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Extreme points in non-positive curvature
by

Nicoras MoNoOD (Lausanne)

Abstract. A natural analogue of the Krein—-Milman theorem is shown to fail for
CAT(0) spaces.

1. Introduction. Functional analysis sometimes offers inspiring analo-
gies for the study of complete metric spaces of non-positive curvature such
as CAT(0) spaces. Certain classical results from functional analysis trans-
late into fundamental facts, others into open problems, and others yet lead
to counter-examples.

Let us illustrate the first outcome on a bounded closed convex sub-
set C' in a complete CAT(0) space X. Typically X is not locally compact
and C not compact. In a reflexive Banach space, such a set would still be
weakly compact. Here, C'is (quasi-)compact for the weakened “convex topol-
ogy” [Mon06, Thm. 14], defined as the weakest (not necessarily Hausdorff)
topology in which metrically closed convex sets are closed.

Furthermore, in a rudimentary analogue of the Ryll-Nardzewski theo-
rem [RNGT], every isometry of C' has a fixed point [BH99, II.2.8].

The second outcome occurs for instance when trying to generalize
Mazur’s compactness theorem [Maz30], because it is unknown if the closed
convex hull of a compact set in X remains compact [Gro93), 6.B;(f)].

The purpose of this note is to establish the third outcome for the Krein—
Milman theorem about extreme points.

A point in a uniquely geodesic metric space is called extreme if it does
not lie in the interior of any geodesic segment. This definition is general-
ized beyond unique geodesics in the presence of a bicombing, encompassing
notably all linear spaces (see e.g. [DL15] for bicombings).
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The Krein—-Milman theorem, originating in [KM40], states that a non-
empty convex compact subset of a locally convex space has extreme points,
and indeed is the closed convex hull of the set of extreme points. For more
specific classes of Banach spaces, much stronger conclusions hold, even for
bounded closed convex sets C' that are not compact in any weakened topol-
ogy. For instance, in spaces with the Radon-Nikodym property, C' has ex-
treme points and is even the closed convex hull of its strongly exposed
points [Phe74].

Turning back to the metric situation, we deduce immediately from the
CAT(0) condition that any point mazimizing the distance to some given
point must be extreme. For this reason, metrically compact CAT(0) spaces
have extreme points. In fact, in the compact case the existence of a con-
vex bicombing is enough to retain the full conclusion of the Krein—Milman
theorem [Biih06].

However, there is generally no point maximizing any distance in a
bounded closed convex set. An elementary example is obtained by gluing
together at a single endpoint segments of length 1 —1/n for all n € N. This
example has, of course, plenty of extreme points: it still is the convex hull of
its extreme points as in Krein—Milman. The purpose of this note is to show
that it ain’t necessarily so:

THEOREM. There exists a bounded complete CAT(0) space X without
extreme points.

Moreover, one can arrange that X is compact Hausdorff for the con-
vex topology and that every finite collection of points in X is contained in
a finite Fuclidean simplicial complex of dimension two. Alternatively, one
can construct a CAT(—1) example with hyperbolic simplicial complezes of
dimension two.

Our proof uses the Pythagorean identity to play off the square-summabil-
ity of the harmonic series against its non-summability. This will ensure that
we remain within a finite radius while the search for extreme points can go
on forever. A crucial step is to establish completeness so that there is no
extreme point hiding sub rosa in the completion.

REMARKS. (i) Our example is complementary to Roberts’ famous non-
locally convex linear counter-example [Rob77] to Krein-Milman: as CAT(0)
spaces satisfy a strong convexity condition, it is non-linearity that is to
blame here.

(ii) Although there exist powerful barycentric methods for measures on
CAT(0) spaces [KS93, [Stu03], the theorem shows that they cannot afford a
Choquet theory [Cho56].

(iii) Of course, a space as in the Theorem cannot be isometrically realized
in a space where Krein—Milman holds; therefore, our “rose” X will be folded
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in an appropriate way. We shall nonetheless press it flat to measure angles,
obtaining an infinitely winding spiral of petals (Figure .

2. The rose

C’est le temps que j’ai perdu pour ma rose. ..

Antoine de Saint-Exupéry, Le Petit Prince, 1943

Define for each n € N the radius r, = ,/>°7_, 1/p?. The double petal

P, C R? is the closed set

Po={(z,y) : (n+ Drafz| < |y| < rn}
with the path-metric induced from R?. In particular, P, is a compact
CAT(0) space; it can also be viewed as two Euclidean triangles glued at
a tip.

We refer to the locus x = 0 as the central segment of P,; it has length
2rp. We call the loci |y| = (n+1)r,x and |y| = —(n+ 1)ry,x the right border
and left border of P,; they are segments of length 27, 1.

