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Abstract. We give a complete description of the local integration of almost injective Lie

algebroids. We illustrate this construction with examples.

1. Introduction. In the 70’s, J. Pradines has announced a third Lie Theorem for

Lie groupoids [P3]. This theorem asserts that every Lie algebroid is integrable which

means that it is the Lie algebroid of a Lie groupoid. Some years latter R. Almeida and

P. Molino provided a counter example [AM] and K. Mackenzie defined an obstruction to

integrability for transitive Lie algebroids [Ma]. Nevertheless, it seems that the local Lie

integration of J. Pradines remains and it is used without any proof in several articles.

In the symplectic context, local integration of Poisson structure has been done by A.

Coste, P. Dazord and A. Weinstein [CDW]. P. Dazord has proved that the Lie algebroid

associated to a local action of a Lie group on a manifold is integrable into a Lie groupoid

[Da]. More recently, several positive integrability results have been prooved [MM].

A Lie algebroid is said to be almost injective when its anchor is injective when restricted

to a dense open subset of the base space. The purpose of this paper is to give a complete

description of the local integration of almost injective Lie algebroids. This is the first step

to show that these Lie algebroids are integrable as we have announced in [D].

This paper is organized as follows:

– In section 1 we recall some of the basic concepts related to the Lie theory of groupoids.

– In section 2 we make the local integration of almost injective Lie algebroids. We first do

it for trivial Lie algebroids. Then we make the integration of morphisms. In the general

case, we conclude by using a local trivialisation of the algebroid.

– In section 3 we give examples.

2. Survey on Lie theory for groupoids. In this part we recall the principal def-

initions and properties concerning Lie groupoids. For a more complete setting on this

subject one can look at [Ma, CW].
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2.1. Lie groupoids

Definition 1. A groupoid over a set G(0) is a set G together with the following

structure maps:

– An injection u : G(0) → G called the unit map. We often identify G(0) with its

image by u in G and call it the space of unit.

– A pair of surjective maps G
s

⇒
r
G(0) such that s ◦ u = id and r ◦ u = id.

The map s is called the source map and r is the range (target) map.

– A product

G(2) → G, (γ, η) 7→ γ · η

defined on the set of composable pairs: G(2) = {(γ, η) ∈ G×G | s(γ) = r(η)}.

This product satisfies:

s(γ · η) = s(η), r(γ · η) = r(γ)

(γ · η) · ν = γ · (η · ν), η · s(η) = η and r(η) · η = η.

– An inversion map

G→ G, γ 7→ γ−1

such that γ−1 · γ = s(γ) and γ · γ−1 = r(γ).

A Lie groupoid is a groupoid G
s

⇒
r
G(0) equipped with a structure of smooth manifolds on

G and G(0), such that all structure maps are smooth and s is a submersion. This implies

that r is a submersion as well, that there is a natural smooth structure on G(2) and u is

an embedding. We assume that G(0) is Hausdorff.

From now on, we shall work in the smooth context so “map” means smooth map,

“manifold” means smooth manifold, etc...

Examples. 1. Let H be a Lie group and eH its unit, then H ⇒ {eH} is naturally

endowed with a Lie groupoid structure.

2. Let R be a regular relation on a manifold M and consider the graph of R, that is

GR := {(x, y) ∈M ×M ; xRy}. Then

GR

s

⇒
r
M

is a Lie groupoid where for all (x, y) and (y, z) in GR we set

s(x, y) = y, r(x, y) = x

(x, y)−1 = (y, x) and (x, y) · (y, z) = (x, z).

This groupoid structure on a subset ofM×M is usually called the pair groupoid structure.

3. Let H be a Lie group and suppose that there is a differentiable left action of H on

a manifold M . Then

M ×H
s⋊

⇒
r⋊

M
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is a Lie groupoid called the groupoid of the action, where for all x in M and h, g in H

we define

s⋊(x, h) = x, r⋊(x, h) = h · x

(x, h)−1 = (h · x, h−1) and (h · x, g) · (x, h) = (x, gh).

Notations. If G
s

⇒
r
G(0) is a groupoid and U is a part of G(0) we usually denote

GU := s−1(U), GU := r−1(U) and GU
U := s−1(U) ∩ r−1(U).

As for Lie groups there is a notion of local Lie groupoid which is due to Van Est [VE].

A local Lie groupoid is given by:

– Two manifolds L and L(0) and an embedding u : L(0) → L. The manifold L(0) must

be Hausdorff, it is called the set of units. We usually identify L(0) with its image

by u in L.

