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Abstract. Connections for a pair of Lie algebroids are defined as linear homomorphisms

between these Lie algebroids, commuting with the anchors. The primary characteristic homo-

morphism of a pair of Lie algebroids is defined and compared with other known Chern-Weil

homomorphisms.

1. Introduction. By an L-connection in A (L and A are Lie algebroids on the same

manifold B) we mean a linear homomorphism ∇ : L → A commuting with the anchors

ωA ◦ ∇ = ωL. This definition covers

— usual and partial covariant derivatives in vector bundles,

— usual and partial connections in principal bundles,

— connections in transitive or regular Lie algebroids,

— connections in extensions e : 0→ L′ → A→ L→ 0 of Lie algebroids, in particular,

complete differentials of higher order,

— transversal connections in extensions of principal fibre bundles,

— covariant and contravariant connections known in Poisson geometry.
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L-connections in vector bundles and L-connections in principal bundles [F2] determine

L-connections in suitable Lie algebroids of vector bundles and principal bundles.

In this work we construct the Chern-Weil homomorphism hL,A of a pair (L,A) of Lie

algebroids, where A is regular, giving obstructions to the existence of flat L-connections in

A. This approach generalizes known constructions by Teleman 1972 [T2], Mackenzie 1988

[M5], Kubarski 1991 [K4], Vaisman 1994 [V2], Belko 1997 [B2], Huebschmann 1999 [H2],

Itskov, Karasev and Vorobjev 1999 [IKV], Fernandes (2000) [F1], [F2], Crainic (preprint

2001) [C]. For the tangential case see also Moore and Schochet 1988 [M-C], Kubarski

1993 [K5].

Next, hL,A is compared with the other Chern-Weil homomorphisms hL, hA, and he in

the case of an extension e. We also introduce a G-invariant Chern-Weil homomorphism

for G-algebroids and use it to transversal PBG-Mackenzie algebroids.

(1) A covariant derivative in a vector bundle f on a smooth manifold B is a mapping

∇ : X(B) → EndR(Sec f) which satisfies the known Koszul axioms [K]: ∇Xσ is C∞(B)-

linear with respect to X ∈ X(B) and R-linear with respect to σ ∈ Sec f, while ∇X :

Sec f → Sec f is a covariant differential operator with the anchor X (i.e. ∇X(f · σ) =

f · ∇Xσ + X(f) · σ ). Cohomology classes from the image of the primary characteristic

homomorphism of f determine topological obstructions to existence of a flat covariant

derivative in f.

If we replace X(B) with SecF (where F ⊂ TB is a vector subbundle tangent to some

regular foliation on B), then we obtain the so-called partial covariant derivative in the

bundle f [K-T]. In both cases, TB and F are trivial Lie algebroids, whereas the space of

covariant differential operators in the bundle f is the space of cross-sections of the Lie

algebroid A(f) of f, see [K4], [K8], [M1], [K3], denoted also by CDO(f). An operator ∇

can be given equivalently as a linear homomorphism of vector bundles ∇ : TB → A(f)

[∇ : F → A(f)] such that ωf ◦ ∇ = id, where ωf : A(f) → TB is the anchor of the Lie

algebroid A(f). The next one, very important in differential geometry generalizations, can

be obtained by taking any Lie algebroid (L, [[·, ·]], ωL) instead of TB,

∇ : L→ A(f), (1.1)

assuming additionally that ∇ commutes with anchors

ωf ◦ ∇ = ωL.

Then the operator ∇ is said to be an L-covariant derivative in the vector bundle f (cf.

the definition of an L-connection in the more general category of Lie-Rinehart algebras

[H1], [H2]).

The operator (1.1) induces the so-called linear L-connection in f, ∇ : SecL× Sec f→

Sec f (introduced in the case of Poisson manifolds B by I. Vaisman [V1] for L = T ∗B and

known as a contravariant derivative), see also [H-M].

