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Orthogonally additive holomorphic maps
between C∗-algebras

by

Qingying Bu (University, MS), Ming-Hsiu Hsu (Chung-Li) and
Ngai-Ching Wong (Kaohsiung)

Abstract. Let A,B be C∗-algebras, BA(0; r) the open ball in A centered at 0 with
radius r > 0, and H : BA(0; r) → B an orthogonally additive holomorphic map. If H is
zero product preserving on positive elements in BA(0; r), we show, in the commutative
case, i.e., A = C0(X) and B = C0(Y ), that there exist weight functions hn and a symbol
map ϕ : Y → X such that

H(f) =
∑
n≥1

hn(f ◦ ϕ)n, ∀f ∈ BC0(X)(0; r).

In the general case, we show that if H is also conformal then there exist central multipliers
hn of B and a surjective Jordan isomorphism J : A→ B such that

H(a) =
∑
n≥1

hnJ(a)n, ∀a ∈ BA(0; r).

If, in addition, H is zero product preserving on the whole BA(0; r), then J is an algebra
isomorphism.

We also study orthogonally additive n-homogeneous polynomials which are n-iso-
metries.

1. Introduction. Let E and F be (complex) Banach spaces, and n
a positive integer. A map P : E → F is called a bounded n-homogeneous
polynomial if there is a bounded symmetric n-linear operator L : E×· · ·×E
→ F such that

P (x) = L(x, . . . , x), ∀x ∈ E.
Let BE(a; r) denote the open ball of E centered at a with radius r > 0.
A map H : U → F is said to be holomorphic on a nonempty open subset U
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of E if for each a in U there exist an open ball BE(a; r) ⊂ U and a unique
sequence of bounded n-homogeneous polynomials Pn : E → F such that

H(x) =
∞∑
n=0

Pn(x− a)

uniformly for all x in BE(a; r). Here, P0 is the constant function with value
H(a). After translation, we can assume a = 0, and a holomorphic function
H : BE(0; r)→ F has its Taylor series at zero:

H(x) =

∞∑
n=0

Pn(x)

uniformly for all x in BE(0; r). In this case, Pn is given by vector-valued
integration as

Pn(x) =
1

2πi

�

|λ|=1

H(λx)

λn+1
dλ, n = 0, 1, 2, . . . .

See, for example, [38, pp. 40–47]. For the general theory of homogeneous
polynomials and holomorphic functions, we refer to [38, 20].

When E,F are function spaces or Banach algebras, a map Φ : E → F is
said to be orthogonally additive if

fg = gf = 0 implies Φ(f + g) = Φ(f) + Φ(g), ∀f, g ∈ E,

and zero product preserving if

fg = 0 implies Φ(f)Φ(g) = 0, ∀f, g ∈ E.

The notions of orthogonally additive and zero product preserving transfor-
mations have been studied by many authors, for example, [5, 27, 28, 24, 14,
3, 31, 42, 6, 12, 39, 32, 33, 44].

The main goal of this paper is to establish Theorems 3.3 and 3.11. Let
A,B be C∗-algebras and H : BA(0; r) → B an orthogonally additive and
zero product preserving holomorphic map. In the commutative case when
A = C0(X) and B = C0(Y ), the algebras of continuous complex-valued
functions vanishing at infinity, we show in Theorem 3.3 that

H(f)(y) =
∑
n≥1

hn(y)f(ϕ(y))n, ∀y ∈ Y, ∀f ∈ BC0(X)(0; r).

Here, ϕ : Y → X is continuous whenever any weight function hn is nonva-
nishing. When A,B are general C∗-algebras, we assume further that H is
conformal, i.e., the derivative P1 of H at 0 is a bounded invertible linear map
from A onto B. We show in Theorem 3.11 that there is a sequence (hn) in
the center of the multiplier algebra M(B) of B and an algebra isomorphism
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J : A→ B such that

H(a) =
∑
n≥1

hnJ(a)n, ∀a ∈ BA(0; r).

If we only assume that H preserves zero products of elements in the positive
part, A+, of A intersected with BA(0; r), then J is still a Jordan isomor-
phism.

To achieve Theorems 3.3 and 3.11, we need to study homogeneous poly-
nomials first. In [43], Sundaresan characterized the linearization of orthog-
onally additive n-homogeneous polynomials on Lp-spaces. Several authors
have extended his results to, e.g., C(K)-spaces [42], C∗-algebras [39], and
Banach lattices [6, 9]. Adopting these important linearization tools (see Sec-
tion 2), in this paper we establish Banach–Stone type theorems for orthog-
onally additive homogeneous polynomials and holomorphic maps between
C∗-algebras (Sections 3 and 4).

A counterpart of Theorem 3.11 is given in [10] for orthogonally additive
and zero product preserving holomorphic functions between matrix algebras.
See Theorem 3.8 and Examples 3.9 for details. In a very interesting recent
paper [23], the authors consider orthogonally additive holomorphic maps H
between general C∗-algebras which preserve double orthogonality, i.e.,

a∗b = ab∗ = 0 implies H(a)∗H(b) = H(a)H(b)∗ = 0.

In this case, with the extra assumption that the range of H contains an
invertible element, a corresponding result to Theorem 3.11 is established
in [23] through the technique of JB∗-algebras. Nevertheless, we will see in
Examples 3.9 that one cannot directly make use of this new result to study
zero product preserving holomorphic maps.

In Theorems 4.2 and 4.3, we establish similar representation results for
orthogonally additive n-homogeneous polynomials, P : A → B between
C∗-algebras, which are n-isometries of positive elements, i.e.,

‖P (a)‖ = ‖a‖n, ∀a ∈ A+.

To end the introduction, we would like to mention [13, 26, 41] for some
related contributions to orthogonally additive scalar holomorphic functions
of bounded type on C(K)-spaces and on general C∗-algebras.

