy the following conditions:

(1) The spectrum of A does not contain real numbers apart from zero: σA ∩ R = {0}.
(2) For any f ∈ K the equality A2f = 0 implies Af = 0.

By definition, the R-index of an operator A ∈ R is the integer R(A) = N+ − N−,

where N+ and N− are the numbers of eigenvalues of A (counted with multiplicities)

in C+ and C− respectively.

The second condition in the definition of R means that zero is an eigenvalue of order 1

for any operator A from R.

If N is a positive integer, then RN will denote the subset of R which consists of

operators of rank N . The union
⋃
n≤N Rn will be denoted by R≤N .

A list of some elementary properties of the R-index is given in the following lemma.

Lemma 5.1.2. Let A and B be bounded operators and let N be a positive integer.

(i) If AB,BA ∈ R, then R(AB) = R(BA).

(ii) If A belongs to R and if S is a bounded invertible operator, then S−1AS also belongs

to R and R(S−1AS) = R(A).

(iii) If A ∈ R, then also A∗ ∈ R and R(A∗) = −R(A).

(iv) If A ∈ RN , then there exists a neighbourhood of A in R≤N which is a subset of RN
and such that R(B) = R(A) for all B from the neighbourhood. That is, the R-index

is a locally constant function on R≤N .

(v) If A ∈ RN and if k is a non-negative integer, then there exists a neighbourhood of A

in R≤N+k such that |R(B)− R(A)| ≤ k for all B from the neighbourhood.

(vi) If A and B belong to R and if AB = BA = 0, then A + B also belongs to R and

R(A+B) = R(A) + R(B).

Proof. (i) This equality follows from (2.1.2), which asserts that the eigenvalue counting

measures of AB and BA coincide outside of zero.

(ii) It is easy to check that if A ∈ R and S is a bounded invertible operator,

then S−1AS ∈ R. Hence, the equality R(S−1AS) = R(A) follows from (i) applied to

AS and S−1.

(iii) If A satisfies the first condition of the definition of R, then so does A∗ by (2.1.3).

Since A and A∗ are finite-rank, we may assume that K is finite-dimensional. In this case
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the second condition for A∗ also follows from (2.1.3). The equality in (iii) follows from

(2.1.3).

(iv) Small enough perturbations of A cannot decrease the rank of A. Hence, a small

enough neighbourhood O of A in R≤N is a subset of RN . The half-plane C+ or C− to

which an eigenvalue belongs is stable under small enough perturbations. For any operator

from O no other non-zero eigenvalues can emerge from zero, since this would increase

the rank of A. Thus, any operator B from a small enough neighbourhood has the same

R-index as that of A.

(v) Small enough perturbations of A do not change the half-plane C± which the non-

zero eigenvalues of A belong to. Hence, if B belongs to a small enough neighbourhood O

of A in R≤N+k then, since rank(B) ≤ N + k, no more than k non-zero eigenvalues can

emerge from zero as A is perturbed to B. Therefore, the R-indices of A and B may differ

by no more than k.

(vi) Let v be a root vector of order k corresponding to a non-zero eigenvalue σ of A,

that is, (A − σ)kv = 0 and (A − σ)k−1v 6= 0. The equality BA = 0 implies that 0 =

B(A − σ)kv = σkBv, or Bv = 0. Therefore, since A and B commute, (B + A − σ)kv =

(A − σ)kv = 0 and (B + A − σ)k−1v = (A − σ)k−1v 6= 0. It follows that a non-zero

number σ is an eigenvalue for A if and only if it is also an eigenvalue of the same

algebraic multiplicity for A+B. The same assertion holds for B instead of A. Hence, the

eigenvalue counting measure of A + B is the sum of the eigenvalue counting measures

of A and B, which implies that A+B satisfies the first condition of Definition 5.1.1.

If (A+B)2f = 0, then A2f +B2f = 0; this implies A3f = 0. Therefore, A2f = 0 and

hence Af = 0. Similarly, Bf = 0. Hence, A+B satisfies the second condition too.

The equality R(A+B) = R(A) + R(B) follows.

Lemma 5.1.3. Let A : K → H be a finite-rank operator, and F : H → K be a closed

operator with zero kernel and co-kernel such that:

(1) AF is a bounded finite-rank operator and rank(AF ) = rank(A),

(2) FA is a well-defined bounded finite-rank operator and rank(FA) = rank(A),

(3) both AF and FA belong to the class R.

Then

R(AF ) = R(FA).

Proof. Since F has zero kernel and co-kernel, in the polar decomposition F = U |F | the

partial isometry U is a unitary operator. Hence, without loss of generality, we can assume

that F is a self-adjoint operator with zero kernel.

Let Fn = FEF[−n,n]. Since AF is compact and EF[−n,n] → 1 strongly as n → ∞, the

product AFn converges to AF in norm. Hence, since the rank of AFn is not larger than

rank(A) = rank(AF ), for large enough n we have, using part (iv) of Lemma 5.1.2,

R(AFn) = R(AF ).

Similarly, for large enough n we have R(FnA) = R(FA). Hence, using part (i) of Lemma

5.1.2, for large enough n we get

R(FA) = R(FnA) = R(AFn) = R(AF ).
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It is easy to check that

if Im z > 0 then ImTz(H) > 0.

Lemma 5.1.4. Let z be a non-real number and let s be a real number. The eigenvalue

counting measures of the operators Rz(Hs)V and Tz(Hs)J coincide. Moreover, for any

resonance point rz corresponding to z,

FP z(rz) = Pz(rz)F and Q
z
(rz)F

∗ = F ∗Qz(rz). (5.1.1)

Proof. If F is bounded then the first assertion follows directly from (2.1.2), while the

second follows from the definition of Pz(rz), P z(rz), Qz(rz), Qz(rz) and (2.1.4).

In general, it is not difficult to see that if u is a solution of

(1 + (rz − s)Az(s))ku = 0,

then for some unique χ we have u = Fχ where χ is a solution of

(1 + (rz − s)Az(s))kχ = 0;

and vice versa, if a vector χ is a solution of this last equation then u = Fχ is a solution

of the previous one. It follows that the eigenvalue counting measures of Aλ+iy(s) and

Aλ+iy(s) coincide and that FP z(rz) = Pz(rz)F .

The equality Q
z
(rz)F

∗ = F ∗Qz(rz) can be proved similarly using the co-resonance

equation.

For bounded F this follows from (2.1.2); in general this can be seen from Lemma 3.1.4.

Lemma 5.1.5. If H is a self-adjoint operator and V is a finite-rank self-adjoint operator,

then for any non-real number z the operators Rz(H)V and Tz(H)J belong to R.

Proof. We prove this for Rz(H)V only, since the proof for Tz(H)J is similar. The operator

Rz(H)V is finite-rank and it satisfies the first condition of Definition 5.1.1 according to

Lemma 2.7.3. Let f ∈ H be such that (Rz(H)V )2f = 0. Since Rz(H) has zero kernel,

this implies V Rz(H)V f = 0 and 〈V f,Rz(H)V f〉 = 0. Therefore 〈V f,Rz̄(H)V f〉 = 0

and thus 〈V f, ImRz(H)V f〉 = 0. The operator ImRz(H) is strictly positive if Im z > 0

or is strictly negative if Im z < 0. Hence, 〈V f, ImRz(H)V f〉 = 0 implies V f = 0.

The following theorem is proved in [Kr]. We give here a new proof which is based on

properties of the R-index and which has topological character.

Theorem 5.1.6 ([Kr]). If H is a self-adjoint operator and V is a finite-rank self-adjoint

operator, then for any y = Im z > 0 the operator Rz(H)V has exactly rank(V±) eigen-

values in C±, where V+ is the positive part of V and V− is the negative part of V . In

particular,

R(Rλ±iy(H)V ) = ± sign(V ).

Proof. By Lemma 5.1.5 the operator Rz(H)V belongs to R.

(A) Assume first that either V or −V is non-negative. Let N be the rank of V . Since

Rλ+iy(H) has trivial kernel, the dimension of the image of Rλ+iy(H)V is also N . Hence,

Rλ+iy(H)V has N non-zero eigenvalues (counting multiplicities). That all these non-zero

eigenvalues belong either to C+ in the case of V ≥ 0 or to C− in the case of V ≤ 0 follows

from Lemma 2.7.3.
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(B) If a finite-rank self-adjoint operator V has at least one positive eigenvalue, then

one of them can be continuously deformed so that it crosses 0 from R+ to R−. For

instance, if

V =

N∑
j=1

αj〈vj , ·〉vj

is the Schmidt representation of V and α1 > 0, then the path of operators

Vt = (1− 2t)α1〈v1, ·〉v1 +
N∑
j=2

αj〈vj , ·〉vj , 0 ≤ t ≤ 1,

deforms the positive eigenvalue α1 to −α1. By definition, the R-index of Rz(H)Vt is

constant before and after the eigenvalue being deformed reaches zero. According to

Lemma 5.1.2(v), when the eigenvalue of V being deformed crosses 0 to the other half-line,

the R-index of Rz(H)V can change by no more than 2. According to (A), if V is non-

negative, then the R-index of Rz(H)V is N . When all eigenvalues of V become negative

one by one as the operator V is deformed to a non-positive operator −V , the R-index

of Rz(H)V has to become −N . From this one can infer that every time one positive

eigenvalue of V crosses 0 from R+ to R−, the R-index of Rz(H)V has to change by −2.

5.2. The idempotents Pz(rλ) and Qz(rλ). Given a set

Γ = {r1
z , . . . , r

n
z }

of resonance points corresponding to z ∈ Π, let

Pz(Γ) = Pz(r
1
z) + · · ·+ Pz(r

n
z ).

It follows from (3.2.8) that Pz(Γ) is an idempotent. It will be called the idempotent of Γ.

Similarly, one defines Qz(Γ). The range of Pz(Γ) (respectively, Qz(Γ)) will be denoted by

Υz(Γ) (respectively, Ψz(Γ)).

We are mainly interested in the case when the number z = λ± iy belongs to ∂Π and

the corresponding resonance point rz = rλ is real. If the point z = λ+i0 is slightly shifted

off the real axis, then the pole s = rλ of the meromorphic function Az(s) in general splits

into several poles

r1
z , . . . , r

N
z , (5.2.1)

as schematically shown in the figure below.

-s
rλ

s-plane at z = λ+ i0

-

s-plane at z = λ+ iy with |y| � 1

N+ = 3

N− = 1

asr1
λ+iy

sr2
λ+iyss

r4
λ+iy
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In this kind of figures the word “s-plane” means that the plane of the figure is the domain

of values of the variable s. The poles (5.2.1) will be said to belong to the group of rλ; the

number of these poles (counted with multiplicities) will be denoted by N = N+ + N−,

where N± is the number of poles in C±; for numbers z outside of ∂Π the poles rνz , ν =

1, . . . , N , cannot be real, according to Lemma 2.7.3. We denote by Pz(rλ) = Pλ+iy(rλ)

the idempotent of the group of resonance points (5.2.1):

Pz(rλ) = Pz(r
1
z) + · · ·+ Pz(r

N
z ). (5.2.2)

Similarly, Qz(rλ) will denote the sum of the idempotents Qz(r
ν
z ), ν = 1, . . . , N :

Qz(rλ) = Qz(r
1
z) + · · ·+Qz(r

N
z ). (5.2.3)

The range of Pz(rλ) will be denoted by Υz(rλ), and the range of Qz(rλ) will be denoted

by Ψz(rλ).

We denote by P ↑λ+iy(rλ) the sum of the idempotents Pλ+iy(rνλ+iy) for which the poles

rνλ+iy belong to C+, and P ↓λ+iy(rλ) will denote the sum of the idempotents Pλ+iy(rνλ+iy)

for which rνλ+iy ∈ C−. Similarly, one defines Q↑λ+iy(rλ) and Q↓λ+iy(rλ).

We remark that a priori the idempotents Pλ+iy(rλ), P ↑λ+iy(rλ), etc. are defined for

small enough values of y, depending on how far away the point rz as a function of z can

be continued analytically (a possible hindrance is that it can get absorbed by ∞; see in

this regard Subsection 15.7).

Similarly, one defines the operators Pz̄(rλ), Qz̄(rλ) as idempotents of the group of

resonance points of rλ as z = λ− i0 is shifted to z = λ− iy.

In the following figures, resonance points will be depicted by dark circles and anti-

resonance points by light circles (see Subsection 5.3 for definition of anti-resonance

points). The next figure shows poles of the group of rλ for the idempotents Pλ−iy(rλ)

and Qλ−iy(rλ).

-ac
r1
λ−iy c

r4
λ−iy

cc
r2
λ−iy

The following result is [Az4, Theorem 3.3]. Here we give a different proof.

Proposition 5.2.1. For any z = λ ± i0 ∈ ∂Π and any real resonance point rλ corre-

sponding to λ± i0, we have, for all small enough y > 0,

1

π

∮
C(rλ)

ImTλ+iy(Hs)J ds = Pλ+iy(rλ)− Pλ−iy(rλ),

where C(rλ) is a contour which encloses all poles r1
λ+iy, . . . , r

N
λ+iy of the group of rλ and

their conjugates r̄1
λ+iy, . . . , r̄

N
λ+iy.

Proof. Since
1

π
ImTλ+iy(Hs)J =

1

2πi
(Aλ+iy(s)−Aλ−iy(s)),

the equality to be proved follows from the Laurent expansion (3.3.16) of Az(s).
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Lemma 5.2.2. For any real resonance point rλ,

Pλ±i0(rλ) = lim
y→0+

Pλ±iy(rλ) and Qλ±i0(rλ) = lim
y→0+

Qλ±iy(rλ),

where the limits are taken in the trace class norm.

Proof. It follows from the definition of Pz(rλ) that Pλ±iy(rλ) converges to Pλ±i0(rλ)

in uniform norm. By a well-known stability property of isolated eigenvalues, for small

enough y the rank of Pλ±iy(rλ) is constant and is equal to the rank N of Pλ±i0(rλ). It

follows that only the first N singular values of Pλ±iy(rλ) can be non-zero. Hence, the

only first 2N s-numbers of the compact operator Pλ±iy(rλ)−Pλ±i0(rλ) can be non-zero.

This implies the estimate

‖Pλ±iy(rλ)−Pλ±i0(rλ)‖1 ≤
2N∑
j=1

sj(Pλ±iy(rλ)−Pλ±i0(rλ))

≤ 2Ns1(Pλ±iy(rλ)−Pλ±i0(rλ))=2N‖Pλ±iy(rλ)−Pλ±i0(rλ)‖,

which shows that the trace class norm on the left hand side also converges to zero as

y → 0.

Similarly to the definition of Pz(rλ) one can introduce nilpotent operators

Az(rλ) = Az(r
1
z) + · · ·+ Az(r

N
z ), (5.2.4)

Bz(rλ) = Bz(r
1
z) + · · ·+ Bz(r

N
z ), (5.2.5)

where r1
z , . . . , r

N
z are resonance points of the group of rλ (see (5.2.1)). It follows from

(3.3.8) and (3.3.10) that Az(rλ) and Bz(rλ) are indeed nilpotent.

Lemma 5.2.3. We have

Aλ±i0(rλ) = lim
y→0+

Aλ±iy(rλ) and Bλ±i0(rλ) = lim
y→0+

Bλ±iy(rλ),

where the limits are in the trace class norm.

Proof. Since Az(s) converges to Aλ+i0(s) in the uniform norm, it follows from (5.2.4)

and (3.3.1) that so do the limits in question. Hence, the claim is a consequence of (3.3.7),

Lemma 5.2.2 and the joint continuity of L∞ × L1 3 (A,B) 7→ AB ∈ L1.

5.3. Resonance index. Let z ∈ Π and let H0 and V be as usual. A resonance point rz
(see Definition 3.1.1) corresponding to z will be said to be an up-point (respectively, down-

point) if Im rz > 0 (respectively, Im rz < 0). Further, if rz is an up-point corresponding

to z, then r̄z will be called an anti-down-point corresponding to z; similarly, if rz is a

down-point of z, then r̄z will be called an anti-up-point of z. Anti-up-points and anti-

down-points of z will be called anti-resonance points of z. By Corollary 3.1.5, for any

z ∈ Π, resonance points of z̄ are anti-resonance points of z and vice versa. In figures,

resonance points are denoted by dark circles and anti-resonance points by light circles.

If z = λ + i0 ∈ ∂Π is an essentially regular point and if rλ is a corresponding real

resonance point, then the resonance index of a triple (λ;Hrλ , V ) will be defined as the

difference of the number N+ of up-points and the number N− of down-points which
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belong to the group of rλ, corresponding to z = λ + iy with small enough y > 0. The

resonance index of (λ;Hrλ , V ) will be denoted by

indres(λ;Hrλ , V ). (5.3.1)

Given a real number s, the resonance index can also be defined as the difference of

the number of eigenvalues σνλ+iy(s) in C+ and in C− of the operator Aλ+iy(s) which

are obtained from the resonance points of the group of rλ for z = λ + iy after the

transformation σz(s) = (s − rz)−1, since this transformation maps the upper half-plane

to the upper half-plane for any real s. This is demonstrated by the following figure, where

the label “s-plane”, respectively “σ-plane”, means that the plane of the figure represents

the range of values of the variable s, respectively σ. Thus, to calculate the resonance

index N+ −N− one can use either of these two figures.

-

s-plane sup-point

c
anti-down-point

c
anti-up-point

sdown-point

sc -

σ-plane

sc sccs
Lemma 5.3.1. For any real resonance point rλ, for any real number s and for all small

enough y > 0,

indres(λ;Hrλ , V ) = R(Aλ+iy(s)Pλ+iy(rλ)). (5.3.2)

Proof. Let

σνλ+iy(s) = (s− rνλ+iy)−1

be an eigenvalue of Aλ+iy(s) corresponding to a resonance point rνλ+iy of the group of rλ
for z = λ+ iy. Further, let

u1
λ+iy,+, . . . , u

N+

λ+iy,+ and u1
λ+iy,−, . . . , u

N−
λ+iy,−

be linearly independent root vectors of Aλ+iy(s) = Tλ+iy(Hs)J , such that the eigenvalue

σνλ+iy,±(s) corresponding to uνλ+iy,± lies in C±. Since rz and σz(s) = (s − rz)−1 belong

to the same half-plane, by definition of the resonance index it follows that

indres(λ;Hrλ , V ) = N+ −N−. (5.3.3)

On the other hand, using (3.2.8), we have Pλ+iy(rλ)uνλ+iy,± = uνλ+iy,±, and therefore for

eigenvectors uνλ+iy,±,

σνλ+iy,±(s)uνλ+iy,± = Aλ+iy(s)uνλ+iy,± = Aλ+iy(s)Pλ+iy(rλ)uνλ+iy,±.

It follows that Aλ+iy(s)Pλ+iy(rλ) has N± eigenvalues in C±. This implies that

R(Aλ+iy(s)Pλ+iy(rλ)) = N+ −N−.
Combining this with (5.3.3) completes the proof.

Since resonance points rz corresponding to z are anti-resonance points corresponding

to z̄, the same argument shows that if y > 0, then

indres(λ;Hrλ , V ) = −R(Aλ−iy(s)Pλ−iy(rλ)). (5.3.4)



5.3. Resonance index 83

Further, Lemma 5.3.1 combined with (3.2.10) and Lemma 5.1.2(i) imply that, for y > 0,

indres(λ;Hrλ , V ) = R(Bλ+iy(s)Qλ+iy(rλ)) = −R(Bλ−iy(s)Qλ−iy(rλ)).

The definition of the resonance index can also be written in the form

indres(λ;Hrλ , V ) = Tr(P ↑λ+iy(rλ)− P ↓λ+iy(rλ)) = rank(P ↑λ+iy(rλ))− rank(P ↓λ+iy(rλ)).

From Lemma 3.1.4 one can infer that Tr(P ↓λ+iy(rλ)) = Tr(P ↑λ−iy(rλ)); hence, also

indres(λ;Hrλ , V ) = Tr(P ↑λ+iy(rλ)− P ↑λ−iy(rλ))

= rank(P ↑λ+iy(rλ))− rank(P ↑λ−iy(rλ)). (5.3.5)

According to Corollary 3.1.5, up-points of z are anti-up-points of z̄, and down-points

of z are anti-down-points of z̄. Let C+(rλ) be a contour which encloses in anticlockwise

direction only up-points and anti-up-points of the group of rλ, and similarly, let C−(rλ)

be a contour which encloses in anticlockwise direction only down-points and anti-down-

points of the group of rλ, as shown in the figure below.

C+(rλ)
-

s c ssq
'$
- -c sc c&%� �

C−(rλ)

Proposition 5.3.2 ([Az4]). If C+(rλ) and C−(rλ) are contours as defined above, then

for small enough y > 0,

indres(λ;Hrλ , V ) =
1

π
Tr

(∮
C+(rλ)

ImTλ+iy(Hs)J ds

)
= − 1

π
Tr

(∮
C−(rλ)

ImTλ+iy(Hs)J ds

)
. (5.3.6)

Proof. By Proposition 3.2.3 we have

1

π

∮
C+(rλ)

ImTλ+iy(Hs)J ds =
1

2πi

∮
C+(rλ)

(Aλ+iy(Hs)−Aλ−iy(Hs)) ds

= P ↑λ+iy(rλ)− P ↑λ−iy(rλ).

This equality shows that the integral over C+(rλ) is trace class. After taking traces of

both sides, the first equality of (5.3.6) follows from (5.3.5). The second equality is proved

similarly.
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In this section we give a sketch of the proof of Theorem 1.5.2, given in my unpublished

paper [Az4]. This section is not used in the remaining part of this paper and it may be

safely skipped. On the other hand, the results of this subsection provide one of the main

motivations for this work.

Theorem 1.5.2 holds under a weaker relatively trace class assumption which makes it

applicable to Schrödinger operators H0u(x) = −∆u(x) +V0(x)u(x) with bounded poten-

tials V0(x) and quickly falling bounded perturbations V (x) in dimensions 1, 2 and 3. The

proof of this more general result relies on an appropriate modification of the constructive

approach to the stationary scattering theory discussed in the introduction (see [Az6]).

This modification is lengthy and therefore the proof has not been included here. It will

appear in [AzD].

6.1. A lemma. In this and only in this section we assume that the perturbation op-

erator V is of trace class. This is achieved by assuming that the rigging operator F is

Hilbert–Schmidt.

Let

Fz(s) =
1

π
Tr(ImRz(Hs)V ) =

1

2πi
Tr(Az(s)−Az̄(s)).

The operator ImRz(Hs)V is equal to 1
2i (Az(s)−Az̄(s)) but the cyclic property Tr(AB) =

Tr(BA) of the trace allows us to replace the underlined operators by the non-underlined

counterparts.

Lemma 6.1.1. Let λ be any number from the set Λ(H0, F ) of full Lebesgue measure.

Assume that the interval [a, b] of the real axis contains only one resonance point rλ of the

triple (λ;H0, V ). Then for all small enough y > 0,∫
L2

Fλ+iy(s) ds =

∫
L1

Fλ+iy(s) ds+ indres(λ;Hrλ , V ), (6.1.1)

where L1 and L2 are the contours of integration from a to b shown below; namely, L2 goes

straight from a to b, while L1 circumvents the resonance and anti-resonance points of the

group of rλ from above.

(s-plane) (z = λ+ iy, 0 < y � 1)

L1

L2

-q
a

- - q
b

r brq��
rλ

(6.1.2)

[84]
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Proof. By Cauchy’s theorem, for all small enough y > 0 we have∫
L2

Fλ+iy(s) ds =

∫
L1

Fλ+iy(s) ds+

∮
C+(rλ)

Fλ+iy(s) ds,

where the half-circle C+(rλ) encloses all the resonance and anti-resonance points of the

group of rλ which are in C+ (and anly these). Hence, (6.1.1) follows from Proposi-

tion 5.3.2.

Proposition 6.1.2. For a.e. λ ∈ R,

lim
y→0+

∫ 1

0

Fλ+iy(s) ds = ξ(λ;H1, H0),

where ξ(λ;H1, H0) is the spectral shift function of the pair (H1, H0).

This proposition is in essence the Birman–Solomyak formula (1.2.3) for the spectral

shift function. The difference is that (1.2.3) uses the derivative of the distributive function

of the spectral shift measure, while in the formula above it is replaced by 1/π times the

imaginary part of the limit of the Cauchy transform of the distributive function. By a

well-known theorem of complex analysis, these two functions are equal a.e. Details of the

proof can be found in e.g. [Az3, §§9.5, 9.6].

6.2. Absolutely continuous part of the spectral shift function. Now we discuss

the absolutely continuous part of the spectral shift function ξ(a)(λ;H1, H0). By definition,

ξ(a)(λ;H1, H0) is the density of the measure defined by

∆ 7→
∫ 1

0

Tr(V EHs∆ P (a)(Hs)) ds,

where P (a)(Hs) is the (orthogonal) projection onto the absolutely continuous subspace

of the self-adjoint operator Hs.

It was shown in [Az3] that for a.e. λ the number ξ(a)(λ;Hs, H0) is equal to∫ s

0

Trhλ(Hr)(Eλ(Hr)V E♦λ (Hr)) dr, (6.2.1)

where Eλ(Hr) : H+ → hλ(Hr) is the evaluation operator defined by (1.4.4). Since Eλ(Hr)

was introduced in a recent and lengthy paper, the meaning of this formula may need some

explanations. Here H+ = F ∗H is the rigging Hilbert space and hλ(Hr) is the subspace

of the auxiliary Hilbert space K defined by

hλ(Hr) = im ImTλ+i0(Hr).