In the case when the operator (1.1) is a homomorphism of Lie algebroids it is known

as a representation of L in f. Further, if we replace A(f) with a Lie algebroid (A, [[·, ·]], ωA),

then we obtain a quite general object (examined in this work)

∇ : L→ A, ωA ◦ ∇ = ωL,
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called an L-connection in the Lie algebroid A. In the case when A = TP/G is the Lie

algebroid of a principal bundle P (B,G, p) and L = TB, considered connections corre-

spond to connections in the principal bundle P (for L ⊂ TB—partial connections). If

A = TP/G (as above) and L = T ∗B is the Lie algebroid of a Poisson manifold B, then any

operator (1.1) is determined by the so-called contravariant connection h : p∗T ∗B → TP

(introduced recently by R. L. Fernandes [F1]) and vice versa.

If A is a transitive Lie algebroid and L is an arbitrary one, both over the manifold B,

and the characteristic Stefan foliation ImωL is contained in a regular foliation F ⊂ TB,

ImωL ⊂ F , then any L-connection ∇ : L → A has values in the regular Lie algebroid

AF = ω−1
A [F ] so ∇ determines an L-connection in AF , ∇F : L → AF , ∇F (v) = ∇(v).

We should add here that the domain I(AF ) of the Chern-Weil homomorphism hAF of

AF [K4], [K5] contains the Ωb(B,F )-module Ωb(B,F ) · I(A) (i.e. linear combinations∑
f i · Γi, f

i ∈ Ωb(B,F ), Γi ∈ I(A)), where I(A) is the domain of hA and Ωb(B,F ) is

the space of F -basic functions. Sometimes (and this is rather interesting), I(AF ) is larger

than Ωb(B,F ) · I(A) [K5] so it may be a source of new ”singular” characteristic classes

which are obstructions to the existence of flat L-connections in A, see below.

(2) In this paper we construct a characteristic homomorphism hL,A : I(A)→ HL(B)

of the Chern-Weil type, which describes obstructions to the existence of flat L-connections

∇ in a regular Lie algebroid A, where I(A) is the algebra of real multilinear symmetric

homomorphisms of the adjoint bundle of Lie algebras gA = kerωA and invariant with

respect to the adjoint representation of A on gA while HL(B) is a cohomology algebra of

real A-forms [MR], [M1], [K4]. The domain of hL,A is equal to the domain of hA. We have

the equalities hTB,A = hA and hF,A = hAF (for a regular foliation F ⊂ TB). The relation

between hA and hL,A is ω♯
L ◦ hA = hL,A. Putting L = A we obtain ω

♯
A ◦ hA = hA,A = 0

which gives easily that Pont(A) = ImhA ⊂ kerω♯
A.

The homomorphism hL,A is a generalization of:

1. the classical Chern-Weil homomorphism of a vector bundle f (if A = A(f) and

L = TB),

2. the tangential Chern-Weil homomorphism of f over a foliated manifold [M-C], [K5]

(if A = A(f) and L = F ⊂ TB),

3. the characteristic homomorphism of regular Lie algebroid [K4] (if L = F = Im(ωA);

in this case an F -connection in A is a splitting ∇ : F → A of the Atiyah sequence

in A, 0→ gA → A → F → 0),

4. the Chern-Weil homomorphism of a principal bundle, if A = A(P ) = TP/G and

L = TB,

5. the Fernandes [F2] and Crainic [C] L-Chern-Weil homomorphism of a real vector

bundle f (if A = A(f)).

A comparison of hL,A(P ) to the Fernandes L-Chern-Weil homomorphism of a principal

bundle P [F2] is given in section 3.5 below.