– Two surjective submersions: L
s

⇒
r

L(0) called the range and source map, which

satisfy s ◦ u = r ◦ u = id.

– A smooth involution

L → L, l 7→ l−1

called the inverse map. It satisfies s(l−1) = r(l) for l ∈ L.

– An open subset D2L of L(2) = {(l1, l2) ∈ L × L | s(l1) = r(l2)} called the set of

composable pairs and a smooth product

D2L → L, (l1, l2) 7→ l1 · l2.

The following properties must be fulfilled:

• s(l1 · l2) = s(l2) and r(l1 · l2) = r(l1) when the product l1 · l2 is defined.

• For all l ∈ L the products r(l) · l, l ·s(l), l · l−1 and l−1 · l are defined and respectively

equal to l, l, r(l) and s(l).

• If the product l1 ·l2 is defined then so is the product l−1
2 ·l−1

1 and (l1 ·l2)
−1 = l−1

2 ·l−1
1 .

• If the products l1 ·l2, l2 ·l3 and (l1 ·l2)·l3 are defined then so is the product l1 ·(l2 ·l3)

and (l1 · l2) · l3 = l1 · (l2 · l3).

The only difference between Lie groupoids and local Lie groupoids is that in the second

case the condition s(l1) = r(l2) is necessary for the existence of the product l1 · l2 but

not sufficient. The product is defined as soon as l1 and l2 are close enough from units.

2.2. Lie algebroids. Each (local) Lie groupoid admits a Lie algebroid [P2, P1]. Let us

recall this construction.

Let G
s

⇒
r
G(0) be a Lie groupoid. We denote by T sG the bundle over G of s-vertical

vector fields. That is T sG is the kernel of the differential Ts of s.

For all γ in G let Rγ : Gr(γ) → Gs(γ) be the right multiplication by γ. A tangent

vector field Z on G is right invariant if it satisfies:

– Z is s-vertical: Ts(Z) = 0.

– For all (γ1, γ2) in G
(2), Z(γ1 · γ2) = TRγ2(Z(γ1)).
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Note that if Z is a right invariant vector field and ht its flow then for all t, the local

diffeomorphism ht is a local left translation of G that is ht(γ1 · γ2) = ht(γ1) · γ2 when it

makes sense.

The Lie algebroid AG of G is defined in the following way:

– The fibre bundle AG→ G(0) is the restriction of T sG to G(0).

– The anchor p : AG→ TG(0) is the restriction of the differential Tr of r to AG.

– If Y : U → AG is a local section of AG, where U is an open subset of G(0), we

define the local right invariant vector field ZY associated with Y by

ZY (γ) = TRγ(Y (r(γ))) for all γ ∈ GU .

The Lie bracket is then defined by:

[, ] : Γ(AG) × Γ(AG) → Γ(AG), (Y1, Y2) 7→ [ZY1 , ZY2 ]G(0)

where [ZY1 , ZY2 ] denote the s-vertical vector field obtained with the usual bracket

and [ZY1 , ZY2 ]G(0) is the restriction of [ZY1 , ZY2 ] to G
(0).

2.3. Coordinates of the second kind. To describe the local integration of almost in-

jective Lie algebroid we are going to use the model given by the coordinates of the second

kind.

Let G
s

⇒
r
G(0) be a Lie groupoid and p : AG→ TG(0) its Lie algebroid.

Let {Y1, · · · , Yk} be a local basis of sections of AG defined over an open set U of G(0).

For i = 1, · · · , k let ZYi
be the right invariant vector field associated to Yi. We suppose

for simplicity that the ZYi
are complete tangent vector fields and we denote by hti the

flow of ZYi
.

In this case Xi := p(Yi) is a complete tangent vector field over U and its flow ϕt
i is

equal to the restriction to U of the map r ◦ hti.

One can find an open set Ω of U × R
k containing U × {0} such that the map

Ψ : Ω → G, (x, t1, · · · , tk) 7→ ht11 ◦ · · · ◦ htkk (x)

is a diffeomorphism onto its image.

Such a map is called a coordinate map of the second kind. It has the following remark-

able properties:

– Ψ maps the zero section U × {0} onto the units U .

– s ◦Ψ = pr1.

– For all (x, t1, · · · , tk) ∈ Ω, r ◦Ψ(x, t1, · · · , tk) = ϕt1
1 ◦ · · · ◦ ϕtk

k (x).

