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Multidimensional Riemann derivatives
by

J. MARSHALL AsH and STEFAN CATOIU (Chicago, IL)

Abstract. The well-known concepts of nth Peano, Lipschitz, Riemann, Riemann Lip-
schitz, symmetric Riemann, and symmetric Riemann Lipschitz derivatives of real functions
of a single variable have natural extensions to functions of several variables. We show that
if a function has any of these nth derivatives at each point of a measurable subset of R?
then it has all these derivatives at almost every point of that subset.

Introduction. Three well-known generalizations of higher order differ-
entiation for real-valued functions of a real variable are Peano differentiation,
Riemann differentiation, and symmetric Riemann differentiation. These gen-
eralizations are generically equivalent to one another (see [Asl]) and to their
quantum versions (see [ACR]). There are similar LP results (see [AC]). Some
of these generalized derivatives play a role in numerical differentiation (see
[AJJ] and [AJ]). We assign to each of the four above-mentioned differentia-
tions a corresponding higher differential. Fix a real number x, a function f,
an order n, and a small second independent real variable h. The four nth
order differentials are defined as

d™ f(z,h) = f™(x)h",  Rnf(z,h) = R"f(z)h",

where f((z), fa(z), R*f(x), and SR"f(x) are, respectively, the nth or-
der ordinary, Peano, Riemann, and symmetric Riemann derivatives. These
notions of differentials have natural analogues for real-valued functions of
d real variables. For example, if d = 2, the second Peano differential at
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x = (x1,22) is
Pof(x,h) = fao(2)hi + 2fu1(x)haha + foa(x)h3,
a homogeneous polynomial of degree 2 in the variable h = (hi, ho).

The nth order ordinary differential is well known. We will define the
other three nth order differentials, and prove the elementary proposition
that in every dimension d, the existence of the nth order Peano differential
implies pointwise the existence of both the nth order Riemann differential
and the nth order symmetric Riemann differential. The main result of this
work is that these three generalized differentials are generically equivalent.
The main result validates a conjecture made by H. W. Oliver in 1951 (see
[OI1], p. 15]). Most [Ol1] results also appear in [OI2].

Throughout this article, all functions are taken to be real-valued. How-
ever, all results remain true when the real-valued functions considered here
are replaced by complex-valued ones, and all of the proofs are unchanged.

1. Some multidimensional derivatives and equivalences between
them. Let d be a positive integer, and k = (k1,...,kq) be a d-multiindex,
where each k; is a nonnegative integer. Then || = k1 + -+ + kg and k! =
/<a1! s Hd!.

Let * = (z1,...,24) and h = (h1,...,hq) be points in R?. We denote

A = h%+~~+h§ and h”Zh’fl'--h;d.
We start with a one-dimensional theorem of Peano.

THEOREM 1.1. Fiz x € R and a positive integer n. If a function f :
R! — R has the property that f)(x) ezists, then
Fla+h) =3 fP )7y + ollhl").
k=0
In dimension d, the standard meaning of a function g being differentiable
at x is that there exist all d first order partial derivatives {%g(m)} and,
additionally, we have the approximation

0
+ g 0(@ha + ol ).

To extend Theorem to higher dimensions, we generalize not the one-
dimensional condition that f(™(z) exists, but rather the obviously identical
one-dimensional condition that f(™1 is differentiable at z. This leads to
the following generalization of Peano’s Theorem (see [AGV]).

g(x+h)=g(x)+ aag(q;)hl 4.
1

THEOREM 1.2. Fiz x € R? and a positive integer n. If f: R4 = R and
for every multiindex k = (K1,...,kq) with |k| =n —1 >0, the kth partial
derivative
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. an—l
" f(x) = mf(x)

(in particular, 3°f(x) = f(x)) is differentiable at x, then

(1.1) flx+h)= Y a"‘f(l’)%+0(||h|!”)'

0<|k|<n

DEFINITION 1.3. We say f is n times differentiable at x if all partial
derivatives of f of orders < n exist at x and

(1.2) flw+h)y= > 0°f +0(||h|| )
D<|n\<n
sz, Z a“f )R" =+ o(||A]]"™).
k=0 |k|=k !

