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A reverse entropy power inequality for
log-concave random vectors

by

Keith Ball (Warwick), Piotr Nayar (Minneapolis, MN)
and Tomasz Tkocz (Warwick)

Abstract. We prove that the exponent of the entropy of one-dimensional projec-
tions of a log-concave random vector defines a 1/5-seminorm. We make two conjectures
concerning reverse entropy power inequalities in the log-concave setting and discuss some
examples.

1. Introduction. One of the most significant and mathematically in-
triguing quantities studied in information theory is the entropy. For a ran-
dom variable X with density f its entropy is defined as

(1) S(X) = S(f) = −
�

R

f ln f

provided this integral exists (in the Lebesgue sense). Note that the entropy
is translation invariant and S(bX) = S(X) + ln |b| for any nonzero b. If f
belongs to Lp(R) for some p > 1, then by the concavity of the logarithm and
by Jensen’s inequality, S(f) > −∞. If EX2 <∞, then comparison with the
standard Gaussian density and again Jensen’s inequality yield S(X) < ∞.
In particular, the entropy of a log-concave random variable is well defined
and finite. Recall that a random vector in Rn is called log-concave if it
has a density of the form e−ψ with ψ : Rn → (−∞,∞] being a convex
function.

The entropy power inequality (EPI) says that

(2) e
2
n
S(X+Y ) ≥ e

2
n
S(X) + e

2
n
S(Y )

for independent random vectors X and Y in Rn provided that all the en-
tropies exist. Stated first by Shannon in his seminal paper [24] and first
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rigorously proved by Stam in [25] (see also [6]), it is often referred to as the
Shannon–Stam inequality and plays a crucial role in information theory and
elsewhere (see the survey [18]). Using the AM-GM inequality, the EPI can
be linearised : for every λ ∈ [0, 1] and independent random vectors X,Y we
have

(3) S(
√
λX +

√
1− λY ) ≥ λS(X) + (1− λ)S(Y )

provided that all the entropies exist. This formulation is in fact equivalent
to (2) as first observed by Lieb in [22], where he also shows how to derive (3)
from Young’s inequality with sharp constants. Several other proofs of (3) are
available, including versions for the Fisher information [13] and recent tech-
niques of the minimum mean-square error [27]. There are also refinements
when one variable is Gaussian [15, 17, 28].

If X and Y are independent and identically distributed random variables
(or vectors), inequality (3) says that the entropy of the normalised sum

(4) Xλ =
√
λX +

√
1− λY

is at least as large as the entropy of the summands X and Y , i.e.
S(Xλ) ≥ S(X). It is worth mentioning that this phenomenon has been
quantified, first in [14], which has deep consequences in probability (see the
pioneering work [4] and its sequels [1, 2], which establish the rate of con-
vergence in the entropic central limit theorem and the “second law of prob-
ability” of the entropy growth, as well as the independent work [20], with
somewhat different methods). In the context of log-concave vectors, Ball and
Nguyen [5] establish dimension free lower bounds on S(X1/2) − S(X) and
discuss connections between the entropy and major conjectures in convex
geometry; for the latter see also [12].

In general, the EPI cannot be reversed. In [7, Proposition V.8], Bobkov
and Chistyakov find a random vector X with finite entropy such that
S(X + Y ) = ∞ for every random vector Y independent of X and with
finite entropy. However, for log-concave vectors and, more generally, con-
vex measures, Bobkov and Madiman have recently addressed the question
of reversing the EPI (see [10, 11]). They show that for any pair X,Y of
independent log-concave random vectors in Rn, there are linear volume pre-
serving maps T1, T2 : Rn → Rn such that

e
2
n
S(T1(X)+T2(Y )) ≤ C(e

2
n
S(X) + e

2
n
S(Y )),

where C is some universal constant.

For a random variable X with finite variance its relative entropy D(X) is
defined as the difference S(Z)−S(X), where Z is a Gaussian random vari-
able with variance Var(X). Relative entropy is nonnegative and provides a
way to measure closeness to Gaussians. Another reverse EPI has been lately
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discovered in the context of the stability of Cramér’s theorem (see [9]). The
authors bound from below the relative entropy of the sum of independent
regularised random variables in terms of the relative entropies of the regu-
larised summands. The regularisation is performed by adding independent
Gaussians; without it, such a lower bound does not hold in general, as shown
by the same authors in [8].

