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Inverse-closed Banach subalgebras of
higher-dimensional non-commutative tori

by

Karlheinz Gröchenig (Wien) and Michael Leinert (Heidelberg)

Abstract. We give a systematic construction of inverse-closed (Banach) subalgebras
in general higher-dimensional non-commutative tori.

1. Introduction. Let A ⊆ B be two algebras with common identity.
Then A is called inverse-closed in B if a ∈ A and a−1 ∈ B implies that
a−1 ∈ A. This property is a generalization of Wiener’s Lemma for abso-
lutely convergent Fourier series and occurs abundantly in many branches of
mathematical analysis. The range of applications covers numerical analy-
sis, pseudodifferential operators, frame theory, and, last but not least, non-
commutative tori. See [8] for a survey of many versions of Wiener’s Lemma
and applications of inverse-closedness.

In this paper we study subalgebras of general non-commutative tori.
Non-commutative tori are the founding examples of non-commutative ge-
ometry [4, 20], and are defined as the universal C∗-algebras generated by
a finite number of unitary elements Uj with commutation relations of the
form UjUk = θjkUkUj for j, k = 1, . . . , n, and θjk ∈ C. In non-commutative
geometry inverse-closed subalgebras of non-commutative tori play an im-
portant role: on the one hand, as “smooth non-commutative manifolds”,
and on the other hand, in the K-theory of C∗-algebras. Perhaps the main
result concerning inverse-closed subalgebras of non-commutative tori is the
density theorem. It states that the K-groups of a non-commutative torus
and of all its dense, inverse-closed subalgebras are isomorphic. Similarly the
stable rank of a dense, inverse-closed subalgebra coincides with the stable
rank of the ambient algebra [2].
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Usually the existence of an inverse-closed subalgebra is taken for granted
and is the starting point for the theory. Also, mostly Fréchet subalgebras are
considered rather than Banach subalgebras (because Fréchet algebras model
“smooth” non-commutative tori). Our objective is the systematic construc-
tion of Banach subalgebras of non-commutative tori in higher dimensions.
Indeed, we will characterize all those inverse-closed Banach subalgebras of
the form `1v(Zn), where v is a weight function on Zn. By choosing weights
of subexponential growth, we even construct a Banach subalgebra that is
contained in the ordinary smooth non-commutative torus. For certain non-
commutative tori with an even number of generators these results were al-
ready obtained in [9]. An alternative proof for the case of two generators
was subsequently given in [21]. The extension of our results was motivated
by a question of N. C. Phillips who asked us whether the results in [9] also
hold for arbitrary non-commutative tori in higher dimensions.

In the last part we investigate briefly the simplicity of the Banach sub-
algebras of non-commutative tori in terms of the parameters that define
the commutation relations. As a consequence we obtain a new proof of the
well-known characterization of the simplicity of the non-commutative tori.

Our methods are drawn from abstract harmonic analysis, in particu-
lar the investigation of projective representations and twisted convolution
algebras in the school of Leptin and Ludwig.

Let us mention that in some areas an inverse-closed subalgebra is also
called a spectral subalgebra, a local subalgebra, or a full algebra. If A is
inverse-closed in B, then A is called spectrally invariant in B or (under
standard conditions) invariant under holomorphic calculus; (A,B) is called
a Wiener pair.

2. Higher-dimensional non-commutative tori. We first give a de-
scription of non-commutative tori in higher dimensions and explain the link
to harmonic analysis.

Let T denote the unit circle. Let U1, . . . , Un be unitary symbols satisfying
the commutation relations

UjUk = θjkUkUj ,

where θjk ∈ T. Since UjUk = θjkUkUj = θjkθkjUjUk, we have θkj = θjk and
thus the matrix θ = (θjk)j,k=1,...,n is hermitean.

The non-commutative torus C∗(θ) is the universal C∗-algebra generated
by the unitaries Uj , j = 1, . . . , n. To obtain a concrete and workable repre-
sentation, we interpret C∗(θ) as a twisted group C∗-algebra of Zn.

Using multi-index notation with U l = U l11 · · ·U lnn for l ∈ Zn, we get

(2.1) U lUm = σ(l,m)U l+m for l,m ∈ Zn,
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where σ(l,m) ∈ T. In fact, repeated application of the commutation rules
yields the expression
(2.2)

σ(l,m) =
(n−1∏
j=1

θ
mj

n,j

)ln(n−2∏
j=1

θ
mj

n−1,j)
)ln−1

· · ·
( 1∏
j=1

θ
mj

2,j

)l2
=

∏
1≤j<k≤n

θ
lkmj

k,j .