It was shown in [Az3] that hλ(Hr) can be treated as the fibre Hilbert space. The operator

E♦λ (Hr) acts from the Hilbert space hλ(Hr) to the Hilbert space H− which comes from

the rigging operator F ; the definition of E♦λ (Hr) will follow shortly. The fact that the

trace class perturbation V : H → H admits the factorization V = F ∗JF with Hilbert–

Schmidt F and bounded J allows us to treat V as a bounded operator from H− to H+,

since F can be treated as a unitary isomorphism H−
∼→ K and F ∗ can be treated as

a unitary isomorphism K ∼→ H+. These unitary isomorphisms can be denoted by the

same F and F ∗, but we will be pedantic for a moment and denote them by F̃ : H−
∼→ K
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and F̃ ∗ : K ∼→ H+. Now, the equality V = F ∗JF can be understood in several ways as

shown in the following commutative diagram:

H−

Ṽ

��

F̃ // K

J

��

HFoo

V

��

i− // H−

Ṽ

��

Id

xx

H+

Id

88KF̃∗oo F∗ // H H+

i+oo

Here i± are the Hilbert–Schmidt inclusion operators. In (6.2.1) the symbol V denotes

the bounded operator Ṽ : H− → H+. The operator E♦λ (Hr) acts from hλ(Hr) to H−
according to

〈E♦λ (Hr)g, f〉−1,1 = 〈g,Eλ(Hr)f〉, g ∈ hλ(Hr), f ∈ H+.

This definition of E♦λ is equivalent to

E♦λ = F̃−1(F̃ ∗)−1E∗λ,

where E∗λ : hλ(Hr) → H+ is the usual adjoint and F̃ and F̃ ∗ are unitary isomorphisms

shown in the diagram. The product Eλ(Hr)V E♦λ (Hr) is of trace class since Eλ(Hr) and

E♦λ (Hr) are Hilbert–Schmidt and V : H− → H+ is bounded.

Note that for any fixed point λ from the set Λ(H0, F ) the operator Eλ(Hr) is defined

for all non-resonant values of r, according to the definition of this operator:

Eλ(Hr)F̃
∗ψ =

1

π

√
ImTλ+i0 (Hr)ψ, ψ ∈ H.

To avoid ambiguity, we write Ṽ instead of V , when we treat V as an operator : H− → H+.

Note that, as the left square of the diagram above clearly shows, Ṽ is unitarily equivalent

to J .

The following proposition is proved in [Az3, Corollary 7.3.5]. We give a sketch of that

proof.

Proposition 6.2.1. For any λ ∈ Λ(H0, F ), the operator-valued function of r ∈ R defined

by

r 7→ Trhλ(Hr)

(
Eλ(Hr)Ṽ E♦λ (Hr)

)
is analytic and admits holomorphic continuation to some neighbourhood of R.

Proof. For any λ ∈ Λ(H0, F ) and any real non-resonant r the following equality holds:

w∗+(λ;Hr, H0)Eλ(Hr)Ṽ E♦λ (Hr)w+(λ;Hr, H0)

=

(
d

dr
S(λ;Hr, H0)

)
S∗(λ;Hr, H0), (6.2.2)



6.3. Singular spectral shift function and resonance index 87

where

S(λ;Hr, H0) : hλ(H0)→ hλ(H0)

is the scattering matrix and

w+(λ;Hr, H0) : hλ(H0)→ hλ(Hr)

is the wave matrix. According to [Az3, §5 and §7], the right hand side is defined for all

non-resonant values of r. According to [Az3, Proposition 7.2.5], the scattering matrix

S(λ;Hr, H0) is an analytic function of r in the whole real axis R, and therefore so is the

right hand side of (6.2.2). It follows that the trace of the left hand side is also analytic.

Since w+(λ;Hr, H0) is unitary, this trace is equal to

Trhλ(Hr)

(
Eλ(Hr)Ṽ E♦λ (Hr)

)
This proposition should not be surprising in the light of the general coupling constant

regularity phenomenon observed first by Aronszajn back in 1957.

Theorem 6.2.2 ([Az3, Lemma 8.2.1, Theorem 8.1.3]). For a.e. λ the absolutely contin-

uous spectral shift function ξ(a)(λ;H1, H0) is equal to∫ 1

0

Trhλ(Hr)

(
Eλ(Hr)Ṽ E♦λ (Hr)

)
dr. (6.2.3)

6.3. Singular spectral shift function and resonance index. Now we return to the

equality (6.1.1). It is not difficult to see that as y → 0+, the limit∫
L1

Fλ+i0(s) ds =

∫
L1

TrK

(
1

π
ImTλ+i0(Hr)J

)
ds (6.3.1)

of the second integral over the contour L1 shown in figure (6.1.2) exists, where L1 indicates

that all resonance points in the interval [0, 1] are circumvented in the upper half-plane.

Lemma 6.3.1. For all λ from the set Λ(H0, F ) of full Lebesgue measure the integrals

(6.3.1) and (6.2.3) are equal.

Proof. For the purpose of this proof, we shall denote by L1(s) the part of the contour L1,

shown in (6.1.2), which projects onto [0, s], where s ∈ [0, 1]. In particular, for small

enough s the contour L1(s) coincides with [0, s].

By the definition (1.4.4) of Eλ(Hr), for all non-resonant values of r the integrand in

(6.2.3) is equal to

Trhλ(Hr)

(
Eλ(Hr)Ṽ E♦λ (Hr)

)
= TrH−

(
E♦λ (Hr)Eλ(Hr)Ṽ

)
= TrK

(
1

π
ImTλ+i0(Hr)J

)
.

Hence, for small enough s the integrals∫
L1(s)

Fλ+i0(r) dr (6.3.2)

and ∫ s

0

Trhλ(Hr)

(
Eλ(Hr)Ṽ E♦λ (Hr)

)
dr (6.3.3)

are equal, since their integrands and contours of integration are equal.
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We have to show that the integrals are equal for large values of s too, in particular

for s = 1.

The integral (6.3.3) is holomorphic in some neighbourhood of [0, 1], since so is its

integrand according to Proposition 6.2.1. If we show that the first integral is also holo-

morphic in some neighbourhood of [0, 1], the proof will be complete by the uniqueness

theorem for holomorphic functions.

The integrand in (6.3.2) has singularities at resonance points in [0, 1], but the integral

itself is a single-valued holomorphic function in a neighbourhood of [0, 1] with possibly

the resonance points removed. Indeed, the integral (6.3.2) does not change its value if

the contour L1(s) is changed so that the resonance points are circumvented not from

above but from below: the result of analytic continuation of the integral from small

values of s to the value s = 1 will be the same since, according to the second equality of

Proposition 5.3.2, the integral over the circle which encloses a resonance point on [0, 1] is

zero.

Hence, both (6.3.2) and (6.3.3) are holomorphic single-valued functions in some neigh-

bourhood of [0, 1] minus a finite set of resonance points, and both integrals coincide for

small values of s. Since (6.3.3) is holomorphic in a neighbourhood of [0, 1], it follows that

so is the function (6.3.2) and these two functions coincide.

Combining Lemma 6.1.1, Proposition 6.1.2, Theorem 6.2.2 and Lemma 6.3.1, we con-

clude that after taking the limit as y → 0+ the equality (6.1.1) with a = 0 and b = 1

turns into

ξ(λ;H1, H0) = ξ(a)(λ;H1, H0) +
∑
rλ

indres(λ;Hrλ , V ),

where the sum is taken over all resonance points from [0, 1].

Since ξ(s)(λ;H1, H0) = ξ(λ;H1, H0)− ξ(a)(λ;H1, H0), this gives

Theorem 6.3.2. For a.e. λ,

ξ(s)(λ;H1, H0) =
∑

rλ∈[0,1]

indres(λ;Hrλ , V ).
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In this section we prove Theorem 7.2.1, which is one of the main technical results of

this paper. This theorem allows us to express the signature of the finite-rank self-adjoint

operator

Qλ−i0(rλ)JPλ+i0(rλ),

which we call the resonance matrix, in terms of the R-index of the operator

Aλ+iy(rλ)Pλ+iy(rλ),

where y is any small enough positive number.

Assume that we are given a finite set

Γ = {r1
z , . . . , r

M
z }

of resonance points corresponding to a fixed number z ∈ Π. We denote by Γ̄ the set

{r̄1
z , . . . , r̄

M
z }. The finite-rank self-adjoint operator

Qz̄(Γ̄)JPz(Γ) (7.0.1)

will be called the resonance matrix of Γ. The main difficulty in the proof of Theorem 7.2.1

is to show (Theorem 7.1.4) that if z and the numbers in Γ all belong to the open upper

half-plane C+, then (7.0.1) is non-negative and its rank is equal to the sum of the algebraic

multiplicities of the resonance points from Γ.

To start with, we shall give a proof of this assertion in the trivial special case where Γ

consists of only one resonance point rz ∈ C+ of algebraic multiplicity one and where

y = Im z > 0. In this case the self-adjoint operator (7.0.1) has rank one and its positivity

is equivalent to the positivity of the real number

〈χz, V χz〉,

where χz is a non-zero resonance vector from Υz(rz). Since χz has order one, it is an

eigenvector of the operator Hrz corresponding to the eigenvalue z:

Hrzχz = zχz.

We take the scalar product of both sides with χz:

〈χz, Hrzχz〉 = z〈χz, χz〉.

Now we take conjugates of both sides. This gives

〈χz, Hr̄zχz〉 = z̄〈χz, χz〉.

[89]
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Finally, we subtract this equality from the previous one to get

(rz − r̄z)〈χz, V χz〉 = 2iy〈χz, χz〉.

Since 2iy/(rz − r̄z) is positive, the claim follows.

In the general case, where Γ may consist of any finite number of resonance points of

arbitrary geometric and algebraic multiplicities, the proof becomes far more tedious.

7.1. Positivity of the resonance matrix for a set of up-points. Recall that a

symmetric matrix α ∈ Cn×n is positive definite if for any non-zero x ∈ Cn we have

〈x, αx〉 > 0. In particular, the rank of a positive definite matrix is equal to the dimension

of the vector space on which it acts.

Lemma 7.1.1. Let y > 0. Let M and d1, . . . , dM be positive integers. Assume that we are

given M sets of vectors

χ(1)
µ , . . . , χ(dµ)

µ , µ = 1, . . . ,M,

from a pre-Hilbert space, such that all

D := d1 + · · ·+ dM

vectors χ
(j)
µ are linearly independent. Let β be the positive definite D ×D matrix

βkjµν = 〈χ(k)
µ , χ(j)

ν 〉, (7.1.1)

and define another D ×D matrix γ by the recurrent formula

γkjµν = 2yβkjµν − i(γk−1,j
µν − γk,j−1

µν ), (7.1.2)

where it is assumed that γkjµν = 0 if at least one of the indices k or j is equal to 0. Then

γ is positive definite.

Proof. Plainly, the matrix γ is symmetric.

In the proof we will use induction on the positive integer

d = max{d1, . . . , dM}

which will be called order. If d = 1 then the second term in (7.1.2) is zero, and so in this

case the claim follows from the positive definiteness of (7.1.1). Now assuming that the

claim holds for orders < d we show that it holds for order d.

Rows of a D × D matrix will be enumerated by pairs (µ, k) so that (µ, k) < (ν, j)

if and only if µ < ν, or both µ = ν and k < j. We can look at a D × D matrix γ

as composed of M ×M cells, so that (µ, ν) indicates a cell and (k, j) indicates an ele-

ment of the cell. The second index k in the pair (µ, k), denoting a row/column, will be

called the order of the row/column. The following figure shows the structure of a D×D
matrix γ:
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 γ11
11 ... γ1d1

11

... ... ...

γd11
11 ... γd1d111

 . . .

γ11
1M ... γ1dM

1M

... ... ...

γd11
1M ... γd1dM1M


. . . . . . . . .

. . .


γ11
µν ... γ1j

µν ... γ1dν
µν

... ... ... ... ...

γk1
µν ... γkjµν ... γkdνµν

... ... ... ... ...

γ
dµ1
µν ... γ

dµj
µν ... γ

dµdν
µν

 . . .

. . . . . . . . . γ11
M1 ... γ1d1

M1

... ... ...

γdM1
M1 ... γdMd1M1

 . . .

γ11
MM ... γ1dM

MM

... ... ...

γdM1
MM ... γdMdMMM





.

We apply to the matrix γ the following elementary row and column operations: if a

row (µ, k) has order k ≥ 2, then we add to this row the previous row (µ, k−1) multiplied

by i, and if a column (ν, j) is of order j ≥ 2, then we add to this column the previous

column (ν, j − 1) multiplied by −i. We still have to specify in which order to execute

these row and column operations. The rule is this: we start with rows of largest orders dµ
and finish with rows of order 2; the same rule applies to column operations. If two rows

have the same order, then the corresponding row operations are interchangeable and so

in this case we do not need to specify the order of execution of these operations. Also, a

row operation and a column operation are always interchangeable. The following formula

explains what happens to a 2 × 2 submatrix of γ after a row operation and a column

operation (here for convenience the indices k and j are replaced by integers 3, 3):(
γ22
µν γ23

µν

γ32
µν γ33

µν

)
→

(
γ22
µν γ23

µν

γ32
µν + iγ22

µν γ33
µν + iγ23

µν

)
→

(
γ22
µν γ23

µν − iγ22
µν

γ32
µν + iγ22

µν γ33
µν + iγ23

µν − iγ32
µν + γ22

µν

)
.

After performing other row and column operations this 2× 2 block of γ takes the form(
γ22
µν + iγ12

µν − iγ21
µν + γ11

µν γ23
µν + iγ13

µν − iγ22
µν + γ12

µν

γ32
µν + iγ22

µν − iγ31
µν + γ21

µν γ33
µν + iγ23

µν − iγ32
µν + γ22

µν

)
.

Now (7.1.2) implies that after these row and column operations have been performed in

the specified order, the matrix γ will take the form

2yβ + γ̃,

where γ̃ is obtained from γ by the rule

γ̃kjµν =

{
γk−1,j−1
µν if k, j ≥ 2,

0 if otherwise.

This definition shows that after removing zero rows and columns the matrix γ̃ can be

deemed as having been obtained by the same formula (7.1.2) but using the system of sets

of vectors

χ(1)
µ , . . . , χ(dµ−1)

µ , µ = 1, . . . ,M.
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The order of this system is d − 1 and therefore by induction assumption the (original

with zero rows and columns) matrix γ̃ is non-negative. Hence, 2yβ+ γ̃ is positive definite,

since so is β. Finally, since γ can be represented as C(2yβ+ γ̃)C∗, where C is the matrix

corresponding to the row operations, it follows that γ itself is also positive definite.

Lemma 7.1.2. Let M and d1, . . . , dM be positive integers and let D = d1 + · · ·+ dM . Let

r1, . . . , rM be complex numbers with positive imaginary parts. Let

γ = (γkjµν)

be a block-matrix of size D×D, where µ, ν = 1, . . . ,M , k = 1, . . . , dµ, j = 1, . . . , dν . If γ

is positive definite, then so is (
i

rν − r̄µ
γkjµν

)
.

Proof. For any positive number p > 0 the D ×D matrix with elements

eip(rν−r̄µ)γkjµν

is positive definite. Hence, so is the matrix with elements∫ ∞
0

eip(rν−r̄µ)γkjµν dp =
iγkjµν

rν − r̄µ
.

Since p > 0 and Im rµ > 0 for all µ = 1, . . . ,M , the integral above converges absolutely.

Lemma 7.1.3. Let y > 0. Let M and d1, . . . , dM be positive integers. Assume that we are

given sets of vectors

χ(1)
µ , . . . , χ(dµ)

µ , µ = 1, . . . ,M,

from a pre-Hilbert space, such that all

D := d1 + · · ·+ dM

vectors χ
(j)
µ are linearly independent. Assume further that we are given complex numbers

r1, . . . , rM with positive imaginary parts. Let β be the positive definite D ×D matrix

βkjµν = 〈χ(k)
µ , χ(j)

ν 〉,

and define another D ×D matrix α by the recurrent formula

αkjµν =
2iy

rν − r̄µ
βkjµν +

1

rν − r̄µ
(αk−1,j
µν − αk,j−1

µν ), (7.1.3)

where it is assumed that αkjµν = 0 if at least one of the indices k or j is equal to 0. Then

α is positive definite.

Proof. This follows immediately from Lemmas 7.1.1 and 7.1.2.

As can be seen from the proof, if y is negative then the matrix α is negative definite.

Theorem 7.1.4. If Γ = {r1
z , . . . , r

M
z } is a finite set of resonance up-points corresponding

to a non-real number z, then the operator

Im z Qz̄(Γ̄)JPz(Γ)

is non-negative and its rank is equal to the rank of Pz(Γ).
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Proof. Without loss of generality we assume that y = Im z > 0.

By Lemma 5.1.4, we have

F ∗Qz̄(Γ̄)JPz(Γ)F = Q
z̄
(Γ̄)V P z(Γ).

Lemma 3.1.7 implies that the range of the finite-rank self-adjoint operator Qz̄(Γ̄)JPz(Γ)

is a subset of both dom(F ∗) and the range of Qz̄(Γ̄)JPz(Γ)F . Hence, by Lemma 2.1.3,

the operators

Qz̄(Γ̄)JPz(Γ) and Q
z̄
(Γ̄)V P z(Γ)

have equal ranks and signatures. So, it is sufficient to prove the claim for the latter

operator.

(A) For notational convenience we assume that the same point rµz may appear in the

list r1
z , . . . , r

M
z more than once. More exactly, each point rµz appears in the list mµ times,

where mµ is the geometric multiplicity of rµz . In what follows we often write rµ instead

of rµz . For each point rµz ∈ Γ let

χ(j)
µ , j = 1, . . . , dµ,

be a basis of Υz(r
µ
z ) such that Az(r

µ
z )χ

(j)
µ = χ

(j−1)
µ . We can assume the existence of such

a basis since, as mentioned above, the resonance points rµz appear in the list according

to their geometric multiplicities. Let

αkjµν = 〈χ(k)
µ , V χ(j)

ν 〉 and βkjµν = 〈χ(k)
µ , χ(j)

ν 〉.

Then

αkjµν =
2iy

rν − r̄µ
βkjµν +

1

rν − r̄µ
(αk−1,j
µν − αk,j−1

µν ). (7.1.4)

Indeed, by Corollary 3.4.7,

(Hrν − z)χ(j)
ν = −V χ(j−1)

ν .

It follows that

〈χ(k)
µ , (Hrν − z)χ(j)

ν 〉 = −〈χ(k)
µ , V χ(j−1)

ν 〉.

In this equality we swap the pairs of indices (µ, k) and (ν, j) and then take conjugates of

both sides of the resulting equality:

〈χ(k)
µ , (Hr̄µ − z̄)χ(j)

ν 〉 = −〈χ(k−1)
µ , V χ(j)

ν 〉.

Subtracting from this equality the previous one gives

〈χ(k)
µ , (−rνV + r̄µV + z − z̄)χ(j)

ν 〉 = −〈χ(k−1)
µ , V χ(j)

ν 〉+ 〈χ(k)
µ , V χ(j−1)

ν 〉.

This can be written as

(rν − r̄µ)〈χ(k)
µ , V χ(j)

ν 〉 = (z − z̄)〈χ(k)
µ , χ(j)

ν 〉+ 〈χ(k−1)
µ , V χ(j)

ν 〉 − 〈χ(k)
µ , V χ(j−1)

ν 〉,

which is equivalent to (7.1.4).

(B) Since the vectors

χ(j)
µ , j = 1, . . . , dµ, µ = 1, . . . ,M,

form a basis of the range of P z(Γ), to prove the theorem it is enough to prove the positive

definiteness of (αkjµν). But this follows from Lemma 7.1.3 and (7.1.4).
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An analogue of Theorem 7.1.4 holds also for sets of resonance down-points. Namely,

if Γ is a finite set of resonance down-points, then the operator Im z Qz̄(Γ̄)JPz(Γ) is non-

positive and its rank is equal to the rank of Pz(Γ).

7.2. Signature of the resonance matrix and R-index. The following theorem is the

main result of this section.

Theorem 7.2.1. If Γ = {r1
z , . . . , r

M
z } is a finite set of resonance points corresponding to a

non-real number z, then the signature of the finite-rank self-adjoint operator Qz̄(Γ̄)JPz(Γ)

is equal to the R-index of Im zAz(s)Pz(Γ).

Proof. Without loss of generality we assume that Im z > 0.

Let Γ = Γ↑ ∪ Γ↓, where Γ↑ ⊂ C+ and Γ↓ ⊂ C−. Further, let

Υ↑ = im(Pz(Γ
↑)) and Υ↓ = im(Pz(Γ

↓)).

The R-index of Az(s)Pz(Γ) is equal to N+−N−, where N+ (respectively, N−) is the sum

of the algebraic multiplicities of all points from Γ↑ (respectively, Γ↓); that is,

R(Az(s)Pz(Γ)) = N+ −N− := dim Υ↑ − dim Υ↓.

For any non-zero u ∈ Υ↑ we have

〈u,Qz̄(Γ̄)JPz(Γ)u〉 = 〈Pz(Γ)u, JPz(Γ)u〉 = 〈Pz(Γ↑)u, JPz(Γ↑)u〉 > 0,

where the last inequality follows from Theorem 7.1.4. Similarly, for any non-zero u ∈ Υ↓,

〈u,Qz̄(Γ̄)JPz(Γ)u〉 = 〈Pz(Γ)u, JPz(Γ)u〉 = 〈Pz(Γ↓)u, JPz(Γ↓)u〉 < 0.

Therefore, by Lemma 2.1.2, the rank of the positive (respectively, negative) part of

Qz̄(Γ̄)JPz(Γ) is at least N+ (respectively, N−). Hence, the rank of Qz̄(Γ̄)JPz(Γ) is at

least

N+ +N− = N := rank(Pz(Γ)),

and so the rank of Qz̄(Γ̄)JPz(Γ) is N . It follows that in fact the rank of the positive

(respectively, negative) part ofQz̄(Γ̄)JPz(Γ) isN+ (respectively,N−). Thus, the signature

of Qz̄(Γ̄)JPz(Γ) is N+ −N−.

Theorem 7.2.1 is the main ingredient of the proof of Theorem 9.2.1, which asserts that

the resonance index can be treated as the signature of a certain finite-rank self-adjoint

operator.

We remark that Theorems 7.1.4 and 7.2.1 also hold in a finite-dimensional Hilbert

space, that is, for a pair of self-adjoint matrices H0 and V . Still, even this special case

is non-trivial. The finite-dimensional versions of Theorems 7.1.4 and 7.2.1 can be tested

in numerical experiments. Such a testing was carried out by the author using MATLAB,

and it confirms both theorems.

7.3. Some corollaries. Theorem 7.1.4 has the following corollaries.

Corollary 7.3.1. Let z be a non-real number. For any finite set Γ of resonance up-

points corresponding to z the mapping

Qz̄(Γ̄) : Ψz(Γ)→ Ψz̄(Γ̄)

is a linear isomorphism.
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Proof. Assume the contrary. Then, since the dimensions of Ψz(Γ) and Ψz̄(Γ̄) are finite

and equal, for some non-zero ψ ∈ Ψz(Γ) we have Qz̄(Γ̄)ψ = 0. By Lemma 3.1.4, there

exists a non-zero u ∈ Υz(Γ) such that ψ = Ju. It follows that

〈u,Qz̄(Γ̄)JPz(Γ)u〉 = 〈u,Qz̄(Γ̄)Ju〉 = 0.

This contradicts Theorem 7.1.4.

Corollary 7.3.2. Let z be a non-real number. For any finite set Γ of resonance up-

points corresponding to z the mapping

Pz̄(Γ̄) : Υz(Γ)→ Υz̄(Γ̄)

is a linear isomorphism.

Proof. This follows from Lemma 3.1.4 and the previous corollary.

These corollaries hold for a finite set of down-points too, of course. Similarly, for any

finite set Γ of resonance points from C+ or C− the mappings

Qz(Γ) : Ψz̄(Γ̄)→ Ψz(Γ) and Pz(Γ) : Υz̄(Γ̄)→ Υz(Γ)

are linear isomorphisms.

Corollary 7.3.3. For any finite set Γ of resonance up-points and for any j = 1, 2, . . .

the operator

Bj
z̄(Γ̄)JAj

z(Γ)

is non-negative and its rank is equal to the rank of Aj
z(Γ), where

Aj
z(Γ) =

∑
rz∈Γ

Aj
z(rz).

A similar inequality holds with j replaced by a multi-index.

Indeed, since in this case Qz̄(Γ̄)JPz(Γ) ≥ 0, we have

Bj
z̄(Γ̄)JAj

z(Γ) = (Aj
z(Γ))∗[Qz̄(Γ̄)JPz(Γ)]Aj

z(Γ) ≥ 0.

7.4. An open question. In an attempt to generalize Theorem 7.1.4 one could attempt

to prove that if Γ1 and Γ2 are finite sets of resonance up-points such that Γ1 ⊂ Γ2, then

Qz̄(Γ̄1)JPz(Γ1) ≤ Qz̄(Γ̄2)JPz(Γ2);

but this is false, as computer experiments demonstrate.

However, we conjecture that if Γ1 ⊂ Γ2 ⊂ C+, then Qz̄(Γ̄2)JPz(Γ2) spectrally domi-

nates Qz̄(Γ̄1)JPz(Γ1). Computer experiments support this conjecture.



8. Vectors of type I

In this section we study a subspace of the vector space Υλ±i0(rλ) which consists of vectors

with an additional property.