2. Preliminaries

2.1. Orthogonally additive and zero product preserving poly-
nomials. For a C∗-algebra A, we write Asa and A+ for the set of all its
self-adjoint and positive elements, respectively. The following proposition
follows from [10, Lemma 2.1] and its proof (see also [23, Proposition 6]).
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Proposition 2.1. Let A,B be C∗-algebras. Let H : BA(0; r) → B be a
holomorphic function with Taylor series H =

∑∞
n=0 Pn at zero. Let D = A,

Asa or A+.

(a) If H is orthogonally additive on BE(0; r)∩D then each Pn is ortho-
gonally additive on D.

(b) If H is zero product preserving on BE(0; r)∩D then each Pn is zero
product preserving on D. Furthermore,

fg = 0 ⇒ Pm(f)Pn(g) = 0, ∀f, g ∈ D, ∀m,n = 0, 1, 2, . . . .

It follows from Proposition 2.1 that if H is orthogonally additive or zero
product preserving, then the constant term P0 is zero.

The following linearization of orthogonally additive n-homogeneous poly-
nomials is the key tool for us. Note that although the theorem in [42] is stated
for compact spaces, the proof there works also for locally compact spaces.

Theorem 2.2 ([42, Theorem 2.1]; see also [6, 12]). Let X be a locally
compact Hausdorff space and F a Banach space. Let P : C0(X) → F be a
bounded orthogonally additive n-homogeneous polynomial. Then there exists
a bounded linear operator T : C0(X)→ F such that

P (f) = T (fn), ∀f ∈ C(K).

Since commutative C∗-algebras are algebras of continuous functions, the
following can be considered as the noncommutative version of Theorem 2.2.

Theorem 2.3 ([39, 11]). Let A be a C∗-algebra, F a complex Banach
space, and P : A→ F a bounded n-homogeneous polynomial. The following
are equivalent:

(1) There exists a bounded linear operator T : A→ F such that

P (a) = T (an), ∀a ∈ A.

(2) P is orthogonally additive on A, i.e.,

ab = ba = 0 ⇒ P (a+ b) = P (a) + P (b), ∀a, b ∈ A.

(3) P is orthogonally additive on Asa, i.e.,

ab = 0 ⇒ P (a+ b) = P (a) + P (b), ∀a, b ∈ Asa.

In view of Theorem 2.3, the assumption in Theorem 2.2 can be weakened
to P being orthogonally additive on C0(X)sa. So, due to Proposition 2.1,
whenever we say that a holomorphic map or a homogeneous polynomial on
a C∗-algebra is orthogonally additive, it does not matter if it is orthogonally
additive on all elements or just on self-adjoint ones.

Similarly, we have
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Lemma 2.4. Let A,B be C∗-algebras. Let P : A → B be a bounded or-
thogonally additive n-homogeneous polynomial. Consider the following con-
ditions:

(1) P is zero product preserving on A, i.e.,

ab = 0 ⇒ P (a)P (b) = 0, ∀a, b ∈ A.

(2) P is zero product preserving on Asa, i.e.,

ab = 0 ⇒ P (a)P (b) = 0, ∀a, b ∈ Asa.

(3) P is zero product preserving on A+, i.e.,

ab = 0 ⇒ P (a)P (b) = 0, ∀a, b ∈ A+.

We have (1)⇒(2)⇔(3) in general; and the three conditions above are all
equivalent when A is commutative.

Proof. It is clear that (1)⇒(2)⇒(3). Suppose a, b ∈ Asa with ab = 0.
Write a = a+ − a− and b = b+ − b− as the orthogonal differences of their
positive and negative parts. By functional calculus, we see that

a+b+ = a+b− = a−b+ = a−b− = 0.

Now the orthogonal additivity of P and condition (3) give

P (a)P (b)

= P (a+)P (b+) + P (a+)P (−b−) + P (−a−)P (b+) + P (−a−)P (−b−) = 0.

Hence, we have (3)⇒(2).

Now suppose A = C0(X) is commutative. We verify (3)⇒(1). Let T :
A→ B be the bounded linear operator associated to P as in Theorem 2.3.

First let f, g in C0(X) be real-valued such that fg = 0. Then

f+g+ = f+g− = f−g+ = f−g− = 0,

and hence

n
√
f+ n
√
g+ = n

√
f+ n
√
g− = n

√
f− n
√
g+ = n

√
f− n
√
g− = 0.

It follows from Theorem 2.3(1) and asssumption (3) that

T (f)T (g) = T (f+)T (g+)− T (f+)T (g−)− T (f−)T (g+) + T (f−)T (g−)

= P ( n
√
f+)P ( n

√
g+)− P ( n

√
f+)P ( n

√
g−)

− P ( n
√
f−)P ( n

√
g+) + P ( n

√
f−)P ( n

√
g−) = 0.

Let f1, f2, g1, g2 in C0(X) be real-valued such that (f1+ig1)·(f2+ig2) = 0.
Then for each t in X, we have f1(t) = g1(t) = 0 or f2(t) = g2(t) = 0.
Therefore,

f1 · f2 = g1 · g2 = f1 · g2 = g1 · f2 = 0.
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It follows from the above conditions that

T (f1 + ig1) · T (f2 + ig2)

= T (f1) · T (f2) + iT (f1) · T (g2) + iT (g1) · T (f2)− T (g1) · T (g2) = 0.

Therefore, T preserves zero products. Let f, g ∈ C0(X) with fg = 0. Then
fngn = 0 as well. Consequently,

P (f)P (g) = T (fn)T (gn) = 0,

and the assertion follows.

We remark that the surjective linear isometry a 7→ at gives a counter-
example for the implication (2)⇒(1) in Lemma 2.4, when A = B = B(H).
Here, at denotes the transpose of an operator a in B(H) with respect to an
arbitrary but fixed orthonormal basis of the Hilbert space H.

2.2. Classical Banach–Stone type theorems. The classical Banach–
Stone Theorem can be stated in the following two ways.

Theorem 2.5 (Banach–Stone Theorem for isometries; see, e.g., [19]).
Let T : C0(X)→ C0(Y ) be a linear operator. If T is a surjective isometry,
then there exists a homeomorphism ϕ : Y → X such that

Tf(y) = h(y)f(ϕ(y)), ∀f ∈ C0(X), ∀y ∈ Y.
Here, h is a continuous unimodular scalar function on Y , i.e., |h(y)| = 1
for all y ∈ Y .