The goal of this note is to investigate further, in the log-concave setting,
some new forms of what could be called a reverse EPI. In the next section
we present our results. The last section is devoted to their proofs.

Acknowledgements. The authors would like to thank Assaf Naor for
pointing out the Aoki–Rolewicz theorem as well as for fruitful discussions
without which Theorem 1 would not have been discovered. They are also
indebted to Mokshay Madiman for his help with tracking down several ref-
erences.

PN was supported in part by the Institute for Mathematics and its Ap-
plications with funds provided by the National Science Foundation as well
as by NCN grant DEC-2012/05/B/ST1/00412.

2. Main results and conjectures. Suppose X is a symmetric log-
concave random vector in Rn. Then any projection of X on a certain direc-
tion v ∈ Rn, that is, the random variable 〈X, v〉 is also log-concave. Here
〈·, ·〉 denotes the standard scalar product in Rn. If we know the entropies of
projections in, say, two different directions, can we say anything about the
entropy of projections in related directions? We make the following conjec-
ture.

Conjecture 1. Let X be a symmetric log-concave random vector in Rn.
Then the function

NX(v) =

{
eS(〈v,X〉), v 6= 0,

0, v = 0,

defines a norm on Rn.

The homogeneity of NX is clear. To check the triangle inequality, we have
to answer in fact a two-dimensional question: is it true that for a symmetric
log-concave random vector (X,Y ) in R2 we have

(5) eS(X+Y ) ≤ eS(X) + eS(Y )?

Indeed, this applied to the vector (〈u,X〉, 〈v,X〉) which is also log-concave
yields NX(u+ v) ≤ NX(u) +NX(v). Inequality (5) can be seen as a reverse
EPI (cf. (2)). It is not too difficult to show that this inequality holds up to
a multiplicative constant.
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Proposition 1. Let (X,Y ) be a symmetric log-concave random vector
in R2. Then

eS(X+Y ) ≤ e(eS(X) + eS(Y )).

Proof. The argument relies on the well-known observation that for a
log-concave density f : R → [0,∞) its maximum and entropy are related
(see for example [5] or [12]):

(6) − ln ‖f‖∞ ≤ S(f) ≤ 1− ln ‖f‖∞.

Suppose that w is an even log-concave density of (X,Y ). The densities
of X, Y and X + Y equal respectively

(7) f(x) =
�
w(x, t) dt, g(x) =

�
w(t, x) dt, h(x) =

�
w(x− t, t) dt.

They are even and log-concave, hence attain their maximum at zero. By the
result of Ball (Busemann’s theorem for symmetric log-concave measures,
see [3]), the function ‖x‖w = (

	
w(tx) dt)−1 is a norm on R2. In particular,

1

‖h‖∞
=

1

h(0)
=

1	
w(−t, t) dt

= ‖e2 − e1‖w ≤ ‖e1‖w + ‖e2‖w

=
1	

w(t, 0) dt
+

1	
w(0, t) dt

=
1

f(0)
+

1

g(0)
=

1

‖f‖∞
+

1

‖g‖∞
.

Using (6) twice we obtain

eS(X+Y ) ≤ e

‖h‖∞
≤ e
(

1

‖f‖∞
+

1

‖g‖∞

)
≤ e(eS(X) + eS(Y )).

Recall that the classical result of Aoki and Rolewicz says that a C-quasi-
norm (1-homogeneous function satisfying the triangle inequality up to a mul-
tiplicative constant C) is equivalent to some κ-seminorm (κ-homogeneous
function satisfying the triangle inequality) for some κ depending only on C
(to be precise, it is enough to take κ = ln 2/ln(2C)). See for instance [21,
Lemma 1.1 and Theorem 1.2]. In view of Proposition 1, for every symmetric
log-concave random vector X in Rn the function NX(v)κ = eκS(〈X,v〉) with
κ = ln 2

1+ln 2 is equivalent to some nonnegative κ-seminorm. Therefore, it is
natural to relax Conjecture 1 and ask whether there is a positive universal
constant κ such that the function Nκ

X itself satisfies the triangle inequality
for every symmetric log-concave random vector X in Rn. Our main result
answers this question positively.