(3) Recall (cf. (4) below) [K4], [B1], [B2] the relation between the classical Chern-Weil

homomorphism hP of a G-principal fibre bundle P (B,G) and the Chern-Weil homomor-

phism hA(P ) of the transitive Lie algebroid A(P ) = TP/G of P : there exists a monomor-

phism of algebras ν : I(G)→ I(A(P )) which gives commutativity of the diagram
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hP

�
�
�✒
H(B)

hA
❅
❅
❅❘

I(A(P ))

I(G)

✻

ν (1.2)

If the total space of P is a connected manifold (the structure Lie group need not be

connected), then ν is an isomorphism [K4], [B1], [B2]. Notice that if the base manifold

B is connected, then the connectedness of P is equivalent to the connectedness of the

Ehresmann groupoid P ×G P [Lis].

Recently R. L. Fernandes [F2] has obtained an L-Chern-Weil homomorphism of a

G-principal fibre bundle P which turns out to be equal to hL,A(P ) if the domains of hP

and hA(P ) are the same (for example, if P is connected). The Fernandes case is very

important in Poisson geometry.

(4) V. Itskov, M. Karasev and Yu. Vorobjev [IKV] had constructed independently

a Chern-Weil homomorphism for a transitive Lie algebroid (A → B,ωA, {, }). It is a

homomorphism

h :
⊕k

Invk(g|x0
) −→ HdR(B), Γ 7→ [Γ(R, . . . , R)] ,

where R is the curvature of any connection in A and g|x0
is the isotropy Lie algebra of A at

x0, i.e. the fibre of g at x0 ∈ B. The domain
⊕k Invk(g|x0

) is in general smaller than the

domain I(A) considered in the previous papers [T2], [K4], [B2], [H2], however sometimes

equality holds. The domain I(A) =
⊕k Sec(

∨k
g
∗)I(ad) is the algebra of ad-invariant

cross-sections of the symmetric powers
∨k
g
∗. Equivalently, it is the algebra of parallel

sections—under the flat adjoint connection—of the vector bundles invk(g) whose fibres

are the spaces of ad-invariant polynomials on g|x, which can be described by K. Macken-

zie’s formula in Th. IV.1.19 of [M1]. This formula says that an element from invk(g|x0
)

can be extended to a parallel cross-section if and only if it is invariant with respect to the

π1(B)-action on invk(g|x0
) via the holonomy morphism for any flat adjoint connection

on the vector bundle invk(g). To better understand the relation between the domains⊕k
Invk(g|x0

) and I(A) notice first that the space Invk(g|x0
) after naturally extending

its elements to parallel cross-sections of invk(g), is equal to the space of invariant ele-

ments with respect to the canonical representation T of the Aut(g|x0
)-principal bundle

Aut(g) of Lie algebra isomorphisms g|x0

∼=
−→ g|x on the vector bundle

∨k
g
∗, induced by

the inclusion Aut(g) ⊂ L(g) [L(g) is the full GL(g|x0
)-principal bundle of frames of g,

and T (z) =
∨k

(z∗)−1, z : g|x0
→ g|x]. Next consider the sequence of inclusions

Invk(g|x0
) ⊂ Sec(

∨k
g
∗)I(d) ⊂ Sec(

∨k
g
∗)I(ad)

where the middle element consists of all invariant cross-sections with respect to the

derivative of T . According to Prop. 3.3.8 of [K5] this element is equal to the space of

cross-sections Γ ∈ Sec(
∨k
g
∗) invariant with respect to all covariant differential operators
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ξ : Sec(g)→ Sec(g) which are differentiations of the Lie algebra Sec(g), i.e. cross-sections

Γ such that

(ωA ◦ ξ)(Γ(θ1, . . . , θk))−
∑

i

Γ(θ1, . . . , ξ(θi), . . . , θk) = 0

for all ξ as above. Since there are, in general, fewer adjoint differentiations than all differ-

entiations, it can give sometimes the effect that the second inclusion is not an equality.

According to Prop. 5.5.3 of [K4] the first inclusion is an equation if the Aut(g|x0
)-principal

bundle Aut(g) is connected.