8.1. Vanishing property of resonance vectors

Proposition 8.1.1. Let λ be an essentially regular point, let {H0 + rV : r ∈ R} be a line

regular at λ, let rλ be a real resonance point of the path {H0 + rV : r ∈ R} at λ and let k

be a positive integer. If uλ±i0(rλ) ∈ Υλ±i0(rλ) is a resonance vector of order k ≥ 1 at

λ± i0, then for all non-resonant values of s,

〈Juλ±i0(rλ), ImTλ±i0(Hs)Juλ±i0(rλ)〉 =
c±2

(s− rλ)2
+ · · ·+ c±k

(s− rλ)k
, (8.1.1)

where, in case k ≥ 2, for j = 2, . . . , k,

c±j = Im〈uλ±i0(rλ), JAj−1
λ±i0(rλ)uλ±i0(rλ)〉

= − Im〈uλ±i0(rλ), JAj−1
λ∓i0(rλ)uλ±i0(rλ)〉. (8.1.2)

In particular, if uλ±i0(rλ) ∈ Υλ±i0(rλ) is a resonance vector of order 1, then

〈Juλ±i0(rλ), ImTλ±i0(Hs)Juλ±i0(rλ)〉 = 0. (8.1.3)

Proof. We give two proofs of (8.1.1), but only in the second proof will the formula (8.1.2)

for c±j be derived. For brevity we write u± instead of uλ±i0(rλ). Let

f±(s) = 〈Ju±, Aλ±i0(s)u±〉 = 〈Ju±, Tλ±i0(Hs)Ju±〉.

By Theorem 3.4.2, the vector u± satisfies (3.4.5) with z = λ± i0. Multiplying both sides

of (3.4.5) by 〈Ju±, ·〉, one finds that (recall that 〈·, ·〉 is linear in the second argument)

k∑
j=1

(sj − rλ)k−1(〈Ju±, u±〉+ (rλ − sj)f±(sj))

k∏
i=1, i 6=j

(sj − si)−1 = 0

for all sets s1, . . . , sk of distinct real non-resonance points. Taking the imaginary parts of

both sides of this equality gives

k∑
j=1

(sj − rλ)k Im f±(sj)

k∏
i=1, i 6=j

(sj − si)−1 = 0.

By Lemma 2.3.1, the left hand side is the divided difference of order k−1 of the function

h(s) = (s−rλ)k Im f±(s). It follows from this and Lemma 2.3.2 that h(s) is a polynomial

[96]
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of degree not greater than k − 2. Hence, the function

Im f±(s) = 〈Ju±, ImTλ±i0(Hs)Ju±〉

has the form (8.1.1) with some numbers c±2, . . . , c±k. Here it is assumed that Im f±(s)

is defined by the right hand side of the equality above for real values of s, and then

continued analytically to the complex s-plane.

Second proof. We have

2i Im f±(s) = 〈Ju±, Tλ±i0(Hs)Ju±〉 − 〈Tλ±i0(Hs)Ju±, Ju±〉.

The Laurent expansion (3.4.6) of Tλ±i0(Hs)Ju± implies that for real values of s the

Laurent expansion of the function Im f±(s) at s = rλ is

Im f±(s) =
1

2i

〈
Ju±,

k−1∑
j=0

1

(s− rλ)j+1
Aj
λ±i0(rλ)u±

〉

− 1

2i

〈 k−1∑
j=0

1

(s− rλ)j+1
Aj
λ±i0(rλ)u±, Ju±

〉

=
1

2i

k−1∑
j=0

1

(s− rλ)j+1
[〈Ju±,Aj

λ±i0(rλ)u±〉 − 〈Aj
λ±i0(rλ)u±, Ju±〉]

=

k−1∑
j=1

1

(s− rλ)j+1
Im〈Ju±,Aj

λ±i0(rλ)u±〉.

Comparing the coefficients of (s− rλ)−j in this Laurent series and in (8.1.1) gives

c±j = Im〈u±, JAj−1
λ±i0(rλ)u±〉.

To derive the second formula for c±j we note that (3.3.11) and (3.3.12) imply that for all

j = 0, 1, 2, . . . ,

〈u±, JAj
λ±i0(rλ)u±〉 = 〈Bj

λ∓i0(rλ)Ju±, u±〉 = 〈JAj
λ∓i0(rλ)u±, u±〉

= 〈u±, JAj
λ∓i0(rλ)u±〉. (8.1.4)

Hence, − Im〈u±, JAj
λ∓i0(rλ)u±〉 = Im〈u±, JAj

λ±i0(rλ)u±〉 = c±j .

Since ImTλ−i0(Hs) = − ImTλ+i0(Hs), it follows from (8.1.1) that if u ∈ Υk
λ+i0(rλ)

or u ∈ Υk
λ−i0(rλ), then

〈Juλ±i0(rλ), ImTλ+i0(Hs)Juλ±i0(rλ)〉

=

k∑
j=2

Im〈uλ±i0(rλ), JAj−1
λ+i0(rλ)uλ±i0(rλ)〉(s− rλ)−j .

Remark 8.1.2. Since the left hand side of (8.1.1) is non-negative (for the plus sign)

or non-positive (for the minus sign), it follows from (8.1.1) that the largest j for which

c±j 6= 0 must be even, and

Im〈uλ±i0(rλ), JAλ+i0(rλ)uλ±i0(rλ)〉 ≥ 0.
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8.2. Vectors of type I

Definition 8.2.1. A vector u ∈ Υλ±i0(rλ) will be said to be of type I if for any non-

resonant s ∈ R, √
ImTλ+i0(Hs) Ju = 0. (8.2.1)

The equality (8.2.1) is equivalent to

ImTλ+i0(Hs) Ju = 0.

Since ImTλ+i0(Hs)J = Aλ+i0(s)−Aλ−i0(s), this is also equivalent to

Aλ+i0(s)u = Aλ−i0(s)u. (8.2.2)

Proposition 8.2.2. Every vector of order 1 is of type I.

Proof. This follows from (8.1.3).

Lemma 8.2.3. If an element u of one of the two vector spaces Υλ±i0(rλ) is a vector of

type I, then u is also an element of the other vector space, that is, u ∈ Υλ∓i0(rλ), and

the orders of u as an element of Υλ+i0(rλ) and Υλ−i0(rλ) are the same.

Proof. If for instance u ∈ Υk
λ+i0(rλ), then by (3.4.5) one has

k∑
j=1

(sj − rλ)k−1(u+ (rλ − sj)Aλ+i0(sj)u)

k∏
i=1, i 6=j

(sj − si)−1 = 0,

where s1, . . . , sk is any set of k distinct real non-resonance points. If u is a vector of

type I then (8.2.2) holds, and therefore in the above equality Aλ+i0(sj)u can be replaced

by Aλ−i0(sj)u. By Theorem 3.4.2, the resulting equality implies that u ∈ Υk
λ−i0(rλ).

Similarly one shows that if u ∈ Υk
λ−i0(rλ) is a vector of type I, then u ∈ Υk

λ+i0(rλ).

Hence, the orders of u as an element of Υλ−i0(rλ) and Υλ+i0(rλ) are the same.

Lemma 8.2.3 combined with Proposition 8.2.2 implies

Corollary 8.2.4.

Υ1
λ+i0(rλ) = Υ1

λ−i0(rλ).

By Lemma 3.1.4, it follows that also

Ψ1
λ+i0(rλ) = Ψ1

λ−i0(rλ). (8.2.3)

The vectors of type I form a vector subspace of both Υλ±i0(rλ).

If u is a vector of type I then we deduce from (8.2.2) and (3.3.5) that for all j =

0, 1, 2, . . . ,

Aj
λ+i0(rλ)u = Aj

λ−i0(rλ)u. (8.2.4)

On the other hand, if an element u of Υλ−i0(rλ) ∩ Υλ+i0(rλ) is such that for all j =

0, 1, 2, . . . the equality (8.2.4) holds then, since by (3.4.12) we have

Ãλ+i0,rλ(rλ)u = Ãλ+i0,rλ(rλ)Pλ+i0(rλ)u = 0

and similarly Ãλ−i0,rλ(rλ)u = 0, it follows from the Laurent expansion (3.3.16) of Az(s)

that (8.2.2) holds. Thus, the following lemma has been proved.
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Lemma 8.2.5. An element u of Υλ+i0(rλ) or Υλ−i0(rλ) is a vector of type I if and only

if (8.2.4) holds for all j = 0, 1, 2, . . . .

Corollary 8.2.6. If u is a vector of type I then so are the vectors Aj
λ±i0(rλ)u for any

j = 0, 1, 2, . . . .

In other words, the vector space of vectors of type I is invariant under Aλ±i0(rλ).

Lemma 8.2.7. An element u of Υλ+i0(rλ) or Υλ−i0(rλ) is a vector of type I if and only

if there exists a non-resonant real number r such that for all j = 0, 1, 2, . . . ,

(Aλ+i0(r)−Aλ−i0(r))Aj
λ+i0(rλ)u = 0.

Proof. (Only if) If u is a vector of type I then by Corollary 8.2.6 for any j = 0, 1, 2, . . . the

vectors (8.2.4) are also of type I. Hence, the equality to be proved follows from (8.2.2).

(If) It follows from the premise with j = 0 that (8.2.2) holds for one non-resonant

real number r. Let s be any other such number. Then by (2.7.11),

(Aλ+i0(s)−Aλ−i0(s))u

= (1 + (s− r)Aλ−i0(r))−1(Aλ+i0(r)−Aλ−i0(r))(1 + (s− r)Aλ+i0(r))−1u.

Using Proposition 3.4.5, we can expand (1 + (s− r)Aλ+i0(r))−1u as a linear combination

of Aj
λ+i0(rλ)u. Hence, it follows from the premise that (Aλ+i0(s) − Aλ−i0(s))u = 0 for

any non-resonant s. That is, u is a vector of type I.

The vector space of vectors of type I will be denoted by ΥI
λ(rλ). This notation is not

ambiguous since, according to Lemma 8.2.3, one can omit the sign in ΥI
λ±i0(rλ) and write

ΥI
λ(rλ). Further, the vector subspaces Υk,I

λ (rλ) are also correctly defined in the sense that

ΥI
λ(rλ) ∩Υk

λ+i0(rλ) = ΥI
λ(rλ) ∩Υk

λ−i0(rλ).

We summarize the results of this section in

Theorem 8.2.8. Let rλ be a real resonance point of the line γ = {Hr : r ∈ R}, corre-

sponding to a real number λ ∈ Λ(γ, F ). Let u ∈ K. The following assertions are equivalent:

(1) u ∈ Υλ+i0(rλ) and for all non-resonant real numbers s,√
ImTλ+i0(Hs) Ju = 0.

(2) u ∈ Υλ−i0(rλ) and for all non-resonant real numbers s,√
ImTλ+i0(Hs) Ju = 0.

(3) u ∈ Υλ+i0(rλ) and for all non-resonant real numbers s,

Aλ+i0(s)u = Aλ−i0(s)u.

(4) u ∈ Υλ−i0(rλ) and for all non-resonant real numbers s,

Aλ+i0(s)u = Aλ−i0(s)u.

(5) u ∈ Υλ+i0(rλ) and for all j = 0, 1, . . . , d− 1, where d is the order of rλ,

Aj
λ+i0(rλ)u = Aj

λ−i0(rλ)u.

(6) u ∈ Υλ−i0(rλ) and for all j = 0, 1, . . . , d− 1, where d is the order of rλ,

Aj
λ+i0(rλ)u = Aj

λ−i0(rλ)u.
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(7) u ∈ Υλ+i0(rλ) and there exists a non-resonant real number r such that for all

j = 0, 1, 2, . . . ,

(Aλ+i0(r)−Aλ−i0(r))Aj
λ+i0(rλ)u = 0.

(8) u ∈ Υλ−i0(rλ) and there exists a non-resonant real number r such that for all

j = 0, 1, 2, . . . ,

(Aλ+i0(r)−Aλ−i0(r))Aj
λ−i0(rλ)u = 0.

(9) u ∈ Υλ+i0(rλ) and all the coefficients c+j from (8.1.1) are zero.

(10) u ∈ Υλ−i0(rλ) and all the coefficients c−j from (8.1.1) are zero.

The set ΥI
λ+i0(rλ) of vectors which satisfy any of these equivalent conditions is a vec-

tor subspace of Υλ+i0(rλ) ∩ Υλ−i0(rλ), and ΥI
λ+i0(rλ) is invariant with respect to both

Aj
λ+i0(rλ) and Aj

λ−i0(rλ).

It is an open question whether

ΥI
λ+i0(rλ) = Υλ+i0(rλ) ∩Υλ−i0(rλ).

8.3. Large depth vectors are of type I

Theorem 8.3.1. If a resonance vector u(k) ∈ Υλ±i0(rλ) has order k then the vectors

u(1), . . . , u(dk/2e)

are of type I, where dk/2e is the smallest integer ≥ k/2 and u(j) = Ak−j
λ±i0(rλ)u(k).

Proof. We prove the assertion for the plus sign.

We prove that u(n) is of type I for n = 1, . . . , dk/2e, using induction on n. For n = 1

this follows from Corollary 8.2.4. Assume that all vectors u(1), . . . , u(n−1), where n ≤
dk/2e, are of type I. We have to prove the claim for u(n). Since n ≤ dk/2e, we have

2n− 1 ≤ k, so that

u(n) = An−1
λ+i0(rλ)u(2n−1).

For any j = 1, 2, . . . we have

〈Ju(n),Aj
λ+i0(rλ)u(n)〉 = 〈Ju(n), u(n−j)〉 = 〈JAn−1

λ+i0(rλ)u(2n−1), u(n−j)〉

= 〈Bn−1
λ+i0(rλ)Ju(2n−1), u(n−j)〉 = 〈Ju(2n−1),An−1

λ−i0(rλ)u(n−j)〉.
By the induction assumption, all the vectors u(n−j), j = 1, 2, . . . , are of type I and there-

fore, according to items (5) and (6) of Theorem 8.2.8, in the expression An−1
λ−i0(rλ)u(n−j)

we can replace An−1
λ−i0(rλ) by An−1

λ+i0(rλ); this shows that An−1
λ−i0(rλ)u(n−j) = 0. Conse-

quently, Theorem 8.2.8(9) holds for u(n), and therefore u(n) is of type I.

A resonance vector u ∈ Υz(rz) will be said to have depth k if u belongs to the image

of the operator Ak
z(rz), but not to the image of Ak+1

z (rz). The depth of u will be denoted

by γz(u), or by γ(u) if there is no ambiguity. In other words,

γz(u) = max{k ∈ Z+ : ∃φ ∈ K Ak
z(rz)φ = u}.

We say that a vector u ∈ Υz(rz) has property L if

d(u) ≤

{
γ(u) if d(u) + γ(u) is even,

γ(u) + 1 if d(u) + γ(u) is odd.

We denote by Lz(rz) the linear span of all vectors u with property L.
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For example, if the Young diagram of the operator Az(rz) is as in the left figure

below, then one can easily prove that Lz(rz) is the linear span of those vectors in the

right figure which are marked by bullets.

rrr rrr rrr rrr rrr rr rr r r r r r
Theorem 8.3.1 implies that every vector with property L is of type I. Hence, we have

Corollary 8.3.2. The vector space Lλ+i0(rλ) spanned by vectors with property L is a

subspace of the vector space ΥI
λ(rλ) of vectors of type I:

Lλ+i0(rλ) ⊂ ΥI
λ(rλ).

Similarly, one can define the vector space Lλ−i0(rλ), which is also a subspace of

ΥI
λ(rλ). The vector spaces Lλ+i0(rλ) and Lλ−i0(rλ) coincide. A proof of this assertion

will be given elsewhere. The main part of the proof is the statement that the λ+ i0-depth

of any vector of order 1 from Υλ(rλ) coincides with the λ− i0-depth of that vector.

If rλ has order d = (d1, . . . , dm), then the dimension of Lλ+i0(rλ) is equal to

dd1/2e+ · · ·+ ddm/2e.



9. Resonance index and the signature of the resonance matrix

In this section we prove one of the main results of this paper: equality of the resonance

index and the signature of the resonance matrix.

9.1. Non-degeneracy of Pλ±i0(rλ). The following theorem is one of the key properties

of the idempotents Pλ±i0(rλ), and plays an important role in what follows. Another proof

of this theorem is given in Remark 11.1.5.

Theorem 9.1.1. If z = λ + i0 ∈ ∂Π or z = λ − i0 ∈ ∂Π, and if rλ is a real resonance

point corresponding to z, then the idempotents Pλ±i0(rλ) are linear isomorphisms of the

vector spaces Υλ∓i0(rλ) and Υλ±i0(rλ).

Proof. Since by Lemma 3.1.4 the dimensions of Υλ+i0(rλ) and Υλ−i0(rλ) coincide, it is

enough to show that kernels of Pλ±i0(rλ) : Υλ∓i0(rλ)→ Υλ±i0(rλ) are zero. Assume the

contrary, for example, there exists a non-zero u ∈ Υλ+i0(rλ) such that

Pλ−i0(rλ)u = 0. (9.1.1)

Then it follows from (8.1.4) and (3.3.7) that for all j = 0, 1, 2, . . . ,

〈u, JAj
λ+i0(rλ)u〉 = 〈u, JAj

λ−i0(rλ)u〉 = 〈u, JAj
λ−i0(rλ)Pλ−i0(rλ)u〉 = 0.

This combined with (8.1.1) implies that u is of type I. It follows from Lemma 8.2.3 that

u ∈ Υλ−i0(rλ) and therefore u = Pλ−i0(rλ)u 6= 0, which contradicts (9.1.1).

Thus, for any real resonance point rλ,

Pλ±i0(rλ)Υλ∓i0(rλ) = Υλ±i0(rλ).

This equality is equivalent to any of the following, which therefore also hold:

Qλ±i0(rλ)Ψλ∓i0(rλ) = Ψλ±i0(rλ), (9.1.2)

rank(Pλ±i0(rλ)Pλ∓i0(rλ)) = N, (9.1.3)

rank(Qλ∓i0(rλ)Qλ±i0(rλ)) = N, (9.1.4)

where N = rank(Pλ±i0(rλ)) = rank(Qλ±i0(rλ)).

Lemma 3.1.4 and Theorem 9.1.1 imply

Proposition 9.1.2. If z = λ± i0 ∈ ∂Π and if rλ is a real resonance point corresponding

to z, then

rankQλ∓i0(rλ)JPλ±i0(rλ) = N,

where N is the rank of (any of ) the operators Pλ±i0(rλ) and Qλ±i0(rλ).

[102]
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Note that Theorem 9.1.1 is similar to Corollary 7.3.2, but with an essential difference:

while in Theorem 9.1.1 the number z belongs to the boundary of Π, in Corollary 7.3.2 it

does not. At the same time, the methods of proof of these two assertions are completely

different.

Lemma 9.1.3. If rλ is a real resonance point then for all small enough y > 0,

rankQλ−i0(rλ)JPλ+i0(rλ) = rankQλ−iy(rλ)JPλ+iy(rλ),

signQλ−i0(rλ)JPλ+i0(rλ) = signQλ−iy(rλ)JPλ+iy(rλ).

Proof. Sufficiently small (in norm) perturbations cannot decrease the rank of the res-

onance matrix Qλ−i0(rλ)JPλ+i0(rλ). Since the rank of Pλ+i0(rλ) is stable under small

enough perturbations, Proposition 9.1.2 shows that the rank of Qλ−i0(rλ)JPλ+i0(rλ)

cannot increase either. Thus, the first equality follows.

The second follows from the first and from continuity considerations, since in order to

change the signature of Qλ−iy(rλ)JPλ+iy(rλ) some non-zero eigenvalue of this operator

has to be deformed to zero, which would violate the constancy of the rank.

9.2. Signature of the resonance matrix and resonance index. The following the-

orem is one of the main results of this paper.

Theorem 9.2.1. For any real resonance point rλ the signatures sign(Qλ∓i0(rλ)JPλ±i0(rλ))

of the resonance matrices of rλ are the same and are equal to the resonance index of the

triple (λ;Hrλ , V ); that is,

sign(Qλ∓i0(rλ)JPλ±i0(rλ)) = indres(λ;Hrλ , V ).

Proof. By Lemma 9.1.3 for small enough y > 0 we have

sign(Qλ∓i0(rλ)JPλ±i0(rλ)) = sign(Qλ∓iy(rλ)JPλ±iy(rλ)).

Hence, the claim follows from Theorem 7.2.1, (5.3.2) and (5.3.4).

Theorem 9.2.1 implies the following corollary. Nonetheless, we give another proof.

Corollary 9.2.2. For any real resonance point rλ, the signatures of the finite-rank self-

adjoint operators Qλ−i0(rλ)JPλ+i0(rλ) and Qλ+i0(rλ)JPλ−i0(rλ) coincide.

Proof. For any y > 0 and any real s, by Lemma 9.2.3 below,

(E) := sign(Qλ−i0(rλ)JPλ+i0(rλ)) = R(Tλ+iy(Hs)Qλ−i0(rλ)JPλ+i0(rλ)).

By stability of the R-index (Lemma 5.1.2(iv)), for small enough y′ > 0 we get

(E) = R(Tλ+iy(Hs)Qλ−iy′(rλ)JPλ+iy′(rλ)).

Since this R-index does not depend on y > 0, the number y in the above equality can be

replaced by y′. Combining this with Lemma 5.1.2(i) and (3.2.11) and (3.2.10), we obtain

(E) = R(Tλ+iy′(Hs)Qλ−iy′(rλ)JPλ+iy′(rλ)) = R(Pλ+iy′(rλ)Tλ+iy′(Hs)Qλ−iy′(rλ)J)

= R(Tλ+iy′(Hs)Qλ+iy′(rλ)Qλ−iy′(rλ)J) = R(Tλ+iy′(Hs)Qλ+iy′(rλ)JPλ−iy′(rλ)).
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For small enough y′ we also have

sign(Qλ+i0(rλ)JPλ−i0(rλ)) = R(Tλ+iy′(Hs)Qλ+i0(rλ)JPλ−i0(rλ))

= R(Tλ+iy′(Hs)Qλ+iy′(rλ)JPλ−iy′(rλ)),

so the proof is complete.

Lemma 9.2.3. Let s ∈ R. If rλ is a real resonance point, then there exists ε > 0 such

that for all y′ > 0 and for all y ∈ [0, ε) the operator

Tλ±iy′(Hs)Qλ∓iy(rλ)JPλ±iy(rλ)

belongs to the class R, and

sign(Qλ−i0(rλ)JPλ+i0(rλ)) = R(Tλ+iy′(Hs)Qλ−iy(rλ)JPλ+iy(rλ)).

Proof. By Lemma 5.1.4, for all small enough y > 0 we have

Q
λ−iy(rλ)V Pλ+iy(rλ) = F ∗Qλ−iy(rλ)JPλ+iy(rλ)F.

Combining this with Lemmas 3.1.7 and 2.1.3 we infer that for all small enough y > 0,

sign(Qλ−iy(rλ)JPλ+iy(rλ)) = sign(Q
λ−iy(rλ)V Pλ+iy(rλ)).

By Krĕın’s Theorem 5.1.6, for any real number s and for all y′ > 0 we have

sign(Q
λ−iy(rλ)V Pλ+iy(rλ)) = R(Rλ+iy′(Hs)Qλ−iy(rλ)V Pλ+iy(rλ)).

Putting together the last three equalities, we get

sign(Qλ−iy(rλ)JPλ+iy(rλ)) = R(Rλ+iy′(Hs)F
∗Qλ−iy(rλ)JPλ+iy(rλ)F ).

The pair of operators Rλ+iy′(Hs)F
∗Qλ−iy(rλ)JPλ+iy(rλ) and F satisfy the premise of

Lemma 5.1.3. Hence, by that lemma and the above equality,

sign(Qλ−iy(rλ)JPλ+iy(rλ)) = R(FRλ+iy′(Hs)F
∗Qλ−iy(rλ)JPλ+iy(rλ)).

Finally, Lemma 9.1.3 completes the proof.

In the following theorem we gather different descriptions of the resonance index.

Theorem 9.2.4. Let rλ be a real resonance point. The following numbers are all equal:

(1) The resonance index indres(λ;Hrλ , V ).

(2) The signatures of the operators Qλ∓i0(rλ)JPλ±i0(rλ).

(3) The R-index of the operator Tλ+iy(Hs)Qλ−iy(rλ)JPλ+iy(rλ) for all s and for all

small enough y > 0.

(4) The R-index of the operator −Tλ−iy(Hs)Qλ+iy(rλ)JPλ−iy(rλ) for all s and for all

small enough y > 0.

(5) The R-index of the operator Aλ+iy(s)Pλ+iy(rλ) for all s and for all small enough

y > 0.

(6) The R-index of the operator −Aλ−iy(s)Pλ−iy(rλ) for all s and for all small enough

y > 0.

Proof. Equality of (1) and (2) is the statement of Theorem 9.2.1. Equality of the second

and third and fourth numbers follows from Lemma 9.2.3. The equalities (1) = (5) and

(1) = (6) follow from (5.3.2) and (5.3.4) respectively.