Theorem 1. There exists a universal constant κ > 0 such that for a
symmetric log-concave random vector X in Rn and two vectors u, v ∈ Rn
we have

(8) eκS(〈u+v,X〉) ≤ eκS(〈u,X〉) + eκS(〈v,X〉).



A reverse entropy power inequality 21

Equivalently, for a symmetric log-concave random vector (X,Y ) in R2 we
have

(9) eκS(X+Y )) ≤ eκS(X) + eκS(Y ).

In fact, we can take κ = 1/5.

Remark 1. If X and Y are independent random variables uniformly
distributed on the intervals [−t/2, t/2] and [−1/2, 1/2] with t < 1, then (9)
becomes eκt/2 ≤ 1 + tκ. Letting t → 0 shows that necessarily κ ≤ 1. We
believe that this is the extreme case and the optimal value of κ equals 1.

Remark 2. Inequality (9) with κ = 1 can be easily shown for log-
concave random vectors (X,Y ) in R2 for which one marginal has the same
law as the other one rescaled, say Y ∼ tX for some t > 0. Note that the
symmetry of (X,Y ) is not needed here. This fact in the essential case of
t = 1 was first observed in [16]. We recall the argument in the next section.
Moreover, in that paper the converse was shown as well: given a density f ,
the equality

max{S(X + Y ) : X ∼ f, Y ∼ f} = S(2X)

holds if and only if f is log-concave, thus characterising log-concavity. For
some bounds on S(X ± Y ) in higher dimensions see [23] and [11].

It will be much more convenient to prove Theorem 1 in an equivalent
form, obtained by linearising inequality (9).

Theorem 2. Let (X,Y ) be a symmetric log-concave vector in R2 and
assume that S(X) = S(Y ). Then for every θ ∈ [0, 1] we have

(10) S(θX + (1− θ)Y ) ≤ S(X) +
1

κ
ln(θκ + (1− θ)κ),

where κ > 0 is a universal constant. We can take κ = 1/5.

Remark 3. Proving Conjecture 1 is equivalent to showing Theorem 2
with κ = 1.

Notice that in the above reverse EPI we estimate the entropy of lin-
ear combinations of summands whose joint distribution is log-concave. This
is different from what would be the straightforward reverse form of the
EPI (3) for independent summands with weights

√
λ and

√
1− λ preserving

variance. Suppose that the summands X, Y are independent and identically
distributed, say with finite variance, and recall (4). Then, as we mentioned
in the introduction, the EPI says that the function [0, 1] 3 λ 7→ S(Xλ) is
minimal at λ = 0 and λ = 1. Following this logic, reversing the EPI could
amount to determining the λ for which the maximum of this function oc-
curs. Our next result shows that the somewhat natural guess of λ = 1/2 is
false in general.
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Proposition 2. For each positive λ0 < 1
2(2+

√
2)

there is a symmet-

ric continuous random variable X of finite variance for which S(Xλ0) >
S(X1/2).

Nevertheless, we believe that in the log-concave setting the function λ 7→
S(Xλ) should behave nicely.

Conjecture 2. Let X and Y be independent copies of a log-concave
random variable. Then the function

λ 7→ S(
√
λX +

√
1− λY )

is concave on [0, 1].

3. Proofs

3.1. Theorems 1 and 2 are equivalent. To see that Theorem 2 im-
plies Theorem 1, take a symmetric log-concave random vector (X,Y ) in R2

and take θ with S(X/θ) = S(Y/(1− θ)), that is, θ = eS(X)/(eS(X) + eS(Y ))
∈ [0, 1]. Applying Theorem 2 with the vector (X/θ, Y/(1−θ)) and using the
identity S(X/θ) = S(X)− ln θ = − ln(eS(X) + eS(Y )) gives

S(X + Y ) ≤ S(X/θ) +
1

κ
ln
eκS(X) + eκS(Y )

(eS(X) + eS(Y ))κ
=

1

κ
ln(eκS(X) + eκS(Y )),

so (9) follows.

To see that Theorem 1 implies Theorem 2, take a log-concave vector
(X,Y ) with S(X) = S(Y ) and apply (9) to the vector (θX, (1−θ)Y ), which
yields

S(θX + (1− θ)Y ) ≤ 1

κ
ln
(
θκeκS(X) + (1− θ)κeκS(Y )

)
= S(X) +

1

κ
ln(θκ + (1− θ)κ).

