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WOJCIECH ZIELINSKI (Warszawa)

THE SHORTEST CONFIDENCE INTERVAL FOR
PROPORTION IN FINITE POPULATIONS

Abstract. Consider a finite population. Let 6 € (0,1) denote the propor-
tion of units with a given property. The problem is to estimate 6 on the
basis of a sample drawn according to simple random sampling without re-
placement. We are interested in interval estimation of 8. We construct the
shortest confidence interval at a given confidence level.

Introduction. The problem of the interval estimation of the proportion
(fraction) 6 is very old. The first solution was given by Clopper and Pearson
(1934) and since then many authors have dealt with the problem. Zielinski
(2010a, 2012, 2016) considered the problem of constructing the shortest confi-
dence intervals for probability of success in a binomial as well as in a negative
binomial model. The solutions are valid for infinite populations.

In many applications (economic, social, etc.) we deal with a finite popu-
lation, so we are interested in interval estimation of 8 in that case. Remarks
on differences in statistical inference in infinite and finite populations may
be found for example in Yates (1960) or Cochran (1977). The problem of
interval estimation of proportion in finite populations was rather rarely con-
sidered in literature. This is because the construction of the exact confidence
interval is based on the hypergeometric distribution. Different approxima-
tions may be found in Buonaccorsi (1987), Wendell and Schmee (2001) or
Wright (1991). There are at least two approximations commonly used in ap-
plications: binomial and normal. However, using those approximations may
lead to wrong conclusions (Zielinski 2011). In what follows, the exact (hy-
pergeometric) distribution will be used.
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Confidence interval. Consider a population U = {uj,...,uy} con-
taining the finite number N of units. Let M denote the unknown number of
objects in the population which have an interesting property. We are inter-
ested in interval estimation of M, or equivalently, of the fraction § = M/N.
A sample of size n is drawn according to simple random sampling without
replacement. Let £ be the random variable describing the number of objects
with the given property in the sample. On the basis of £ we want to construct
a confidence interval for 6 at a confidence level §.

The random variable £ has the hypergeometric distribution (Johnson and
Kotz 1969, Zieliniski 2010b)
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The construction of the confidence interval at a confidence level § for 6

is based on this cumulative distribution function. Let 6(x, N,n,«) be the
solution of the equation Fy y ,(x) = o with respect to 0. If £ = x is observed
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then the confidence interval has the form

(*) (QL(x—1,N,n,51),9U($,N,n,5g)).

The numbers §; and do are such that d; — do = §. For & = 0 the left end is
taken to be 0, and for & = n the right end is taken to be 1. The analytic
solution is unavailable. However, for given x, n and IV, the confidence interval
may be found numerically.

To be more precise, the confidence interval for € is in fact a confidence
set of the numbers of the form k/N between |N -6r(x —1, N,n,61)|/N and
|N -0y (x, N,n,61)+1|/N (here |t]| denotes the greatest integer not greater
than ¢). In what follows, we will make use of (x).

In the standard construction §; = (1 + 0)/2 is used. It is of interest to
find the shortest confidence interval. Therefore, we want to find §; and d9
such that the confidence interval is the shortest possible.

The shortest confidence interval. Consider the length of the confi-
dence interval when £ = x is observed:
d(dl, x) = QU(.T, N, n, 51) - QL(.CU — 1, N, n, 0+ 51)

In what follows we consider only the case z < n/2. If > n/2, the role of
success and failure should be interchanged.
Let us state the following theorem.

THEOREM 1. For x > 1 there exists a two-sided shortest confidence in-
terval. For x = 1 the shortest confidence interval is one-sided.

To prove the theorem we will prove the following lemma. Define G ., (6)
= Fy nn(x). Of course, the domain of this function is [z/N,1— (n —z)/N].

LEMMA. For x > 1 there exists 6* such that the function Gy nn(-) is
concave for 0 < 0%, and convex for 6 > 0*.