Theorem 2.6 (Banach–Stone Theorem for zero product preserving
maps; see [1, 5], and also [27, 22, 28]). Let T : C0(X)→ C0(Y ) be a bounded
linear operator. If T is zero product preserving, then there exist a bounded
scalar function h on Y and a map ϕ : Y → X such that

Tf(y) = h(y)f(ϕ(y)), ∀f ∈ C0(X), ∀y ∈ Y.
Both ϕ and h are continuous on the cozero set coz(h) := {y ∈ Y : h(y) 6= 0},
which is open in Y . If T is bijective, then h is away from zero and ϕ is a
homeomorphism from Y onto X.

The original form of Theorem 2.6 is established for Riesz isomorphisms
(see, e.g., [35, p. 172]). Note that a linear operator on Riesz spaces is a Riesz
homomorphism if and only if it is positive and disjointness preserving. So
the above form is indeed an improvement. In the following, we will see that
the disjointness structure (= zero product structure) alone gives rise to a
rather rich theory.

The classical Banach–Stone Theorems have been generalized in several
contexts and appeared in, e.g., the vector-valued version, the lattice version,
and the C∗-algebra version [1, 5, 27, 22, 28, 21, 15]. Going in a different
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direction from [7], we will continue this line and obtain polynomial versions
for C∗-algebras in Sections 3 and 4.

3. Orthogonally additive and zero product preserving holo-
morphic maps. Let X and Y be locally compact Hausdorff spaces. Let
P : C0(X) → C0(Y ) be a bounded orthogonally additive n-homogeneous
polynomial. By Theorem 2.2, there exists a bounded linear operator T :
C0(X)→ C0(Y ) such that

(3.1) P (f) = T (fn), ∀f ∈ C0(X).

In the following, a subset F of C0(Y ) is called

• strongly (respectively, strictly) separating points in Y if for every pair
of distinct points y1, y2 in Y there is an f in F such that |f(y1)| 6=
|f(y2)| (resp. f(y1) 6= f(y2) = 0);

• regular if for any closed subset Y0 of Y and any point y in Y \Y0 there
is an f in F such that f = 0 on Y0 and f(y) 6= 0.

We say that an n-homogeneous polynomial P : C0(X)→ C0(Y ) has trivial
positive kernel if

P (f) = 0 ⇒ f = 0, ∀f ∈ C0(X)+.

Theorem 3.1 (Banach–Stone Theorem for zero product preserving poly-
nomials). Let P : C0(X) → C0(Y ) be a bounded orthogonally additive
n-homogeneous polynomial. Assume that P is zero product preserving on
positive elements, i.e.,

fg = 0 ⇒ P (f)P (g) = 0, ∀f, g ∈ C0(X)+.

Then there exist a bounded scalar function h on Y and a map ϕ : Y → X
such that

P (f)(y) = h(y)f(ϕ(y))n, ∀f ∈ C0(X), ∀y ∈ Y.
Here, both h and ϕ are continuous wherever h is nonvanishing.

If, in addition, P has trivial positive kernel and its range separates points
in Y strictly, then h is nonvanishing on Y and ϕ is a homeomorphism from
Y onto a dense subset of X.

Proof. Let T be the bounded linear map associated to P as in (3.1). As
seen in the proof of Lemma 2.4, T is zero product preserving. It follows from
Theorem 2.6 that there exists a bounded weight function h on Y continuous
on its open cozero set Y1 = {y ∈ Y : h(y) 6= 0}, and a continuous map
ϕ : Y1 → X such that

P (f)(y) =

{
h(y)f(ϕ(y))n, ∀f ∈ C0(X), ∀y ∈ Y1,
0, on Y \ Y1.

(3.2)
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Without further assumptions, we might define ϕ arbitrarily on Y \ Y1.
This finishes the first assertion of the theorem.

Claim 1. If P has trivial positive kernel, then ϕ(Y1) is dense in X.

Otherwise, there would be a nonempty open set U in X disjoint from
ϕ(Y1). Let f be nonzero in C0(X)+ vanishing outside U . Then P (f) = 0
implies f = 0, a contradiction.

Claim 2. If P separates points in Y strictly, then Y = Y1 and ϕ is a
homeomorphism from Y onto ϕ(Y ).

Since for every y in Y , there is an f in C0(X) such that P (f)(y) 6= 0,
we see that Y = Y1 on which h is nonvanishing. Hence

P (f)(y) = h(y)f(ϕ(y))n, ∀f ∈ C0(X), ∀y ∈ Y.
Moreover, for any distinct points y1, y2 in Y the strict separation property
of P ensures again that ϕ(y1) 6= ϕ(y2). Thus, ϕ is one-to-one. Finally, it is
routine to see that ϕ is a homeomorphism from Y onto ϕ(X).

Examples 3.2. We remark that ϕ(Y ) can be a proper dense subset of
X in Theorem 3.1. For example, consider the map P : C[0, 1] → C0(0, 1]
defined by P (f)(t) = tf(t). On the other hand, the weight function h might
not be continuous on the whole Y , as shown by the map P : C0(0, 1] →
C[0, 1] defined by P (f)(t) = sin(1/t)f(t) on Y1 = (0, 1]. Moreover, the strict
separation assumption on the range of P cannot be weakened to the usual
one. Consider P : C[0, 1] → C([0, 1] ∪ [2, 3]) defined by P (f)|[0,1](t) = f(t)
and P (f)|[2,3](t) = f(t − 2)/2. It is obvious that the range of P separates
points in Y = [0, 1]∪ [2, 3] (but not strictly), and ϕ(t) = ϕ(2 + t) for all t in
[0, 1].