3.2. Proof of Remark 2. Let w : R2 → [0,∞) be the density of such a
vector and let f, g, h be the densities of X,Y,X+Y as in (7). The assumption
means that f(x) = tg(tx). By convexity,

S(X + Y ) = inf
{
−
�
h ln p : p is a probability density on R

}
.

Using Fubini’s theorem and changing variables yields

−
�
h ln p = −

� �
w(x, y) ln p(x+ y) dx dy

= −θ(1− θ)
� �
w(θx, (1− θ)y) ln p(θx+ (1− θ)y) dx dy
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for every θ ∈ (0, 1) and a probability density p. If p is log-concave we get

S(X + Y ) ≤− θ2(1− θ)
� �
w(θx, (1− θ)y) ln p(x) dx dy

− θ(1− θ)2
� �
w(θx, (1− θ)y) ln p(y) dx dy

=− θ2
�
f(θx) ln p(x) dx− (1− θ)2

�
g
(
(1− θ)y

)
ln p(y) dy.

Set

p(x) = θf(θx) = tθg(tθx)

with θ such that tθ = 1− θ. Then the last expression becomes

θS(X) + (1− θ)S(Y )− θ ln θ − (1− θ) ln(1− θ).
Since S(Y ) = S(X) + ln t = S(X) + ln 1−θ

θ , we thus obtain

S(X + Y ) ≤ S(X)− ln θ = S(X) + ln(1 + t) = ln(eS(X) + eS(Y )).

3.3. Proof of Theorem 2. The idea of our proof of Theorem 2 is very
simple. For small θ we bound the quantity S(θX + (1− θ)Y ) by estimating
its derivative. To bound it for large θ, we shall crudely apply Proposition 1.
The exact bound based on estimating the derivative reads as follows.

Proposition 3. Let (X,Y ) be a symmetric log-concave random vector
on R2. Assume that S(X) = S(Y ) and let 0 ≤ θ ≤ 1

2(1+e) . Then

(11) S(θX + (1− θ)Y ) ≤ S(X) + 60(1 + e)θ.

The main ingredient of the proof of the above proposition is the following
lemma. We postpone its proof until the next subsection.

Lemma 1. Let w : R2 → R+ be an even log-concave function. Define
f(x) =

	
w(x, y) dy and γ =

	
w(0, y) dy/

	
w(x, 0) dx. Then

� � −f ′(x)

f(x)
yw(x, y) dx dy ≤ 30γ

�
w.

Proof of Proposition 3. For θ = 0 both sides of (11) are equal. It is
therefore enough to prove that d

dθS(θX + (1− θ)Y ) ≤ 60(1 + e) for 0 ≤ θ ≤
1

2(1+e) . Let fθ be the density of Xθ = θX + (1− θ)Y . Note that fθ = e−ϕθ ,

where ϕθ is convex. Let dϕθ
dθ = Φθ and dfθ

dθ = Fθ. Then Φθ = −Fθ/fθ. Using
the chain rule we get

d

dθ
S(θX + (1− θ)Y ) = − d

dθ
E ln fθ(Xθ) =

d

dθ
Eϕθ(Xθ)

= EΦθ(Xθ) + Eϕ′θ(Xθ)(X − Y ).

Moreover,

EΦθ(Xθ) = −EFθ(Xθ)/fθ(Xθ) = −
�
Fθ(x) dx = − d

dθ

�
fθ(x) dx = 0.
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Let Zθ = (Xθ, X−Y ) and let wθ be the density of Zθ. Using Lemma 1 with
w = wθ gives

d

dθ
S(θX + (1− θ)Y ) = −E

(
f ′θ(Xθ)

fθ(Xθ)
(X − Y )

)
= −

� fθ(x)

fθ(x)
ywθ(x, y) dx dy ≤ 30γθ,

where γθ =
	
wθ(0, y) dy/

	
wθ(x, 0) dx. It suffices to show that γθ ≤ 2(1 + e)

for 0 ≤ θ ≤ 1
2(1+e) . Let w be the density of (X,Y ). Then we have wθ(x, y) =

w(x + (1 − θ)y, x − θy). To finish the proof we again use the fact that
‖v‖w = (

	
w(tv) dt)−1 is a norm. Note that

γθ =

	
wθ(0, y) dy	
wθ(x, 0) dx

=

	
w((1− θ)y,−θy) dy	

w(x, x) dx
=

‖e1 + e2‖w
‖(1− θ)e1 − θe2‖w

.