In order to write this in a more compact way, one can employ the multi-
nomial expansion

K

|
E k! K1 Kdq X

K1+-+rg=k |i|=k
This applied backwards to x = (z1,...,x4), with x; = h;0;, leads to

. Ry OV f (e

(1.3)
|k|=k

where V = (01,...,0;) is the usual gradient operator. Equation (1.1]) then
has the equivalent compact form

n ) k(o
S VIO g,

(1.4) flz+h)=
k=0
See [F] to get a feel for this now standard material.

The following definitions all assume that the functions under considera-
tion are Lebesgue measurable mappings from R? to C. Suppose a function
f : R - R has no a priori smoothness other than having polynomial ap-
proximation of degree n near z. By grouping terms of equal homogeneity
together, this may be written as

" Pz, h
IERRS Sk L (T
k=0
where P,; is a homogeneous polynomial of degree k in the variable h with
coefficients depending on x. Motivated by the expression appearing in for-
mula , we will write P, as the homogeneous degree k polynomial
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nk z, h Z fl‘i )
|k|= R

thereby defining f.(z) as the kth partial Peano derivative of f at x. We
further define P, (x,h) := Py, (z, h) to be the nth Peano differential of f at x.
Because of Theoremn and calculation -, when f is smooth enough, the
nth Peano differential P, exists and is equal to the ordinary nth differential
(h - V) f(z). Notice that from their definitions, mixed partial derivatives
automatically commute. For example, the coefficient of the hjiho-term of
the polynomial Ps(z,h) is %flg(:z:), but since hihs = hohy, the same
coefficient is also 1,2—'1, fa1(x).

DEFINITION 1.4. If f(z+h) = 3|, <1 fu(@)R" /K +O(||h[|") at z, say
that f is Lipschitz of order n at x. This is denoted f € T),(x) in [CZ].

DEFINITION 1.5. If f(z + h) = X2, <, fu(z)h" /6l + o([[h]|") at =, say
that f has an nth Peano derivative at x. This is denoted f € t,,(z) in [CZ].

If the dimension d is 1, there exists only one nth partial Peano deriva-
tive f(x), and it coincides with the usual nth Peano derivative. In this case,
the nth Peano differential is just f,,(z)h"

Notice that Theorem can now be interpreted as saying that if all the
order n—1 partial derivatives of a function f are differentiable, then f has an
nth order Peano differential, and all the nth order partial Peano derivatives
exist and agree with their corresponding ordinary partial derivatives.

DEFINITION 1.6. If f : R? — R satisfies

n
_i(n .
Sy () #Ge i) = oI
i=0
at z, say that f is Riemann Lipschitz of order n at x.
DEFINITION 1.7. If f : R? — R satisfies

& n—i ™ K

(1.5) > (-1 <Z> z + ih) Z fﬁ VR® + o(||h||™)
=0 |k|=n

at z, say that f is Riemann differentiable of order n at x.

If, in the last two definitions, we replace

n n
1) 77) z+ih) b 1 ’H’(’,L) <x+<i—n>h>,
S (7 eim b S (7)) .
the function f is respectively called symmetric Riemann Lipschitz of order
n at x, and symmetric Riemann differentiable of order n at x.
The Riemann and symmetric Riemann derivatives are special cases of
the following generalized derivative.
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DEFINITION 1.8. Let e be a nonnegative integer and let A = {A4;;a;} be
a set of 2(n + 1 + e) real numbers satisfying

n-+e .
0 ifs<n
1.6 Ajal = nldg, = ’
(1.6) iz; {n! if s =n.
Then f : R? — C has an nth order A-derivative Da f at x € R? if
n-+e
(1.7) > Aif(x + aih) = Daf(x,h) + o(||h[|")
i=0

= 3 DAD L + ol "),
|k|=n
When d = 1, the A-derivative Dp f is called a generalized Riemann
derivative in [AsI]. Since Y7 ((—1)""*(")i* = nldg, for 0 < s < n, the
Riemann derivative is a special case of generalized Riemann derivative. It is
easy to see that a slide of a generalized Riemann derivative is also a general-
ized Riemann derivative. This means that if Da f(z) exists for A = {A4;;a;},
then for any real constant 7, Da_f(z) exists, where A; = {A;;a;, — 7}. In
particular, let 7 = n/2 to see that the symmetric Riemann derivative is also
a generalized Riemann derivative.