Theorem 3.3. Let H : BC0(X)(0; r)→ C0(Y ) be a bounded orthogonally
additive and zero product preserving holomorphic function. Then there ex-
ist a sequence (hn) of bounded scalar functions on Y in which each hn is
continuous on its cozero set, which is open, and a map ϕ : Y → X such that

H(f)(y) =

∞∑
n=1

hn(y)f(ϕ(y))n, ∀y ∈ Y,

uniformly for all f in BC0(X)(0; r). Here, ϕ is continuous whenever any hn
is nonvanishing.

Proof. The holomorphic function H : BC0(X)(0; r)→ C0(Y ) has its Tay-
lor series

∑
n≥0 Pn at zero. By Proposition 2.1, Pn : C0(X) → C0(Y ) is a

bounded orthogonally additive and zero product preserving n-homogeneous
polynomial for every n ≥ 1, and P0 = 0. It follows from Theorem 3.1 that,
for each n = 1, 2, . . . , there exist a bounded scalar function hn on Y contin-
uous on its cozero set coz(hn) := {y ∈ Y : hn(y) 6= 0}, which is open, and a
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map ϕn : Y → X continuous on coz(hn) such that

Pn(f)(y) = hn(y)f(ϕn(y))n, ∀f ∈ C0(X), ∀y ∈ Y.

For any two positive integers m 6= n, we claim that

ϕm(y) = ϕn(y), ∀y ∈ coz(hm) ∩ coz(hn).

Suppose y ∈ Y is such that hm(y)hn(y) 6= 0 and xm = ϕm(y) 6= xn = ϕn(y).
Let f, g ∈ C0(X)+ be such that fg = 0, and f(xm) = g(xn) = 1. By
Proposition 2.1(b), we see that

0 = Pm(f)(y)Pn(g)(y) = hm(y)hn(y).

This contradiction shows that ϕm, ϕn agree on coz(hm)∩coz(hn). Therefore,
we can define a map ϕ : Y → X by set-theoretical union, which agrees with
ϕn and is continuous on coz(hn) for n = 1, 2, . . . .

To obtain the noncommutative version of Theorem 3.3, we need the
following counterpart of Theorem 3.1.

Theorem 3.4. Let A,B be C∗-algebras. Let P : A → B be a bounded
orthogonally additive n-homogeneous polynomial. Let T : A → B be the
bounded linear operator such that P (a) = T (an) for all a ∈ A. Let h :=
T ∗∗(1), where T ∗∗ is the bidual map of T . Suppose that

ab = 0 ⇒ P (a)P (b) = 0, ∀a, b ∈ A+.

(a) If h is invertible, then there is a Jordan homomorphism J : A → B
such that

P (a) = hJ(a)n = J(a)nh, ∀a ∈ A.
(b) If B = spanP (A), the linear span of the range of P , then h is a

central invertible multiplier of B and J in (a) is surjective.

In both cases, J is injective if and only if P has trivial positive kernel.

Proof. By Theorem 2.3, we have a bounded linear operator T : A → B
such that P (a) = T (an) for all a ∈ A. By functional calculus, for every x in
A+ there is a positive element y in C∗(x), the C∗-subalgebra of A generated
by x, such that yn = x. As in the proof of Lemma 2.4, we see that T sends
zero products in Asa to zero products in B. It follows from [14, Lemma 4.5]
and [45, Lemma 2.3] that

T ∗∗(1)T (a2) = T (a2)T ∗∗(1) = T (a)2, ∀a ∈ A.
Since A2 = A, we see that h = T ∗∗(1) commutes with all elements in the
range of T . If h is invertible, then J = h−1T = Th−1 is a Jordan homomor-
phism. Since Jordan homomorphisms preserve powers [25, Theorem 1], we
have

P (a) = T (an) = hJ(an) = hJ(a)n = J(a)nh, ∀a ∈ A.
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Now, suppose B = spanP (A) instead. In this case, every element b
in B can be written as a linear sum b =

∑
j αjP (bj) =

∑
j αjT (bnj ) =

T (
∑

j αjb
n
j ). Therefore, T is surjective. Moreover, T sends zero products in

Asa to zero products in B. By [45, Theorem 2.4] (where A can be nonunital;
see also [14, Theorem 4.12] for the unital case), we see that h is an invertible
central multiplier of B, and J = h−1T is a surjective Jordan homomorphism
from A onto B.

Suppose now any one of the two cases holds. In particular, h is invertible.
Consequently,

P (a) = hJ(a)n = hJ(an) = 0 ⇔ J(an) = 0, ∀a ∈ A.

Therefore, P has trivial positive kernel whenever J is injective. Next, we
show the converse. Let a ∈ A be such that J(a) = 0. Since the kernel of J is
a closed Jordan ideal, and thus a closed self-adjoint two-sided ideal of A, [18,
Lemma 5.2 and Theorem 5.3], we have J(a∗) = 0. Replacing with its real
or imaginary part, we can assume a = a∗. Observe that P (a2) = hJ(a2)n =
hJ(a)2n = 0 and a2 ≥ 0. Since P has trivial positive kernel, we get a2 = 0
and thus a = 0. This ensures the injectivity of J .

The following lemma might be known, although we have not found a
reference in the literature. We thank Lawrence G. Brown for telling us the
following proof.

Lemma 3.5. Let A be a noncommutative C∗-algebra. Then there exist
a, b in A such that ab = 0 but bnan 6= 0 for n = 1, 2, . . . .

Proof. By Kaplansky’s theorem [30, p. 292] there is a norm one element
x in A with x2 = 0. Let h = |x| and k = |x∗|. Consider the left support
projection p = limn k

1/n and the right support projection q = limn h
1/n

of x. Then p, q are open projections of A such that pq = 0 and x = pxq.
Moreover, 1 is in the spectrum of the positive norm one element k. Let a = k
and b = x∗ + h. Then ab = 0.