Thus, the coordinate maps of the second kind enable one to identify locally a neighbor-

hood of the zero section of AG with a neighborhood of the set of units of G. Furthermore

Ω inherits a structure of local Lie groupoid over U whose source map and range map are

respectively given by

s : (y, t1, · · · , tk) 7→ y and r : (y, t1, · · · , tk) 7→ ϕt1
1 ◦ · · · ◦ ϕtk

k (y).

The local product is given by:

(x, s1, · · · , sk) · (y, t1, · · · , tk) = Ψ−1(hs11 ◦ · · · ◦ hskk ◦ ht11 ◦ · · · ◦ htkk (y))

when x = ϕt1
1 ◦ · · · ◦ϕtk

k (y) and hs11 ◦ · · · ◦hskk ◦ht11 ◦ · · · ◦htkk (y) belongs to the image of Ψ.
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Note that the source map s is simply the canonical projection over U and the range

map r only depends on the vector fields X1, · · · , Xk over U .

3. Local integration. Let A = (p : A → TM ; [, ]) be a Lie algebroid. We denote

by p̃ : Γloc(A) → Γloc(TM) the morphism induced by p from the set of differentiable

local sections of A to the set of local differentiable tangent vector fields over M . Let M0

denote the set of points of M over which p is injective. We will say that A is almost

injective if p̃ is injective or equivalently if M0 is a dense open subset of M .

The purpose here is to give a complete description of the local integration of such Lie

algebroids.

If we are given a Lie algebroid A over M the coordinate maps of the second kind

provide a model for the local integration of A. Using this model there is no choice for

the source and range maps. The difficulty is to define the product. To do so one must be

able to recover the right invariant vector fields. That’s what we are going to do in this

section.

3.1. Baker-Campbell-Hausdorff type formula. Suppose you are given a manifold M

and k tangent vector fields X1, · · · , Xk over M such that for all i, j = 1, · · · , k there exist

k maps f ij
l ∈ C∞(M) which satisfy

[Xi, Xj ] =

k
∑

l=1

f ij
l ·Xl.

For i = 1, · · · , k we denote by Ai ∈ Mk(C
∞(M)) the matrix with entries (Ai)jl = f il

j .

Thus, the equality ([Xi, X1], · · · , [Xi, Xk]) = (X1, · · · , Xk) ·Ai holds.

We denote by ϕt
i the flow of Xi.

Let Ω0 be an open subset of M ×R
k containing M ×{0} and which is in the domain

of the map (x, t1, · · · , tk) 7→ ϕt1
1 ◦ · · · ◦ ϕtk

k (x).

We define

s :M × R
k →M, (x, t1, · · · , tk) 7→ x,

r : Ω0 →M, (x, t1, · · · , tk) 7→ ϕt1
1 ◦ · · · ◦ ϕtk

k (x).

As previously, a tangent vector field Y overM ×R
k is s-vertical when Ts(Y ) = 0. If Ω is

an open subset of M ×R
k, we will denote by T s(Ω) the bundle of s-vertical vector fields

defined on Ω. In other words T s(Ω) is the restriction of T s(M × R
k) := Ker(Ts) to Ω.

The purpose of this part is to show the following proposition.

Proposition 1. There exist an open subset Ω1 of Ω0 which contains M × {0}, a

family {Z1, · · · , Zk} of s-vertical vector fields defined on Ω1 and a real number η > 0 such

that

1. The family {Z1, · · · , Zk} forms a base of sections of T sΩ1.

2. The equality Tr(Zi) = Xi ◦ r holds for i = 1, · · · , k.

3. For i, j = 1, · · · , k and (x, ξ) ∈ Ω1 ⊂M × R
k we have

[Zi, Zj ](x, ξ) =
k

∑

l=1

f ij
l (r(x, ξ)) · Zl(x, ξ).
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4. For all t ∈] − η, η[ and i = 1, · · · , k, the flow hti of the vector field Zi is defined on

Ω1 and satisfies

(a) s ◦ hti = s,

(b) r ◦ hti = ϕt
i ◦ r,

(c) for all x ∈M and (t1, · · · , tk) ∈ R
k such it makes sense we have

ht11 ◦ · · · ◦ htkk (x, 0) = (x, t1, · · · , tk).

To prove this proposition we need the following lemma.