DEFINITION 1.9. Let A = {A;;a;} be as in Definition [1.8] If
n+e

ZAif(x +ah) = O(||h]]") at =,
i=0
say that f is A-Lipschitz of order n at x.
PROPOSITION 1.10. Whenever the nth Peano derivative P, (xz,h) exists,
the generalized nth A-derivative DA f also exists and is equal to P,(x,h).

Proof. Assume P, (z, h) exists. Expand each f(z+ a;h) and interchange
the order of summation. Note that (ah)® = (ah1)" - - - (ahg)®@ = al"lh* for
every real number a. We have

n+te n+e
N Aif(z+aih) ZA > ful@)(@) ‘“‘f+0(\|h\| )
=0 |k|<n
k nte
S @5 (S a4 Y a {2 A} + o)
|k|<k—1 =0 |,{|
S Fl) 0+ 3 )t} o)
|k|<k—1 |k|=n

= Py(z,h) + o(||h]|"). =
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What we call a generalized Riemann derivative, or an A-derivative, is
fairly general if the underlying space is R! and if one wishes to obtain a
derivative of any integer order by means of a finite number of function
evaluations, followed by a single limiting process. Over R? for d > 2, the
points x + a;h all lie on the line passing through = and = + h, so there are
many other potential possible generalized derivatives similar to, but different
from, our generalized Riemann derivatives. For example, I. B. Zibman [Zi
has dealt with the case where the evaluation points lie on a (d — 1)-dimen-
sional sphere centered at z.

The following well-known result says that the property of being Lips-
chitz is generically equivalent to being differentiable in the sense that for
every measurable function, the set E of points where the function f is Lip-
schitz (relative to E) of order k contains a subset F' of full measure (i.e.,
|E\ F| =0), so that f is differentiable of order k (relative to F') at every
point of F. This theorem provides a powerful tool for proving that various
conditions that are pointwise weaker than differentiability are generically
equivalent to differentiability.

THEOREM 1.11. If a function f on R is Lipschitz of order n at each
point of a (Lebesgque) measurable set E of RY, then there is a subset F of E
such that |[E\ F| =0 and f is Peano differentiable relative to F' of order n
at every point of F.

Theorem appeared in a more general form in [CZ], where the proof
of the special case that is our Theorem [1.11] is correctly attributed to the
1951 University of Chicago thesis of H. William Oliver [OI1]. A second proof
of Theorem that appeared in [Bu] had the additional assumption that
FE be a closed set. Actually, with very little additional work, this assumption
may be lightened. Here is a simple meta-theorem that, when combined with
the result proved in [Bul, yields a proof of Theorem m

THEOREM 1.12 ([As2]). Suppose p and q are two properties such that
for any closed set C, if p is true at each point of C, then q holds at a.e.
point of C. Then for any measurable set E, if p is true at each point of F,
then q holds at a.e. point of E.

Our main theorem asserts the equivalence of six different smoothness
conditions. No pair of these are necessarily equivalent at a single point, but
the six conditions are all equivalent if appropriate sets of measure zero are
neglected.

THEOREM 1.13 (Main theorem). Let n be a positive integer, and suppose
that, for every x in a measurable set E C R?, the measurable function
f:R% = R satisfies one of the following siz conditions.
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f is nth Peano differentiable at x,

. [ is Lipschitz of order n at ,

. [ is Riemann differentiable of order n at x,

. [ is Riemann Lipschitz of order n at =,

f is symmetric Riemann differentiable of order n at x,
f is symmetric Riemann Lipschitz of order n at x.

> U W

Then f satisfies all six conditions at almost every point of E.

Proof. The simple fact that |h"| < C|h||™ for every s with |k] = n
justifies the pointwise valid implications “1 implies 27, “3 implies 4”7, and
“5 implies 6”. Proposition [1.10| justifies the pointwise valid implications
“1 implies 3” and “1 implies 5”. The sliding Lemma below shows that
condition 6 on F implies condition 4 at a.e. point of E. Theorem [I.11]|asserts
that condition 2 on E implies condition 1 at a.e. point of E. So looking at
a diagram of implications makes it clear that in order to have a fully closed
chain of implications, it is sufficient to prove that condition 4 holding on E
implies condition 2 holding at a.e. point of E. This is the result of the next
theorem, whose proof is given in Section [3 =

THEOREM 1.14. Suppose f is Riemann Lipschitz of order n at every
point of E. Then E has a subset F such that |E\F| =0, and f is Lipschitz
of order n relative to F at every point of F.