We verify that bnan 6= 0. Let B be the commutative C∗-subalgebra of A
generated by the orthogonal positive elements h and k. Indeed, B consists
of elements f(k) + g(h), where f and g are continuous functions vanishing
at 0. Note that every complex homomorphism of B extends to a pure state
of A. Thus there is a pure state φ such that φ(f(k)) = f(1), and φ(g(h))
= 0. Consider the GNS representation (π,H, v) for φ, where v is the state
vector. Thus π(f(k))v = f(1)v, and π(g(h))v = 0. Let w = π(x)∗v. Then
v and w form an orthonormal basis for a two-dimensional subspace of the
Hilbert space H which is invariant under both π(x) and π(x)∗. The matrix
representations of the restrictions of π(a) and π(b) to this subspace can be
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written as two idempotent 2× 2 matrices(
1 0

0 0

)
and

(
0 0

1 1

)
.

Their product is 0 in one order but non-zero in the other order. In particular,
π(bnan) = π(b)nπ(a)n = π(b)π(a) 6= 0. Thus bnan 6= 0 for n = 1, 2, . . . .

Theorem 3.6. Let A,B be C∗-algebras. Let P : A→ B be a bounded or-
thogonally additive n-homogeneous polynomial. Suppose that B=spanP (A),
and

ab = 0 ⇒ P (a)P (b) = 0, ∀a, b ∈ A.

Then there is a central invertible multiplier h of B and a bounded surjective
algebra homomorphism J from A onto B such that

P (a) = hJ(a)n, ∀a ∈ A.

Moreover, J is an algebra isomorphism if and only if P has trivial positive
kernel.

Proof. In view of Theorem 3.4, it suffices to verify that the surjective
Jordan homomorphism J : A → B is multiplicative. By Brešar’s theorem
[8, Theorem 2.3], there are closed ideals I1, I2 of A and I ′1, I

′
2 of B satisfying

the following properties:

(i) I1 + I2 is an essential ideal of A with I1 ∩ I2 = ker J .
(ii) I ′1 + I ′2 is an essential ideal of B with I ′1 ∩ I ′2 = {0}.
(iii) J(I1) = I ′1 and J(I2) = I ′2.
(iv) J(ux) = J(u)J(x) for all u ∈ I1 and x ∈ A.
(v) J(vx) = J(x)J(v) for all v ∈ I2 and x ∈ A.

Let I be the kernel of the Jordan homomorphism J |I2 . Then I is a
closed two-sided ideal of the C∗-algebra I2 (see [18]). Therefore, J induces
a Jordan isomorphism J̃ from the C∗-algebra I2/I onto I ′2. By (v), J̃ is
anti-multiplicative.

We claim that I ′2 is commutative. Otherwise, by Lemma 3.5 there exist
a′, b′ in I ′2 such that a′b′ = 0 but b′ na′ n 6= 0. Let ã, b̃ ∈ I2/I be such that
J̃(ã) = a′ and J̃(b̃) = b′. Then

J̃(b̃ã) = J̃(ã)J̃(b̃) = a′b′ = 0.

Since J̃ is injective, b̃ã = 0 in I2/I. By [2, Proposition 2.3] (see also [14,
Lemma 4.14]), there are c, d in I2 such that ã = c+ I, b̃ = d+ I and dc = 0.
It follows from the zero product preserving property of P that

P (d)P (c) = h2J(d)nJ(c)n = 0.
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Since h is invertible, we have J(d)nJ(c)n = 0. This in turn provides a con-
tradiction;

0 = J̃(b̃)nJ̃(ã)n = b′
n
a′
n 6= 0,

which proves the commutativity of I ′2.
Denote by W = I1 + I2 the essential ideal of A. It follows from (iv) and

(v) that J(wx) = J(w)J(x) for all w in W and x in A. Consequently, for all
w in W and x, y in A,

J(w)J(xy) = J(wxy) = J(wx)J(y) = J(w)J(x)J(y).

It turns out that

J(W )(J(xy)− J(x)J(y)) = 0.

As J(W ) = I ′1 + I ′2 is an essential ideal of B by (ii), we establish the desired
conclusion that J(xy) = J(x)J(y), and so J is an algebra homomorphism.

Recall that a standard C∗-algebra A on a Hilbert space H is a C∗-
subalgebra of B(H) containing all compact operators. In particular, B(H)
and K(H), the C∗-algebra of compact operators, are standard. However,
the readers are referred to [17, 4] for other usages of the term “standard
C∗-algebras” and “standard operator algebras”.

Corollary 3.7. Let H be a complex Hilbert space of arbitrary dimen-
sion. Let A be a standard C∗-algebra on H. Let P : A → A be a bounded
orthogonally additive n-homogeneous polynomial such that A = spanP (A).

(a) If P (a)P (b) = 0 whenever a, b ∈ A+ with ab = 0, then there exist
a nonzero scalar λ and an invertible operator S in B(H) such that
either

P (a) = λSanS−1, ∀a ∈ A, or P (a) = λS(at)nS−1, ∀a ∈ A.
(b) If P (a)P (b) = 0 whenever a, b ∈ A with ab = 0, then there exist a

nonzero scalar λ and an invertible operator S in B(H) such that

P (a) = λSanS−1, ∀a ∈ A.
Proof. By Theorems 3.4 and 3.6, we obtain a surjective Jordan or algebra

homomorphism J : A→ A. Note that the kernel of J is a two-sided ideal of A
(see [18]). From [31, Lemma 2] (and its proof) we deduce that J is indeed
bijective. The assertions then follow from the known facts about Jordan
and algebra automorphisms of standard C∗-algebras and the triviality of
the center of A (see, e.g., [36], [37], [16, Corollary 3.2] and [40, §6]).

For holomorphic maps of matrices, we have a counterpart to Theorem
3.3.

Theorem 3.8 ([10]). Let m and s be positive integers with m ≥ 2 and
m ≥ s. Let H : BMm(0; r) → Ms be a holomorphic function between com-
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plex matrix algebras. Assume H is orthogonally additive and zero product
preserving on self-adjoint elements. Then either

(a) the range of H consists of zero trace elements (this case occurs when-
ever s < m), or

(b) s = m, and there exist a scalar sequence (λn) (some λn can be zero)
and an invertible m×m matrix S such that

(3.3) H(x) =
∑
n≥1

λnS
−1xnS, ∀x ∈ BMm(0; r),

or

H(x) =
∑
n≥1

λnS
−1(xt)nS, ∀x ∈ BMm(0; r).