Lemma 2. For all i = 1, · · · , k there exists a map Ci : O → Mk(R), where O is an

open subset of M × R containing M × {0}, which satisfies:

– Ci(·, 0) = Id ;

– For all (x, t) in O ⊂M × R and (v1, · · · , vk) in R
k,

(ϕt
i)∗(v1 ·X1 + · · ·+ vk ·Xk)(ϕ

−t
i (x)) = (X1, · · · , Xk)(x) · Ci(x, t) ·







v1
...

vk







Proof. Fix an x in M and i = 1, · · · , k. Let Hi(x, ·) be the path in (TxM)k given by

Hi(x, ·) :]− ǫ, ǫ[→ (TxM)k, t 7→ (ϕt
i)∗(X1, · · · , Xk)(ϕ

−t
i )(x)

where ǫ is a strictly positive real number such that x is in the domain of ϕt
i for all t in

]− ǫ, ǫ[. Using [S] we can show that

Hi(x, t)
′ = −(ϕt

i)∗([Xi, X1], · · · , [Xi, Xk])(ϕ
−t
i )(x) = −Hi(x, t) · Ai(ϕ

−t
i (x)).

Consider now the vector field

Yi :M ×Mk(R) → T (M)×Mk(R)×Mk(R) ≃ T (M ×Mk(R)),

(x,m) 7→ (x,−Xi(x);m,−m · Ai(x)).

Denote by T t
i the flow of Yi. One can find an open subset Oi ofM×R containingM×{0}

such that the following map is defined

Ci : Oi → Mk(R), (x, t) 7→ pr2 ◦ T
t
i (x, Id).

Then Ci(·, 0) = Id and C′
i(x, t) = −Ci(x, t) ·Ai(ϕ

−t
i (x)).

Thus for all x in M the path in (TxM)k defined by t 7→ (X1, · · · , Xk)(x) · Ci(x, t)

fulfils the same differentiable equation as Hi(x, ·) and takes the same value at t = 0.

So the equality Hi(x, t) = (X1, · · · , Xk)(x) · Ci(x, t) holds for all (x, t) in Oi.

Proof of Proposition 1. We denote by { ∂
∂ti

; i = 1, · · · , k} the canonical base of the

bundle of s-vertical fields on M × R
k and by {e1, · · · , ek} the canonical base of Rk.

We can find an open subset Ω̃ ⊂ M × R
k which contains M × {0} such that for all

(x, ξ) = (x, t1, · · · , tk) in Ω̃ and i = 1, · · · , k

T(x,ξ)r(
∂

∂ti
) = (ϕt1

1 )∗ ◦ · · · ◦ (ϕ
ti
i )∗ ·Xi(ϕ

−ti
i ◦ · · · ◦ ϕ−t1

1 (r(x, ξ)))

= (X1, · · · , Xk)(r(x, ξ)) · B(x, ξ) · ei
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where B ∈ Mk(C
∞(Ω̃)) is the matrix which the i-th column is the i-th column of the

product

C1(r(x, ξ), t1) · C2(ϕ
t2
2 ◦ · · · ◦ ϕtk

k (x), t2) · · ·Ci(ϕ
ti
i ◦ · · · ◦ ϕtk

k (x), ti).

Furthermore the matrix B(x, 0) is equal to Id for all x ∈ M so we can find an open

subset Ω1 of Ω̃ containingM×{0} such that B(x, ξ) admits an inverse for all (x, ξ) ∈ Ω1.

We define Zi(x, ξ) = (x, 0, ξ, B−1(x, ξ) · ei) ∈ T(x,ξ)(M × R
k) = TxM × TξR

k. It is then

straightforward to check that conditions 1), 2) and 3) are fulfilled.

The equalities s◦hti = s and r ◦hti = ϕt
i ◦ r come from s∗(Zi) = 0 and r∗(Zi) = Xi ◦ r,

respectively.

Take i = 1, · · · , k and (x, ξit) = (x, 0, · · · , 0, t, ti+1, · · · , tk) ∈ Ω1. Then the matrix

B(x, ξit) is of the form
(

Idi

0
D0

D1

)

, thus Zi(x, ξ
i
t) =

∂
∂ti

.

Let c be the path in Ω1 defined by t 7→ h−t
i (x, ξit) then c(0) = (x, ξi0) and the

equality Zi(x, ξ
i
t) = ∂

∂ti
implies that c′(t) = 0. Finally (x, 0, · · · , 0, t, ti+1, · · · , tk) =

hti(x, 0, · · · , 0, 0, ti+1, · · · , tk) for all t. This proves the last point.

3.2. Local integration of trivial Lie algebroids. Let (p : A → TM, [, ]) be a Lie alge-

broid. We denote by n the dimension of the manifold M and by k the dimension of the

bundle A. We suppose that 0 < k ≤ n and that the bundle A is trivialisable.