2. Multidimensional sliding lemma. Of the two results needed to
complete the proof of our main Theorem [I.13] we first do the sliding lemma.
The proof of its one-dimensional case appearing in [Asl, pp. 183-185] uses
two preliminary lemmas. Here is the d-dimensional version of the first re-
sult.

LEMMA 2.1. Let 0 = (0,...,0) be a point of outer density of a (possibly
nonmeasurable) set £ C RY. Let v, 3 be real numbers such that B # 0. Given
€ >0, there is a § > 0 such that for all u # 0 with ||ul| < 9,

(2.1) m*{ve N :au+pve&})>|N|(1—-e),

where N is the annulus {v : ||ul| < ||v|| < 2||lu||}, m* denotes outer measure,
and |F| denotes Lebesque measure whenever F is a subset of RY.

Proof. Let G be a cover of £. This means that £ is contained in the
Lebesgue measurable set G and for every measurable set C, m*(€ N C)
= |GNC|. In particular, 0 is a point of density of G. For fixed «, 3, and wu,
let B be the ball of radius |« ||u|| + |5|2||u|| centered at 0 and consider the
affine map ¢ : N — B given by ¢(v) = au+ fv. The radius of B was chosen
to guarantee that ¢(N) C B. Let b be the volume of a ball of radius ||ul|
so that the volume |N| satisfies [N| = |Byjy(0)] — |Bjy (0)] = (24 — 1)b,
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Fig. 1. Situation in the proof of Lemma 2.1

[ o(N)| = |B|N| = [B|%(27 = 1)b, and |B| = (|a] + 2|8])?%. Since choosing
|lu|| very small forces G to nearly fill B, and since the ratio

(V)] _ 181727 — 1)

1Bl (laf+2|8])¢
is positive and independent of ||ul|, choosing ||u|| very small also forces G to
nearly fill ¢(N). In other words, given € > 0, there is a 6 > 0 such that for
all u # 0 with |Jul| <4,
(2.2) G N e(N)[ > |p(N)|(1 —e).
1

Furthermore, the mapping ¢~ consists of a translation, y — —au + v,
followed by a dilation, y — S~ ty. Applying either a translation or a dilation
does not change the relative proportion of a subset’s measure to a set’s
measure. Thus from estimate , it follows that also

o™ G Ne(N)] > o™ (V)L — o).
Since o H(ANB) = ¢ 1 (A)Np~1(B) and ¢~ 1(p(N)) = N, the last inequal-
ity may be written as
$H(G) N N| > IN|(1 - ¢).

Since G is a cover for £, we see that p~!(G) is a cover for ¢~ 1(€), and we

finally arrive at .
m* (¢~ (£) N N) > |N|(1 —e),

which is a restatement of the desired inequality (2.1]). m

The second result needed in the proof of the sliding lemma gives a suffi-
cient condition for local boundedness.

LEMMA 2.2. Suppose that E is a measurable set, E C R%, f is a mea-
surable function, and

> Aif(z+aih) =0(1) foralx € E,
=0
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where the numbers A; are nonzero and the numbers a; are distinct. Then f
is bounded in a neighborhood of almost every point of E.

Proof. For each natural number j, let
> 1
Ej = {x €E: ‘ZAif(x+aih) <jif0 < ||n| < j},
i=0

Fy={z € R: |f(x)] < j}.

Observe that the Ej; may not be measurable. Since ;o Ej N Fj = E, it
suffices to fix j and show that f is bounded in a neighborhood of every point
of outer density of E; N F;. Assume 0 is such a point. Let u # 0, let NV be
the annulus {v : ||u|| < |lv|| < 2||u||} and let B={v € N :v € E; N F;}. By
Lemma there is a g > 0 such that ||u| < &y implies m*(B) > 1|N|. For
i=1,...,m,let C; ={v e N:v+(ai/ap)(u—v) € F;}. Since F; D E; N Fj
and F; is measurable, F; has 0 as a point of density. By Lemma again,
for each ¢ = 1,...,m, there is a §; > 0 such that 0 < ||u|| < J; implies
|Cs| > (1 - —)|N| Set C' =", C;. Then if 0 < |lu|| < min{d;}, we have
|C| > 3|N| and
N <m*(B) <m*(BNC)+m*(B\C) <m*(BNC)+|N\C|
m*(BNC)+ 3|N|.