10. U-turn theorem

According to Lemma 3.1.4, the four vector spaces Υ1
λ±i0(rλ) and Ψ1

λ±i0(rλ) have the

same dimension. It was noted in §4.4 that the dimension of the vector space Υ1
λ+i0(rλ)

can be interpreted as multiplicity of a point λ of the singular spectrum of a λ-resonant

operator Hrλ . Theorem 10.1.6 and Corollary 10.2.1, proved in this section, provide an-

other rationale for this interpretation. Given this definition of the multiplicity of the

singular spectrum, how should one interpret the case when, for example, the dimension

of Υ1
λ±i0(rλ) is 1, while the dimension N of Υλ±i0(rλ) is 2? Since N = 2, there are two

resonance points in the group of rλ for small y. It is reasonable to suggest that these two

poles should not belong to the same half-plane C±, since this would mean that the reso-

nance index (= jump of spectral flow) is equal to two, while the multiplicity of the point λ

of the singular spectrum is one. That is, in this case we expect one up-pole and one down-

pole, resulting in zero resonance index. Outside of the essential spectrum, this scenario

has an obvious geometric interpretation: a point of the singular spectrum (that is, an

eigenvalue) reaches λ, but instead of crossing λ it turns back. Thus, existence of vectors

of order two or more should be interpreted as an indicator of the fact that some points of

the singular spectrum make a “U-turn” at λ. More generally, if dim Υ1
λ+i0(rλ) = m, then

it is natural to suggest that the jump of spectral flow at r = rλ should not be greater

than m, since there are only m “eigenvalues” which can cross the point λ as r crosses rλ
in the positive direction.

In other words, one may expect that

|N+ −N−| ≤ dim Υ1
λ+i0(rλ).

This inequality (the U-turn theorem) turns out to be true for all real resonance points rλ,

and is the main result of this section.

The U-turn theorem is non-trivial even for points λ which do not belong to the

essential spectrum. For instance, a resonance with N+ = 5 up-points and N− = 2

down-points, depicted below, may correspond to either of the following eight possible

scenarios:

1. As r crosses a real resonance point rλ in the positive direction, five eigenvalues of Hr

cross λ in the positive direction and two eigenvalues cross λ in the negative direction.

Each of the former five eigenvalues creates one up-point, and each of the latter two

creates one down-point.

2. Four eigenvalues cross λ in the positive direction, one eigenvalue crosses λ in the

negative direction, and one eigenvalue makes a U-turn at λ. The latter eigenvalue

creates one up-point and one down-point.

[105]
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3. Three eigenvalues cross λ in the positive direction and two eigenvalues make a U-turn

at λ. Each of the latter two creates one up-point and one down-point.

4. Three eigenvalues cross λ in the positive direction, one eigenvalue crosses λ in the

negative direction and one eigenvalue makes a double U-turn at λ. This last eigenvalue

creates two up-points and one down-point.

5. Three eigenvalues cross λ in the positive direction and one eigenvalue makes a triple

U-turn at λ, which results in the appearance of two up-points and two down-points.

6. One eigenvalue crosses λ in the positive direction and two eigenvalues make a double

U-turn at λ.

7. Two eigenvalues cross λ in the positive direction and one eigenvalue makes a quad-

ruple U-turn at λ. An eigenvalue making a quadruple U-turn creates three up-points

and two down-points.

8. Four eigenvalues cross λ in the positive direction and one eigenvalue makes a triple

U-turn at λ and crosses it in the negative direction. This last eigenvalue creates one

up-point and two down-points.

In these eight possible scenarios the dimension of the vector space Υ1
λ+i0(rλ) is equal to,

respectively, 7, 6, 5, 5, 4, 3, 3 and 5.

-

N+ = 5

N− = 2

bs
s s ss
ss��

�1

rλ

eigenvalues of Qλ−i0(rλ)JPλ+i0(rλ):

-

0

s s s s s s s

A typical motion of the eigenvalues of the operator Hr as r passes through rλ in each of

these eight possible scenarios is given below:

1st scenario: dim Υ1
λ+i0(rλ) = 7

-b
λ

r� r�
r -r -r -r -r -

2nd scenario: dim Υ1
λ+i0(rλ) = 6

-b
λ

r�
r -r -r -r -r � a

3rd scenario: dim Υ1
λ+i0(rλ) = 5

-b
λ

r -r -r -r � ar � a
4th scenario: dim Υ1

λ+i0(rλ) = 5

-b
λ

r�
r -r -r -r aa -
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5th scenario: dim Υ1
λ+i0(rλ) = 4

-b
λ

r -r -r -r aaa� 6th scenario: dim Υ1
λ+i0(rλ) = 3

-b
λ

r -r aa -r aa -

7th scenario: dim Υ1
λ+i0(rλ) = 3

-b
λ

r -r -r aaaa -
8th scenario: dim Υ1

λ+i0(rλ) = 5

-b
λ

r -r -r -r - raa�

For values of λ outside the essential spectrum these scenarios make rigorous sense,

since in this case λ depends on r analytically. The U-turn theorem allows us to extrapo-

late this behaviour of isolated eigenvalues to points of singular spectrum inside essential

spectrum.

One has to note that for the resonance index N+ −N− it does not matter which side

an eigenvalue making a U-turn approaches the point λ from; in both cases the eigenvalue

increases the number N+ of up-points and the number N− of down-points by 1. Taking

this into account, we do not distinguish for example the second scenario above from the

following possibility:

-b
λ

r�
r -r -r -r - r-a

10.1. Proof of the U-turn theorem. Let z ∈ Π, let rz be a resonance point corre-

sponding to z, let u ∈ Υz(rz) be a resonance vector and let k be a non-negative integer.

We denote by Lwz (rz) the linear span of all vectors u from Υz(rz) such that

γ(u) ≥ d(u). (10.1.1)

As an example, if the Young diagram of Az(rz) is as shown in the left figure below, then

the vector space Lwz (rz) is the linear span of the vectors marked by circles in the right

figure.

rrr rrr rrr rr rr r r r r
The following lemma is trivial.
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Lemma 10.1.1. For any z ∈ Π and any resonance point rz corresponding to z,

2 dimLwz (rz) + dim Υ1
z(rz) ≥ dim Υz(rz).

Proposition 10.1.2. If z = λ± i0 ∈ ∂Π and rλ is a real resonance point corresponding

to λ± i0, then for any u1, u2 ∈ Lwz (rλ),

〈u1, Ju2〉 = 0.

Proof. Assume that z = λ + i0. By linearity, it is sufficient to prove the claim for the

vectors u1 and u2 from Lwλ+i0(rλ) which satisfy (10.1.1). By Theorem 8.3.1, these vectors

are of type I; in particular, their Aλ+i0(rλ) and Aλ−i0(rλ) orders are equal:

d+(u1) = d−(u1) and d+(u2) = d−(u2). (10.1.2)

Let k = γ+(u1) and j = γ+(u2), and assume without loss of generality that k ≥ j.

By definition of depth, u1 = Ak
λ+i0(rλ)φ for some φ. Since k ≥ j ≥ d(u2), we have

Ak
λ+i0(rλ)u2 = 0. By (10.1.2), this implies that Ak

λ−i0(rλ)u2 = 0. It now follows from

(3.3.11) and (3.3.12) that

〈u1, Ju2〉 = 〈Ak
λ+i0(rλ)φ, Ju2〉 = 〈φ,Bk

λ−i0(rλ)Ju2〉 = 〈φ, JAk
λ−i0(rλ)u2〉 = 0.

Proposition 10.1.3. If z = λ ± i0 ∈ ∂Π and if the perturbation J is non-negative (or

non-positive), then every real resonance point has order 1.

Proof. Assume the contrary: a real resonance point rλ has order greater than 1. In this

case there exists a vector φ ∈ Υ2
λ+i0(rλ) of order 2. Hence, by Theorem 3.4.3, the vector

u = Aλ+i0(rλ)φ is of order 1 (and therefore is non-zero) and has depth ≥ 1. Then

〈u, Ju〉 = 〈Aλ+i0(rλ)φ, Ju〉 = 〈φ,Bλ−i0(rλ)Ju〉 = 〈φ, JAλ−i0(rλ)u〉 = 0, (10.1.3)

where the last equality follows from Corollary 8.2.4. Since J ≥ 0 (or J ≤ 0), we deduce

that Ju = 0. But this contradicts Lemma 3.1.4.

Even if the operator J is not sign-definite, the resonance matrix Qλ−i0(rλ)JPλ+i0(rλ)

may be sign-definite for some resonance points rλ. If this is the case, one may ask whether

the conclusion of Proposition 10.1.3 still holds. In fact, the same argument shows that if

the resonance matrix Qλ−i0(rλ)JPλ+i0(rλ) is non-negative, then rλ is of type I.

Proposition 10.1.4. Let z = λ ± i0 ∈ ∂Π and let rλ be a real resonance point corre-

sponding to z. If the resonance matrix Qλ−i0(rλ)JPλ+i0(rλ) or Qλ+i0(rλ)JPλ−i0(rλ) is

non-negative or non-positive, then rλ has order 1.

Proof. Let for instance z = λ+ i0 and assume the contrary: rλ has order greater than 1.

Then there exists a vector u of order 1 and of depth at least 1. Since u has order 1, by

Corollary 8.2.4 we have

Pλ+i0(rλ)u = Pλ−i0(rλ)u = u.

Further,

〈u,Qλ−i0(rλ)JPλ+i0(rλ)u〉 = 〈Pλ+i0(rλ)u, JPλ+i0(rλ)u〉 = 〈u, Ju〉.

From the last two formulas, using (10.1.3), one can infer that 〈u,Qλ−i0(rλ)JPλ+i0(rλ)u〉
= 0. Since Qλ−i0(rλ)JPλ+i0(rλ) is non-negative (or non-positive), this implies that
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Qλ−i0(rλ)JPλ+i0(rλ)u = 0. On the other hand, by Proposition 9.1.2, for all real res-

onance points, the restriction of Qλ−i0(rλ)JPλ+i0(rλ) to Υλ+i0(rλ) has zero kernel. This

gives a contradiction.

The following theorem and its corollary, Theorem 10.1.6, are among the main results

of this paper.

Theorem 10.1.5. If rλ is a real resonance point corresponding to z = λ ± i0, then the

absolute value of the signature of the resonance matrices Qλ∓i0(rλ)JPλ±i0(rλ) is not

greater than the dimension of the vector space Υ1
λ+i0(rλ):

|signQλ∓i0(rλ)JPλ±i0(rλ)| ≤ dim Υ1
λ+i0(rλ).

Proof. We prove this for the operator Qλ−i0(rλ)JPλ+i0(rλ). Let µ+, respectively µ−,

be the rank of the positive, respectively negative, part of Qλ−i0(rλ)JPλ+i0(rλ). Assume,

contrary to the claim, that

|µ+ − µ−| > m,

where m = dim Υ1
λ+i0(rλ). By Proposition 9.1.2,

µ+ + µ− = N = dim Υλ+i0(rλ).

This equality combined with the previous inequality imply that either µ+ or µ− is less

than (N −m)/2. Since by Lemma 10.1.1,

(N −m)/2 ≤ dimLwλ+i0(rλ),

we conclude that either µ+ or µ− is less than

dimLwλ+i0(rλ) =: p.

Without loss of generality it can be assumed that µ+ < p. Let u1, . . . , up be a basis of

Lwλ+i0(rλ). Since µ+ < p, there exists a non-zero linear combination

u = α1u1 + · · ·+ αpup ∈ Lwλ+i0(rλ)

such that the positive part of u with respect to Qλ−i0(rλ)JPλ+i0(rλ) is zero. Since

u1, . . . , up ∈ Lwλ+i0(rλ), it follows from Proposition 10.1.2 that

〈u, Ju〉 =

p∑
i=1

p∑
j=1

ᾱiαj〈ui, Juj〉 = 0. (10.1.4)

Since, by Proposition 9.1.2, the restriction of Qλ−i0(rλ)JPλ+i0(rλ) to Υλ+i0 has zero

kernel and since the positive part of u with respect to Qλ−i0(rλ)JPλ+i0(rλ) is zero, the

negative part of u with respect to Qλ−i0(rλ)JPλ+i0(rλ) is non-zero. Hence,

〈u, Ju〉 = 〈Pλ+i0(rλ)u, JPλ+i0(rλ)u〉 = 〈u,Qλ−i0(rλ)JPλ+i0(rλ)u〉 < 0.

This contradicts (10.1.4).

The following result is immediate from Theorems 10.1.5 and 9.2.1.

Theorem 10.1.6 (U-turn theorem). For any real resonance point rλ,

|indres(λ;Hrλ , V )| ≤ dim Υ1
λ+i0(rλ).
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10.2. Some corollaries of the U-turn theorem

Corollary 10.2.1. If the perturbation V is non-negative or non-positive, then

indres(λ;Hrλ , V ) = dim Υ1
λ+i0(rλ).

Proof. By Theorem 9.2.1, indres(λ;Hrλ , V ) is equal to the signature of the resonance

matrix Qλ−i0(rλ)JPλ+i0(rλ). By Proposition 9.1.2, the dimension N of Υλ+i0(rλ) is equal

to the rank of the resonance matrix. Since the resonance matrix is also non-negative or

non-positive, it follows that its signature is N or −N . Finally, since V is non-negative or

non-positive, by Proposition 10.1.3 the vector space Υλ+i0(rλ) coincides with Υ1
λ+i0(rλ),

and therefore

|signQλ−i0(rλ)JPλ+i0(rλ)| = N = dim Υλ+i0(rλ) = dim Υ1
λ+i0(rλ).

Theorem 10.1.5 and Proposition 9.1.2 imply

Corollary 10.2.2. Let z = λ ± i0 ∈ ∂Π. Assume that a real resonance point rλ cor-

responding to z has geometric multiplicity m = 1. If the order of rλ is even, then the

signature of the resonance matrix Qλ−i0(rλ)JPλ+i0(rλ) is zero; if the order of rλ is odd,

then this signature is +1 or −1.

Corollary 10.2.3. Let rλ be a real resonance point. If one of the numbers N+ or N−
from the definition (5.3.3) of the resonance index is zero, then rλ has order 1.

Proof. By Theorem 9.2.1, the resonance index N+ −N− of rλ is equal to the signature

of the self-adjoint operator Qλ−i0(rλ)JPλ+i0(rλ). If N+ or N− is zero, this signature

is N or −N , where N is the rank of Qλ−i0(rλ)JPλ+i0(rλ). Hence, Qλ−i0(rλ)JPλ+i0(rλ)

is either non-positive or non-negative. Therefore, Proposition 10.1.4 implies that rλ has

order 1.
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The main result of this section is Theorem 11.2.7, which asserts in particular that if the

geometric multiplicity of a real resonance point is equal to 1, then the mappings

Pλ±i0(rλ) : Υλ∓i0(rλ)→ Υλ±i0(rλ)

preserve the order of resonance vectors. Along the way we prove some properties of the

operators Pλ±i0(rλ) and Aλ±i0(rλ) which seem to be interesting on their own.

11.1. Some properties of Pλ±i0(rλ) and Aλ±i0(rλ)

Proposition 11.1.1. For any non-resonance point r ∈ R and any real resonance point rλ,√
ImTλ+i0(Hr) JPλ±i0(rλ)

√
ImTλ+i0(Hr) = 0, (11.1.1)

and for all j = 1, 2, . . . ,√
ImTλ+i0(Hr) JAj

λ±i0(rλ)
√

ImTλ+i0(Hr) = 0. (11.1.2)

Proof. We prove these equalities for the plus sign. The equalities for the minus sign can

then be derived by taking adjoint and using (3.2.5), (3.2.10), (3.3.11), (3.3.12).

It is well-known (see e.g. [Pu2]) that the operator

S̃(λ+ i0;Hs, Hr)

= 1− 2i
√

ImTλ+i0(Hr) (s− r)J(1 + (s− r)Tλ+i0(Hr)J)−1
√

ImTλ+i0(Hr) (11.1.3)

is unitary for real non-resonant r and s; the proof is a direct calculation. Since the right

hand side of (11.1.3) makes sense for complex values of s, we will treat the operator

S̃(λ + i0;Hs, Hr) as a function of the complex variable s. By the analytic Fredholm

alternative (Theorem 2.2.1) the operator-function S̃(λ + i0;Hs, Hr) is a meromorphic

function of s. Since this function is also unitary and therefore is bounded for real s,

it cannot have poles on the real axis R. Hence, S̃(λ + i0;Hs, Hr) as a function of s is

holomorphic in a neighbourhood of R. Making the change of variables σ = (r− s)−1 one

infers that the function of σ given by

S̃(λ+ i0;Hs(σ), Hr) = 1 + 2i
√

ImTλ+i0(Hr) J(σ − Tλ+i0(Hr)J)−1
√

ImTλ+i0(Hr)

is holomorphic in a neighbourhood of R. Hence, the residue of this function at

σ0 := (r − rλ)−1

is equal to zero. By the definition (3.2.1) of the idempotent Pz(rz), this residue is equal

(up to a non-zero constant) to the left hand side of (11.1.1), which is therefore zero too.

This completes proof of (11.1.1).
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Further, since the function S̃(λ+i0;Hs(σ), H0) of σ is holomorphic in a neighbourhood

of R, all the other terms (σ − σ0)−j with negative powers in the Laurent expansion of

S̃(λ+ i0;Hs(σ), H0) at σ = σ0 also vanish. Combining this with (3.3.19) implies√
ImTλ+i0(Hr) JAd−1

λ+i0(rλ)
√

ImTλ+i0(Hr) = 0.

Further, using this equality and (3.3.20) with k = d− 2, we infer that√
ImTλ+i0(Hr) JAd−2

λ+i0(rλ)
√

ImTλ+i0(Hr) = 0.

Continuing in this way gives (11.1.2) for all j = d− 1, d− 2, . . . , 1.

Proposition 11.1.1 implies that for all j = 0, 1, 2, . . . and all s,

(Aλ+i0(s)−Aλ−i0(s))Aj
λ+i0(rλ)(Aλ+i0(s)−Aλ−i0(s)) = 0. (11.1.4)

This equality itself is not useful but its modification which follows is.

Lemma 11.1.2. For any non-resonant real numbers r and s and all j = 0, 1, 2, . . . ,

(Aλ+i0(r)−Aλ−i0(r))Aj
λ+i0(rλ)(Aλ+i0(s)−Aλ−i0(s)) = 0. (11.1.5)

Proof. Using (2.7.11) we have

Aλ+i0(r)−Aλ−i0(r)

= 2i ImTλ+i0(r)J

= 2i(1 + (r − s)Aλ−i0(s))−1 ImTλ+i0(Hs)(1 + (r − s)Bλ+i0(s))−1J

= 2i(1 + (r − s)Aλ−i0(s))−1 ImTλ+i0(Hs)J(1 + (r − s)Aλ+i0(s))−1

= (1 + (r − s)Aλ−i0(s))−1(Aλ+i0(s)−Aλ−i0(s))(1 + (r − s)Aλ+i0(s))−1.

It follows that

[Aλ+i0(r)−Aλ−i0(r)]Pλ+i0(rλ)

= (1 + (r − s)Aλ−i0(s))−1(Aλ+i0(s)−Aλ−i0(s))(1 + (r − s)Aλ+i0(s))−1Pλ+i0(rλ).

Expanding the factor (1 + (r− s)Aλ+i0(s))−1Pλ+i0(rλ) by (3.4.13) and multiplying both

sides on the right by Aj
λ+i0(rλ)(Aλ+i0(s)−Aλ−i0(s)), one can see from (11.1.4) that the

left hand side of (11.1.5) is zero.

The left hand side of (11.1.5) is a meromorphic function of the two variables r and s.

Using (3.3.16), one can expand this function in a Laurent series at r = rλ, s = rλ. Since

the function is zero, all coefficients of the terms (r − rλ)k(s − rλ)l, k, l = 0,±1,±2, . . . ,

in the Laurent expansion are also zero. This gives some relations between the operators

Ãλ±i0,rλ(rλ), Pλ±i0(rλ) and Aλ±i0(rλ), such as

(Ak
λ+i0(rλ)−Ak

λ−i0(rλ))Aj
λ+i0(rλ)(Al

λ+i0(rλ)−Al
λ−i0(rλ)) = 0. (11.1.6)

The one which will be used shortly is obtained by setting to zero the coefficient of

(r− rλ)−1(s− rλ)−1 from the Laurent expansion of the left hand side of (11.1.5). Taking

j = 0 in the resulting relation gives the following equality.

Lemma 11.1.3. For any real resonance point rλ,

(Pλ+i0(rλ)− Pλ−i0(rλ))Pλ+i0(rλ)(Pλ+i0(rλ)− Pλ−i0(rλ)) = 0. (11.1.7)
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Theorem 11.1.4. For any real resonance point rλ the spectrum of the product Pλ+i0(rλ)

Pλ−i0(rλ) consists of only 0 and 1. Moreover, the algebraic multiplicity of 1 is equal to

N = dim Υλ+i0(rλ).

Proof. For brevity, we write P+ instead of Pλ+i0(rλ) and P− instead of Pλ−i0(rλ). Ex-

panding (11.1.7) we obtain

P+ − P−P+ − P+P− + P−P+P− = 0. (11.1.8)

Taking traces of both sides and using Tr(P+P−) = Tr(P−P+P−) gives

Tr(P−P+) = Tr(P+) = N. (11.1.9)

Multiplying both sides of (11.1.8) by P+ on the right leads to

P+ − P−P+ − P+P−P+ + P−P+P−P+ = 0. (11.1.10)

Taking traces and using (11.1.9) one gets

Tr(P−P+P−P+) = N.

Multiplying (11.1.10) on the right by P−P+ and taking traces we get

Tr((P−P+)3) = N.

Continuing in this manner, it can be shown that for any k = 1, 2, . . . ,

Tr((P−P+)k) = N. (11.1.11)

Since P−P+ has rank ≤ N (in fact this rank is N by Theorem 9.1.1, but we do not need

this), if x1, . . . , xN is the list of all non-zero eigenvalues of P−P+ counting multiplici-

ties, then it follows from the spectral mapping theorem, the Lidskĭı theorem (2.1.6) and

(11.1.11) that for all k = 1, 2, . . . ,

xk1 + · · ·+ xkN = N.

This is only possible if all the N numbers x1, . . . , xN are equal to 1.

Remark 11.1.5. Theorem 11.1.4 implies that the ranks of Pλ+i0(rλ)Pλ−i0(rλ) and

Pλ−i0(rλ)Pλ+i0(rλ) are the same as that of Pλ+i0(rλ) and Pλ−i0(rλ), which gives an-

other proof of Theorem 9.1.1.

11.2. Proof of the order-preserving property of Pλ±i0(rλ) for property C points

Definition 11.2.1. We say that a real resonance point rλ of geometric multiplicity m has

property C if the vector spaces Υλ+i0(rλ) and Υλ−i0(rλ) admit Jordan decompositions

(see p. 34 for definition)

Υλ+i0(rλ) = Υ
[1]
λ+i0(rλ) u · · ·u Υ

[m]
λ+i0(rλ), (11.2.1)

Υλ−i0(rλ) = Υ
[1]
λ−i0(rλ) u · · ·u Υ

[m]
λ−i0(rλ) (11.2.2)

such that for all j = 1, . . . ,m,

Pλ+i0(rλ)Υ
[ν]
λ−i0(rλ) = Υ

[ν]
λ+i0(rλ) and Pλ−i0(rλ)Υ

[ν]
λ+i0(rλ) = Υ

[ν]
λ−i0(rλ). (11.2.3)

The goal of this subsection is to prove Theorem 11.2.7. The proof starts with the

following lemma.
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Lemma 11.2.2. Let rλ be a real resonance point with property C and let j, k, l be non-

negative integers. If the operator

Ak
λ±i0(rλ)Aj

λ∓i0(rλ)Al
λ±i0(rλ)

sends all vectors from Υλ±i0(rλ) to vectors of type I and if it sends all vectors of type I

to zero, then it decreases the order of vectors from Υλ±i0(rλ).

Proof. We prove this only for the upper signs.

Since rλ has property C, the vector spaces Υλ+i0(rλ) and Υλ−i0(rλ) admit the de-

compositions (11.2.1) and (11.2.2) into direct sums of vector spaces Υ
[ν]
λ±i0(rλ) such that

for any k ≥ 0,

Ak
λ±i0(rλ)Υ

[ν]
λ±i0(rλ) ⊂ Υ

[ν]
λ±i0(rλ)

and the relations (11.2.3) hold.

Each vector space Υ
[ν]
λ±i0(rλ) has a basis

u
(1)
ν±, . . . , u

(dν)
ν±

such that Ak
λ±i0(rλ)u

(j)
ν± = u

(j−1)
ν± . Therefore, it is enough to show that the operator

Ak
λ+i0(rλ)Aj

λ−i0(rλ)Al
λ+i0(rλ) decreases the order of each of the vectors u

(j)
ν+. We shall

prove this assertion.

For each ν = 1, . . . ,m, there exists the largest index α such that u
(α)
ν+ is a vector of

type I. Corollary 8.2.6 implies that

u
(1)
ν+, . . . , u

(α)
ν+︸ ︷︷ ︸

are of type I

, u
(α+1)
ν+ , . . . , u

(dν)
ν+︸ ︷︷ ︸

are not of type I

.

The operator Ak
λ+i0(rλ)Aj

λ−i0(rλ)Al
λ+i0(rλ) decreases the order of the vectors u

(1)
ν+, . . . ,

u
(α)
ν+ , since by assumption they belong to its kernel. Now we show that the image of each

of u
(α+1)
ν+ , . . . , u

(dν)
ν+ is a linear combination of u

(1)
ν+, . . . , u

(α)
ν+ , and this will complete the

proof. By (11.2.3), it is enough to show that any vector of type I from Υ
[ν]
λ+i0(rλ) is a

linear combination of u
(1)
ν+, . . . , u

(α)
ν+ . Assume the contrary. Then there exists a vector f of

type I and of order > α. Using Corollary 8.2.6, we can assume that this vector has order

α+1. Since f is a linear combination of u
(1)
ν+, . . . , u

(α+1)
ν+ , it follows that u

(α+1)
ν+ is a vector

of type I. This contradicts the definition of α.