Let {Y1, · · · , Yk} be a base of sections of A and X1 = p(Y1), · · · , Xk = p(Yk) the

corresponding tangent vector fields over M . Because A is trivial, for all i, j, we can find

k maps f ij
l ∈ C∞(M) such that

[Yi, Yj ] =

k
∑

l=1

f ij
l · Yl,

and then

[Xi, Xj ] = p([Yi, Yj ]) =

k
∑

l=1

f ij
l ·Xl.

So we can apply Proposition 1.

As previously, we denote by ϕt
i the flow of Xi. We consider the maps

s : (x, ξ) ∈M × R
k 7→ x ∈M and r : (x, t1, · · · , tk) ∈M × R

k 7→ ϕt1
1 ◦ · · · ◦ ϕtk

k (x) ∈M.

We take an open subset Ω1 of M × R
k which contains M × {0}, a base {Z1, · · · , Zk} of

sections of T sΩ1 and a real number η > 0 such that

Zi(x, 0) = Yi(x), T r(Zi) = Tr(Zi ◦ r) = p(Yi ◦ r) = Xi ◦ r;

[Zi, Zj ](x, ξ) =
k
∑

l=1

f ij
l (r(x, ξ)) · Zl(x, ξ);

for all t ∈]− η, η[ the set Ω1 is in the domain of the flow hti of the vector field Zi and the

following assertions are fulfilled:

s ◦ hti = s, r ◦ hti = ϕt
i ◦ r (1)

and for all x ∈M and (t1, · · · , tk) ∈ R
k such it makes sense we have

ht11 ◦ · · · ◦ htkk (x, 0) = (x, t1, · · · , tk). (2)
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Let

Ω2 = {(x, t1, · · · , tk) ∈ Ω1 ; (r(x, t1, · · · , tk), 0) ∈ Im(ht11 ◦ · · · ◦ htkk )

and (ht11 ◦ · · · ◦ htkk )−1(r(x, t1, · · · , tk), 0) ∈ Ω1}.

The set Ω2 is an open subset of Ω1 which contains the zero section M × {0}. we define

the differentiable map

i : Ω2 → Ω1, (x, t1, · · · , tk) 7→ h−tk
k ◦ · · · ◦ h−t1

1 (r(x, t1, · · · , tk), 0).

Using the equalities (1) and (2), we check that s ◦ i = r, r ◦ i = s and that the restriction

of i to the zero section M × {0} is the identity map.

Theorem 3. Suppose that the anchor p is almost injective. There exists an open

subset G of Ω2 which contains the zero section such that G
s

⇒
r
M equipped with the

following maps is a local Lie groupoid over M .

– The source map is s and the range map is r.

– The unit map is the zero section.

– The inverse map is the map i:

(x, t1, · · · , tk) 7→ h−tk
k ◦ · · · ◦ h−t1

1 (r(x, t1, · · · , tk), 0).

– The local product is given by

(y, s1, · · · , sk) · (x, t1, · · · , tk) = hs11 ◦ · · · ◦ hskk (x, t1, · · · , tk)

and is defined over

D2G = {((y, s1, · · · , sk), (x, t1, · · · , tk)) ∈ G×G ; y = r(x, t1, · · · , tk),

(x, t1, · · · , tk) ∈ dom(hs11 ◦ · · · ◦ hskk ) and hs11 ◦ · · · ◦ hskk (x, t1, · · · , tk) ∈ G}.

Moreover, the Lie algebroid of G is A.

The non-straightforward points to check in order to prove this theorem are the asso-

ciativity of the product and that the inverse map is an involutive diffeomorphism.

3.2.1. Preliminary work. We are going to show here the following proposition:

Proposition 4. There exists a neighborhood Ω3 of the zero section in M × R
k such

that the only local section of both s and r with values in Ω3 is the zero section.

For each τ = (t1, · · · , tk) ∈ R
k, we define the s-vertical vector field

Zτ : Ω1 → TΩ1, (x, ξ) 7→
k
∑

i=1

ti · Zi(x, ξ).

We denote by ψλ
τ the flow of Zτ . Remark that ψλ

τ = ψ1
λτ and that the equality Tr(Zt) =

Tr(Zt ◦ r) implies that r ◦ ψλ
τ = r ◦ ψλ

τ ◦ r.