Proof. Consider the second order differences of the function Gy nn(:).
Some calculations give:

Hx,N,n(a)

= <GI,N,n <9 + ]1]> - Gz,N,n(e)) - <GI,N,H(0) -Gz Nn <9 - &))

T

_ 1 Z (N + 1)ttt —1)— (n—1)(2t(N +1) —n)f + Nn(n — 1)6?
M = (1—-0)NON+1—-t)((1 —0)N +1—(n—1t))

| 02
x n(N —z —1)!

Hnn|l = | =————5
A (N) N!(n—az—l)!<0

Because
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and

n—x
Hac,N,n<1_ N )

n!(N —-—n+z—1)!
_ i i Y Ntm—2+1) = (n—Dn—x) >0,

the equation

Hynn(0) =0

has a solution.

The hypergeometric distributions are stochastically ordered, i.e. for
61 < 62 and for any given = we have Fy, ny () > Fy, nn(z). Hence, the
equation Hy n,(0) = 0 has only one solution §*. We have

<0 for @ < 6*
H,y nn(0 ’
N ){>0 for 0 > 0*.

Hence G, n () is concave for § < 6* and convex for § > 6*.

Proof of Theorem 1. We have to show that for x > 1 there exists
0 < §1 < 1 — 4 such that d(d1,x) is minimal. The length of the confidence
interval equals

d(él,x) = 9U(:c,N,n,51) - 9[,(1' —1,N,n,d1 + (5),

where 0y (z, N, n, d1) is a solution of Fy,, y () = 61 and O (z—1, N, n,51+0)
is a solution of Fy, nn(z —1) = 61 + 6. By Lemma, for > 1 the function
(0,1 —=19) 3 61 — Oy(xz,N,n,d;) is convex and (0,1 —0) 3 §; — Op(z — 1,
N,n,d; + ) is concave. Hence, there exists 0] such that

d(07,x) = inf{d(d1,x) : 6 < 1 < 1}.

Consider now the case x = 1. The lower bound of the confidence interval
is a solution of Fp, nn,(0) = 61 + d. It is easy to check that Ho nn(0) > 0
for all & € [1/N,1 — (n —1)/N]. Hence the function (0,1 — ) > 01
0r(0,N,n,d; + 9) is concave. The length of the confidence interval reaches
its minimum at d; = 1 — §, so the shortest confidence interval for x = 1 is
one-sided.

It is interesting to note that if n is even and = = n/2 then the shortest
confidence interval is the standard one. This follows from the fact that for
6 < 0.5,

Gn/Q,N,n(a) = Gn/Q,N,n(l - ‘9)

In Tables |1 and [2| some numerical results are given. The standard con-
fidence intervals (65, 65') and the shortest confidence intervals (65, 658) for
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Table 1. The shortest confidence intervals (n = 10)
T 07 037 o7 o
0 0.000000 0.307106 0.000000 0.257698 83.91%
1 0.002517 0.443510 0.000000  0.392886 89.09%
2 0.025602 0.554589 0.007924  0.509322 94.78%
3 0.067444 0.651012 0.048707 0.621332 98.12%
4 0.122510 0.736298 0.111168  0.722398 99.58%
5 0.188249 0.811751 0.188249 0.811751 100.00%
6 0.263702 0.877490 0.277602 0.888832 99.58%
7 0.348988 0.932556 0.378668 0.951293 98.12%
8 0.445411 0.974398 0.490678  0.992076 94.78%
9 0.556490 0.997483 0.607114  1.000000 89.09%
10 0.692894 1.000000 0.742302 1.000000 83.91%

Table 2. The shortest confidence intervals (n = 100)