In case (b), we always have the representation (3.3) when H preserves all
zero products, i.e.,

ab = 0 ⇒ H(a)H(b) = 0, ∀a, b ∈ BMm(0; r).

The following examples borrowed from [14, 10] tell us that one cannot
get a complete analog to Theorem 3.3 for the noncommutative case. We also
remark that Example 3.9(c) below tells us that a similar conclusion of [23,
Theorem 18] for orthogonally additive and double orthogonality preserving
holomorphic functions does not hold for zero product preserving ones.

Examples 3.9. Let {en : n = 1, 2, . . .} be an orthonormal basis of a
separable Hilbert space H. Let Eij = ei ⊗ ej be the matrix unit in B(H)
given by Eij(h) = 〈h, ej〉ei.

(a) Consider the linear map θ : B(H) → B(H) defined by θ(T ) :=
E11TE12. Then θ is a bounded linear (and thus holomorphic) map. Since the
range of θ has trivial multiplication, θ is zero product preserving. However, θ
cannot be written in the standard form as stated in Corollary 3.7 or Theorem
3.8.

(b) Consider θ : Mk →Mk+2 defined by

(aij) 7→



0 a11 a12 . . . a1k 0

0 0 0 . . . 0 a11

0 0 0 . . . 0 a21
...

. . .
...

0 0 0 . . . 0 ak1

0 0 0 . . . 0 0


.

Then θ is linear (and thus holomorphic), and zero product preserving on
self-adjoint elements. Note that the range of θ does not have trivial multipli-
cation, since θ(E11)

2 = E1,k+2. However, the range of θ consists of elements
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of zero trace. We verify that θ cannot be written in the form cϕ for any
fixed element c in Mk+2 and any homomorphism or anti-homomorphism
ϕ : Mk → Mk+2. Assume, for example, that θ = cϕ and ϕ is a homomor-
phism. Then we arrive at the contradiction

E1,k+2 = θ(E11)
2 = θ(E11)cϕ(E11) = θ(E11)c(ϕ(E12)ϕ(E21))

= θ(E11)θ(E12)ϕ(E21) = 0ϕ(E21) = 0.

(c) Let E and F be the isometries in B(H) such that E(en) = e2n and
F (en) = e2n−1 for n = 1, 2, . . . , respectively. Define a holomorphic function
θ : B(H)→ B(H) by

θ(a) = EaE∗ + Fa2F ∗, ∀a ∈ B(H).

Then θ is orthogonally additive and zero product preserving. The range of
θ contains the identity θ(1) = 1. However, it cannot be written in any form
as stated in Theorem 3.8(b).

To get an analogous result (Theorem 3.11 below) to Theorem 3.3 for holo-
morphic maps between general C∗-algebras, we need the following lemma.

Lemma 3.10. Let A,B be C∗-algebras, r > 0, and H =
∑

n≥1 Pn :
BA(0; r) → B be an orthogonally additive holomorphic map. Suppose H is
zero product preserving on positive (resp. all) elements in BA(0; r). Assume
there is a polynomial term Pk(x) = hkJ(x)k providing a central invertible
multiplier hk in M(B) and a Jordan (resp. algebra) isomorphism J : A→ B.
Then there are central multipliers hn in M(B) for n ≥ 1 such that

H(a) =
∑
n≥1

hnJ(a)n, ∀a ∈ BA(0; r).

Proof. Replacing H with the map x 7→ J−1(h−1k H(x)), we can assume
that Pk(x) = xk for all x in A = B. Let Tn be the bounded linear map
associated to Pn such that Pn(x) = Tn(xn). For any positive x, y in A+ with
xy = 0, by Proposition 2.1(b) we have Pk(x)Pn(y) = Pn(y)Pk(x) = 0. This
gives xkTn(yn) = Tn(yn)xk = 0. It follows that

(3.4) aTn(b) = Tn(b)a = 0 whenever ab = 0 and a, b ∈ A+.

Let x, y ∈ M(A)+ with xy = 0. Choose aλ, bλ ∈ A+ such that aλ ↑ x
and bλ ↑ y . Since aλbλ = 0 for all λ, (3.4) and the σ(A∗∗, A∗) continuity of
T ∗∗n give

(3.5) xy = 0 ⇒ xT ∗∗n (y) = T ∗∗n (y)x = 0, ∀x, y ∈M(A)+.

Let a ∈ A+ with ‖a‖ = 1. Identify the C∗-subalgebra of M(A) generated
by 1 and a with C(X), where X ⊆ [0, 1] is the spectrum of a. Under this
convention, C(X) ⊆M(A), and (3.5) applies.
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Denote by θ : C(X)∗∗ → B∗∗ the map induced from T ∗∗n . For each
positive integer N and each integer k = −1, 0, 1, . . . , N , let

XN,k = (k/N, (k + 1)/N ] ∩X.
Pick an arbitrary point xN,k from each nonempty XN,k. For any f in C(X),
we have

(3.6) f = lim
N→∞

∑
XN,k 6=∅

f(xN,k)1XN,k
,

where 1XN,k
is the characteristic function of the Borel set XN,k, and the

limit of the finite sums converges uniformly on X. In particular, for every
fixed positive integer N we have

1 =
∑

XN,k 6=∅

1XN,k
.

For two disjoint nonempty sets XN,j and XN,k, we can find two sequences
(fm) and (gm) in C(X) such that fm+pgm = 0 for m, p = 0, 1, . . . , and
fm → 1XN,j

and gm → 1XN,k
pointwise on X. By the weak∗-continuity of θ,

for all m = 1, 2, . . . , we have

1XN,j
θ(gm) = lim

p→∞
fm+pθ(gm) = 0, θ(1XN,j

)gm = lim
p→∞

θ(fm+p)gm = 0.

Thus
1XN,j

θ(1XN,k
) = lim

m→∞
1XN,j

θ(gm) = 0

and
θ(1XN,j

)1XN,k
= lim

m→∞
θ(1XN,j

)gm = 0.