Thus the restriction of the map r ◦ ψλ
τ to M × {0} is the flow of the tangent vector

field Xτ over M defined by

x ∈M 7→ T(x,0)r(Zt) =
k

∑

i=1

ti ·Xi(x) ∈ TM.
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Lemma 5. There exists an open subset Ω̃1 of Ω1 which contains the zero section such

that the map

Θ : Ω̃1 → Ω1, (x, τ) 7→ ψ1
τ (x, 0)

is a diffeomorphism onto its image.

Proof. The existence of an open subset of Ω1 which contains the zero section and

which is in the domain of the map Θ comes from the equality ψλ
τ = ψ1

λτ .

We first remark that the restriction of Θ to M ×{0} is equal to identity. Furthermore

T(x,0)Θ( ∂
∂ti

) = Zi(x, 0) for all x ∈ M and i = 1, · · · , k. So for all x in M the differential

of Θ is an isomorphism.

Proof of Proposition 4. LetM0 be the dense open subset ofM over which p is injective.

Let K be a compact subset of M and t ∈ R
n \ {0}.

As previously we denote by Xt = Tr(Zt|M ) the tangent vector field on M whose flow

is the restriction of the map r ◦ ψλ
t to units.

The Period bounding Lemma [AR] asserts that there exists a real number ηK,t > 0

such that if the orbit of Xt passing through x ∈ K is periodic with a non zero period τx
then τx ≥ ηK,t. So one can find a real number 0 < εK,t < 1 such that K×]− εK,t, εK,t[

is a subset of Ω0 and for all x ∈ K ∩M0 the map

πx,t :]− εK,t, εK,t[→ M, λ 7→ r ◦Θ(x, λt) = r ◦ ψλ
t (x)

is injective. When t = 0, we let πx,0(λ) = x for all λ ∈ R.

We define AK = inft∈Rn, ‖t‖=1{εK,t}, then 0 < AK < 1.

Note that for all x ∈ K ∩ M0, t ∈] − AK , AK [\{0} and λ ∈ [−1, 1] the following

equality holds:

πx,t(λ) = πx, t
‖t‖

(λ‖t‖).

So for all x ∈ K ∩M0 and t ∈]− AK , AK [\{0} the map πx,t is injective when restricted

to [−1, 1]. In particular πx,t(λ) = x if and only if λ = 0 or t = 0.

Let {Ki, i ∈ I} be a covering ofM by compact balls. We proceed as before and define

W =
⋃

i∈I Ki×] − AKi
, AKi

[ and Ω̂1 =
◦

W . Then Ω̂1 is an open subset of Ω1 containing

the zero section. We define Ω3 = Θ(Ω̂1) ∩ Ω1, it is also an open subset of Ω1 containing

the zero section.

Let ν : O → Ω3 be a local section of both s and r with values in Ω3. We consider

ν̃ := Θ−1 ◦ ν : O → Ω̂1 ; x 7→ (x, tx). Then for all x ∈ O,

r ◦ ν(x) = r ◦Θ(x, tx) = πx,tx(1) = x.

So tx = 0 when x belongs to O∩M0. The continuity of ν̃ implies that ν̃ is the restriction

to O of the zero section. Furthermore, Θ is a diffeomorphism which sends the zero section

onto the zero section, so ν is the restriction to O of the zero section as well.

If ξ = (t1, · · · , tk) ∈ R
k we denote hξ := ht11 ◦ · · · ◦ htkk . It is a local diffeomorphism of

Ω1. We denote by Υ the pseudo-group of local diffeomorphisms of Ω3 generated by the

hξ restricted to Ω3. The equations (1) and (2) imply that for all ϕ ∈ Υ the equalities

s ◦ ϕ = s and r ◦ ϕ = r ◦ ϕ ◦ r hold.
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We deduce from the previous proposition

Corollary 6. For all ϕ ∈ Υ and x ∈ M the following equality holds when it makes

sense

ϕ ◦ i ◦ ϕ(r ◦ ϕ−1(x, 0)) = (x, 0).

Moreover if ϕ(x, 0) = (x, 0) then ϕ(z) = z for all z ∈ r−1(x) ∩ dom(ϕ).

3.2.2. Proof of Theorem 3. We define G := (Ω2∩Ω3)∩ i(Ω2∩Ω3). It is an open subset

of Ω2 which contains the zero section. We have already noticed that in order to prove

the theorem we must show that the inverse map is involutive and that the product is

associative.

Let’s show that the restriction of i to G is an ivolutive diffeomorphism.

Let (x, ξ) = hξ(x) ∈ G. By applying the first assertion of the corollary 6 to (hξ)−1 we get

(hξ)−1 ◦ i ◦ i(hξ(x)) = x for all x in M . Thus i ◦ i = i.