Let f(x) =
	
w(x, y) dy and g(x) =

	
w(y, x) dy be the densities of the log-

concave random variables X and Y , respectively. Observe that by (6) we
have

‖f‖−1∞ ≤ eS(X) ≤ e‖f‖−1∞ , ‖g‖−1∞ ≤ eS(Y ) ≤ e‖g‖−1∞ .

Since ‖f‖−1∞ = f(0)−1 = ‖e1‖w, ‖g‖−1∞ = g(0)−1 = ‖e2‖w and S(X) = S(Y ),
this gives e−1 ≤ ‖e1‖w/‖e2‖w ≤ e. Thus, by the triangle inequality,

γθ ≤
‖e1‖w + ‖e2‖w

(1− θ)‖e1‖w − θ‖e2‖w

≤ (1 + e)‖e1‖w
(1− θ)‖e1‖w − θe‖e1‖w

=
1 + e

1− θ(1 + e)
≤ 2(1 + e).

Proof of Theorem 2. We can assume that θ ∈ [0, 1/2]. Using Proposi-
tion 1 with the vector (θX, (1−θ)Y ) and the fact that S(X) = S(Y ) we get
S(θX + (1− θ)Y ) ≤ S(X) + 1. Thus, from Proposition 3 we deduce that it
is enough to find κ > 0 such that

min{1, 60(1 + e)θ} ≤ κ−1 ln(θκ + (1− θ)κ), θ ∈ [0, 1/2]

(if 60(1 + e)θ < 1 then θ < 1
2(1+e) and therefore Proposition 3 indeed can

be used in this case). By the concavity and monotonicity of the right hand
side it is enough to check this inequality at θ0 = (60(1 + e))−1, that is, we
have to verify the inequality eκ ≤ θκ0 + (1 − θ0)κ. We check that it is true
for κ = 1/5.

3.4. Proof of Lemma 1. We start off by establishing two simple
and standard lemmas. The second one is a limiting case of the so-called
Grünbaum theorem (see [19] and [26]).
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Lemma 2. Let f : R → R+ be an even log-concave function. For β > 0
define aβ by

aβ = sup{x > 0 : f(x) ≥ e−βf(0)}.

Then

2e−βaβ ≤
1

f(0)

�
f ≤ 2(1 + β−1e−β)aβ.

Proof. Since f is even and log-concave, it is maximal at zero and non-
increasing on [0,∞). Consequently, the left hand inequality immediately
follows from the definition of aβ. By comparing ln f with an appropriate

linear function, log-concavity also guarantees that f(x) ≤ f(0)e−βx/aβ for
|x| > aβ, hence

�
f ≤ 2aβf(0) + 2

∞�

aβ

f(0)e−βx/aβ dx = 2aβf(0) + 2f(0)
aβ
β
e−β,

which gives the right hand inequality.

Lemma 3. Let X be a log-concave random variable. Let a be such that
P(X > a) ≤ e−1. Then EX ≤ a.

Proof. Without loss of generality assume that X is a continuous random
variable and that P(X > a) = e−1. Moreover, the statement is translation
invariant, so we can assume that a = 0. Let e−ϕ be the density of X, where
ϕ is convex. There exists a function ψ of the form

ψ(x) =

{
ax+ b, x ≥ L,

∞, x < L,

such that ψ(0) = ϕ(0) and e−ψ is the probability density of a random
variable Y with P(Y > a) = e−1. One can check, using convexity of ϕ, that
EX ≤ EY . We have 1 =

	
e−ψ = 1

ae
−(b+aL) and e−1 =

	∞
0 e−ψ = 1

ae
−b. It

follows that aL = −1, and so EX ≤ EY = 1
a

(
L+ 1

a

)
e−(b+aL) = 0.