Let

Dλ+i0(rλ) = Pλ+i0(rλ)− Pλ+i0(rλ)Pλ−i0(rλ)Pλ+i0(rλ),

Dλ−i0(rλ) = Pλ−i0(rλ)− Pλ−i0(rλ)Pλ+i0(rλ)Pλ−i0(rλ).

Lemma 11.2.3. Dλ+i0(rλ) = Dλ−i0(rλ).

Proof. By Lemma 11.1.3 we have P−D+ = D+ and similarly D−P+ = D−. It remains

to note that P−D+ = D−P+.

This lemma allows us to write Dλ(rλ) instead of Dλ−i0(rλ) and Dλ+i0(rλ).
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Lemma 11.2.4. The operator Dλ(rλ) has the following properties:

(1) D2
λ(rλ) = 0.

(2) The image of Dλ(rλ) consists of vectors of type I.

(3) The kernel of Dλ(rλ) contains all vectors of type I.

Proof. Multiplying the left hand side of (11.1.7) on both sides by Pλ+i0(rλ) gives D2
λ(rλ)

= 0. It follows from (11.1.6) with j = l = 0 that for all k = 0, 1, 2, . . . ,

(Ak
+ −Ak

−)Dλ(rλ) = (Ak
+ −Ak

−)P+(P+ − P−)P+ = 0.

Hence, by Lemma 8.2.5, the image of Dλ(rλ) consists only of vectors of type I. The third

assertion is obvious from Theorem 8.2.8.

Lemma 11.2.5. If a real resonance point rλ has property C then the operator

Pλ±i0(rλ)Pλ∓i0(rλ)Pλ±i0(rλ)

preserves the order of vectors from Υλ±i0(rλ), that is, for all j = 1, 2, . . . ,

Pλ±i0(rλ)Pλ∓i0(rλ)Υj
λ±i0(rλ) = Υj

λ±i0(rλ).

Proof. We prove this for the upper signs. In the proof we will use the properties of the

operator D = Dλ(rλ) from the previous lemma.

If u ∈ Υλ+i0(rλ) is of type I, then

P+P−u = P+P−P+u = (P+ −D)u = u−Du = u,

so P+P−P+ preserves order of type I vectors. For any u ∈ Υλ+i0(rλ) the vector Du is of

type I, and therefore by Lemma 11.2.2 the order of Du is less than the order of u. Hence,

P+P−P+ = P+ −D preserves order.

Lemma 11.2.6. If a real resonance point rλ has property C then the operator Pλ±i0(rλ)

Aλ∓i0(rλ)Pλ±i0(rλ) decreases the order of vectors from Υλ±i0(rλ).

Proof. We prove this for the upper signs. Let

E+ := A+ − P+A−P+.

It follows from (11.1.6) with k = l = 1 and j = 0 that

E2
+ = (A+ − P+A−P+)(A+ − P+A−P+) = P+(A+ −A−)P+(A+ −A−)P+ = 0.

It follows from (11.1.6) with l = 1 and j = 0 that for all k = 0, 1, 2, . . . ,

(Ak
+ −Ak

−)E+ = (Ak
+ −Ak

−)P+(A+ −A−)P+ = 0.

Lemma 8.2.5 now shows that the image of E+ is a subspace of ΥI
λ(rλ). So, on the one

hand, the operator E+ obviously maps all vectors of type I to zero; on the other hand,

the image of E+ consists of vectors of type I only. By Lemma 11.2.2, this implies that

E+ decreases order. Since P+A−P+ = A+ − E+ and since A+ also decreases order, it

follows that P+A−P+ decreases order too.

Theorem 11.2.7. For any z = λ ± i0 ∈ ∂Π, for any real resonance point rλ with

property C corresponding to z and for any j = 1, 2, . . . the restriction of Pλ±i0(rλ) to

Υj
λ∓i0(rλ) is a linear isomorphism of Υj

λ∓i0(rλ) and Υj
λ±i0(rλ).
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Proof. As usual, only the statement for the upper signs is proved. Since by Theorem 9.1.1,

P+ is a linear isomorphism of Υ− and Υ+, the claim is equivalent to P+(Υj
−) ⊂ Υj

+ for

all j. Since u ∈ Υj
± if and only if Aj

±u = 0, the last assertion is equivalent to

∀u ∈ Υ− Aj
−u = 0⇒ Aj

+u = 0.

For j = 1 this follows from Corollary 8.2.4. Assume that the claim holds for j = k, and

let u ∈ Υk+1
− . Then, since by Lemma 11.2.6 the operator P−A+P− decreases order, we

have P−A+P−u ∈ Υk
−, which implies

Ak
−(P−A+P−u) = 0.

By induction assumption, this gives

Ak
+(P−A+P−u) = 0.

The left hand side can be written as Ak
+(P+P−P+)A+u, and so

Ak
+(P+P−P+)A+u = 0.

It follows that (P+P−P+)A+u is a +-vector of order ≤ k. Since by Lemma 11.2.5 the op-

erator P+P−P+ preserves order, A+u is a +-vector of order ≤ k too. Hence, Ak+1
+ u = 0.

Theorem 11.2.8. For any z = λ ± i0 ∈ ∂Π and for any real resonance point rλ with

property C corresponding to z, the idempotent Qλ±i0(rλ) is a linear isomorphism of

Ψj
λ∓i0(rλ) and Ψj

λ±i0(rλ) for all j = 1, 2, . . . .

Proof. We prove this assertion for the upper signs. Using successively Lemma 3.1.4,

(3.2.10), Theorem 11.2.7 and Lemma 3.1.4 again, one has

Qλ+i0(rλ)Ψj
λ−i0(rλ) = Qλ+i0(rλ)JΥj

λ−i0(rλ)

= JPλ+i0(rλ)Υj
λ−i0(rλ) ' JΥj

λ+i0(rλ) = Ψj
λ+i0(rλ).

For real resonance points with property C the following two commutative diagrams

of linear isomorphisms summarize Theorems 11.2.7, 11.2.8 and Lemma 3.1.4:

Ψj
λ+i0(rλ) Υj

λ+i0(rλ)
Joo

Ψj
λ−i0(rλ)

Qλ+i0(rλ)

OO

Υj
λ−i0(rλ)

J
oo

Pλ+i0(rλ)

OO
Ψj
λ+i0(rλ)

Qλ−i0(rλ)

��

Υj
λ+i0(rλ)

Joo

Pλ−i0(rλ)

��
Ψj
λ−i0(rλ) Υj

λ−i0(rλ)
J

oo

We say that a real resonance point rλ has property U if the operators Pλ±i0(rλ) :

Υλ∓i0(rλ)→ Υλ±i0(rλ) preserve the order of vectors. Thus, Theorem 11.2.7 asserts that

property C implies property U .
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Here we discuss independence from the rigging operator F for some of the notions studied

so far.

12.1. Independence of resonance index from the rigging operator

Lemma 12.1.1. The R-indices of Aλ+iy(s)Pλ+iy(rλ) and Aλ+iy(s)Pλ+iy(rλ) coincide for

all s and for all small enough y > 0.

Proof. By Lemma 5.1.4 the eigenvalue counting measures of Aλ+iy(s)Pλ+iy(rλ) and

Aλ+iy(s)Pλ+iy(rλ) coincide. Hence, their R-indices are also equal.

Theorem 12.1.2. The resonance index indres(λ;H,V ) does not depend on the choice

of the rigging operator F as long as λ is essentially regular for the pair (A, F ), where

A = {H + rV : r ∈ R} and V is a regularizing direction for an operator H which is

resonant at λ.

Proof. Since Az(s) = Rz(Hs)V and P z(rz) do not depend on F , this follows immediately

from Theorem 9.2.4 and Lemma 12.1.1.

Theorem 12.1.2 raises natural questions of independence of the notions of essentially

regular points and regularizing directions from the rigging operator F .

12.2. Independence of dim Υ1
λ+i0(rλ) from the rigging operator

Corollary 12.2.1. If the perturbation V is non-negative (or non-positive) then the di-

mension of Υ1
λ+i0(Hrλ , V ) does not depend on the choice of F .

Proof. Since V is non-negative, dim Υ1
λ+i0(Hrλ , V ) = dim Υλ+i0(Hrλ , V ) by Proposi-

tion 10.1.3. Since by V ≥ 0 there are no resonance down-points, this dimension is equal

to indres(λ;Hrλ , V ), which is independent of F by Theorem 12.1.2.

By Lemma 9.1.3, for small enough y the signatures of Qλ∓i0(rλ)JPλ±i0(rλ) and

Q
λ∓iy(rλ)V Pλ±iy(rλ) coincide. Hence, another way to prove Theorem 12.1.2 is to observe

that the latter operator does not depend on F .

Combining Corollary 12.2.1 with Theorem 4.4.1 we obtain

Theorem 12.2.2. If the real vector space A0 of self-adjoint perturbation operators con-

tains at least one non-negative operator V , then the dimension of Υ1
λ+i0(rλ) is indepen-

dent of F .

[117]



13. Resonance points of type I

It turns out that real resonance points have a certain generic property, which admits

many equivalent reformulations. A real resonance point with this property will be called

a point of type I. As will be shown, if a point λ on the spectral line lies outside the

essential spectrum, then all real resonance points corresponding to λ ± i0 are of type I.

Further, if the perturbation V is non-negative, then all points are also of type I for any

essentially regular point λ. For a resonance point to be of type I is a generic property

since, as will be shown, all resonance points of order 1 are of type I. Resonance points

which are not of type I exist: examples will be given in Subsection 14.4.2.

At the end of this section we introduce the class of real resonance points with the

so-called property S which is strictly larger than the class of real resonance points of

type I.

Initially, results of Section 10 were proved for points of type I. At that stage of

preparation of this paper I did not know whether there were real resonance points not

of type I. In fact, a significant time was spent in an effort to prove a conjecture that

all real resonance points are of type I. This conjecture was supported by the fact that it

holds in several special cases mentioned at the beginning of this section. However, later an

example of a resonance point not of type I was found. This example is given in Section 14.

A similar story was repeated with resonance points with property S. To prove the main

results of Section 10 in the case of arbitrary real resonance points took another year.

13.1. Resonance points of type I. By definition, a real resonance point rλ is of type I

if for some non-resonance point s ∈ R,√
ImTλ+i0(Hs) JPλ+i0(rλ) = 0. (13.1.1)

This is a strengthened version of (11.1.1), and while (11.1.1) holds for all resonance

points rλ, it will be shown that not all resonance points are of type I. One can also see

that the definition of a point of type I is equivalent to requiring that all resonance vectors

corresponding to λ+ i0 are of type I.

Lemma 13.1.1. A real resonance point rλ is of type I if and only if for some non-resonant

s ∈ R, √
ImTλ+i0(Hs)Qλ+i0(rλ) = 0. (13.1.2)

Proof. By Lemma 3.1.4, the range of the operator Qλ+i0(rλ) coincides with the range of

the product JPλ+i0(rλ). The assertion follows.

[118]
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In what follows it is assumed for convenience that the point s for which (13.1.1) holds

is s = 0.

Lemma 13.1.2. A real resonance point rλ is a point of type I if and only if the function

C 3 s 7→ w(s) :=
√

ImTλ+i0(H0) (1 + sJTλ+i0(H0))−1 (13.1.3)

is holomorphic at rλ.

Proof. Let σ = −s−1 and let

w̃(σ) =
√

ImTλ+i0(H0) (σ − JTλ+i0(H0))−1 = −1

s
w(s).

Then w(s) is holomorphic at rλ if and only if w̃(σ) is holomorphic at σλ(0) = −r−1
λ .

(⇒) By the analytic Fredholm alternative, the function w̃(σ) is meromorphic with a

possible pole at σλ(0). It follows from the definition (3.2.3) ofQλ+i0(rλ) and Lemma 13.1.1

that ∮
C(σλ(0))

w̃(σ) dσ =
√

ImTλ+i0(H0)

∮
C(σλ(0))

(σ − JTλ+i0(H0))−1 dσ

= 2πi
√

ImTλ+i0(H0)Qλ+i0(rλ) = 0, (13.1.4)

where C(σλ(0)) is a small closed contour enclosing σλ(0) = −r−1
λ . Hence, the coeffi-

cient of (σ − σλ(0))−1 in the Laurent series of w̃(σ) is 0. Now Proposition 3.3.4 and

equality (3.3.15) imply that the coefficients of the terms (σ − σλ(0))−n with n > 1 also

vanish.

(⇐) If w̃(σ) is holomorphic at σλ(0), then
∮
C
w̃(σ) dσ vanishes. On the other hand,

this integral is equal to 2πi
√

ImTλ+i0(H0)Qλ+i0(rλ). It now follows from Lemma 13.1.1

that rλ has type I.

The function w(s) is holomorphic, but the adjoint function w∗(s) is not. For this

reason, instead of w∗(s), the meromorphic continuation w†(s) of the restriction of w∗(s)

to the real axis will be used:

C 3 s 7→ w†(s) := (1 + sTλ−i0(H0)J)−1
√

ImTλ+i0(H0).

Lemma 13.1.3. If w(s) is a meromorphic operator-valued function in some domain G ⊂ C
which is symmetric with respect to the real axis, then w(s) is holomorphic at a real point

r0 ∈ G if and only if the function w(s)w†(s) is.

Proof. If (s−r0)−kXk is the lowest order term in the Laurent series of w(s) at s = r0, then

the lowest order term in the Laurent series of w(s)w†(s) at s = r0 is (s − r0)−2kXkX
∗
k .

Since Xk = 0 if and only if XkX
∗
k = 0, the claim follows.

Proposition 13.1.4. Let w(s) be given by (13.1.3). The following assertions are equiv-

alent:

(i) rλ is of type I.

(ii) C 3 s 7→ w(s) is holomorphic at rλ.

(iii) C 3 s 7→ w†(s)w(s) is holomorphic at rλ.

(iv) C 3 s 7→ w†(s) is holomorphic at rλ.

(v) C 3 s 7→ ImTλ+i0(Hs) is holomorphic at rλ.
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Proof. The equivalence (i)⇔(ii) is the content of Lemma 13.1.2; (ii)⇔(iv) is obvious;

(iii)⇔(v) follows from (2.7.11); and (ii)⇔(iii) follows from Lemma 13.1.3.

Observation 13.1.5. The equality (13.1.2) is plainly equivalent to

Pλ−i0(rλ)
√

ImTλ+i0(H0) = 0,

which gives another characterization of points of type I.

Lemma 13.1.6. A real resonance point rλ is of type I if and only if√
ImTλ+i0(Hs) JPλ−i0(rλ) = 0.

That is, the definition (13.1.1) of a resonance point rλ of type I does not depend on the

choice of sign in Pλ±i0(rλ).

Proof. Since ImTλ−i0(Hs) = − ImTλ+i0(Hs), the function ImTλ+i0(Hs) is holomorphic

at some point s if and only if ImTλ−i0(Hs) is. Since, by (2.7.11),

ImTλ−i0(Hs) = (1 + sTλ+i0(H0)J)−1 ImTλ−i0(H0)(1 + sJTλ−i0(H0))−1,

it follows from Proposition 13.1.4(v) and Lemma 13.1.3 that a real resonance point rλ is

a point of type I if and only if the function

h(s) =
√

ImTλ+i0(H0) (1 + sJTλ−i0(H0))−1

is holomorphic at rλ. Hence, making the change of variables σ = −s−1 and taking the

contour integral of the function s · h(s) over a small circle C enclosing −r−1
λ shows that

if rλ is a point of type I, then√
ImTλ+i0(H0)Qλ−i0(rλ) = 0.

It follows from Lemma 3.1.4 that√
ImTλ+i0(H0) JPλ−i0(rλ) = 0.

Now, the argument of Lemma 13.1.2 shows that the last equality implies that h(s) is

holomorphic at rλ; hence, the “if” direction is also proved.

Lemma 13.1.7. The equality (13.1.1) holds if and only if

ImTλ+i0(Hs) JPλ+i0(rλ) = 0. (13.1.5)

Proof. Plainly, (13.1.1) implies (13.1.5). If (13.1.5) holds, then by the C∗-equality ‖T‖2 =

‖T ∗T‖, we have

‖
√

ImTλ+i0(Hs) JPλ+i0(rλ)‖2 = ‖Qλ−i0(rλ)J ImTλ+i0(Hs) JPλ+i0(rλ)‖ = 0.

Lemma 13.1.8. If (13.1.1) holds for one real non-resonant value of s, then it holds for

any other such value.

Proof. Assume that (13.1.1) holds for s = r. By Lemma 13.1.7, the square root in (13.1.1)

can be removed, so that

Tλ+i0(Hr)JPλ+i0(rλ) = Tλ−i0(Hr)JPλ+i0(rλ). (13.1.6)

Hence, the restrictions of Aλ+i0(r) = Tλ+i0(Hr)J and Aλ−i0(r) = Tλ−i0(Hr)J to

Υλ+i0(rλ) = imPλ+i0(rλ) coincide. By Corollary 3.1.6, Υλ+i0(rλ) is invariant under

Aλ+i0(r), and therefore, by (13.1.6), Υλ+i0(rλ) is invariant under Aλ−i0(r) too. It now
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follows from (2.7.4) that the restrictions of Aλ+i0(s) and Aλ−i0(s) to Υλ+i0(rλ) coincide

for all non-resonance s. Hence, Aλ+i0(s)Pλ+i0(rλ) = Aλ−i0(s)Pλ+i0(rλ) for all such s, as

required.

These results are summarized in the following theorem.

Theorem 13.1.9. Let λ be an essentially regular point for the pair (A, F ). Let H0 ∈ A
be an operator regular at λ and let V ∈ A0. Let rλ ∈ R be a resonance point of the path

{H0 + rV : r ∈ R}. The following assertions are all equivalent to rλ being of type I:

(i±) For any regular point r,
√

ImTλ+i0(Hr) JPλ±i0(rλ) = 0.

(i∗±) There exists a regular point r such that
√

ImTλ+i0(Hr) JPλ±i0(rλ) = 0.

(ii±) For any regular point r,
√

ImTλ+i0(Hr)Qλ±i0(rλ) = 0.

(ii∗±) There exists a regular point r such that
√

ImTλ+i0(Hr)Qλ±i0(rλ) = 0.

(iii±) The meromorphic function

w±(s) :=
√

ImTλ+i0(H0) [1 + sJTλ±i0(H0)]−1

is holomorphic at s = rλ.

(iii′±) The meromorphic function

w±(s)J =
√

ImTλ+i0(H0) J [1 + sTλ±i0(H0)J ]−1

is holomorphic at s = rλ.

(iv±) The meromorphic function

w†±(s) = [1 + sTλ∓i0(H0)J ]−1
√

ImTλ+i0(H0)

is holomorphic at s = rλ.

(v±) The residue of w±(s) at s = rλ is zero.

(vi±) For all ±-resonance vectors the real numbers c−j from Proposition 8.1.1 are all

zero.

(vii) The function s 7→ ImTλ+i0(Hs) is holomorphic at s = rλ.

(viii) The function s 7→ J ImTλ+i0(Hs)J is holomorphic at s = rλ.

Moreover, the assertions obtained from (i±)–(ii±) and (i∗±)–(ii∗±) by removing the square

root are also equivalent to the above ones.

Proof. Equivalence of (i±), (i∗±), (ii±), (ii∗±), (iii±), (iv±), (v±) and (vii) has already been

proved.

It is not difficult to see that (iii±) implies (iii′±). Now it will be shown that (iii′±)

implies (i±). Making the change of variables σ = −s−1 and taking the contour integral

over C(σλ(0)) (where σλ(0) = −r−1
λ ) of the function sw±(s)J gives

0 =

∮
C(σλ(0))

σ−1w±(−σ−1)J dσ =
√

ImTλ+i0(H0) JPλ+i0.

Item (vii) obviously implies (viii). Item (viii) combined with Lemma 13.1.3 and (2.7.11)

implies (iii′).

Finally, (vii) implies (vi±), and (vi±) implies (i±).

Corollary 13.1.10. If the right hand side of (8.1.1) is non-zero, then it is strictly pos-

itive for all non-resonance points s.
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Proof. If the right hand side of (8.1.1) vanishes at some point s, then by the implication

(i∗±)⇒(i±) of Theorem 13.1.9 it vanishes at all points s.

Remark 13.1.11. Properties (iii±) and (iv±) have something in common with the fact

that the scattering matrix and the S̃-function, defined by (11.1.3), are holomorphic in

a neighbourhood of R. One can see this from the stationary formula for the scattering

matrix, recalling the relation (1.4.4) between
√

ImTλ+i0(H0) and Eλ(H0).

In addition to the equivalent conditions of Theorem 13.1.9, one has the equivalent

conditions

Aλ+i0(s) = Aλ−i0(s) on Υλ±i0(rλ), (13.1.7)

Bλ+i0(s) = Bλ−i0(s) on Ψλ±i0(rλ), (13.1.8)

Aλ+i0(rλ) = Aλ−i0(rλ) on Υλ±i0(rλ), (13.1.9)

Bλ+i0(rλ) = Bλ−i0(rλ) on Ψλ±i0(rλ). (13.1.10)

The equality (13.1.7) and Lemma 3.1.4 imply that the restrictions of Tλ+i0(Hs) and

Tλ−i0(Hs) to Ψλ±i0(rλ) coincide. Hence, the restrictions of Bλ+i0(s) = JTλ+i0(Hs) and

Bλ−i0(s) = JTλ−i0(Hs) to Ψλ±i0(rλ) also coincide. Therefore, (13.1.7) implies (13.1.8).

Further, (13.1.8) and Lemma 3.1.4 imply that Bλ+i0(s)J = Bλ−i0(Hs)J on Υλ±i0(rλ).

Hence, JAλ+i0(s) = JAλ−i0(Hs) on Υλ±i0(rλ), and so, by Lemma 3.1.4, Aλ+i0(s) =

Aλ−i0(Hs) on Υλ±i0(rλ). Consequently, (13.1.8) implies (13.1.7).

Further, the definition (3.3.1) of Aλ+i0 and (3.4.11) imply that (13.1.7) and (13.1.9)

are equivalent. Similarly, (13.1.8) and (13.1.10) are equivalent. Finally, (13.1.7) is just a

reformulation of Theorem 13.1.9(i±).

By Corollary 8.2.4 the vector spaces Υ1
λ+i0(rλ) and Υ1

λ−i0(rλ) of +-resonance and

−-resonance vectors of order 1 coincide for any real resonance point rλ. For k > 1 the

vector spaces Υk
λ+i0(rλ) and Υk

λ−i0(rλ) are different in general, but if rλ is a type I point,

then they coincide for all k = 1, 2, . . . as the following proposition shows.

Proposition 13.1.12. In the conditions of Proposition 8.1.1, if rλ is a real resonance

point of type I, then for all k = 1, 2, . . . solutions of the resonance equations

(1 + (rλ − r)Tλ+i0(Hr)J)ku = 0

and

(1 + (rλ − r)Tλ−i0(Hr)J)ku = 0

coincide, that is,

Υk
λ+i0(rλ) = Υk

λ−i0(rλ). (13.1.11)

Proof. This follows directly from Lemma 8.2.3. Nevertheless, we give another proof.

The case k = 1 follows from Proposition 8.2.2 (and holds for all resonance points).

Assume that the claim holds for k − 1. If u is a solution of

(1 + (rλ − r)Tλ+i0(Hr)J)ku = 0,

then (1 + (rλ − r)Tλ+i0(Hr)J)u is a solution of

(1 + (rλ − r)Tλ+i0(Hr)J)k−1f = 0. (13.1.12)
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Since the real resonance point rλ is of type I, we have ImTλ+i0(Hr)Ju = 0. It follows that

(1 + (rλ− r)Tλ−i0(Hr)J)u is also a solution of (13.1.12). From the induction assumption

we see that (1 + (rλ − r)Tλ−i0(Hr)J)u is a solution of

(1 + (rλ − r)Tλ−i0(Hr)J)k−1f = 0.

It follows that u is a solution of (1 + (rλ − r)Tλ−i0(Hr)J)ku = 0.

The same argument shows that for points rλ of type I we have

Ψk
λ+i0(rλ) = Ψk

λ−i0(rλ).

This equality also follows from (13.1.11) and Lemma 3.1.4.

Proposition 13.1.12 implies, in particular, that for points rλ of type I the ranges of

the idempotent operators Pλ+i0(rλ) and Pλ−i0(rλ) coincide. In fact, for points of type I

these idempotents coincide, as the following theorem shows.

Theorem 13.1.13. Let H0 be a self-adjoint operator from A, let λ be an essentially

regular point and let V be a regularizing direction. If a real number rλ is a resonance

point of type I, then Pλ−i0(rλ) = Pλ+i0(rλ).

Proof. Let y be a small positive number. Proposition 5.2.1 implies that

1

π

∮
C(rλ)

ImTλ+iy(Hs)J ds = Pλ+iy(rλ)− Pλ−iy(rλ),

where C(rλ) is a contour which encloses all poles r1
λ+iy, . . . , r

N
λ+iy of the group of rλ and

their conjugates r̄1
λ+iy, . . . , r̄

N
λ+iy (see Subsection 5.2 for the definition of the poles of the

group of rλ). By Lemmas 2.7.2 and 5.2.2, taking the limit as y → 0 in the above equality

gives
1

π

∮
C(rλ)

ImTλ+i0(Hs)J ds = Pλ+i0(rλ)− Pλ−i0(rλ). (13.1.13)

By Proposition 13.1.4(v), the integrand is holomorphic in a neighbourhood of rλ, and

therefore the integral vanishes. Hence, Pλ+i0(rλ) = Pλ−i0(rλ).

Theorem 13.1.13 and (13.1.9) provide another proof of Proposition 13.1.12.