Let’s show the associativity of the product.

Suppose that the following products are defined:

(r(x, ξ3), ξ2) · (x, ξ3) = hξ2 ◦ hξ3(x),

(r(hξ2 ◦ hξ3(x)), ξ1) · (r(x, ξ3), ξ2) = hξ1 ◦ hξ2(r(x, ξ3)) and

((r(hξ2 ◦ hξ3(x)), ξ1) · (r(x, ξ3), ξ2)) · (x, ξ3).

Fix τ ∈ R
k such that hξ1 ◦ hξ2(r(x, ξ3)) = hτ (r(x, ξ3)). According to the corollary we

have the equality hξ1 ◦ hξ2 = hτ on r−1(r(x, ξ3)). So we obtain

((r(hξ2 ◦ hξ3(x)), ξ1) · (r(x, ξ3), ξ2)) · (x, ξ3) = hξ1 ◦ hξ2 ◦ hξ3(x)

= (r(hξ2 ◦ hξ3(x)), ξ1) · ((r(x, ξ3), ξ2) · (x, ξ3)).

Remark 1. – The elements of Υ restricted to G are local left translations of G.

– The almost injectivity of A implies that the local groupoid G
s

⇒
r
M is such that

the only local section of both s and r is the unit map. A (local) groupoid having this

property is called a (local) quasi-graphoid or an essentially principal groupoid [B, R].

3.3. Local integration of morphisms. We describe here the (local) integration of mor-

phisms between Lie algebroids. One can find different proofs of this in [Ma, MM, MX].

For ∗ = 1, 2, let (p∗ : A∗ → M, [, ]∗) be an almost injective trivialisable Lie algebroid

and {Y ∗
1 , · · · , Y

∗
k∗
} a base of sections ofA∗. LetG∗

s∗
⇒
r∗

M be a local Lie groupoid associated

to A∗ as in theorem 3.

We suppose that we have a morphism f : A1 → A2 of Lie algebroid over identity. In

particular we have p2 ◦ f = p1.

Proposition 7. There exists a local Lie sub-groupoid V1 of G1 with space of units M

and a morphism F : V1 → G2 which integrates f .

Proof. For ∗ = 1, 2, let {Z∗
1 , · · · , Z

∗
k∗
} be the base of s∗-vertical vector fields associated

to the base of sections {Y ∗
1 , · · · , Y

∗
k∗
}.

For i = 1, · · · , k1, we denote by qi the s2-vertical vector field on A2 associated to

f(Y 1
i ) =

∑k2

l=1 alY
2
l , that is qi(x, ξ) =

∑k2

l=1 al(r2(x, ξ))Z
2
l (x, ξ).
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We denote by Φt
i the flow of qi and by hti the flow of Z1

i as we did previously. We can

find a local Lie sub-groupoid V1 of G1 having M as space of units such that the map

F : V1 → G2, (x, t1, · · · , tk1) = ht11 ◦ · · · ◦ h
tk1
k1

(x) 7→ Φt1
1 ◦ · · · ◦ Φ

tk1
k1

(x)

is defined and smooth. One can easily check that F is a morphism of local groupoids

which integrates f .

When f is an isomorphism, F is an isomorphism onto its image as well.

Remark 2. If G is a (local) groupoid over M and G′ a (local) quasi-graphoid over

M then there is at most one morphism from G to G′ over identity. So if f : V → G′ and

g : W → G′ are morphisms where V and W are two local sub-groupoids of G having M

as space of units then f = g when restricted to V ∩W . So there exists a unique morphism

from V ∪W to G′ which is equal to f when restricted to V and equal to g when restricted

to W . We will say that a morphism f : V → G′, where V is a local sub-groupoid of G

having M as space of units, is maximal if for any morphism g : W → G′ where W is a

local sub-groupoid of G having M as space of units, we have W ⊂ V .

3.4. General case. Let (p : A → TM, [, ]) be an almost injective Lie algebroid. We

denote by π the projection of A onto M . Let {τi : Ai = π−1(Oi)
∼
→ Oi ×R

k, i ∈ I} be a

local trivialisation of the bundle A, {Oi, i ∈ I} being an open covering of M .

For each i ∈ I, (pi : Ai → TOi, [, ]Ai
) is an almost injective trivialisable Lie algebroid

and we can apply theorem 3.

We obtain in this way a family U = {Gi

si
⇒
ri

Oi, i ∈ I} of local Lie groupoids such

that for all i ∈ I, Gi ⇒ Oi is a local quasi-graphoid which integrates Ai.