Proof of Lemma 1. Without loss of generality assume that w is strictly
log-concave and w(0) = 1. First we derive a pointwise estimate on w which
will enable us to obtain good pointwise bounds on the quantity

	
yw(x, y) dy,

relative to f(x). To this end, set unique positive parameters a and b to be
such that w(a, 0) = e−1 = w(0, b). Consider l ∈ (0, a). We have

w(−l, 0) = w(l, 0) ≥ w(a, 0)l/aw(0, 0)1−l/a = e−l/a.

Fix x > 0 and let y > b
ax + b. Let l be such that the line passing through

the points (0, b) and (x, y) intersects the x-axis at (−l, 0), that is l = bx
y−b .
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Note that l ∈ (0, a). Then

e−1 = w(0, b) ≥ w(x, y)b/yw(−l, 0)1−b/y

≥ w(x, y)b/ye−(1−b/y)/a = [w(x, y)e−(l/a)(y/b)(y−b)/y]b/y,

hence

w(x, y) ≤ ex/a−y/b for x > 0 and y >
b

a
x+ b.

Let X be a random variable with log-concave density y 7→ w(x, y)/f(x). Set
β = b+ b ln(max{f(0), b}) and

α =
b

a
x− b ln f(x) + β.

Since f is maximal at zero (as it is an even log-concave function), we check
that

α ≥ b

a
x− b ln f(0) + β ≥ b

a
x+ b,

so we can use the pointwise estimate on w to get
∞�

α

w(x, y) dy ≤ ex/a
∞�

α

e−y/b dy = bex/a−α/b

=
b

max{f(0), b}
e−1f(x) ≤ e−1f(x).

This means that P(X > α) ≤ e−1, which in view of Lemma 3 yields

1

f(x)

�
yw(x, y) dy = EX ≤ α =

b

a
x− b ln f(x) + β for x > 0.

Having obtained this bound, we can easily estimate the quantity stated
in the lemma. By the symmetry of w we have

� � −f ′(x)

f(x)
yw(x, y) dx dy = 2

� �

x>0

−f ′(x)

f(x)
yw(x, y) dx dy.

Since f decreases on [0,∞), the factor −f ′(x) is nonnegative for x > 0, thus
we can further write
� � −f ′(x)

f(x)
yw(x, y) dx dy ≤ 2

∞�

0

−f ′(x)

(
b

a
x− b ln f(x) + β

)
dx

= 2f(0)(−b ln f(0) + β)

+ 2

∞�

0

f(x)

(
b

a
− bf

′(x)

f(x)

)
dx

= 2f(0)b

(
1 + ln

max{f(0), b}
f(0)

)
+
b

a

�
w + 2f(0)b.
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Now we only need to put the finishing touches to this expression. By Lem-
ma 2 applied to the functions x 7→ w(x, 0) and y 7→ w(0, y) we obtain

b

a
≤ e

2
2(1 + e−1)

	
w(0, y) dy	
w(x, 0) dx

= (e+ 1)γ

and b/f(0) ≤ e/2. Estimating the logarithm yields

1 + ln
max{f(0), b}

f(0)
≤ max{f(0), b}

f(0)
≤ e

2
.

Finally, by log-concavity,�
w(x, y) dx dy ≥

�√
w(2x, 0)w(0, 2y) dx dy

=
1

4

�√
w(x, 0) dx

�√
w(0, y) dy

and �
w(x, 0) dx ≤

√
w(0, 0)

�√
w(x, 0) dx =

�√
w(x, 0) dx.

Combining these two estimates we get

f(0) =
�
w(0, y) dy ≤

�√
w(0, y) dy ≤

4
	
w	

w(x, 0) dx
,

and consequently

f(0)b ≤ e

2
f(0)f(0) ≤ 2ef(0)

	
w	

w(x, 0) dx
= 2eγ

�
w.

Finally, � � −f ′(x)

f(x)
yw(x, y) dx dy ≤ (2e2 + 5e+ 1)γ

�
w,

and the assertion follows.

3.5. Proof of Proposition 2. For a real number s and nonnegative
numbers α ≤ β we define the following trapezoidal function

T sα,β(x) =


0 if x < s or x > s+ α+ β,

x− s if s ≤ x ≤ s+ α,

α if s+ α ≤ x ≤ s+ β,

s+ α+ β − x if s+ β ≤ x ≤ s+ α+ β.