6 o3 o o
0 0.000000 0.034392 0.000000 0.028026  81.49%
1 0.000240 0.052222 0.000000 0.044721  86.03%
2 0.002867 0.067851 0.001000 0.059520  90.07%
3 0.006981 0.082404 0.003940 0.074355  93.36%
40012023 0.096283 0.008441 0.088570  95.10%
5 0017685 0.109684 0.013809 0.102280  96.17%
6 0.023799 0.122721 0.019758 0.115618  96.90%
70030264 0.135469 0.026131 0.128634  97.43%
8§ 0.037008 0.147978 0.032833 0.141392  97.83%
9 0043986 0.160284 0.039800 0.153931  98.14%
10 0.051163 0.172415 0.046991 0.166283  98.38%
15 0.089272 0.231062 0.085363 0.225011  99.12%
20 0129994 0287288 0.126509 0.282997  99.49%
25 0.172541 0341782 0.169557 0.338284  99.70%
30 0.216514 0394901 0.214077 0.392154  99.83%
35 0.261684 0446856 0.250824 0444828  99.91%
40 0.307912 0497773 0.306651 0.496440  99.96%
45 0.355111 0547728 0.354472  0.547071  99.99%
50 0.403237 0596763 0.403237  0.596763  100.00%

177

N = 1000 and 6 = 0.95 are shown. In the last column the ratio of the
length of the shortest to the length of the standard confidence interval is

calculated.

In Figure 1 the confidence level of the shortest confidence interval is
shown (N = 1000, n = 100, § = 0.95). Note that, for some 6, the confidence
level is smaller than the nominal one. This is in contradiction to the definition
of the confidence interval (Neyman 1934, Cramér 1946, Lehmann 1959, Silvey
1970). In what follows, a small modification is introduced, after which the
shortest confidence interval does not have this disadvantage.
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Fig. 1. Confidence level of the shortest confidence interval
Auxiliary variable. Letnbearandom variable conditionally distributed

on the interval [0, 1] with CDF G, c_,(-). The confidence interval will be con-
structed on the basis of { = £€47. The distribution of that r.v. is easy to obtain:

PH,N,n{C < t}

0 if t <0,

allt): 1) Fuvale = L1} it [¢] =0,

t]—1

) DD Ponad€ =k} +a(lt], {tHhPana{ = [t]} if1<[t] <n,

P if [t] > n,

where “
fth=t—1t) and a(lth{t) = | Gyepy(du).
0

It is easy to note that the distribution of 1 may be taken to be uniform
U(0,1) independently of £. Let
GoyNn(0) = (1 —y)Fy nn(z — 1) + yFy nn(z).
Then L
0L(£7 Y, N7 n, 61 + 5) — g;y,N,n((sl + 5)
and

9U($, y, N, n, 51) = g;—il,y,N,n(él)
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are the ends of the confidence interval for 6 at the confidence level §. The
length of the confidence interval equals

d((slv LU, y) = ;;J,}l,y,Nm,((sl) - g;;,N,n(él + 6)
Let £ = z and n = y be observed. We are looking for 67 such that
d(07;z,y) = min{d(d1;2,y) : 0 < 5 <1—45}.
THEOREM 2. Ifx > 2 then the shortest confidence interval is two-sided.

Proof. Consider the second order differences

Ha:,y,N,n(H)

1 1
= (gm,y,N,n <9 + N> - gm,y,N,n(9)> — (gz,y,N,n(O) — g:E,y,N,n (9 _ N>>

=(1- y)Hac,N,n(e) + yH:c—&-l,Nm(e)'

Analysis similar to the one in the proof of the Lemma shows that for x > 2
and y € (0,1),

T n—x
,H];7y7N7n <N> < O and Hx7y7N7n (1 - N ) > 0.

Hence there exists a two-sided shortest confidence interval.

THEOREM 3. For x =1 there exists y* such that the shortest confidence
interval is one-sided if x +y < 1+ y*, and two-sided otherwise.