(5) In the present paper we compare the constructed Chern-Weil homomorphism of

pairs of Lie algebroids with the other one given by J. Huebschmann [H2] for splittings

of Lie-Rinehart algebras (and earlier, in a less general case, by N. Teleman [T1], [T2]),

which in the case of Lie algebroids relates to the epimorphism of Lie algebroids A
π
→ L

and connection interpreted as its right inverse in the class of linear homomorphisms

∇ : L → A, π ◦ ∇ = id . Diagram (3.8) in part 3 below compares four Chern-Weil

homomorphisms hA, hL, hL,A, he for a given extension e : 0→ L′ → A
π
→ L → 0.

Complete differentials of higher order in the tangent bundle TB [P], [NVQ], [S], given

as splittings of the exact sequence of the jet bundles 0 → Sk(TB, TB) → Jk(TB) →

Jk−1(TB)→ 0, are important examples of right inverse connections.

Other important examples are given by K. Mackenzie [M2] in connection with ex-

tensions of principal bundles. Commutativity of diagram (3.8) on the level of transi-

tive Lie algebroids and the epimorphism π : A → L given by the extension of prin-

cipal bundles Q(B,H, q) → P (B,G, p) (with respect to the extension of Lie groups

0 → N → H → G → 0)—with hL,A omitted—is described in [M2, Prop. 3.7]. It is done

in terms of the Chern-Weil homomorphisms of principal bundles P (B,G), Q(B,H) and

the transversal Chern-Weil homomorphism of the transversal principal bundle Q(P,N),

and expressed as commutativity of the following diagram

I(G)

I(H)
❄

π∗

H(B)✲w′

w
❅
❅
❅
❅❘

I(N)G
❄

ρ

H(P )G
❄
a∗

✲
w

(1.3)

(a denotes the anchor of P (B,G); w is equivalent to the Chern-Weil homomorphism of

the extension of transitive Lie algebroids 0→ Q×H n → TQ/H → TP/G → 0).

(6) Next, the G-equivariant Chern-Weil homomorphism for an extension of G-algeb-

roids is introduced (the notion of a G-algebroid comes from [K6] and generalizes the

notion of a Mackenzie PBG-algebroid [M4]).

Finally we examine extension (2.3) in which L is an integrable Lie algebroid L =

TP/G. According to [M5] it produces a transversal PBG-Mackenzie algebroid p∗A (where
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p : P → B is the projection). An equivalence of the Chern-Weil homomorphism he of e

: 0 → L′ → A
π
→ TP/G → 0 and the G-equivariant Chern-Weil homomorphism hG

p∗A

of the G-algebroid p∗A is obtained which generalizes the Mackenzie result concerning

extension Q(B,H, q)
π
→ P (B,G, p)→ 0 of principal bundles.

Some of these results were presented in the poster [K-W] during the 3rd ECM,

Barcelona 2000.

2. L-connections

2.1. Definitions and examples. A Lie algebroid [Pr] on a manifold B is a triple

(L, [[·, ·]], ωL) where L is a vector bundle on B, (SecL, [[·, ·]]) is an R-Lie algebra, ωL : L→

TB is a linear homomorphism of vector bundles and the following Leibniz condition is

satisfied

[[ξ, f · η]] = f · [[ξ, η]] + ωL(ξ)(f) · η, f ∈ C∞(B), ξ, η ∈ SecL. (2.1)

Lemma 2.1 (See [H]). The anchor is bracket-preserving, ωL[[ξ, η]] = [ωLξ, ωLη].