Hence, for each positive integer N and j = −1, 0, 1, . . . , N ,

θ(1XN,j
) =

∑
XN,k 6=∅

1XN,k
θ(1XN,j

) = 1XN,j
θ(1XN,j

)(3.7)

= 1XN,j
θ(1) = θ(1)1XN,j

.

It follows from (3.6) and (3.7) that

θ(f) = fθ(1) = θ(1)f, ∀f ∈ C(X)+.

In particular,
Tn(a) = aT ∗∗n (1) = T ∗∗n (1)a

for all positive norm one—and thus all—elements a in A.
Set h′n = T ∗∗n (1) for all n = 1, 2, . . . . We have thus obtained a sequence

(h′n) of central multipliers in M(A) such that

H(a) =
∑
n≥1

Pn(a) =
∑
n≥1

Tn(an) =
∑
n≥1

h′na
n, ∀b ∈ A.

Note that h′k = 1.
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Going back to the original setting, we set hn = hkJ(h′n). Since the sur-
jective Jordan isomorphism J sends central multipliers to central multipliers
[29, p. 330], all hn are central multipliers in M(B). Moreover, we have

J(h′na
n) = J(h′na

n + anh′n)/2 = J(h′n)J(an), ∀a ∈ A, n = 1, 2, . . . .

Consequently.

H(a) = hkJ
(∑
n≥1

h′na
n
)

=
∑
n≥1

hnJ(a)n, ∀a ∈ A.

Recall that a holomorphic map H is conformal (at 0) if its derivative P1

(at 0) is a bounded invertible linear operator. Combining Theorems 3.4 and
3.6, and Lemma 3.10, we get

Theorem 3.11. Let A,B be C∗-algebras, r > 0, and H : BA(0; r)→ B
be an orthogonally additive conformal holomorphic map. Suppose H is zero
product preserving on positive (resp. all) elements in BA(0; r). Then there
exist a sequence (hn) of central multipliers in M(B) and a Jordan (resp.
algebra) isomorphism J : A→ B such that

(3.8) H(a) =
∑
n≥1

hnJ(a)n, ∀a ∈ BA(0; r).

The following result supplements Theorem 3.8.

Corollary 3.12. Let A and B be standard C∗-algebras on Hilbert spaces
H1 and H2, respectively. Let H : BA(0; r) → B be an orthogonally additive
conformal holomorphic map. Suppose H is zero product preserving on posi-
tive elements. Then there exist a sequence (λn) of scalars and an invertible
operator S : H2 → H1 such that either

(3.9) H(x) =
∑
n≥1

λnS
−1xnS, ∀x ∈ BA(0; r),

or

H(x) =
∑
n≥1

λnS
−1(xt)nS, ∀x ∈ BA(0; r).

If H is zero product preserving on all elements in BA(0; r), then case (3.9)
holds.

Proof. It follows from Theorem 3.11 that H has the form as in (3.8).
Since M(B) has trivial center, all λn := hn are scalars. It is well-known that
the Jordan isomorphism J : A→ B has the form either

Jx = S−1xS, ∀x ∈ A, or Jx = S−1xtS, ∀x ∈ A,
where S is a bounded invertible operator from H2 onto H1 (see for example
[36, 37]). When H preserves zero products on the whole of BA(0; r), the
map J is an algebra isomorphism. Hence, case (3.9) happens.
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4. Orthogonally additive and isometric polynomials

Lemma 4.1. Let X and Y be locally compact Hausdorff spaces. Let S :
C0(X) → C0(Y ) be a linear map preserving norms of positive functions,
that is,

‖Sf‖ = ‖f‖, ∀f ∈ C0(X)+.

Suppose that the range of S strongly separates points in Y . Then there exist
a homeomorphism ψ from X onto ψ(X) ⊆ Y and a continuous unimodular
scalar function k on X such that

Sf(ψ(x)) = k(x)f(x), ∀f ∈ C0(X), ∀x ∈ X.
If the range of S is regular, then S is a surjective linear isometry and ψ(X)
= Y .

Proof. Let X∞ = X ∪ {∞} be the one-point compactification of X. In
case X is compact, the point∞ at infinity will be isolated in X. We identify

C0(X) = {f ∈ C(X∞) : f(∞) = 0}.
The same also applies to Y and C0(Y ).

For every point x in X, set

Sx := {y ∈ Y∞ : |Sf(y)| = 1 for all f in C0(X)+ with f(x) = ‖f‖ = 1}.
Clearly, Sx is a compact subset of Y .

First, we verify that Sx is nonempty. Otherwise, for every point y in Y∞
there is an fy in C0(X)+ with fy(x) = ‖fy‖ = 1, but |Sfy(y)| < 1. Let

Vy = {z ∈ Y∞ : |Sfy(z)| < 1}.
Then Vy is an open neighborhood of y containing the point ∞. The open
covering Y∞ =

⋃
y Vy of the compact space Y∞ has a finite subcover

Y∞ = Vy1 ∪ · · · ∪ Vyn .
Let

f =
1

n
(fy1 + · · ·+ fyn).

Clearly, f ∈ C0(X)+ with f(x) = ‖f‖ = 1, and

|Sf(y)| ≤ 1

n
(|Sfy1(y)|+ · · ·+ |Sfyn(y)|) < 1, ∀y ∈ Y∞.

This forces 1 = ‖f‖ = ‖Sf‖ < 1, a contradiction.

Next, we verify that Sx contains exactly a single point in Y . Otherwise,
let y1, y2 be two distinct points in Sx. In other words,

(4.1) |Sf(y1)| = |Sf(y2)| = 1

whenever f ∈ C0(X)+ with f(x) = ‖f‖ = 1.
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Let g be in C0(X)+ with norm one, vanishing in a neighborhood of x. Let
f be any function in C0(X)+ with fg = 0 and f(x) = ‖f‖ = 1. It follows
from (4.1) that

|S(f + tg)(y1)| = |S(f + tg)(y2)| = 1, ∀t ∈ [0, 1].