For all i, j ∈ I, A|Oi∩Oj
= Ai|Oi∩Oj

= Aj |Oi∩Oj
so using the integration of mor-

phisms, there exist a local Lie sub-groupoid Vij of Gi, Vji of Gj having Oi ∩Oj as space

of units and an isomorphism Fij : Vij → Vji which integrates identity. We can require

Fij to be maximal and because we are dealing with local quasi-graphoids, the cocycle

conditions are fulfilled:

Fii = IdGi
, F−1

ij = Fji and Fjk ◦ Fij = Fik when it makes sense.

So there is a natural equivalence relation on
⊔

i∈I Gi given by:

if γi ∈ Gi and ηj ∈ Gj , γi ∼ ηj if and only if

{

γi ∈ Vij , ηj ∈ Vji
Fij(γi) = ηj

.

Let G =
⊔

i∈I Gi/∼. If γi belongs to Gi we denote by γi its image in G.

One can easily check that G
s

⇒
r
M equipped with the following maps is a local Lie

groupoid over M .

– The source map is s : γi 7→ si(γi) and the range map is r : γi 7→ ri(γi).

– The unit map is given by x ∈ Oi 7→ ui(x).

– The inverse map is given by γi 7→ γ−1
i .

– The local product is given by γi · ηi = γi · ηi and is defined over

D2G = {(γi, ηi) ∈ G×G | (γi, ηi) ∈ D2Gi, i ∈ I}.

Furthermore, G is a quasi-graphoid and it integrates A by construction.
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Let U and U ′ be two local trivialisations of the bundle A. Let G and G′ the local

groupoid obtained from U and U ′ as previously. Using the integration of morphisms and

the fact that the groupoids G and G′ are local quasi-graphoids one can easily show that

there exist a local sub-groupoid V of G over M , a local sub-groupoid V ′ of G′ over M

and an isomorphism between V and V ′. Thus the “germs” of the groupoid obtained do

not depend on any choice.

In particular, let G be a (local) Lie groupoid over G(0) and AG its Lie algebroid.

Suppose that AG is almost injective. If H is a local Lie groupoid obtained as in Theorem

3 then H and G are isomorphic around units, that is, there is a local sub-groupoid of H

having G(0) for unit space which is isomorphic to a local sub-groupoid of G.

4. Examples. 1. Injective Lie algebroid. Let (p : A → TM, [, ]) be a Lie algebroid of

dimension k over a manifold M of dimension n. We suppose that p is injective and that

0 < k ≤ n. So A is isomorphic to the tangent bundle of a regular foliation F on M . If

O is a distinguished open set for F , one can find a local basis {Y1, · · · , Yk} of sections

of A defined on O such that [Yi, Yj ] = 0 for all i, j. In other word, there is a local free

action of Rk on O. The local integration of the restriction of A to O gives rise to the

local groupoid Ω of this local action of Rk on O. So Ω is isomorphic (around the units)

to the groupoid of the regular equivalence relation induced by the foliation F on O.

2. Lie algebra of tangent vector fields. Let H be a Lie algebra of tangent vector fields

over a manifold M . Suppose that the dimension of H is finite. We consider the trivial

bundle A = M × H over M and we define p : A → TM , (x,X) 7→ X(x). We suppose

that p is injective over a dense open subset of M . The bundle A is naturally endowed

with a structure of trivial Lie algebroid over M of anchor p. The local integration gives

rise to a local Lie group H which integrates H and a local action of H on M . The local

Lie groupoid we obtain is then the local groupoid of this action.

3. Action of R. Let N be a manifold and M = N × R. We equip the bundle A =

TM ≃ TN × TR over M with the structure of Lie algebroid which anchor is the map

p : A = TM ≃ TN × TR → TM ≃ TN × TR, ((x, v), (t, λ)) 7→ ((x, v)(t, tλ)).

The local integration of A over an open set O×R ofM = N×R gives rise to the groupoid

O × O × R
+
∗ × R ⇒ O × R which is the product of the pair groupoid over O with the

groupoid of the action of R+
∗ on R by multiplication.

References

[AR] R. Abraham and J. Robbin, Transversal Mappings and Flows, New York-Amsterdam:

W.A. Benjamin, 1967.

[AM] R. Almeida and P. Molino, Suites d’Atiyah et feuilletages transversalement complets,

C. R. Acad. Sci. Paris 300 (1985), 13–15.

[B] B. Bigonnet, Holonomie et graphe de certains feuilletages avec singularités, Thesis,
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