Since U0 = U0
1 · · ·U0

n = I, (2.1) implies σ(0,m) = σ(m, 0) = 1, which is

consistent with (2.2). We also have σ(−l,m) = σ(l,−m) = σ(l,m).

Since we require the multiplication to be associative, we have

(2.3) σ(l,m)σ(l +m, p) = σ(l,m+ p)σ(m, p) for l,m, p ∈ Zn.

For f , g ∈ `1(Zn) we define the twisted convolution f \θ g or simply f \ g by

f \θ g(x) =
∑
y∈Zn

f(y)g(x− y)σ(y, x− y), x ∈ Zn.

The involution f 7→ f∗ is defined by f∗(x) = σ(x,−x) f(−x) for x ∈ Zn.
For the special case of “Dirac” functions δy = χ{y} we have

(2.4) δy \ δz = σ(y, z)δy+z and δ∗y = σ(−y, y)δ−y, y, z ∈ Zn.

We also note that

δy \ δ
∗
y = σ(y,−y)σ(−y, y)δ0 = δ0

and δ∗y \ δy = σ(−y, y)σ(−y, y)δ0 = δ0, so δy is unitary for every y ∈ Zn.

Then (`1(Zn), \θ,
∗) is a Banach ∗-algebra, which we denote by `1(Zn, θ).

This fact can be checked directly, but it also follows from the reasoning
below.

Following [22] and [16], we define a central extension G of T by Zn as
follows. Let G = {(x, ξ) : x ∈ Zn, ξ ∈ T} with multiplication (x, ξ)(y, η) =
(x + y, σ(x, y)ξη). Then G is a nilpotent group with neutral element e =

(0, 1) and inverse (x, ξ)−1 = (−x, σ(x,−x)ξ). The Haar measure on G is	
G f(a) da =

∑
x∈Zn

	
T f(x, ξ) dξ, and the group convolution ? on G is de-

fined with respect to this measure.

For f ∈ `1(Zn) we define f◦ ∈ L1(G) by f◦(x, ξ) = f(x)ξ. This extension
satisfies the following properties.

Lemma 2.1. The mapping ◦ : `1(Zn)→ L1(G) is an isometric ∗-homo-
morphism from `1(Zn, θ) into L1(G).

Proof. We have

‖f◦‖1 =
�

G

|f◦(a)| da =
∑
x∈Zn

�

T

|f(x)ξ| dξ =
∑
x∈Zn

|f(x)| = ‖f‖1,
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so f 7→ f◦ is an isometry. This map is compatible with the involution, since

(f∗)◦(x, ξ) = f∗(x)ξ = σ(x,−x)f(−x)ξ

= f◦(−x, σ(x,−x)ξ) = f◦((x, ξ)−1) = (f◦)?(x, ξ).

For the homomorphism property we first write

(f \ g)◦(x, ξ) = (f \ g)(x) ξ =
∑
y∈Zn

f(y)g(x− y)σ(y, x− y)ξ.

On the other hand, from

(y, η)−1(x, ξ) = (−y, σ(y,−y)η)(x, ξ) = (x− y, ξησ(y,−y)σ(−y, x))

we obtain

(f◦ ? g◦)(x, ξ) =
∑
y

�

T

f◦(y, η)g◦((y, η)−1(x, ξ)) dη

=
∑
y

�

T

f(y)ηg(x− y)ξησ(y,−y)σ(−y, x) dη.

Using (2.3) with (l,m, p) = (y,−y, x) and σ(0, x) = 1, we have

σ(y,−y)σ(0, x) = σ(y,−y + x)σ(−y, x),

or σ(y,−y)σ(−y, x) = σ(y, x− y). Comparing the formulas, we see that

(f \ g)◦ = f◦ ? g◦.

We may therefore think of `1(Zn, θ) as a closed ∗-subalgebra of L1(G).
In particular, it is a Banach ∗-algebra. Its enveloping C∗-algebra is the
non-commutative torus C∗(θ).

To obtain a concrete realization of C∗(θ), we consider the regular repre-
sentation λ of `1(Zn, θ) on `2(Z) defined by

λ(f)g = f \θ g for f ∈ `1(Zn), g ∈ `2(Zn).