Proof. For convenience assume that 6 is a continuous parameter. The
derivative of d(d1;z,y) with respect to J; equals

ad(él; x, y) o 1 B 1
96y LHS(d1;x,y) RHS(61;2,y)
where
LHS(61; 7, y) = W |
ozg;-h,y,]v,n(&)
8 €T n 9
RHS(51; x,y) = M '
o 0=0, \ y n(0140)
We have
0GuyNalf) __ NI(A—6N+1)
o (YT + )I((1— 0N +1—n)

fny—1-=(N+1-=n+NO(ny—1))(H(1-60)N)—H((1—-6)N —n))]
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and
GayNn(0) NI((1—-60)N +1)
o0 2MIr(n+1)I((1-0)N +3—n)
2n—=1)(N+2-n)—2(N+1-n)+n(n—1)y
— (N(n—1)nyd(ON —1) +2((1 = )N +2 —n)(N + 1 —n+ N(n — 1)f))
(H(1=6)N)—H((1-=60)N +2—n))],
where H(u) =>"7" ,1/i.
If 61 — 0, then

Grynn(®1) = Gy a(0) =1
and
Goy v (01 +0) = Gy, (0) > 0,
and for all y,
RHS(61;1,y) = c0o and LHS(d1;1,y) — LHS(0;1,0) < 0.
Hence %{;ﬁ’y) <0asd — 0.
If 64 = 1—10, then
Gryvn(01) = Gy na(1=0) >0
and
Gay (01 +0) = Gy (1) = /N
Since RHS(1 — 41;1,0) < 0 < LHS(1 — 6;;1,0) (so %{f’l)‘&l:o > 0) and
8d(6151,0
RHS(1 — 6131,1) < LHS(1 — d3;1,1) < 0 (so 243610 "< 0), there
exists y* such that LHS(1 — 61;1,y*) = RHS(1 — d1; 1, y*). So, the shortest
confidence interval is one-sided for y < y*, and two-sided otherwise.
In Table 3| the values of y* for different population sizes N and sample
sizes n (1%, 5% and 10% of population size) are given.

Table 3. Values of y*

N 1% 5% 10%
1000 0.99466 0.96762 0.93372
5000 0.99358 0.96652 0.93202

10000  0.99345 0.96638 0.93181

In Figure 2 the confidence level of the randomized shortest confidence
interval for N = 1000, n = 100 and ¢ = 0.95 is shown.

Final remarks. 1. The above considerations may be summarized as fol-
lows. From a finite population of size N we draw a sample of size n (according
to simple random sampling without replacement). Observe the r.v. £ with
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Fig. 2. Confidence level of the randomized shortest confidence interval

hypergeometric distribution with parameters 6, N, n. Draw a r.v. i according
to U(0, 1) distribution. For & < n/2 consider £ + 1. The shortest confidence
interval for 6 is one-sided if £ + 1 < 1+ y*, and two-sided otherwise.

For £ > n/2 consider n — £ and 1 — 1 and make use of the relationships

0L(£7U7N7na7)+9U(n_5_1a1_777N7n725_7):1

and
9U(§,777N,7%7)+9L(n—5—1a1—777N77%5+’>’):1-

The generated value y of U(0, 1) r.v. must be attached to the final report.
Hence, now results are given by four numbers: population size, sample size,
number of successes and the value y.

2. Because the population is finite, the set of admissible values of 6 is also
finite. For example, the standard confidence interval (for population of size
1000) when = = 2 is observed is [0.025, 0.555]. The parameter § may take one
of the values {0.025,0.026,...,0.554,0.555} and the number of units with
a given property is one of {25,26,...,554,555}.

3. We now give an example of application. Let the size of a population
be N = 1000. We took a sample of size n = 100 and we observed £ = 2
objects with a given property. Let the confidence level be § = 0.95. The
drawn value of the auxiliary variable 7 is 0.2534. The shortest confidence
interval is (0.0043349,0.0788678). Its length is 0.0745329.
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The final report may look as follows:

N =1000; n=100, z=2, y=0.2534, &=0.95,
6 € (0.00433486; 0.0788678).

The standard confidence interval is (0.006981,0.0824044) and its length
equals 0.0754233.
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