Thus m*(BNC) > 0 and we may pick a v € BN C. If additionally ||u| <
laol/(3,), then
1

—(u—v)
ao

1
(Nl + 2ffull) < =

[ao]

1
< —(llul] + o)) <
’a0|(|| I+ llvll)

Since v € B,

m 1 '
ZAif<v+ai<(u—v)>>’ < 7J,
— ao

’Aof +2Af<v+ (u—v))’ < g

=1

and since the v also belong to all Cj,

|F(w)] < |j|<m Aif(v+z(uv)>‘+j) A |<{§;1Ai\}+1)j.

The right hand side provides the required uniform bound for f in a neigh-
borhood of 0. =

Here is the d-dimensional sliding lemma.
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LEMMA 2.3 (Multi-dimensional sliding lemma). Suppose that m > 1,
n >0, and E is a measurable subset of R such that

m

3" Aif(z +aih) = O(|h|™)  for all « € E,
=0

where the A;’s are nonzero and the a;’s are distinct. Then for any real a,
m
ZAZf(x + (a; —a)h) = O(||h||™)  for almost every x € E.

If “O7” is replaced by “o” in the hypothesis, then the conclusion also holds
with “o” in place of “O”.

Proof. We may assume ag # 0 by rearranging the terms if necessary. We
may also assume that 0 < |E| < co. Let

= T 1
B = {o e B3 [ o aan)| <la it ol < 1 .
=0

Observe that the E; may not be measurable. Since |JE; = E, it suffices
to fix j and prove the lemma at every point of £ that is a point of outer
density of E;. To simplify notation, let £ = 0 be such a point. For each
u # 0, let N be the annulus {v : [|u| < ||v]| < 2||u||}. By Lemma [2.2] if ||ul|
is sufficiently small, then all of the m + 1 sets

Bf ={ve N:(a;—a)u—apv € Ej}, i=0,1,...,m,
and all of the m sets
Cf:{veN:—au—i—(ai—agveE-} i=1,...,m,
) Although B and C} may

et}

have outer measure greater than |V |(
not be measurable, the sets

2+1

B, = {v eEN: ‘iAsf([(ai — a)u — agv] +asv) <
5=0

for:=0,1,...,m, and
Ci = {v eEN: ’ZA —au ~+ (a; — ap)v] + asu)‘ < j||an}

for i« = 1,...,m, are measurable. Furthermore, if we additionally require
that ||ul| < 2%, then ||v|| < % and B; D B for all 4, so that |B;| > m*(B}).
Also C; D Cf for all i so that |C;| > m*(C). Thus (N, B:) N (Ni~, Ci)
has positive measure and we may choose v to belong to this set.
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Since (a; — a)u — agv € B; for all i, we have
ZA fl{(a; —a)u — apv} + asv] = O(||v]|™) = O(||u||™), i=0,1,...,m.
Multiplying the ith equation by A;, and summing over i, we get

ZA [ZA FH(ai — a)u — agv} + asv ]] = O(|Ju|™).

Rearranging the order of summation, we obtain

ZA [ZAf i — a)u — agu} + asv ]] = O(||ul").

Since the term in curly brackets is in Cy for every s > 0, each term of the
outer sum except the s = 0 term is O(||u||™). Hence the latter term is also

O(||ul|™), i-e.,
Ao D~ Aif{—au + (a0 — ao)v} +azul| = O(ljul™).

1=0

Dividing by Ag and simplifying yields
m
ZAif[(ai —a)ul = O([[u]")  as [[ul| =0,
which is the desired result. The “0” case is proved in a very similar manner. =

3. Proof of Theorem Our assumption is that f is Riemann
Lipschitz of order n at every « € E. In other words, we assume that

n

(3.1) > ()it in) = oqal

1=0

Denote the left side of (3.1)) as A,(x,h) and, following [MZ], define an-
other nth difference A, (x,h) by

Ay(z,h) = f(z+h) — f(z)
and
(3.2) Ai(x, h) = Aj_1(z,2h) — 277 Ay (@, h)  fori=2,3,....