Proposition 13.1.14. A point rλ is of type I if and only if for some and thus for any

non-resonant r we have

hλ(Hr) ⊥ Ψλ+i0(rλ),

where hλ(Hr) is the fibre Hilbert space as defined by (1.4.1).

Proof. This follows from items (ii+) and (ii∗+) of Theorem 13.1.9 and the equality Ψλ+i0(rλ)

= imQλ+i0(rλ).

By Proposition 8.2.2 for any real resonance point rλ the relation hλ(Hr) ⊥ Ψ1
λ+i0(rλ)

holds. The vector space Ψλ+i0(rλ) is in fact also the image of the resonance matrix

Qλ+i0(rλ)JPλ−i0(rλ), as shown by (9.1.2) and Lemma 3.1.4. This gives another charac-

terization of points of type I.

Proposition 13.1.15. A point rλ is of type I if and only if for some and thus for any

non-resonant r,

ImTλ+i0(Hr)Qλ−i0(rλ)JPλ+i0(rλ) = 0.
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13.2. Examples of points of type I. In this subsection we give several conditions

which ensure that a resonance point has type I.

Theorem 13.2.1. Let λ be an essentially regular point, let H0 ∈ A and let V ∈ A0 be

a regularizing direction at λ. If λ does not belong to the (necessarily common) essential

spectrum of operators from A, then every resonance point of the triple (λ;H0, V ) is of

type I.

Proof. In this case the function R 3 r 7→ ImTλ+i0(Hr) is zero. Thus, the claim follows

from, for example, Theorem 13.1.9(vii).

The next assertion is immediate from Proposition 8.2.2 and the definition (13.1.1) of

resonance points of type I.

Theorem 13.2.2. Let λ be an essentially regular point, let H0 ∈ A and let V ∈ A0 be a

regularizing direction at λ. All resonance points of the triple (λ;H0, V ) which have order 1

are of type I.

Since resonance points generically have order 1, Theorem 13.2.2 shows that points of

type I are in abundance. An example of a resonance point not of type I will be given in

Section 14.

Theorem 13.2.3. Let λ be an essentially regular point, let H0 ∈ A and let V ∈ A0 be a

regularizing direction at λ. If the perturbation V is non-negative (or non-positive), then

every resonance point of the triple (λ;H0, V ) is of type I.

Proof. This follows from Proposition 10.1.3 and Theorem 13.2.2.

Corollary 13.2.4. If rλ is not a point of type I, then λ ∈ σess and the order of rλ is

greater than 1. Moreover, in this case the perturbation J is not sign-definite.

Proposition 13.2.5. Let rλ be a real resonance point corresponding to λ ± i0 ∈ ∂Π. If

the resonance matrix Qλ∓i0(rλ)JPλ±i0(rλ) is either non-negative or non-positive, then rλ
is of type I.

Proof. This follows from Proposition 10.1.4 and Theorem 13.2.2.

13.3. Resonance points with property S. In this subsection a class of real resonance

points is introduced which is strictly larger than the class of points of type I. Let λ be

an essentially regular point. A real resonance point rλ will be said to have property S

if

kerPλ+i0(rλ) = kerPλ−i0(rλ).

Proposition 13.3.1. Let λ be an essentially regular point and let rλ be a real resonance

point. The following assertions are equivalent:

(i) rλ has property S.

(ii) Pλ+i0(rλ)Pλ−i0(rλ) = Pλ+i0(rλ) and Pλ−i0(rλ)Pλ+i0(rλ) = Pλ−i0(rλ).

(iii) imQλ+i0(rλ) = imQλ−i0(rλ), that is, Ψλ+i0(rλ) = Ψλ−i0(rλ).

(iv) Qλ+i0(rλ)Qλ−i0(rλ) = Qλ−i0(rλ) and Qλ−i0(rλ)Qλ+i0(rλ) = Qλ+i0(rλ).

(v) Qλ−i0(rλ)JPλ+i0(rλ) = JPλ+i0(rλ).

(vi) Qλ+i0(rλ)JPλ−i0(rλ) = JPλ−i0(rλ).
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(vii) Qλ−i0(rλ)JPλ+i0(rλ) = Qλ−i0(rλ)J .

(viii) Qλ+i0(rλ)JPλ−i0(rλ) = Qλ+i0(rλ)J .

(ix) Qλ−i0(rλ)JPλ+i0(rλ) = Qλ+i0(rλ)JPλ−i0(rλ).

Proof. (ii)⇒(i). If Pλ−i0f = 0, then Pλ+i0f = Pλ+i0Pλ−i0f = 0. Similarly, if Pλ+i0f = 0,

then Pλ−i0f = Pλ−i0Pλ+i0f = 0.

(i)⇒(ii). Let f ∈ K and let f = f ′ + f ′′, where f ′ and f ′′ satisfy Pλ−i0f
′ = f ′ and

Pλ−i0f
′′ = 0. Then tPλ+i0f

′′ is also zero, and therefore

Pλ+i0Pλ−i0f = Pλ+i0f
′ = Pλ+i0(f ′ + f ′′) = Pλ+i0f.

By the same argument, Pλ−i0Pλ+i0f = Pλ−i0f .

(i)⇔(iii) follows from imA∗ = (kerA)⊥ and (3.2.5).

(ii)⇔(iv) follows from (3.2.5).

(iii)⇔(v) follows from Lemma 3.1.4, (3.2.12) and (9.1.2). The equivalence (iii)⇔(vi)

is proved by the same argument.

(v)⇔(vii) and (vi)⇔(viii) follow from self-adjointness of Qλ−i0(rλ)JPλ+i0(rλ) and

from (3.2.5).

(ii)⇒(ix). We have

Qλ−i0(rλ)JPλ+i0(rλ) = Qλ−i0(rλ)JPλ+i0(rλ)Pλ−i0(rλ)

= Qλ−i0(rλ)Qλ+i0(rλ)JPλ−i0(rλ) = Qλ+i0(rλ)JPλ−i0(rλ),

where the first equality follows from (ii), the second from (3.2.10) and the third from (iv).

(ix)⇒(iii). By Propoition 9.1.2, the ranks of Qλ−i0(rλ)JPλ+i0(rλ) and Qλ+i0(rλ)

JPλ−i0(rλ) are both equal to N = rankQλ±i0(rλ). Hence,

imQλ−i0(rλ) = imQλ−i0(rλ)JPλ+i0(rλ) = imQλ+i0(rλ)JPλ−i0(rλ) = imQλ+i0(rλ).

According to Theorem 11.1.4, the operators

Pλ+i0(rλ)Pλ−i0(rλ)− Pλ+i0(rλ) and Pλ−i0(rλ)Pλ+i0(rλ)− Pλ−i0(rλ)

are nilpotent. Hence, a real resonance point has property S if and only if the nilpotent

parts of Pλ+i0(rλ)Pλ−i0(rλ) and Pλ−i0(rλ)Pλ+i0(rλ) are zero.

Proposition 13.3.2. Every resonance point of type I has property S. There are resonance

points which do not have property S, and there are points with property S which are not

of type I.

The first part of this proposition is trivial; to prove it one can note that by Theo-

rem 13.1.13 for points rλ of type I we have Pλ+i0(rλ) = Pλ−i0(rλ), and therefore rλ has

property S. Examples of resonance points with the required properties will be given in

Subsection 14.4.2.

Propositions 13.3.1 and 13.3.2 give answers to some natural questions, such as whether

the operators Qλ−i0(rλ)JPλ+i0(rλ) and Qλ+i0(rλ)JPλ−i0(rλ) always coincide or not.

Proposition 13.3.3. If Υλ+i0(rλ) = Υλ−i0(rλ), then Pλ+i0(rλ) = Pλ−i0(rλ).
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Proof. If Υλ+i0(rλ) = Υλ−i0(rλ), then since Υλ±i0(rλ) = imQλ±i0(rλ), it follows from

Proposition 13.3.1(iii) that the kernels of the idempotents Pλ+i0(rλ) and Pλ−i0(rλ) co-

incide. Since the ranges Υλ+i0(rλ) and Υλ−i0(rλ) of these idempotents are also equal by

assumption, it follows that Pλ+i0(rλ) = Pλ−i0(rλ).

Plainly, the equality Pλ+i0(rλ) = Pλ−i0(rλ) is also equivalent to Qλ+i0(rλ) =

Qλ−i0(rλ), but these equalities are not equivalent to Ψλ+i0(rλ) = Ψλ−i0(rλ), which is

property S.



14. Perturbation of an embedded eigenvalue

In this section we study the behaviour of an eigenvalue of a self-adjoint operator embedded

into the essential spectrum as the operator undergoes a perturbation. This is a classical

problem, but in this section some new results will be given. Not only is the behaviour of

embedded eigenvalues under perturbations interesting on its own, but this investigation

will also provide examples and counter-examples to many possible relations which may

be contemplated in regard to the material of previous sections. In fact, from the point

of view of the deductive structure, this section is quite independent of the previous ones;

on the other hand, this section was written almost in parallel with previous sections,

and it is this study of embedded eigenvalues that gave many suggestions about possible

properties of resonance points.

14.1. Two lemmas

Lemma 14.1.1. Let N be a positive integer and let H = Ĥ ⊕CN be a decomposition of a

Hilbert space H into the orthogonal direct sum of another Hilbert space Ĥ and CN . If(
An Bn
Cn Dn

)
, n = 1, 2, . . . ,

is a sequence of operators on H which converges to an operator(
A B

C D

)
in the uniform norm, then this convergence also holds in p-norm if and only if the se-

quence An, n = 1, 2, . . . , converges to A in p-norm.

Proof. The “only if” part is trivial. Since the ranks of the operators B,B1, B2, . . . and

C,C1, C2, . . . are bounded by N , the “if” part follows from Lemma 2.1.4.

Usually we denote by rz a resonance point corresponding to z. In the following two

lemmas we divert from this convention. The reason for this is that later in this section we

are going to embed the Hilbert space on which the operators H0 and V act in a slightly

larger Hilbert space, where a non-resonance point rz will become a resonant one.

Lemma 14.1.2. Let rz be a non-resonance point for z. For any regular points s and t the

operator (1 + (rz − s)Az(s))−1 is a linear combination of 1 and (1 + (rz − t)Az(t))−1,

namely,

(1 + (rz − s)Az(s))−1 =
t− s
t− rz

+
s− rz
t− rz

(1 + (rz − t)Az(t))−1.

Proof. This is a direct calculation based on (2.7.5) and (2.7.3).

[127]
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Corollary 14.1.3. Let rz be a non-resonance point for z. For any integer k ≥ 1 and

for any regular points s and t the operator (1 + (rz − s)Az(s))−k is a linear combination

of

1, (1 + (rz − t)Az(t))−1, . . . , 1 + (rz − t)Az(t))−k.
Proof. This follows from the previous lemma and induction.

14.2. The vector spaces Υj
λ±i0(rλ). Let Hrλ be a self-adjoint operator on a Hilbert

space H with an eigenvalue λ of multiplicity one. No assumptions are made about the

location of this eigenvalue yet: it can be outside of the essential spectrum or inside of it.

Let χ be the corresponding eigenvector:

Hrλχ = λχ. (14.2.1)

The orthogonal complement of χ will be denoted by Ĥ. The subspace Ĥ reduces Hrλ ,

and the reduction will be denoted by Ĥrλ . Thus, H becomes split into an orthogonal sum

Ĥ ⊕ C, and in this representation the operator Hrλ has the form

Hrλ =

(
Ĥrλ 0

0 λ

)
. (14.2.2)

We have to choose a rigging operator F . To simplify calculations, we choose

F =

(
F̂ 0

0 1

)
, (14.2.3)

where F̂ : Ĥ → K̂ is a rigging operator in Ĥ, so that F itself acts from H to K = K̂ ⊕C.

Since λ is a non-degenerate eigenvalue of Hrλ , it cannot be an eigenvalue of Ĥrλ , but it

is still possible that λ 6∈ Λ(Ĥrλ , F̂ ). By Proposition 2.6.3, since λ is an eigenvalue of Hrλ ,

we have λ 6∈ Λ(Hrλ , F ), but we assume that

λ ∈ Λ(Ĥrλ , F̂ ). (14.2.4)

This means that there are no other singularities of Hrλ at λ except that (14.2.1) holds.

Let V be a self-adjoint operator on H. Then

V =

(
V̂ v̂

〈v̂, ·〉 α

)
,

where V̂ is a self-adjoint operator in Ĥ. We assume that there exists a bounded self-adjoint

operator J on K such that V has a well-defined factorization

V = F ∗JF.

Let

J =

(
Ĵ ψ̂

〈ψ̂, ·〉 α

)
(14.2.5)

be the representation of J in the orthogonal sum K̂⊕C, where Ĵ is a bounded self-adjoint

operator on K̂, ψ̂ ∈ K̂ and α ∈ R. Then one can see that

V̂ = F̂ ∗Ĵ F̂ (14.2.6)

and

v̂ = F̂ ∗ψ̂.
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In particular, v̂ ∈ Ĥ+(F̂ ) and V̂ ∈ A0(F̂ ). The eigenvector χ of Hrλ in Ĥ⊕C has the form

const ·
(

0
1

)
. The matrix components ψ̂ and α of J can be recovered from the equalities

α = 〈χ, V χ〉 = 〈Fχ, JFχ〉 and ψ̂ ⊕ 0 = JFχ− αFχ.

Lemma 14.2.1. If α = 0, then ψ̂ ⊕ 0 is a co-resonance vector of order 1.

Proof. By Theorem 4.1.1, Fχ is a resonance vector of order 1. Hence, by Lemma 3.1.4,

ψ̂ ⊕ 0 = JFχ is a co-resonance vector of order 1.

For a real number s define

Hs := Hrλ + (s− rλ)V =

(
Ĥs (s− rλ)v̂

(s− rλ)〈v̂, ·〉 λ+ (s− rλ)α

)
, (14.2.7)

where

Ĥs = Ĥrλ + (s− rλ)V̂ . (14.2.8)

A direct but lengthy calculation shows that the operator Tz(Hs) = FRz(Hs)F
∗ is given

by

Tz(Hs) =

(
Tz(Ĥs) + (s− rλ)2Dz(s)〈ûz̄(s), ·〉ûz(s) (rλ − s)Dz(s)ûz(s)

(rλ − s)Dz(s)〈ûz̄(s), ·〉 Dz(s)

)
, (14.2.9)

where

ûz(s) = Tz(Ĥs)ψ̂, (14.2.10)

Dz(s) = (λ− z + (s− rλ)α− (s− rλ)2〈ψ̂, ûz(s)〉)−1. (14.2.11)

The condition (14.2.4) means that the operator Ĥrλ is regular at λ, and thus any

perturbation operator V̂ of the form (14.2.6) is a regularizing direction at λ for Ĥrλ . We

wish to find conditions which ensure that V is a regularizing direction at λ for Hrλ . Recall

that V is a regularizing direction at λ for Hrλ if for some real number s the operator

Tz(Hs) has the norm limit Tλ+i0(Hs). Since the norm limit Tλ+i0(Ĥs) of Tλ+iy(Ĥs) exists

for some s (namely, for s = rλ) by (14.2.4), it follows from (14.2.9) and Lemma 14.1.1

that the norm limit Tλ+i0(Hs) exists for some real s if and only if the limit Dλ+i0(s)

exists for some real s. From the definition (14.2.11) it is easy to see that Dλ+i0(s) exists

if and only if either α 6= 0 or both α = 0 and 〈ψ̂, ûλ+i0(s)〉 6= 0. Thus, we have proved

Lemma 14.2.2. The operator V = F ∗JF , where F and J are defined by (14.2.3) and

(14.2.5), is a regularizing direction for the λ-resonant operator Hrλ given by (14.2.2) if

and only if α 6= 0 or both α = 0 and

〈ψ̂, ûλ+i0(s)〉 6= 0 for some real number s. (14.2.12)

From now on we shall assume that V is a regularizing direction for Hrλ .

Let

Âz(s) = Tz(Ĥs)Ĵ and B̂z(s) = Ĵ Tz(Ĥs). (14.2.13)
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The operator Az(s) = Tz(Hs)J is equal to

Az(s) =

(
Tz(Ĥs) + (s− rλ)2Dz(s)〈ûz̄(s), ·〉ûz(s) (rλ − s)Dz(s)ûz(s)
(rλ − s)Dz(s)〈ûz̄(s), ·〉 Dz(s)

)(
Ĵ ψ̂

〈ψ̂, ·〉 α

)
=

(
Âz(s) + (rλ − s)X2,1ûz(s) [1 + (s− rλ)X2,2]ûz(s)

X2,1 −X2,2

)
,

where

X2,1 = Dz(s)〈ψ̂ + (rλ − s)Ĵ ûz̄(s), ·〉,

X2,2 = Dz(s)
(
(s− rλ)〈ûz̄(s), ψ̂〉 − α

)
. (14.2.14)

In what follows, 1 + (rλ − s)Âz(s) will be encountered very often. Therefore, we

introduce a special notation for this operator:

Fz(s) = 1 + (rλ − s)Âz(s). (14.2.15)

Note that

F∗z(s) = 1 + (rλ − s)B̂z̄(s). (14.2.16)

Lemma 14.2.3.

F−1
λ+i0(s) = 1 + (s− rλ)Âλ+i0(rλ).

Proof. This follows from (2.7.3).

Since by (14.2.10) and (14.2.13),

ψ̂ + (rλ − s)Ĵ ûz̄(s) = [1 + (rλ − s)B̂z̄(s)]ψ̂ = F∗z(s)ψ̂,

the following lemma has been proved.

Lemma 14.2.4. In the above notation, the operator Az(s) = Tz(Hs)J is equal to(
Âz(s) + (rλ − s)Dz(s)〈F∗z(s)ψ̂, ·〉ûz(s) [1 + (s− rλ)X2,2]ûz(s)

Dz(s)〈F∗z(s)ψ̂, ·〉 −X2,2

)
. (14.2.17)

Now we study the operator (14.2.17) when z belongs to the boundary of Π, that is,

z = λ± i0. It will be assumed that z = λ+ i0, but all the equalities and assertions have

analogues for z = λ− i0 too. If z = λ+ i0, then, using the definition (14.2.11) of Dz(s)

and noting that

〈ûz̄(s), ψ̂〉 = 〈ψ̂, ûz(s)〉,

one can see that the (1, 2)-entry of (14.2.17) vanishes and therefore

Aλ+i0(s) =

(
Âλ+i0(s) + (rλ − s)Dλ+i0(s)〈F∗λ+i0(s)ψ̂, ·〉ûλ+i0(s) 0

Dλ+i0(s)〈F∗λ+i0(s)ψ̂, ·〉 (s− rλ)−1

)
.

(14.2.18)

Hence, the resonance equation of order k (see (3.1.1))

[1 + (rλ − s)Aλ+i0(s)]ku = 0

takes the form(
Fλ+i0(s) + (s− rλ)2Dλ+i0(s)〈F∗λ+i0(s)ψ̂, ·〉ûλ+i0(s) 0

(rλ − s)Dλ+i0(s)〈F∗λ+i0(s)ψ̂, ·〉 0

)k
u = 0. (14.2.19)
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Hence, the vector space Υ1
λ+i0(rλ) of solutions of this equation when k = 1 consists of all

vectors of the form (
û

b

)
,

where b ∈ C and û is a solution of

Fλ+i0(s)û = 0 and 〈F∗λ+i0(s)ψ̂, û〉 = 0. (14.2.20)

The vector space of resonance vectors of order ≤ k for the pair (Ĥs, V̂ ) at s = rλ will

be denoted by Υ̂k
λ±i0(rλ). In particular, û ∈ Υ̂1

λ+i0(rλ) if and only if Fλ+i0(s)û = 0. Since

the second equality of (14.2.20) follows from the first one, we have

Υ1
λ+i0(rλ) = Υ̂1

λ+i0(rλ)⊕ C.

In fact, the condition (14.2.4), which says that λ is a regular point of (Ĥrλ , F̂ ), is equiv-

alent to Υ1
λ+i0(Ĥrλ , V̂ ) = {0}, and therefore

Υ1
λ+i0(rλ) = {0} ⊕ C. (14.2.21)

We introduce the following notation for convenience.

Notation. Let j = −1, 0, 1, 2, . . . . We define

û
(j)
λ+i0(s) = F

−j
λ+i0(s)ûλ+i0(rλ). (14.2.22)

The operator Âλ+i0(s) is compact, and the assumption (14.2.4) means that the operator

Fλ+i0(s) = 1 + (rλ − s)Âλ+i0(s)

has zero kernel. Hence, it is invertible and therefore the vectors (14.2.22) are well-defined.

Lemma 14.2.5. We have

F−1
λ+i0(s)ûλ+i0(s) = ûλ+i0(rλ). (14.2.23)

That is,

û
(−1)
λ+i0(s) = ûλ+i0(s).

In particular, the vector F−1
λ+i0(s)ûλ+i0(s) does not depend on s.

Proof. This follows from (2.7.4) (or rather its proof) and the definition (14.2.10) of

ûλ+i0(s).

Plainly, also û
(0)
λ+i0(s) = ûλ+i0(rλ).

Lemma 14.2.6. Let Hs, V and F be as above. For each j = 1, 2, . . . the resonance vector

space Υj
λ+i0(rλ) is the linear span of the j vectors(

0

1

)
,

(
ûλ+i0(rλ)

0

)
,

(
û

(1)
λ+i0(s)

0

)
, . . . ,

(
û

(j−2)
λ+i0 (s)

0

)
. (14.2.24)

In particular, dim Υj
λ+i0(rλ) ≤ j.

Proof. For j = 1 this has already been observed (see (14.2.21)). Assume that
(
φ̂
a

)
is

a vector of order two, that is,
(
φ̂
a

)
is a solution of (14.2.19) with k = 2 and φ̂ 6= 0.

Applying to this vector the operator [1 + (rλ − s)Aλ+i0(s)] gives a vector of order 1.
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Since by (14.2.21) such a vector has the form
(

0
b

)
with non-zero b, the first component

of [1 + (rλ − s)Aλ+i0(s)]
(
φ̂
a

)
must be zero:

Fλ+i0(s)φ̂+ (s− rλ)2Dλ+i0(s)〈F∗λ+i0(s)ψ̂, φ̂〉ûλ+i0(s) = 0, (14.2.25)

and the second component must be non-zero:

〈F∗λ+i0(s)ψ̂, φ̂〉 6= 0.

Applying F−1
λ+i0(s) to (14.2.25) and using (14.2.23) gives

φ̂+ (s− rλ)2Dλ+i0(s)〈F∗λ+i0(s)ψ̂, φ̂〉ûλ+i0(rλ) = 0. (14.2.26)

It follows that if
(
φ̂
a

)
is a vector of order two, then φ̂ has to be collinear with ûλ+i0(rλ).

Hence Υ2
λ+i0(rλ) has dimension ≤ 2 and Υ2

λ+i0(rλ) is a subspace of the linear span of(
0
1

)
and (

F−1
λ+i0(s)ûλ+i0(s)

0

)
=

(
ûλ+i0(rλ)

0

)
.

This proves the assertion for j = 2.

Now, assuming that the assertion holds for j = k, we will show it for j = k + 1. Let(
φ̂
a

)
be a vector of order ≤ k + 1. Then

[1 + (rλ − s)Aλ+i0(s)]

(
φ̂

a

)
has order ≤ k. By the induction assumption, the first component of this vector, given by

the left hand side of (14.2.25), is a linear combination of

ûλ+i0(rλ), û
(1)
λ+i0(s), . . . , û

(k−2)
λ+i0 (s).

Thus,

φ̂+ (s− rλ)2Dλ+i0(s)〈F∗λ+i0(s)ψ̂, φ̂〉F−1
λ+i0(s)ûλ+i0(s)

is a linear combination of

F−1
λ+i0(s)ûλ+i0(rλ) = u

(1)
λ+i0(s), û

(2)
λ+i0(s), . . . , û

(k−1)
λ+i0 (s).

It now follows from (14.2.23) that φ̂ is a linear combination of

ûλ+i0(rλ), û
(1)
λ+i0(s), . . . , û

(k−1)
λ+i0 (s).

Lemma 14.2.7. The order of the real resonance point rλ is greater than 1 if and only if

α = 0. In that case the vector space Υ2
λ+i0(rλ) is two-dimensional and is generated by

Fχ =

(
0

1

)
and

(
ûλ+i0(rλ)

0

)
,

which have orders 1 and 2 respectively.

Proof. By Lemma 14.2.6, a resonance vector of order ≤ 2 has the form(
ûλ+i0(rλ)

b

)
.

The vector (
ûλ+i0(rλ)

0

)
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is a resonance vector of order 2 if and only if

[1 + (rλ − s)Aλ+i0(s)]

(
ûλ+i0(rλ)

0

)
is a vector of order 1, and thus has the form

(
0
b

)
. That is, the first component of this

vector is zero:

Fλ+i0(s)ûλ+i0(rλ) + (s− rλ)2Dλ+i0(s)〈F∗λ+i0(s)ψ̂, ûλ+i0(rλ)〉ûλ+i0(s) = 0.

Applying the operator F−1
λ+i0(s) and using Lemma 14.2.5 we infer that this equality is

equivalent to

1 + (s− rλ)2Dλ+i0(s)〈ψ̂, ûλ+i0(s)〉 = 0.

The definition (14.2.11) of Dλ+i0(s) implies that this is equivalent to

(s− rλ)2〈ψ̂, ûλ+i0(s)〉 = (s− rλ)2〈ψ̂, ûλ+i0(s)〉 − α(s− rλ).

Hence the order d of rλ is greater than 1 if and only if α = 0.