This representation is faithful, and the closure of λ(`1) with respect to the
operator norm is a C∗-algebra C. By a special case of [12, Satz 6], C∗(θ) is
isometrically isomorphic to C. From now on, we will therefore not distinguish
between the abstract algebra C∗(θ) and its concrete realization C.

3. Inverse-closed subalgebras of C∗(θ). Next we construct a family
of inverse-closed Banach subalgebras of the non-commutative torus C∗(θ).
This construction relies on two important results in Banach algebra theory
and abstract harmonic analysis.

First recall that a Banach ∗-algebra A is symmetric if the spectrum of
every positive element is positive, i.e., σ(a∗a) ⊆ [0,∞) for all a ∈ A. The
connection between symmetry and inverse-closedness is folklore and implicit
in many proofs of symmetry [10, 11, 13, 14]. The following proposition is
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contained in Palmer’s book [17, Thm. 11.4.1]. (Since the regular represen-
tation of `1(Zn, θ) is faithful and `1(Zn, θ) is semisimple, we may quote a
formulation that is already adapted to semisimple Banach algebras.)

Proposition 3.1. A unital semisimple Banach ∗-algebra A is symmet-
ric if and only if it is inverse-closed in its enveloping C∗-algebra.

Our second ingredient is a fundamental result of Ludwig [14].

Proposition 3.2. If G is a nilpotent group, then L1(G) is symmetric.

By combining the explicit construction of non-commutative tori with
these results, we obtain a fundamental inverse-closed subalgebra of C∗(θ).

Theorem 3.3. The Banach ∗-algebra `1(Zn, θ) is inverse-closed in C∗(θ).

Proof. By construction, the central extension G of Zn is nilpotent, and
consequently L1(G) is symmetric by Ludwig’s result. Lemma 2.1 identifies
`1(Zn, θ) with a closed ∗-subalgebra of L1(G), and thus `1(Zn, θ) is also a
symmetric Banach ∗-algebra. By Proposition 3.1 this means that `1(Zn, θ)
is inverse-closed in C∗(θ), as claimed.

Remark 3.4. For even dimension and a special representation of the
generators of C∗(θ) by phase-space shifts, Theorem 3.3 was proved in [9]
when solving a problem in time-frequency analysis. An earlier result is con-
tained in [1]. See also [15] and [7, Ch. 13] for connections with time-frequency
analysis.

For the special case of two generators and irrational θ an elegant al-
ternative proof of Theorem 3.3 was obtained by Rosenberg [21]. Whereas
our approach yields the symmetry by identifying `1(Z, θ) with a closed
∗-subalgebra of a symmetric algebra (given by L1 of a nilpotent group),
[21] uses the fact that `1(Z, θ) can be interpreted as a ∗-quotient of a sym-
metric algebra. Undoubtedly, Rosenberg’s proof can also be generalized to
arbitrary non-commutative tori, but we found the approach in [9] more ac-
cessible.

To generate more examples of inverse-closed subalgebras of C∗(θ), we
introduce weighted `1-algebras.

Let v be a submultiplicative and symmetric weight function on Zn, i.e.,
v satisfies the conditions

v(x+ y) ≤ v(x)v(y) and v(−x) = v(x) for all x, y ∈ Zn,

and let `1v(Zn) be the corresponding weighted `1-space with norm ‖f‖`1v =
‖fv‖1. The pointwise inequality |(f \θ g)(x)| ≤ (|f | ∗ |g|)(x) for all x ∈ Zn
shows that (`1v(Zn), \θ) is a Banach algebra, which we denote `1v(Zn, θ). Since
v is symmetric, `1v(Zn, θ) is a ∗-subalgebra of `1(Zn, θ).
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The next proposition characterizes those submultiplicative symmetric
weights for which `1v(Zn, θ) is inverse-closed in C∗(θ).

Proposition 3.5. The Banach algebra `1v(Zn, θ) is inverse-closed in
C∗(θ) if and only if v satisfies the Gelfand–Raikov–Shilov condition (GRS-
condition)

lim
m→∞

v(mx)1/m = 1 for all x ∈ Zn.