Proof. Let ξ, η, τ ∈ SecL, f ∈ C∞(B). Observe that

(ωL ◦ ξ)((ωL ◦ η)(f)) · τ = [[ξ, ((ωL ◦ η)(f)) · τ ]]− ((ωL ◦ η)(f)) · [[ξ, τ ]]

= [[ξ, [[η, f · τ ]] − f · [[η, τ ]]]] − ([[η, f · [[ξ, τ ]]]] − f · [[η, [[ξ, τ ]]]])

= [[ξ, [[η, f · τ ]]]] − [[ξ, f · [[η, τ ]]]] − [[η, f · [[ξ, τ ]]]] + f · [[η, [[ξ, τ ]]]],

and analogously

(ωL ◦ η)((ωL ◦ ξ)(f)) = [[η, [[ξ, f · τ ]]]]− [[η, f · [[ξ, τ ]]]] − [[ξ, f · [[η, τ ]]]] + f · [[ξ, [[η, τ ]]]].

Then

[ωLξ, ωLη](f) · τ = (ωL ◦ ξ)((ωL ◦ η)(f)) − (ωL ◦ η)((ωL ◦ ξ)(f))

= [[ξ, [[η, f · τ ]]]]−[[ξ, f · [[η, τ ]]]]−[[η, f · [[ξ, τ ]]]] + f · [[η, [[ξ, τ ]]]]

−[[η, [[ξ, f · τ ]]]]+[[η, f · [[ξ, τ ]]]]+[[ξ, f · [[η, τ ]]]] − f · [[ξ, [[η, τ ]]]]

= [[ξ, [[η, f · τ ]]]] + [[η, [[f · τ, ξ]]]] + f · ([[η, [[ξ, τ ]]]] + [[ξ, [[τ, η]]]])

= −[[f · τ, [[ξ, η]]]]− f · [[τ, [[η, ξ]]]]

= [[[[ξ, η]], f · τ ]] − f · [[[[ξ, η]], τ ]] = (ωL ◦ [[ξ, η]])(f) · τ.

Remark 2.2. The analogous fact for an (R,A)-Lie-Rinehart algebra (L, ω) holds pro-

vided that A-module L fulfils the axiom

• The representation ρ : A→ EndA(L), ρ(f)(τ) = f · τ, is faithful, i.e. ker ρ = 0.

Nontrivial Lie algebroids appeared as infinitesimal objects for Lie grupoids, principal

bundles, vector bundles, TC-foliations, Poisson or Jacobi manifolds, etc. and play an

analogous role to the Lie algebra of a Lie group (for review see [M3] and [K7]). If ωL is

of a constant rank, then a Lie algebroid is called regular, moreover, ImωL ⊂ TB is an

involutive distribution which determines a regular foliation (called also characteristic) on

the base manifold B. Given any Lie algebroids on the same manifold the notion of a strong

homomorphism is defined which preserves structures of Lie algebras and commutes with

anchors, whereas in any case we have a less obvious notion of a nonstrong homomorphism,

given by K. Mackenzie [H-M] (see also [K4]).
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Let (L, [[·, ·]], ωL) and (A, [[·, ·]], ωA) be Lie algebroids on a smooth manifold B (we do

not assume regularity of these algebroids).

Definition 2.3. A strong homomorphism of vector bundles ∇ : L −→ A is called an

L-connection in A if

ωA ◦ ∇ = ωL. (2.2)

The existence of an L-connection in A implies the inclusion of characteristic foliations

ImωL ⊂ ImωA.

Example 2.4. (1) Let A be a regular Lie algebroid with the Atiyah sequence 0 →

gA → A
ωA→ F → 0. The splitting of this sequence ∇ : F → A, ω ◦ ∇ = idF , is

an F -connection in A. Clearly, ωA is a unique A-connection in F . In [K4] we defined

the Chern-Weil homomorphism of A, hA : I(A) → HF (B), where I(A) is the space of

invariant symmetric multilinear mappings on gA and HF (B) is the algebra of tangential

cohomologies. This homomorphism is trivial if there exists a flat F -connection in A. The

transitive case was applied to TC-foliations in [K4] where we give an interpretation of

the Chern-Weil homomorphism for the Lie algebroid A(B,E) of a TC-foliation (B,E); in

particular, for foliations of left cosets of nonclosed Lie subgroups in a given Lie group. We

have also given a family of examples of TC-foliations (B,E) such that the homomorphism

hA(B,E) is nontrivial and the algebroid A(B,E) of this foliation is nonintegrable. As yet

these examples have not been studied by the classical theory.