Since throughout this section we are assuming that V is a regularizing direction,

Lemma 14.2.7 combined with Lemma 14.2.2 imply

Corollary 14.2.8. If the order d of the real resonance point rλ is greater than 1, then

for some real number s,

〈ψ̂, ûλ+i0(s)〉 6= 0.

Since the vector spaces Υj
z(rz) have the stability property Υj

z(rz) = Υj+1
z (rz) ⇒

Υj
z(rz) = Υz(rz), Lemma 14.2.6 leads to

Theorem 14.2.9. Let d be an integer ≥ 2. The following assertions are equivalent:

(1) The order of the real resonance point rλ is equal to d.

(2) The dimension of the vector space Υλ+i0(rλ) is equal to d.

(3) The vectors

ûλ+i0(rλ), û
(1)
λ+i0(s), . . . , û

(d−2)
λ+i0 (s)

are linearly independent and û
(d−1)
λ+i0 (s) is their linear combination.

Further, if the order of rλ is equal to d, then for all j = 1, . . . , d the vector space Υj
λ+i0(rλ)

is j-dimensional and is generated by(
0

1

)
,

(
ûλ+i0(rλ)

0

)
,

(
û

(1)
λ+i0(s)

0

)
, . . . ,

(
û

(j−2)
λ+i0 (s)

0

)
,

which have orders 1, . . . , d respectively.

This theorem gives a criterion for the order of rλ to be equal to d but is not very

tangible. To get a better criterion, one needs to find out when a vector(
û

(j−2)
λ+i0 (s)

0

)
, j = 1, 2, . . . ,

is a resonance vector of order j. Lemma 14.2.7 gives an answer in the case of j = 2.
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Theorem 14.2.10. Let d be an integer ≥ 2. The order of the real resonance point rλ is

d if and only if for some real s, and thus for any real s, the vectors

ûλ+i0(rλ), û
(1)
λ+i0(s), . . . , û

(d−3)
λ+i0 (s) (14.2.27)

are all orthogonal to ψ̂ but the vector û
(d−2)
λ+i0 (s) is not.

Proof. It can be seen that it is enough to prove the following assertion: the order of the

real resonance point rλ is not less than d if and only if for some s the vectors

ûλ+i0(rλ), û
(1)
λ+i0(s), . . . , û

(d−3)
λ+i0 (s)

are all orthogonal to ψ̂. We prove this using induction on d = 2, 3, . . . .

According to Theorem 14.2.9, the real resonance point rλ has order ≥ 3 if and only

if the vector (
û

(1)
λ+i0(s)

0

)
is a resonance vector of order 3. This happens if and only if

[1 + (rλ − s)Aλ+i0(s)]

(
û

(1)
λ+i0(s)

0

)
(14.2.28)

is a vector of order 2, which by Theorem 14.2.9 is collinear to a vector of the form(
ûλ+i0(rλ)

b

)
. We calculate the first component of the vector (14.2.28):

Fλ+i0(s)û
(1)
λ+i0(s) + (s− rλ)2Dλ+i0(s)〈F∗λ+i0(s)ψ̂, û

(1)
λ+i0(s)〉ûλ+i0(s)

= ûλ+i0(rλ) + (s− rλ)2Dλ+i0(s)〈ψ̂, ûλ+i0(rλ)〉ûλ+i0(s)

= ûλ+i0(rλ)− 〈ψ̂, ûλ+i0(rλ)〉
〈ψ̂, ûλ+i0(s)〉

ûλ+i0(s),

where the second equality follows from (14.2.11) and α = 0. Hence, v is a resonance

vector of order 3 if and only if

ûλ+i0(rλ)− 〈ψ̂, ûλ+i0(rλ)〉
〈ψ̂, ûλ+i0(s)〉

ûλ+i0(s)

is non-zero and collinear to ûλ+i0(rλ). On the other hand, by Theorem 14.2.9 the order

of v is 3 if and only if ûλ+i0(rλ) and û
(1)
λ+i0(s) are linearly independent. Since the operator

Fλ+i0(s) is invertible, this holds if and only if

Fλ+i0(s)ûλ+i0(rλ) = ûλ+i0(s) and Fλ+i0(s)û
(1)
λ+i0(s) = ûλ+i0(rλ)

are linearly independent. We conclude that v has order 3 if and only if

〈ψ̂, ûλ+i0(rλ)〉 = 0.

If this is the case then the vector space Υ3
λ+i0(rλ) is 3-dimensional and is generated by(

0

1

)
,

(
ûλ+i0(rλ)

0

)
and

(
û

(1)
λ+i0(s)

0

)
,

which have orders 1, 2 and 3 respectively. We have also proved that d = 2 if and only if

〈ψ̂, ûλ+i0(rλ)〉 6= 0.

This gives the induction base.
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Now assuming that the assertion holds for the order of rλ less than d we will prove it

for the order of rλ equal to d. According to Theorem 14.2.9, the real resonance point rλ
has order ≥ d iff the vector (

û
(d−2)
λ+i0 (s)

0

)
is a resonance vector of order d. This in turn is equivalent to

[1 + (rλ − s)Aλ+i0(s)]

(
û

(d−2)
λ+i0 (s)

0

)
(14.2.29)

being a vector of order d− 1; by Lemma 14.2.6 it is a linear combination of(
0

1

)
,

(
ûλ+i0(rλ)

0

)
,

(
û

(1)
λ+i0(s)

0

)
, . . . ,

(
û

(d−3)
λ+i0 (s)

0

)
.

The first component of (14.2.29) is

Fλ+i0(s)û
(d−2)
λ+i0 (s) + (s− rλ)2Dλ+i0(s)〈F∗λ+i0(s)ψ̂, û

(d−2)
λ+i0 (s)〉ûλ+i0(s)

= û
(d−3)
λ+i0 (s) + (s− rλ)2Dλ+i0(s)〈ψ̂, û(d−3)

λ+i0 (s)〉ûλ+i0(s)

= û
(d−3)
λ+i0 (s)−

〈ψ̂, û(d−3)
λ+i0 (s)〉

〈ψ̂, ûλ+i0(s)〉
ûλ+i0(s). (14.2.30)

Thus, the order of rλ is ≥ d iff this vector is a linear combination of

ûλ+i0(rλ), û
(1)
λ+i0(s), . . . , û

(d−3)
λ+i0 (s).

By Theorem 14.2.9, the order rλ is ≥ d iff the vectors

ûλ+i0(rλ), û
(1)
λ+i0(s), . . . , û

(d−2)
λ+i0 (s)

are linearly independent. Since the operator Fλ+i0(s) is invertible, this holds iff

ûλ+i0(s), ûλ+i0(rλ), û
(1)
λ+i0(s), . . . , û

(d−3)
λ+i0 (s)

are linearly independent. Hence the order of rλ is ≥ d iff the coefficient of ûλ+i0(s)

in (14.2.30) is zero, that is, iff 〈ψ̂, û(d−3)
λ+i0 (s)〉 = 0. Combined with the induction assump-

tion, this completes the proof.

Theorem 14.2.11. Let d be an integer greater than 1 and let

û+ = ûλ+i0(rλ).

The order of the real resonance point rλ is equal to d if and only if the vectors

û+, Âλ+i0(rλ)û+, . . . , Â
d−3
λ+i0(rλ)û+ (14.2.31)

are orthogonal to ψ̂ but Âd−2
λ+i0(rλ)û+ is not. If this is the case, then for all j = 1, . . . , d

the vector space Υj
λ+i0(rλ) is j-dimensional and is generated by the vectors(

0

1

)
,

(
û+

0

)
,

(
Âλ+i0(rλ)û+

0

)
, . . . ,

(
Âj−2
λ+i0(rλ)û+

0

)
, (14.2.32)

which have orders 1, . . . , j respectively.
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Proof. By Lemma 14.2.3 and the definition (14.2.22) of û
(j)
λ+i0(s) we have

û
(j)
λ+i0(s) = [1 + (s− rλ)Âλ+i0(rλ)]j ûλ+i0(rλ).

Hence, the assertion is a direct consequence of Theorem 14.2.10.

Corollary 14.2.12. Under the conditions of Theorem 14.2.11, if rλ has order d then

the vector space Ψλ+i0(rλ) is d-dimensional and is generated by the vectors(
ψ̂

0

)
,

(
Ĵ û+

0

)
, . . . ,

(
ĴÂd−3

λ+i0(rλ)û+

0

)
,

(
ĴÂd−2

λ+i0(rλ)û+

〈ψ̂, Âd−2
λ+i0(rλ)û+〉

)
,

which have orders 1, . . . , d respectively. Further, the second component of the last vector

is non-zero.

Proof. By Lemma 3.1.4, Ψλ+i0(rλ) is the image of Υλ+i0(rλ) under the mapping J given

by (14.2.5). Applying J to the vectors (14.2.32), which by Theorem 14.2.11 generate

Υj
λ+i0(rλ), one infers that the d vectors(

ψ̂

0

)
,

(
Ĵ û+

〈ψ̂, û+〉

)
,

(
ĴÂλ+i0(rλ)û+

〈ψ̂, Âλ+i0(rλ)û+〉

)
, . . . ,

(
ĴÂd−2

λ+i0(rλ)û+

〈ψ̂, Âd−2
λ+i0(rλ)û+〉

)
form a basis of Ψλ+i0(rλ). It remains to note that by Theorem 14.2.11 the second com-

ponents of all these vectors except the last one are zero.

14.3. Type I vectors for an embedded eigenvalue. In order to simplify formulas,

we write

û± = ûλ±i0(rλ), Â± = Âλ±i0(rλ), B̂± = B̂λ±i0(rλ). (14.3.1)

For convenience we set

aj,± := 〈ψ̂, Âjλ±i0(rλ)ûλ±i0(rλ)〉. (14.3.2)

In what follows, a vector f ∈ K̂ will often be identified with
(
f
0

)
∈ K. Also,

(
0
1

)
∈ K will

be written as 1. By Theorem 14.2.11, the vectors

Âd−2
+ û+, Â

d−3
+ û+, . . . , Â+û+, û+, 1

form a basis of Υλ+i0(rλ). By Corollary 14.2.12, the vectors

B̂d−1
− ψ̂ + ad−2,−, B̂

d−2
− ψ̂, . . . , B̂−ψ̂, ψ̂

form a basis of Ψλ−i0(rλ).

The following lemma is a direct consequence of Theorem 8.3.1, but still we give another

proof.

Lemma 14.3.1. Let k be a positive integer. If d ≥ 2k+ 1, then û+ = û−, Â+û+ = Â−û−,

. . . , Âk−1
+ û+ = Âk−1

− û−.

Proof. If k = 1 then d ≥ 3, and therefore, by Theorem 14.2.11, a0,+ and a0,− are zero,

that is,

0 = 〈ψ̂, û±〉 = 〈ψ̂, T̂±ψ̂〉.

It follows that

√
Im T̂+ ψ̂ = 0, and therefore T̂+ψ̂ = T̂−ψ̂, that is, û+ = û−.
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Assume that the assertion is true for k = n and let k = n+ 1. Then d ≥ 2n+ 3 and

therefore, by Theorem 14.2.11, a2n,± = 0, that is,

〈ψ̂, (T̂+J)2nT̂+ψ̂〉 = 0.

This implies that

0 = 〈(JT̂−)nψ̂, (T̂+J)nT̂+ψ̂〉 = 〈JÂn−1
− û+, T̂+JÂ

n−1
+ û+〉 = 〈JÂn−1

+ û+, T̂+JÂ
n−1
+ û+〉,

where the last equality follows from the induction assumption. So (Im T̂+)JÂn−1
+ û+ = 0,

that is,

Â+Â
n−1
+ û+ = Â−Â

n−1
+ û+ = Â−Â

n−1
− û−,

where the last equality follows from the induction assumption.

14.4. The idempotents Pλ±i0(rλ) and Qλ±i0(rλ). In this subsection we calculate

Pλ±i0(rλ). Since by (14.2.4) the operator-function Tλ+i0(Ĥs) is holomorphic at s = rλ,

the functions Tλ+i0(Ĥs) and 〈ψ̂, ûλ+i0(s)〉 can be expanded into a Taylor series convergent

in some neighbourhood of s = rλ as follows:

Tλ+i0(Ĥs) =

∞∑
k=0

(−1)k(s− rλ)kÂkλ+i0(rλ)Tλ+i0(Ĥrλ).

Hence

〈ψ̂, ûλ+i0(s)〉 = 〈ψ̂, Tλ+i0(Ĥs)ψ̂〉
= a0,+ − a1,+(s− rλ) + a2,+(s− rλ)2 − a3,+(s− rλ)3 + · · · . (14.4.1)

If d is the order of rλ, then by Theorem 14.2.11, we have

a0,± = a1,± = · · · = ad−3,± = 0

and the number ad−2,± is non-zero.

We shall need a Taylor series expansion for the function

(rλ − s)Dλ+i0(s) = − 1

α+ (rλ − s)〈ψ̂, ûλ+i0(s)〉
.

For this, we write the first few terms of the Taylor expansion of the inverse function:

(c0 − c1(s− rλ) + c2(s− rλ)2 − c3(s− rλ)3 + · · · )−1

=
1

c0
+
c1
c20

(s− rλ) +
c21 − c0c2

c30
(s− rλ)2 +

c31 − 2c0c1c2 + c3c
2
0

c40
(s− rλ)3

+
c41 − 3c0c

2
1c2 + 2c20c1c3 + c20c

2
2 − c30c4

c50
(s− rλ)4 + · · · . (14.4.2)

Using (14.2.18) for Aλ+i0(s) and Proposition 3.2.3, one can calculate the idempotent

Pλ+i0(rλ) for points of small order.

14.4.1. Order d = 1. By Lemma 14.2.6, the order d of the real resonance point rλ is 1

if and only if α 6= 0. If α 6= 0, then the (1, 1)-entry of the matrix (14.2.18) is holomorphic

at s = rλ, and therefore its residue vanishes. Hence, in this case the (1, 1)-entries of
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Pλ±i0(rλ) are also zero, and as a result these idempotents have rank one:

Pλ±i0(rλ) =

(
0 0

α−1〈ψ̂, ·〉 1

)
.

It follows that

Qλ±i0(rλ) =

(
0 α−1ψ̂

0 1

)
and Qλ−i0(rλ)JPλ+i0(rλ) =

(
α−1〈ψ̂, ·〉ψ̂ ψ̂

〈ψ̂, ·〉 α

)
.

Hence, Qλ−i0(rλ)JPλ+i0(rλ) is a rank one operator with range generated by
(
ψ̂
α

)
. Also,

in this case the operators Aλ±i0(rλ) are zero.

14.4.2. Order d = 2. By Theorem 14.2.11, in this case α = 0 and 〈ψ̂, û+〉 6= 0. Since

α = 0, it follows from (14.2.11), (14.4.1) and (14.4.2) that

−Dλ+i0(s) =
1

(s− rλ)2〈ψ̂, ûλ+i0(s)〉

=
1

(s− rλ)2
(a0,+ − a1,+(s− rλ) + a2,+(s− rλ)2 − · · · )−1

=
1

a0,+
(s− rλ)−2 +

a1,+

a2
0,+

(s− rλ)−1 +
a2

1,+ − a0,+a2,+

a3
0,+

+ · · · .

Hence the coefficient of (s− rλ)−1 in the (1, 1)-entry of Aλ+i0(s) is a−1
0,+〈ψ̂, ·〉û+ and the

coefficient of (s− rλ)−1 in the (2, 1)-entry of Aλ+i0(s) is

−a1,+

a2
0,+

〈ψ̂, ·〉+
1

a0,+
〈B̂−ψ̂, ·〉.

Therefore,

Pλ+i0(rλ) =

( 1
a0,+
〈ψ̂, ·〉û+ 0

−a1,+
a20,+
〈ψ̂, ·〉+ 1

a0,+
〈B̂−ψ̂, ·〉 1

)
. (14.4.3)

Similarly,

Pλ−i0(rλ) =

( 1
a0,−
〈ψ̂, ·〉û− 0

−a1,−
a20,−
〈ψ̂, ·〉+ 1

a0,−
〈B̂+ψ̂, ·〉 1

)
. (14.4.4)

Using these equalities one can check that in general

Pλ+i0(rλ)Pλ−i0(rλ) 6= Pλ+i0(rλ).

It follows from Proposition 13.3.1 that the real resonance point rλ in general does not

have property S. Further, since by (3.3.16) the operator Aλ±i0(rλ) is the coefficient of

(s− rλ)−2 in the Laurent expansion of Aλ+i0(s) at r = rλ, it follows from (14.2.18) that

Aλ±i0(rλ) =

(
0 0

− 1
〈ψ̂,û±〉

〈ψ̂, ·〉 0

)
.

One can calculate that

Qλ−i0(rλ)JPλ+i0(rλ) =

(
(∗) ψ̂

〈ψ̂, ·〉 0

)
,
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where

(∗) =
1

|a0,+|2
〈û+, B̂+ψ̂〉〈ψ̂, ·〉ψ̂ − 2 Re

a1,+

a2
0,+

〈ψ̂, ·〉ψ̂

+
1

a0,+
〈B̂−ψ̂, ·〉ψ̂ +

1

a0,−
〈ψ̂, ·〉B̂−ψ̂.

A similar equality holds for Qλ+i0(rλ)JPλ−i0(rλ), which shows that in general

Qλ−i0(rλ)JPλ+i0(rλ) 6= Qλ+i0(rλ)JPλ−i0(rλ).

It is another way to see that in general a real resonance point rλ does not have property S.

From (14.4.3) and (14.4.4) one can see that the kernel of the idempotent Pλ±i0(rλ) is

kerPλ±i0(rλ) = {φ̂− 〈ψ̂, û±〉−1〈ψ̂, Â±φ̂〉 · 1: φ̂ ⊥ ψ̂}.

If Ĵ = 0, then

kerPλ±i0(rλ) = span {1, ψ̂}⊥.

Thus, in this case kerPλ−i0(rλ) = kerPλ−i0(rλ), which is the definition of resonance

points with property S. Since the vector spaces Υλ±i0(rλ) = span {1, û±} are in gen-

eral different, there exist real resonance points with property S for which Υλ+i0(rλ) 6=
Υλ−i0(rλ). By Theorem 13.1.13, it follows that in this case rλ is not a resonance point of

type I. Hence, this gives an example of a resonance point of order two with property S

which is not of type I.

These examples give a proof of the second part of Proposition 13.3.2.

14.4.3. Order d = 3. By Theorem 14.2.11, in this case the vectors û+ and ψ̂ are

orthogonal while Â+û+ and ψ̂ are not, so that

a0,+ = 〈ψ̂, û+〉 = 0 and a1,+ = 〈ψ̂, Â+û+〉 6= 0. (14.4.5)

The first of these two equalities implies that 〈ψ̂, ImT+ψ̂〉 = 0, and therefore ImT+ψ̂ = 0.

It follows that

û+ = û−, B̂+ψ̂ = B̂−ψ̂ and a1,+ = 〈ψ̂, Â−û−〉 = a1,−. (14.4.6)

Further, (14.4.5) implies that the first term of the Neumann series (14.4.1) for 〈ψ̂, ûλ+i0(s)〉
vanishes:

〈ψ̂, ûλ+i0(s)〉 = −a1,+(s− rλ) + a2,+(s− rλ)2 + · · ·

and we get

Dλ+i0(s) = − 1

(s− rλ)2〈ψ̂, ûλ+i0(s)〉

=
1

(s− rλ)3

(
1

a1,+
+
a2,+

a2
1,+

(s− rλ) +
a2

2,+ − a1,+a3,+

a3
1,+

(s− rλ)2 + · · ·
)
.

Also,

1 + (rλ − s)B̂λ−i0(s) = 1 + (rλ − s)B̂− + (s− rλ)2B̂2
− + (rλ − s)3B̂3

− + · · ·

and

ûλ+i0(s) = û+ + (rλ − s)Â+û+ + (s− rλ)2Â2
+û+ − · · · .
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From this we find the coefficient of 1/(s− rλ) in the (1, 1)-entry of Aλ+i0(s), that is, the

(1, 1)-entry of Pλ+i0(rλ):

P̂+ := −a2,+

a2
1,+

〈ψ̂, ·〉û+ +
1

a1,+
(〈ψ̂, ·〉Â+û+ + 〈B̂−ψ̂, ·〉û+),

and similarly we find the (2, 1)-entry of Pλ+i0(rλ):

a2
2,+ − a1,+a3,+

a3
1,+

〈ψ̂, ·〉 − a2,+

a2
1,+

〈B̂−ψ̂, ·〉+
1

a1,+
〈B̂2
−ψ̂, ·〉.

Hence,

Pλ+i0(rλ) =

−a2,+a21,+
〈ψ̂, ·〉û+ + 1

a1,+
(〈ψ̂, ·〉Â+û+ + 〈B̂−ψ̂, ·〉û+) 0

a22,+−a1,+a3,+
a31,+

〈ψ̂, ·〉 − a2,+
a21,+
〈B̂−ψ̂, ·〉+ 1

a1,+
〈B̂2
−ψ̂, ·〉 1

 .

The structure of this operator becomes a bit more transparent if it is written as a matrix

in the basis (B̂2
−ψ̂+a1,−, B̂−ψ̂, ψ̂) of the range of Qλ−i0(rλ) and in the basis (Â+û+, û+, 1)

of the range of Pλ+i0(rλ) as follows:

Pλ+i0(rλ) =


0 0 1

a1,+

0 1
a1,+

−a2,+
a21,+

1
a1,+

−a2,+
a21,+

a22,+−a1,+a3,+
a31,+

 .

Similarly, one can find Pλ−i0(rλ). Further, one can calculate that

Aλ+i0(rλ) =

(
− 1
a1,+
〈ψ̂, ·〉û+ 0

a2,+
a21,+
〈ψ̂, ·〉 − 1

a1,+
〈B̂−ψ̂, ·〉 0

)
.

In the pair of bases (B̂2
−ψ̂+a1,−, B̂−ψ̂, ψ̂) and (Â+û+, û+, 1) this operator takes the form

Aλ+i0(rλ) =

0 0 0

0 0 − 1
a1,+

0 − 1
a1,+

a2,+
a21,+

 .

One can check that the (1, 1)-entries P̂+ and P̂− of Pλ+i0(rλ) and Pλ−i0(rλ) satisfy

P̂+P̂− = P̂+. This implies that the image of Pλ+i0(rλ)Pλ−i0(rλ) − Pλ+i0(rλ) consists of

vectors of order 1.

These examples also show how to calculate Pλ±i0(rλ) and Aλ±i0(rλ) in the case of

arbitrary order.

14.5. Example of calculation of resonance index. The function Aλ+i0(s) of the

coupling constant s has an eigenvalue σλ(s) = (s−rλ)−1. When λ+ i0 is shifted to λ+ iy

with small positive y, the eigenvalue σλ(s) in general splits into N± non-real eigenvalues

in C± respectively. The difference N+ − N− is the resonance index. To calculate it we

need to find the eigenvalues of Aλ+iy(s) which belong to the group of the eigenvalue

σλ(s), that is, which converge to σλ(s) as y → 0+. The eigenvalue equation

Az(s)u = σu,
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where u =
(
û
1

)
and where Az(s) is given in (14.2.17), leads to the equations

Âz(s)û+ (rλ − s)Dz(s)〈F∗z(s)ψ̂, û〉ûz(s)

+ [1 + (s− rλ)Dz(s)
(
(s− rλ)〈ûz̄(s), ψ̂〉 − α

)
]ûz(s) = σû

and

Dz(s)〈F∗z(s)ψ̂, û〉 −Dz(s)
(
(s− rλ)〈ûz̄(s), ψ̂〉 − α

)
= σ.

From the latter it follows that the former is equivalent to

Âz(s)û+ σ(rλ − s)ûz(s) + ûz(s) = σû.

We consider the case Ĵ = 0. Then Âz(s) = 0, Fz(s) = 1, and 〈ψ̂, ûz(s)〉 does not depend

on s and is equal to 〈ψ̂, ûz(rλ)〉. The first equation becomes

σ(rλ − s)ûz(s) + ûz(s) = σû,

while the second turns into (using 〈ûz̄(s), ψ̂〉 = 〈ψ̂, ûz(s)〉)

Dz(s)
(
〈ψ̂, û〉+ (rλ − s)〈ψ̂, ûz(s)〉+ α

)
= σ.

If we exclude the vector û from these two equations we obtain the following quadratic

equation for σ:

σ2 − σDz(s)(2(rλ − s)〈ψ̂, ûz(s)〉+ α)−Dz(s)〈ψ̂, ûz(s)〉 = 0. (14.5.1)

We consider first the case of α = 0. Then by the definition (14.2.11) of Dz(s) we have

Dz(s) = −(iy + (s− rλ)2〈ψ̂, ûz(s)〉)−1,

where as usual z = λ+ iy. Let

w(y) = −Dz(s)〈ψ̂, ûz(s)〉 = 〈ψ̂, ûz(s)〉(iy + (s− rλ)2〈ψ̂, ûz(s)〉)−1. (14.5.2)

The equation (14.5.1) for σ then becomes

σ2 − 2(s− rλ)wσ + w = 0.

Its roots are

σ1,2(y) = (s− rλ)w ±
√

(s− rλ)2w2 − w,

where we agree that the complex square root belongs to either the upper half-plane or

the positive semi-axis. From (14.5.2) one can find that as y → 0+,

w(y) = (s− rλ)−2 − iy

〈ψ̂, ûλ+i0(s)〉
(s− rλ)−4 +O(y2).

Consequently,

(s− rλ)2w2 − w = − iy

〈ψ̂, ûλ+i0(s)〉
(s− rλ)−4 +O(y2).

Let ρei2θ be the polar form of i/〈ψ̂, ûλ+i0(s)〉. Then one can see that

σ1,2(y) = (s− rλ)−1 ±√ρy eiθ(s− rλ)−2 +O(y).