Proof. Assume first that v satisfies the GRS-condition. Then we may
extend v to a weight on G by setting ω(x, ξ) = v(x) for all x ∈ Zn, ξ ∈ T. The
extended weight ω satisfies the GRS-condition on G, so the weighted version
of Ludwig’s Theorem, as proved in [6, Theorems 1.3 and 3.4], implies that
L1
ω(G) is symmetric. Since obviously ‖f◦‖L1

ω(G) = ‖f‖`1v , Lemma 2.1 shows

that `1v(Zn, θ) can be identified with a closed subalgebra of L1
ω(G) and thus is

also symmetric. Consequently, by Proposition 3.1, `1v(Zn, θ) is inverse-closed
in its enveloping C∗-algebra. To see that this C∗-algebra is C∗(θ), it suffices
to note that `1v(Zn, θ) is dense in `1(Zn, θ) and every ∗-representation π of
`1v(Zn, θ) on a Hilbert space can be extended to `1(Zn, θ). The latter follows
from the fact that π is completely determined by the π(δx), x ∈ Zn, and
those operators are unitary, so π(f) =

∑
x∈Zn f(x)π(δx), f ∈ `1(Zn), is the

desired extension of π to a ∗-representation of `1(Zn, θ).
Conversely, assume that v violates the GRS-condition. This means that

there exists an x ∈ Zn such that limm→∞ v(mx)1/m > 1. Since by (2.4) the
mth power of δx is of the form cmδmx with |cm| = 1, the spectral radius of
δx in `1v(Zn, θ) is

r`1v(Zn,θ)(δx) = lim
m→∞

‖cmδmx‖1/m`1v(Zn,θ)
= lim

m→∞
v(mx)1/m > 1.

On the other hand, since δx is unitary in `1v(Zn, θ), it is also unitary in C∗(θ).
Consequently, the spectral radius of δx in C∗(θ) is 1. Therefore the spectrum
of δx in `1v(Zn, θ) cannot be equal to the spectrum of δx in C∗(θ), and so
`1v(Zn, θ) is not inverse-closed in C∗(θ).

Remark 3.6. A non-spectral subalgebra of the irrational rotation al-
gebra (the non-commutative torus with two generators) and its simplicity
were first discussed by Schweitzer [23].

Proposition 3.5 provides an abundance of examples of inverse-closed Ba-
nach subalgebras of a non-commutative torus in higher dimensions. By tak-
ing intersections of weighted `1-algebras, one may now construct inverse-
closed Fréchet subalgebras of C∗(θ). In particular, fix v(x) = 1 + |x| for
some norm | · | on Zn and set

(3.1) S(Zn, θ) =
⋂
s≥0

`1vs(Zn, θ) = {f ∈ `1(Zn) : |f(x)|=O(|x|−s) ∀s≥ 0}.
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Then S(Zn, θ) consists of all rapidly decreasing sequences and coincides with
the usual smooth non-commutative torus. Since an arbitrary intersection
of inverse-closed subalgebras is again inverse-closed, S(Zn, θ) is an inverse-
closed Fréchet subalgebra of the non-commutative torus C∗(θ). This result
goes back to Connes [3].

Proposition 3.5 also yields inverse-closed subalgebras of C∗(θ) that are
even smaller than S(Zn, θ). For this, fix a subexponential weight v(x) =

ea|x|
b

with a > 0 and 0 < b < 1. Then v satisfies the GRS-condition, and
thus `1v(Zn, θ) is inverse-closed in C∗(θ). On the other hand, `1v(Zn, θ) is a
Banach subalgebra of the smooth non-commutative torus S(Zn, θ). In the
language of non-commutative geometry, one might say that `1v(Zn, θ) consists
of “ultra-smooth” elements of C∗(θ).

4. Simplicity. The construction of inverse-closed subalgebras of non-
commutative tori is completely independent of the fine structure of these
tori. In particular, the simplicity of `1(Zn, θ) is not related to its spectral
properties.

In this section we treat the question of when the twisted `1-algebra
`1(Zn, θ) is simple. Making use of the symmetry of `1(Zn, θ), one can derive
Theorem 4.3 below from the characterization of the simplicity of higher-
dimensional non-commutative tori C∗(θ) in [18], but one has to go back to
[24] and [5] for its proof. We offer a simplified proof that works directly for
`1(Zn, θ), from which the known result about C∗(θ) follows. Our proof for
the twisted `1-algebras is fairly elementary, but its idea is probably old.