The rose is the CAT(0) space X obtained by inductively gluing 21
copies of P, as follows, starting from a single copy of P;. For each n € N
and for each copy of P, we assign two new copies of P, 1. The first is glued
by identifying its central segment with the right border of the given copy
of P,. The second is glued by identifying its central segment with the left
border. The gluings make sense since these segments all have length 27,41,
and X is defined to be the increasing union of the successively glued spaces

(Figure [1).

Fig. 1. The first petals, up to Ps, of the (Euclidean) rose.
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This rose X is indeed a CAT(0) space (see [BH99, I1.11.1]). Notice that
each verification of the CAT(0) condition takes place in a finite gluing since
the convex hull of a set of points does not visit petals of higher index than
these points. The rose is bounded because every point of P, is at distance
at most 1,41 of the center, which is the common intersection of all copies of
all petals. Thus X has radius 7/+/6.

Furthermore, by construction X has no extreme point. Indeed, if a point
in some P, were extreme in X, it would a fortiori be extreme in P, and
hence it would be one of the four outer corners of P,. These four points are,
however, all midpoints of segments in appropriate copies of P, 1.

We now turn to the critical issue and prove that X is complete.

Let (xj)‘j?il be a Cauchy sequence in X. Suppose for a contradiction that
(xj) does not converge. Upon discarding finitely many terms, we can assume
that (x;) remains at distance at least € of the center for some € > 0. Define
the index n(x) of a point z € X to be the smallest n such that some copy
of P, contains z; if x is not the center, then it is contained in at most one
other petal, namely a copy of P,,;)11- The indices n(z;) are unbounded as
j varies, because otherwise (z;) would be confined to the gluing of finitely
many petals, which is a compact metric space; this would imply that (x;)
converges.

In order to contradict the Cauchy assumption, it suffices to prove that
for any j there is ¢ > j with d(x;, z;) > €. Fix thus j and consider only those
i > j with n(z;) > n(z;) + 2.

We can assume that the segment [z;,z;] avoids the center of the rose
since otherwise d(x;, x;) > 2e. It follows that [z, ;] traverses notably a non-
trivial portion of successive copies of Pro(a;)+1> Pa(aj)+25 - - s Pa(z;)—1, €ach
time entering on the central segment and leaving through a border. Thus,
the Aleksandrov angle formed at the center of X by z; and z; is at least

ZZ@;)(;I) 41 %, where 1, is the angle between the central segment and the
- J

borders of P, (Figure . That angle satisfies ¥, > sin¥,, > V6/7(n+1). It
now follows from the divergence of the harmonic series that if we choose 7 so
that n(x;) is large enough compared to n(z;), then the angle at the center
between x; and x; will be at least 7/3 and hence d(xj, z;) > €.

We observe in passing that the above argument with 7 /3 replaced by =
shows in fact that [z, y] contains the center as soon as n(y) is large enough
compared to n(z). Therefore, any sequence (y;) with n(y;) going to infinity
will converge to the center in the convex topology.

To prove that the convex topology of X is Hausdorff amounts to the
following. Given distinct points x,y € X, we need to cover X with finitely
many closed convex subsets U;,V; C X such that = ¢ U; and y ¢ V; for
all 7. We shall apply the following sufficient condition: it is enough to find a
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Fig. 2. The petals up to Pso, folded and pressed flat in a circle of radius 7/+/6; ultimately,
the P, wind around infinitely often.

(metrically) compact convex subset K containing x,y such that X \ K can
be covered by finitely many closed convex subsets W; C X with y ¢ W; for
all 4. This is indeed sufficient because we can first cover K with finitely many
closed convex subsets U;, V; C K as above since the convex topology of K
coincides with the metric topology [Mon06, Lem. 17], hence is Hausdorff.
These sets U;, V; are still closed and convex as subsets of X and it now
suffices to add all W; to the collection of V; to cover X.

We now verify the condition. Upon possibly exchanging x and y we can
assume that y is not the center. Choose n > n(z),n(y) and define K to be
the union of all copies of P, over all m < n with the gluings of the rose.
Then define W1, ..., Wan to be the 2™ connected components of the union of
all copies of P, over m > n, with the gluings specified by the construction
for m > n only. These sets are all closed convex and satisfy the criteria of
the sufficient condition.

This concludes the proof of the Theorem for the CAT(0) statement. The
CAT(—1) construction is virtually identical with hyperbolic triangles, the
key being that the trigonometric estimates remain the same at the first order
as the angles 1,, converge to zero.

We observe that in either case the full isometry group of the rose is an
infinite iterated wreath product of Klein four-groups (see e.g. [BOERT96),
§IV 4] for such iterated products).
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