Since 〈ψ̂, ûλ+i0(s)〉 6= 0, it follows that the roots approach (s − rλ)−1 from different

half-planes C±. Therefore, in the case of α = 0 the resonance index is equal to 1− 1 = 0.
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Now let α 6= 0. Since the resonance index does not depend on s, to simplify calculations

we choose s = 1 + rλ. In this case

D−1
z (s) = α− iy − 〈ψ̂, ûz〉

and the eigenvalue σλ(s) = (s−rλ)−1 is equal to 1. One can calculate the roots of (14.5.1):

σ1,2 =
α− 2〈ψ̂, ûz〉 ±

√
α2 − 4iy〈ψ̂, ûz〉

2(α− iy − 〈ψ̂, ûz〉)

=
α− 2〈ψ̂, ûz〉 ± |α|(1− 2iy〈ψ̂, ûz〉/α2 +O(y2))

2(α− iy − 〈ψ̂, ûz〉)
.

Hence the root which approaches the eigenvalue σλ(s) = 1 as y → 0+ is

σ(y) =
α− 〈ψ̂, ûz〉 − iy〈ψ̂, ûz〉/α+O(y2)

α− iy − 〈ψ̂, ûz〉
= 1 +

iy − iy〈ψ̂, ûz〉/α+O(y2)

α− iy − 〈ψ̂, ûz〉
.

Since

σ′(0) =
i− i〈ψ̂, ûλ+i0(rλ)〉/α
α− 〈ψ̂, ûλ+i0(rλ)〉

=
i

α
,

the root σ(y) approaches 1 from above (and moreover, at the right angle) if α > 0, and

from below if α < 0. It follows that, in the case of Ĵ = 0,

indres(λ;Hrλ , V ) = signα.

14.6. Examples of resonance points of orders three and four (in finite di-

mensions). One feature of the resonance index theory is that it makes sense and gives

non-trivial results for spectral points λ outside of the essential spectrum (that is, for the

classical spectral flow) and even in finite dimensions. For example, assume that there

is a straight path of self-adjoint matrices Hr = H0 + rV ; then the eigenvalues of Hr

are analytic functions of r which may have extrema, or critical points. Critical points of

eigenvalues of Hr may have different orders. A natural question is: how to construct a

path of self-adjoint matrices such that an eigenvalue of the path has a critical point of a

given order? Theorem 14.2.11 gives an answer.

14.6.1. Example 1. Let

H0 =

λ+ ε 0 0

0 λ− ε 0

0 0 λ

 .

Since λ is an eigenvalue of H0, the point r = 0 is a λ-resonant point of the path H0 + rV

for any perturbation V . The direction

V1 =

0 0 1

0 0 1

1 1 0


is not regularizing for the matrix H0, since λ is a common eigenvalue of all operators Hr.

That V1 is not regularizing can also be seen from the fact that (14.2.12) fails.
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The following direction is regularizing:

V2 =

1 0 1

0 1 1

1 1 0

 .

Since α = 0, the order of the resonance point r = 0 is at least two. The resonance index

of (λ;H0, V2) is 2− 1 = 1.

14.6.2. Example 2. For the matrix

H0 =


λ+ 1 0 0 0

0 λ+ 1 0 0

0 0 λ− 1/2 0

0 0 0 λ


the direction

V1 =


−2 0 0 1

0 −2 0 1

0 0 1 1

1 1 1 0


is not regularizing at λ for the same reason as above: (14.2.12) fails.

If V2 is chosen as

V2 =


−4 0 0 1

0 −1 0 1

0 0 1 1

1 1 1 0

 ,

then (14.2.31) holds with d = 3. As a result, r = 0 has order at least three. According to

Theorem 14.2.11, the order of rλ = 0 is in fact three, since for the perturbation V2 the

following condition fails:

〈ψ̂, Tλ+i0(Ĥ0)ĴTλ+i0(Ĥ0)ψ̂〉 = 0.

But the regularizing direction

V3 =


−3 0 0 1

0 −1 0 1

0 0 1 1

1 1 1 0


satisfies (14.2.31) for d = 4, and therefore the corresponding resonance point rλ = 0 has

order 4. Computer shows that

indres(λ;H0, V2) = 2− 1 = 1 and indres(λ;H0, V3) = 2− 2 = 0.
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15.1. On points λ which are not essentially regular. According to Theorem 4.2.1,

if a real number λ is an eigenvalue of infinite multiplicity of an operator from the affine

space A, then λ is not essentially regular. Is there a real number λ which is not essentially

regular and such that some H ∈ A has finite multiplicity in a neighbourhood of λ?

15.2. Some questions about the resonance matrix. In Section 9 it was shown

(Theorem 9.2.1) that the finite-rank self-adjoint operators

Qλ+i0(rλ)JPλ−i0(rλ) and Qλ−i0(rλ)JPλ+i0(rλ) (15.2.1)

have equal signatures. In Subsection 13.3 it was shown that if a real resonance point rλ
has the generic property S then these operators are in fact equal and vice versa, but

points without property S also exist.

Do the eigenvalue counting measures of the operators (15.2.1) coincide? What meaning

do eigenvalues of self-adjoint operators (15.2.1) have?

15.3. Some questions about type I points. In Section 13 it was shown that if rλ is

a real resonance point of type I, then Pλ+i0(rλ) = Pλ−i0(rλ). This equality is equivalent

to Υλ+i0(rλ) = Υλ−i0(rλ) (see Subsection 13.3).

Conjecture 1.

(a) If Pλ+i0(rλ) = Pλ−i0(rλ) then rλ is of type I.

(b) More generally, if a vector u belongs to both Υλ+i0(rλ) and Υλ−i0(rλ), then u is of

type I.

15.4. On multiplicity of H0. Recall that a self-adjoint operator H0 on a Hilbert

space H has multiplicity m if m is the smallest positive integer k such that for some

k vectors f1, . . . , fk the linear span of the vectors Hi
0fj , i = 1, 2, . . . and j = 1, . . . , k, is

dense in the Hilbert space H.

Conjecture 2. If a self-adjoint operator H0 ∈ A has multiplicity m, then for every

essentially regular number λ at which H0 is resonant, dim Υ1
λ+i0(rλ) ≤ m.

Combined with the U-turn Theorem 10.1.6, this conjecture would imply that the

resonance index cannot be greater than the multiplicity of H0 for any regularizing per-

turbation V . This is a reasonable conjecture, since one would not expect the multiplicity

of the singular spectrum to be greater than the multiplicity of H0.

[144]
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15.5. Resonance index as a function of perturbation. In this paper a fixed per-

turbation V has been considered. An open matter of study is the dependence of the

resonance index indres(λ;H0, V ) on the perturbation V .

Let H0 be resonant at an essentially regular point λ. A regularizing direction V will

be called simple if the resonance point rλ = 0 has order 1. In this case

Υ1
λ+i0(rλ) = Υλ+i0(rλ),

and therefore by Theorem 4.4.1 for simple directions V the vector space Υλ+i0(rλ) does

not depend on V .

Conjecture 3. If H0 is resonant at an essentially regular point λ, then the set of simple

directions is open in the norm of A0, given by ‖F ∗JF‖A0 = ‖J‖. Moreover, the set of

non-simple directions is a meager subset of A0. Finally, indres(λ;H0, V ) is stable under

small perturbations of a simple direction V .

15.6. Resonance lines and eigenvalues. Recall that a pair of self-adjoint operators H

and V is called reducible if there exists a non-zero proper (closed) subspace L of the

Hilbert space H such that HL ⊂ L and V L ⊂ L.

By Proposition 2.6.3, for every essentially regular point λ ∈ Λ(A, F ), the resonance set

R(λ;A, F ) is analytic, in the sense that every analytic curve either intersects R(λ;A, F )

in a discrete set of points or is entirely contained in this set. There is a distinguished class

of analytic curves—the straight lines. We suggest that the straight lines {H0+rV : r ∈ R}
in the resonance set R(λ;A, F ) have a special meaning.

Conjecture 4. If {H0 + rV : r ∈ R} is a line which is resonant at λ, then λ is a

common eigenvalue of all operators H0 + rV .

This is motivated by the fact that embedded eigenvalues are highly unstable, and

there has to be a reason for them not to get dissolved under perturbations rV for all

r ∈ R.

If {H0 + rV : r ∈ R} is a line which is resonant at λ, then as simple finite-dimensional

examples show, the eigenvectors corresponding to λ may not in general be common for

all operators H0 + rV , r ∈ R.

15.7. On resonance points rz as functions of z

15.7.1. On the analytic continuation of resonance points rz. A resonance point rz
corresponding to z is a holomorphic function of z. Here we write r(z) instead of rz and

call r(z) a resonance function. This function is in general multi-valued and it can have

continuous branching points of a finite period; examples can easily be constructed even

in a finite-dimensional Hilbert space H. A point z0 of the complement of the essential

spectrum will be called an absorbing point if r(z) → ∞ as z approaches z0 along some

half-interval γ1 from the domain of holomorphy of r(z). It can be shown that if z0 is an

absorbing point, then r(z) → ∞ as z approaches z0 along any half-interval γ2 from the

domain of holomorphy of r(z) which is homotopic to γ1 in the domain of holomorphy.

Recall that the domain of holomorphy of r(z) is in general a multi-sheet Riemannian

surface.
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Conjecture 5.

(1) If rλ+i0 := limy→0+ rλ+iy exists and is a real number, then as y → 0+ the number

rλ+iy approaches rλ+i0 at a non-zero angle.

(2) The derivative of a resonance function r(z) at a continuous branching point z0 is

equal to ∞.

(3) Let r(z) be a resonance function. If r(z) is holomorphic at a point z0 (and does not

branch at z0) then r′(z0) 6= 0.

(4) If z0 is a continuous branching point of a resonance function r(z), then the inverse

z(r) of r(z) is a single-valued function in a neighbourhood of r0 = r(z0).

(5) On any compact subset of C \ σess a resonance function rz can have only a finite

number of isolated continuous branching points. In general, what can be said about

the distribution of branching points of rz?

(6) A resonance function r(z) has a cycle of largest period d at a continuous branching

point z = z0 if and only if rz0 has order d.

(7) Resonance functions do not have (a) non-real (b) real absorbing points, including

isolated absorbing points.

(8) Any resonance function r(z) admits analytic continuation, possibly multi-valued, to

the complement of the essential spectrum with only one possible type of isolated sin-

gularity: continuous branching points of finite period.

Clearly, (8) implies (7). It can be shown that these two statements are equivalent.

Further, it is not difficult to prove that an isolated absorbing point z0, if it exists, must

have infinite period; in particular, a resonance point r(z) cannot be single-valued in a

neighbourhood of an isolated absorbing point.

15.7.2. On the splitting property of resonance points rz. Let λ be an essentially

regular point, letH0 be a self-adjoint operator fromA and let V be a regularizing direction

at λ. Let rλ be a real resonance point of the line Hr = H0 + rV and let r1
z , . . . , r

N
z be

resonance points of the group of rλ.

Conjecture 6.

(1) If the pair (H0, V ) is irreducible, then all resonance points r1
z , . . . , r

N
z of the group

of rλ considered as functions of z are non-degenerate. More generally, for an irre-

ducible pair every resonance point rz as a function of z is non-degenerate.

(2) All resonance points r1
z , . . . , r

N
z of the group of rλ considered as functions of z have

order 1. More generally, every resonance point rz as a function of z has order 1.

15.7.3. Analytic continuation through gaps in the essential spectrum. Assume

that there is an island I in the essential spectrum, that is, I is a closed interval such that

for some ε > 0 the intersection of σess and (a − ε, b + ε) is equal to [a, b]. Assume that

a resonance function r(z) can be continued analytically over the island. The analytic

continuation back to the initial point may differ from the original function, of course.

What can be said about the period of this analytic continuation?

What can be said about an integral of rz over a contour which encloses an island of

essential spectrum?
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15.8. Mittag–Leffler representation of Az(s). Is it true that the function Az(s)

satisfies the equality

Az(s) =
∑
rz

Az(s)Pz(rz),

where the sum is taken over all resonance points rz, and where the product Az(s)Pz(rz) is

the Laurent series (3.4.11)? Note that this assertion holds for finite-rank perturbations V ,

in which case the sum above is finite. In general, though, this seems to be unlikely.

15.9. On regular resonance vectors. Theorem 4.1.1 asserts that if χ ∈ H is an

eigenvector of a λ-resonant operator H0, then Fχ is a resonance vector of order 1. The

resonance vector Fχ is regular by definition.

Conjecture 7. If Fχ is a resonance vector of order 1, then χ is an eigenvector of H0.

This is proved in Theorem 4.3.2 under the additional condition that λ does not belong

to the essential spectrum.

15.10. On singular ssf for trace class perturbations. Similarly to the definition

of the singular spectral shift function one can define pure point and singular continuous

spectral shift functions as distributions by

ξ(pp)(φ) =

∫ 1

0

Tr(V φ(H(pp)
r ) dr, φ ∈ Cc(R),

ξ(sc)(φ) =

∫ 1

0

Tr(V φ(H(sc)
r ) dr, φ ∈ Cc(R),

where H
(pp)
r and H

(sc)
r are the pure point and singular continuous parts of Hr respectively.

Clearly, ξ(s) = ξ(pp) + ξ(sc).

The density of the distributions ξ(pp) and ξ(sc) will be denoted by the same symbols.

Conjecture 8. Let H0 be an arbitrary self-adjoint operator. If V is trace class then

the restriction of the pure point spectral shift function for the pair (H0, H0 + V ) to the

essential spectrum of H0 is zero.

That is, for trace class perturbations the restriction of ξ(s) to σess coincides with ξ(sc).

We say that for an irreducible pair (H0, V ) of self-adjoint operators, where V is trace

class, the singular spectral shift function ξ(s)(λ;H0+V,H0) is non-trivial if the restriction

of this function to σess(H0) is a non-zero element of L1(σess(H0), dλ), where dλ is the

restriction of the Lebesgue measure to σess(H0).

There is a question of existence of non-trivial singular spectral shift functions. If the

essential spectrum of H0 contains an open interval I which has no absolutely continuous

spectrum, then it is not difficult to prove the existence of non-trivial singular spectral

shift functions. Indeed, the absolutely continuous spectrum is stable under trace class per-

turbations, and therefore, on the interval I the singular spectral shift function coincides

with the spectral shift function.

For this reason, in discussing the problem of existence of non-trivial singular spectral

shift functions we shall assume that the absolutely continuous spectrum is everywhere

dense in the essential spectrum.



148 15. Open problems

An example of a non-trivial singular spectral shift function was constructed in [Az4].

This example relies on tools such as Cantor sets and Luzin–Privalov’s theorem on the

boundary behaviour of analytic functions. A more natural approach to constructing a

non-trivial singular spectral shift function would be to take a self-adjoint operator H0

with an eigenvalue λ0 embedded into the essential spectrum of H0, and to try to perturb

H0 by a trace class self-adjoint operator V so that the eigenvalue λ0 would change and

not dissolve in essential spectrum. My numerous attempts to construct such an example

of moving and stable embedded eigenvalue did not succeed, and as a result I developed

a “gut-feeling” that this is not possible at all. This is the reason for Conjecture 8.

At the same time it is quite possible that non-trivial pure point spectral shift functions

can be constructed if we allow relatively trace class perturbations V .

An embedded eigenvalue moving continuously inside the essential spectrum without

dissolving in it is a peculiar phenomenon; in particular, by the Schwarz reflection prin-

ciple, the existence of a moving embedded eigenvalue would imply that the corresponding

resonance point rz = r(z) admits analytic continuation through an interval inside essen-

tial spectrum.

Speculating further on this topic, it is possible that moving embedded eigenvalues

might have some connections with physical phenomena such as superconductivity.

15.11. On the pure point and singular continuous parts of the resonance index.

The material of this subsection and motivation for it are based on Section 4.

In addition to our usual assumptions about H0, F and V we assume that V is positive.

Let rλ be a resonance point of (λ;H0, V ). Since V is positive, we have

indres(λ;Hrλ , V ) = dim Υλ+i0(rλ) = dim Υ1
λ+i0(rλ).

We define the pure point and singular continuous parts of the resonance index by

ind(pp)
res (λ;Hrλ , V ) = dimVλ and ind(sc)

res (λ;Hrλ , V ) = indres(λ;Hrλ , V )− dimVλ,

where Vλ is the vector space of eigenvectors of Hrλ corresponding to the eigenvalue λ.

Conjecture 9. For a.e. λ,

ξ(pp)(λ;H1, H0) =
∑
r∈[0,1]

ind(pp)
res (λ;Hr, V ).

By Theorem 6.3.2, this equality is equivalent to

ξ(sc)(λ;H1, H0) =
∑
r∈[0,1]

ind(sc)
res (λ;Hr, V ).

For non-sign-definite operators V it is not clear how one can define the pure point

and singular parts of the resonance index.

15.12. On the singular spectral shift function for relatively compact pertur-

bations. The singular spectral shift function is well-defined for relatively trace class

perturbations. For such perturbations it admits three other descriptions as the singular

µ-invariant, the total resonance index and the total signature of the resonance matrix.
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These three descriptions are well-defined for relatively compact perturbations too, pro-

vided that the limiting absorption principle holds, and in this case they are all equal

(see Theorem 9.2.1 and [Az5]). While for relatively compact perturbations the spectral

shift function in general is not defined, it is quite possible that in this case the singular

spectral shift function still makes sense and is equal to the other three integer-valued

functions. Indeed, while V EH∆ for a bounded Borel set ∆ may fail to be trace class, it is

still possible that V EH
(s)

∆ is trace class for a sufficiently large class of Borel sets ∆ (for

example for compact subsets ∆ of Λ(H0, F )). This would allow us to use a modification of

the Birman–Solomyak formula to define the singular spectral shift function. The second

step would be to show that this function is integer-valued and equal to the other three.

Conjecture 10.

(a) Assume that for an affine space A of self-adjoint operators with rigging operator F the

assumptions of Section 2 are satisfied including the Limiting Absorption Principle.

Let H0 be a self-adjoint operator from the affine space A, and V be a relatively

compact (and not necessarily relatively trace class) self-adjoint operator from the

corresponding vector space A0. For any compact subset K of the set Λ(H0, F ) the

operator FEH
(s)

K is Hilbert–Schmidt, where H(s) is the singular part of H = H0 +V .

(b) The measure

K 7→
∫ 1

0

Tr(V E
H(s)
r

K ) dr

is well-defined on compact subsets of Λ(H0, F ) and is absolutely continuous, where

Hr = H0 + rV .

(c) The density of this measure is a.e. integer-valued and coincides with the total reso-

nance index ∑
r∈[0,1]

indres(λ;Hr, V )

of the pair (H0, H1).

For relatively trace class perturbations the only non-trivial part of this conjecture

is (c). A proof of this conjecture for relatively trace class perturbations with applications

to Schrödinger operators will be given in [AzD].



References

[Ag] Sh. Agmon, Spectral properties of Schrödinger operators and scattering theory,

Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (1975), 151–218.

[AS] W. O. Amrein and K. B. Sinha, On pairs of projections in a Hilbert space, Linear

Algebra Appl. 208/209 (1994), 425–435.

[Ar] N. Aronszajn, On a problem of Weyl in the theory of singular Sturm–Liouville

equations, Amer. J. Math. 79 (1957), 597–610.

[AD] N. Aronszajn and W. F. Donoghue, On exponential representations of analytic

functions in the upper half-plane with positive imaginary part, J. Anal. Math. 5

(1956), 321–388.

[APS] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian

geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69.

[APS2] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian

geometry. III, Math. Proc. Cambridge Philos. Soc. 79 (1976), 71–99.

[ASS] J. Avron, R. Seiler and B. Simon, The index of a pair of projections, J. Funct.

Anal. 120 (1994), 220–237.

[Az] N. A. Azamov, Infinitesimal spectral flow and scattering matrix, arXiv:0705.3282v4

(2007).

[Az2] N. A. Azamov, Pushnitski’s µ-invariant and Schrödinger operators with embedded

eigenvalues, arXiv:0711.1190v1 (2007).

[Az3] N. A. Azamov, Absolutely continuous and singular spectral shift functions, Disser-

tationes Math. 480 (2011), 102 pp.

[Az4] N. A. Azamov, Resonance index and singular spectral shift function, arXiv:1104.

1903 (2011).

[Az5] N. A. Azamov, Resonance index and singular µ-invariant, arXiv:1501.07673 (2015).

[Az6] N. A. Azamov, A constructive approach to stationary scattering theory, arXiv:1302.

4142 (2013).

[ACS] N. A. Azamov, A. L. Carey and F. A. Sukochev, The spectral shift function and

spectral flow, Comm. Math. Phys. 276 (2007), 51–91.

[AzD] N. A. Azamov and Th. Daniels, Singular spectral shift function for Schrödinger

operators, in preparation.

[AzS] N. A. Azamov and F. A. Sukochev, Spectral averaging for trace compatible opera-

tors, Proc. Amer. Math. Soc. 136 (2008), 1769–1778.

[Ba] N. S. Bakhvalov, Numerical Methods, Nauka, Moscow, 1973 (in Russian).
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C+, open upper complex half-plane.

C−, open lower complex half-plane.

d, order of a resonance point rz, (3.1.3), p. 56.

d(u), order of a resonance vector u, p. 56.

Dz(s), (14.2.11), p. 129.

Eλ, evaluation operator, (1.4.4), p. 19.

E♦λ , p. 22.

e+(H), the set of positive eigenvalues of a Schrödinger operator, p. 12.

F , rigging operator, (2.5.1), p. 47.

Fz(s), (14.2.15), p. 130.

H, the “main” Hilbert space, p. 42.
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H,H0, Hr, Hrλ , Hs, self-adjoint operators, elements of the affine space A, p. 8.
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Ĥs, (14.2.8), p. 129.

im(A), image of an operator A, p. 42.

ImA, imaginary part of an operator A, p. 44.
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J , self-adjoint bounded operator on K, p. 47.
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K, the “auxiliary” Hilbert space, p. 42.

K±, Hilbert spaces of the triple (K+,K,K−), p. 47.

ker(A), kernel of an operator A, p. 42.

Lz(rz), subspace of Υz(rz), p. 100.

Lwz (rz), subspace of Lz(rz), p. 107.

m, the geometric multiplicity of a resonance point, (3.1.5), p. 56.

N , dimension of Υλ±i0(rλ), algebraic multiplicity of a resonance point, (3.1.5), pp. 57, 80.

N+, the number of up-points in the group of a real resonance point rλ, p. 80.

N−, the number of down-points in the group of a real resonance point rλ, p. 80.

Pz(rz), finite-rank idempotent operator, p. 58.

P z(rz), finite-rank idempotent operator, p. 58.

Pz(rλ), finite-rank idempotent operator, p. 80.

Pz(Γ), finite-rank idempotent operator, p. 79.

P ↑z (rλ), P ↓z (rλ), p. 80.

Qz(rz), finite-rank idempotent operator, p. 59.

Qz(Γ), finite-rank idempotent operator, p. 79.

Q
z
(rz), finite-rank idempotent operator, p. 59.

Qz(rλ), finite-rank idempotent operator, p. 80.

r, real number, a coupling constant, p. 8.

rλ, real resonance point, p. 52.

rz, resonance point, p. 55.

r1
z , . . . , r

N
z , resonance points of the group of rλ, p. 79.

Rz(Hs), resolvent of Hs, p. 42.

R(λ;A, F ), the resonance set, (2.6.3), p. 51.

R(λ;H0, V ), the resonance set, p. 22.

R, R-index of a finite-rank operator without non-zero real eigenvalues, p. 76.

R-index, the same as R, p. 76.

R, the class of all finite-rank operators without non-zero real eigenvalues, p. 76.

RN ,R≤N , p. 76.

ReA, real part of an operator A, p. 44.

s, real or complex number, a coupling constant.

sign(A), signature of a finite-rank self-adjoint operator A, (2.1.5), p. 44.

Tz(Hs), non-self-adjoint compact operator, (2.5.4), p. 48.

u, a resonance vector, p. 55.

ûz(s), (14.2.10), p. 129.

û
(j)
λ+i0(s), (14.2.22), p. 131.

û±, (14.3.1), p. 136.

V , self-adjoint operator from A0, (2.5.2), p. 47.

z = λ+ iy, complex number, an element of Π.

γ(u), γz(u), depth of a resonance vector, p. 100.

Γ, a finite set of resonance points, p. 79.

λ, real number, an element of the spectral line.

λ± i0, an element of ∂Π±.

Λ(H,F ), (2.5.12), p. 49.

Λ(A, F ), the set of essentially regular points λ, (2.6.1), p. 50.

Π = Π+ tΠ−, Π± = C± ∪ Λ(A, F ), ∂Π, ∂Π±, p. 50.

σz(s), eigenvalue of Az(s), p. 55.
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σA, spectrum of an operator A.

µA, eigenvalue counting measure of a compact operator A, p. 43.

Υz(rz), vector space of resonance vectors, p. 56.

Υz(rλ), vector space of resonance vectors, p. 80.

Υj
z(rz), vector space of resonance vectors of order j, p. 56.

ψ, a co-resonance vector, p. 57.

Ψz(rz), vector space of co-resonance vectors, p. 57.

Ψj
z(rz), vector space of co-resonance vectors of order j, p. 57.

Ψz(rλ), vector space of co-resonance vectors, p. 80.

Co-resonance vector, p. 57.

— — of order j, p. 57.

Essentially regular point, p. 50.

— — line, p. 52.

Jordan decomposition, p. 34.

Operator, λ-resonant, (2.6.2), p. 51
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