Let δm,m ∈ Zn, denote the “Dirac” functions on Zn, and ej , j = 1, . . . , n,
the standard basis of Zn. Then δm is central in `1(Zn, θ), if and only if
δm \θ δej = δej \ δm for j = 1, . . . , n. Since

δm \ δej = σ(m, ej)δm+ej = θmn
n,j · · · θ

mj+1

j+1,j δm+ej

and

δej \ δm = σ(ej ,m)δm+ej = θm1
j,1 · · · θ

mj−1

j,j−1 δm+ej ,

the following conditions are equivalent:

(i) δm is central in `1(Zn, θ).
(ii) σ(m, ej) = σ(ej ,m) for j = 1, . . . , n.

(iii)
∏n
j=1 θ

mj

jk = 1 for k = 1, . . . , n.

If ϑ = (ϑjk) is a (non-unique) skew-symmetric real matrix with e2πiϑjk = θjk,
then (iii) means that

∑n
j=1mjϑjk ∈ Z for k = 1, . . . , n. So, if we denote the

skew-symmetric bilinear form (m, l) 7→ ϑ(l,m) = mTϑl by ϑ again, a fourth
equivalent property is

(iv) ϑ(l,m) ∈ Z for all l ∈ Zn.
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Definition 4.1. A cocycle σ is called degenerate if there exists a non-
zero m ∈ Zn satisfying one of the equivalent conditions (i)–(iv). Otherwise
σ is called non-degenerate.

We note that σ can be degenerate even if ϑ is non-degenerate in the
sense of linear algebra.

Remark 4.2. It is well known that a unital Banach algebra A with
non-trivial center is not simple. For if the center Z is non-trivial, i.e., its
dimension is at least two, then it contains an element a that is not invertible
in Z by the Gelfand–Mazur Theorem. Since Z is inverse-closed in A, we see
that a is not invertible in A. Consequently, the generated ideal aA = Aa is
a proper two-sided ideal, and so is its closure aA. Thus A is not simple.

The following theorem characterizes the simplicity of twisted `1-algebras.

Theorem 4.3. Let v be an arbitrary, submultiplicative weight function
on Zn (v need not satisfy the GRS-condition). Then the algebra `1v(Zn, θ) is
simple if and only if the cocycle σ is non-degenerate.

Proof. If σ is degenerate, then `1v(Zn, θ) has a non-trivial center and is
not simple by Remark 4.2.

Now suppose that σ is non-degenerate. For each j ∈ {1, . . . , n} the ele-
ment δej is unitary, and its adjoint is σ(−ej , ej)δ−ej . For arbitrary x ∈ Zn
and k ∈ N we have

(δ∗ej )
k \ δx \ δ

k
ej = βkxδx

for some βx ∈ T. More precisely, βx = 1 if and only if δx commutes with δej .
We denote the “centralizer” of δej by

Cj = {y ∈ Zn : δy \ δej = δej \ δy}.
Now let I be a (closed) two-sided ideal of `1v(Zn, θ) and f =

∑
x∈Zn αxδx

∈ I ⊆ `1v(Zn, θ). We consider the behavior of the averages

Jm(f) =
1

m

m∑
k=1

(δ∗ej )
k \ f \ δkej =

∑
x∈Zn

αx

(
1

m

m∑
k=1

βkx

)
δx.

If x ∈ Cj , then m−1
∑m

k=1 β
k
x = 1; if x 6∈ Cj , then m−1

∑m
k=1 β

k
x converges

to zero for m→∞. Using dominated convergence, we conclude that

lim
m→∞

Jm(f) =
∑
x∈Cj

αxδx = fχCj

with convergence in the `1v-norm. For f ∈ I, this means that also fχCj ∈ I.
Since this is true for all j = 1, . . . , n, we f ·

∏n
j=1 χCj = fχ⋂n

j=1 Cj
∈ I.

Since σ is non-degenerate, we must have
⋂n
j=1Cj = {0} and thus f(0)δ0

∈ I. Either I = `1v(Zn, θ) or I is a proper ideal and f(0) = 0. By applying
the argument to δx \ f ∈ I for every x ∈ Zn, we find that (δx \ f)(0) =
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σ(x,−x) f(−x) = 0, so f(x) = 0 for all x ∈ Zn. Consequently, either I =
`1v(Zn, θ) or I = {0}, and thus `1v(Zn, θ) is simple.

Remark 4.4. We may also obtain an alternative proof of the well-
known C∗-analogue of Theorem 4.3. The above proof works for C∗(θ) as
well, because the finitely supported functions are dense in C∗(θ) and the
inner automorphisms are also isometric in the C∗(θ)-norm.
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