It is shown in [MZ] that this construction leads to another generalized deriva-
tive in the sense that there are constants ag, o, ..., a, and A\, such that

(33) ANn(IL'; h) = OZOf(l')+Oélf(lL‘+h)—|—052f(:L‘—|—2h)_|_ . ._|_anf(l,_|_2n—1h)’
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where
(3.4) Zai:(), Zaﬂis =0 fors=1,...,n—1, )\nZaﬂm:nl.
i=0 i=1 i=1
Furthermore, there are constants C; such that
on—1l_p
An(z,h) = > CjAn(x+ jh,h).
j=0
Because of this identity and Lemma (the sliding lemma), we have
(3.5) An(z,h) = O(||n|") a.e. on E.

Fix an = where this is true. There is a § = §(x) > 0 and an M = M(x)
such that whenever ||h|| < ¢ then

| An(a, )| < M|[R]™
From (3.2), for each i = 1,..., k, we have

2<n1><~>{ Ao <2h.> oA, (h) '} < 2<n1><~>{M’
20 2° -

By addition we obtain

I
2’L

A n— A h 7noo —1 n n
(3.6) ‘An(h)—2( 1)’“An_1(2k>‘§(21 27 ) M| < M),
i=1

LEMMA 3.1. If f satisfies (3.5) at every x € E, then f satisfies
An1(z,h) =O(|h™Y)  atae z€E.
Proof. The above calculation shows that (3.6 holds at all points of E
for appropriate M and ¢. By Lemma [2.2] we may also assume that f is

uniformly bounded on the ball of radius  about z. Divide inequality ([3.6)
by ||R||"! to get

An_1(h)  An_1(h)2F)
(3.7) T | < MJ[n]|
AT~ /2
or, setting u = h/2F,
An—l(u) ‘An—l(h”
< M||h|| +
[l [[Raf|=

If h is constrained to the annulus {z : /2 < ||z|| < 0}, the right hand side
is bounded. As k takes all positive integer values, u takes all values in the
punctured sphere {z : 0 < ||z|| < 0/2}. =

LEMMA 3.2. If f(x) is Peano differentiable of order n — 1 at x and if
(3.5) holds at x, then f is Lipschitz of order n at x.
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Proof. By subtracting and adding the approximating polynomial of de-
gree n — 1 to f, we see that without loss of generality we may assume
that at z the Peano differentials of order 0,1,...,n — 1 are all 0. Ex-
pand each term of formula and use the 1dent1t1es . to see that
Ap_1(u) = o(|Jul|™1). Now 1nequahty holds here, and letting k& tend
to infinity makes the second term on the left hand side tend to 0. Thus
Ap_i(W)/IIRl" = O(|All), so that An_y(h) = O(||A|"). Similarly,
An_o(h) = O(||h||"),..., and finally Ay(h) = O(||h||"), i.e., f is Lipschitz
of order n at x. m

We have assembled all the parts required for a very quick inductive proof
of Theorem [I.14] We have already deduced from the original hypothesis that
condition (3.5)) holds a.e. on E. So it suffices to inductively prove a different
theorem.

THEOREM 3.3. If condition (3.5)) holds on E, then f is Lipschitz of or-
dern at a.e. x € E.

Proof. If n =1, then coincides with the condition of being Lipschitz
of order 1. Now assume that the theorem holds for n — 1 and also that
holds on F. By Lemma condition with n replaced by n — 1 holds
a.e. on E. By the inductive hypothesis, f(x) is Lipschitz of order n — 1 at
a.e. ¢ € E. By Theorem f has n — 1 Peano differentials at a.e. z € E.
By Lemma [3.2] f is Lipschitz of order n at a.e. x € F. =

This finishes the proof of Theorem which in turn completes the
proof of the main Theorem [I The proof depends on the fact that the
generalized Riemann dlfferentlatlon corresponding to the difference A,, is
also almost everywhere equivalent to nth Peano differentiation. Any nth or-
der generalized Riemann derivative or generalized Lipschitz condition which
can be slided (h — h — 7) and/or dilated (h — «h) into either Riemann
differentiation or the generalized Riemann differentiation corresponding to
the difference A, is also equivalent almost everywhere to nth order Peano
differentiation.

The following conjecture is probably true, even in d dimensions.

CONJECTURE 3.4. Let n and e be nonnegative integers, and suppose
that for every z in a measurable set £ C R?, the measurable function
f(x) : R? — R satisfies

n+te
> Aif(x+ ah) = O(|h|™),
1=0
where S0 H¢ Aiag = nldj, for j = 0,1,...,n. Then f(x) is n times Peano

differentiable at a.e. z € E.
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