The motivation is the following convolution identity: for real numbers a, a′

and nonnegative numbers h, h′ such that h ≤ h′ we have

(12) 1[a,a+h] ? 1[a′,a′+h′] = T a+a
′

h,h′ .

It is also easy to check that

(13)
�

R

T sα,β = αβ.
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We shall need one more formula: for any real number s and nonnegative
numbers A,α, β with α ≤ β we have

(14) I(A,α, β) =
�

R

AT sα,β ln(AT sα,β) = Aαβ ln(Aα)− 1
2Aα

2.

Fix 0 < a < b = a+ h. Let X be a random variable with density

f(x) =
1

2h
(1[−b,−a](x) + 1[a,b](x)).

We shall compute the density fλ of Xλ. Denote u =
√
λ, v =

√
1− λ and

without loss of generality let λ ≤ 1/2. Clearly, fλ(x) = 1
uf
( ·
u

)
? 1
vf
( ·
v

)
(x),

so by (12) we have

fλ(x) =
(
1u[−b,−a] ? 1v[−b,−a] + 1u[a,b] ? 1v[−b,−a]

+1u[−b,−a] ? 1v[a,b] + 1u[a,b] ? 1v[a,b]
)
(x) · 1

(2h)2uv

=
(
T
−(u+v)b
uh,vh︸ ︷︷ ︸
T1

(x) + T ua−vbuh,vh︸ ︷︷ ︸
T2

(x) + T−ub+vauh,vh︸ ︷︷ ︸
T3

(x) + T
(u+v)a
uh,vh︸ ︷︷ ︸
T4

(x)
)
· 1

(2h)2uv
.

This symmetric density is a superposition of four trapezoid functions T1, T2,
T3, T4 which are certain shifts of the same trapezoid function T0 = T 0

uh,vh.
The shifts may overlap depending on the value of λ. Now we shall consider
two cases.

Case 1: λ = 1/2. Then u = v = 1/
√

2. Notice that T0 becomes a triangle
looking function and T2 = T3, so we obtain

f1/2(x) =
1

2h2
(T−b

√
2

h/
√
2,h/
√
2

+ 2T
−h/
√
2

h/
√
2,h/
√
2

+ T a
√
2

h/
√
2,h/
√
2
)(x).

If h/
√

2 < a
√

2 then the supports of the summands are disjoint and with
the aid of identity (14) we obtain

S(X1/2) = −2I

(
1

2h2
,
h√
2
,
h√
2

)
− I
(

1

h2
,
h√
2
,
h√
2

)
= ln(2h) +

1

2
.

Case 2: λ small. Now we choose λ = λ0 so that the supports of T1 and T2
intersect in such a way that the down-slope of T1 adds up to the up-slope of
T2 giving a flat piece. This happens when −b(u+ v) + vh = ua− bv, that is,

(15)

√
1− λ0
λ0

=
v

u
=
a+ b

h
= 2

a

h
+ 1.

The earlier condition a/h > 1/2 implies that λ0 < 1/5. With the above

choice for λ we have T1 + T2 = T
−b(u+v)
uh,2vh , hence by symmetry

fλ = (T
−b(u+v)
uh,2vh + T−ub+vauh,2vh ) · 1

(2h)2uv
.
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As long as −ub+ va > 0, the supports of these two trapezoid functions are
disjoint. Given our choice for λ, this is equivalent to v/u > b/a = 1 +h/a =
1 + 2/(v/u− 1), or if we set v/u =

√
1/λ0 − 1, to λ0 <

1
2(2+

√
2)

. Then once

again λ0 < 1/5 and we get

S(Xλ0) = −2I

(
1

(2h)2uv
, uh, 2vh

)
= ln(4vh) +

u

4v

= ln(4h
√

1− λ0) +
1

4

√
λ0

1− λ0
.

Furtheremore,

S(Xλ0)− S(X1/2) = ln 2− 1

2
+ ln

√
1− λ0 +

1

4

√
λ0

1− λ0
.

We check that the right hand side is positive for λ0 <
1

2(2+
√
2)

. Therefore,

we have shown that for each such λ0 there is a choice of the parameters a
and h (given by (15)), and hence a random variable X, for which S(Xλ0) >
S(X1/2).
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