This forces Sg(y1) = Sg(y2) = 0. Consequently, dealing separately with the
positive and negative parts of the real and imaginary parts of a continuous
function we find that

Sg(y1) = Sg(y2) = 0

whenever g in C0(X) vanishes in a neighborhood of x.

Applying Urysohn’s Lemma and the boundedness of S, we have indeed

Sg(y1) = Sg(y2) = 0 whenever g in C0(X) vanishes at x.(4.2)

Therefore, there are scalars λ1, λ2 such that

Sg(yi) = λig(x), ∀g ∈ C0(X), i = 1, 2.

By (4.1), we have |λ1| = |λ2| = 1, and thus |Sg(y1)| = |Sg(y2)| for all g in
C0(X). This is absurd, since the range of S strongly separates points in Y .

Now, we can define a function ψ : X → Y such that Sx = {ψ(x)}. As in
deriving (4.2), we have

f(x) = 0 ⇒ Sf(ψ(x)) = 0, ∀f ∈ C0(X).

This provides a scalar k(x) such that

Sf(ψ(x)) = k(x)f(x), ∀f ∈ C0(X), ∀x ∈ X.(4.3)

It follows from the definition of Sx that |k(x)| = 1 for all x in X. Conse-
quently, ψ is one-to-one on X.

We claim that ψ is a homeomorphism from X onto ψ(X). To see this,
suppose xλ → x in X and y is any cluster point of ψ(xλ) in Y∞. It follows
from (4.3) that |Sf(y)| = |f(x)| = |Sf(ψ(x))| for all f in C0(X). By strong
separability, y = ψ(x), and thus limλ ψ(xλ) = ψ(x). Conversely, assume
that ψ(xλ) → ψ(x) and {xλ} has a cluster point z in X∞. By (4.3) again,
|f(x)| = |f(z)| for all f in C0(X). This forces z = x, and x = limλ xλ in X.

It is now plain that k is continuous on X.

Finally, if the range of S is regular then (4.3) ensures that ψ(X) is dense
in Y . Consequently, S is a surjective linear isometry. Applying what we
have obtained to the inverse S−1 : C0(Y )→ C0(X), we can verify that ψ is
invertible and especially ψ(X) = Y .

Theorem 4.2 (Banach–Stone Theorem for n-isometries). Let P : C0(X)
→ C0(Y ) be an orthogonally additive n-homogeneous polynomial. Assume
that P is an n-isometry on positive elements, and its range is regular. Then
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there exist a continuous unimodular scalar function h and a homeomorphism
ϕ : Y → X such that

P (f)(y) = h(y)f(ϕ(y))n, ∀f ∈ C0(X), ∀y ∈ Y.
Proof. Let T : C0(X) → C0(Y ) be the bounded linear map associated

to P such that P (f) = T (fn) as in (3.1). As P : C0(X) → C0(Y ) is an n-
isometry on positive elements, for every nonnegative function f in C0(X)+
we have

‖T (f)‖ = ‖P (n
√
f)‖ = ‖n

√
f‖n = ‖f‖.

Containing the regular subset P (C0(X)) of C0(Y ), the range of T is also
regular. Lemma 4.1 applies and yields a homeomorphism ψ from X onto Y ,
and a continuous unimodular scalar function k on X such that

Tf(ψ(x)) = k(x)f(x), ∀f ∈ C0(X), ∀x ∈ X.
Letting ϕ := ψ−1 and h := k ◦ ϕ, we arrive at the desired assertions.

Without a tool similar to Lemma 4.1, we need extra assumptions in
developing the following counterpart of Theorem 4.2.

Theorem 4.3. Let A,B be unital C∗-algebras. Let P : A → B be an
orthogonally additive n-homogeneous polynomial. Suppose that h := P (1) is
a unitary, B = spanP (A), and ‖P (x)‖ = ‖x‖n for every normal element x
in A. Then there is a Jordan ∗-isomorphism J : A→ B such that

P (a) = hJ(a)n, ∀a ∈ A.
Proof. As in the proof of Theorem 3.4, we have a bounded surjective

linear operator T : A → B such that P (a) = T (an), ∀a ∈ A. Replacing P
with h∗P , we can assume T (1) = 1. We are going to show that T is a Jordan
∗-isomorphism.

We compute the norm of T with the following formula (see, e.g., [34,
Theorem 2.14.5]):

‖T‖ = sup{‖T (eih)‖ : h∗ = h ∈ A} = sup{‖P (eih/n)‖ : h∗ = h ∈ A} = 1.

Let x be a normal element in A. Let α be a point in the spectrum of x such
that ‖x‖ = |α|. By functional calculus, we can find a normal element y in A
such that yn = 2α+ x. Observe that

‖2α+ T (x)‖ = ‖P (y)‖ = ‖y‖n = ‖2α+ x‖ = 3‖x‖.
Hence, ‖x‖ ≤ ‖Tx‖ ≤ ‖x‖. In other words, T preserves the norm of every
normal element in A. By [29, Lemma 8], T (a∗) = T (a)∗ for every a in A.
Consequently, T induces a surjective unital linear isometry Tsa between the
JB-algebras Asa and Bsa. It follows from [46, Theorem 4] that Tsa is a Jordan
isomorphism from Asa onto Bsa, and thus T is a Jordan ∗-isomorphism from
A onto B.
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The following is a consequence of Theorem 4.3, and the well-known facts
about the structure of Jordan ∗-isomorphisms between standard C∗-algebras
(see, e.g., [36, 37]).

Corollary 4.4. Let H be a complex Hilbert space of arbitrary dimen-
sion. Let A be a unital standard C∗-algebra on H. Let P : A → A be a
bounded orthogonally additive n-homogeneous polynomial such that A =
spanP (A). Suppose h := P (1) is a unitary and ‖P (a)‖ = ‖a‖n for every
normal operator a in A. Then there are unitary operators U, V in B(H) such
that either

P (a) = UanV, ∀a ∈ A, or P (a) = U(at)nV, ∀a ∈ A.
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