(2) If L and A are Lie algebroids over the same manifold B, A is regular over (B,F ),

ImωL ⊂ F and λ : F → A is any connection in A, then ∇ := λ ◦ ωL : L → A is an

L-connection in A. Indeed, ωA ◦ ∇ = (ωA ◦ λ) ◦ ωL = ωL.

(3) Let π : A → L be a given epimorphism of Lie algebroids. We can always put it

into an extension of Lie algebroids

e : 0→ L′ → A
π
→ L→ 0 (2.3)

where L′ = kerπ has a structure of a Lie algebroid with the zero anchor. The right

inverse of π, i.e. a linear homomorphism ∇ : L→ A, π ◦∇ = idL (called an e-connection

or a connection in e) is an L-connection in A since ωL = ωL ◦ π ◦ ∇ = ωA ◦ ∇. The

sequence of global cross-sections induced by (2.3) gives the so-called extension of Lie-

Rinehart algebras which was examined by J. Huebschmann in [H1], [H2] (and earlier by

N. Teleman [T1], [T2]). Note that they were also examined from different points of view

by other authors and by the use of different terminology. For instance, these algebras

were called Lie pseudoalgebras, Lie modules, etc., see [M3]. In [H2], [T2] the Chern-Weil

homomorphism for extensions of Lie-Rinehart algebras is defined.

(4) Consider the short exact sequence of the jet bundles of a tangent bundle

0→ Sk(TB, TB)→ Jk(TB)→ Jk−1(TB)→ 0. (2.4)

Jk(TB) has a Lie algebroid structure [L] defined as follows: the anchor ωk : Jk(TB) →

TB is given by ωk(jkxX) = Xx, in Sec Jk(TB) there exists a unique structure of a Lie

algebra [[·, ·]] with [[jkX, jkY ]] = jk [X,Y ] . Hence we obtain the algebroid of the Lie

grupoid of invertible holonomic k-jets of local diffeomorphisms of B; connections in this

algebroid are called connections of rank k on B. Splittings of the sequence (2.4) are called

complete differentials of order k on B. If we take k = 1, we obtain the normal covariant
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derivative in the tangent bundle TB. Let us explain this phenomenon. The sequence (2.4)

has the form 0 → End(TB)
ι
→ J1(TB) → TB → 0, ι(df ⊗ X) = j1(f · X) − f · j1X ,

while a covariant derivative induced by the splitting ∇ : TB → J1(TB) is defined by

∇XY = (j1Y − ∇Y )(X) (notice that j1Y − ∇Y ∈ End(TB)), and conversely we have

∇Y = j1Y −∇(·)Y.

(5) [K. Mackenzie, [M4], [M5]] If

N ֌ Q(B,H, q)
π
→ P (B,G, p)→ 0 (2.5)

is an extension of principal bundles (with respect to an extension of Lie groups 0→ N →

H
π
→ G → 0) and e : 0 → K → TQ/H → TP/G → 0 is an extension which corresponds

to Lie algebroids, then a connection in e is called a transversal connection in (2.5).

There exists a one-to-one correspondence between these connections and G-equivariant

connections in the Lie algebroid TQ/N of the transversal principal N -bundle Q(P,N, π).

(6) If Lie algebroids L and A are regular over the same foliated manifold (B,F ),

then for their Whitney product A⊞ L we can observe the following fact: there exists a

one-to-one correspondence between L-connections in A and connections of the induced

extension eL,A : 0 → gA → A⊞ L
π
→ L → 0. In fact, ∇ : L → A⊞ L, v 7→ (∇1(v), v), is

a connection in this splitting if and only if ωA ◦ ∇
1 = ωL, i.e. if ∇

1 is an L-connection

in A. Recall that the Whitney product (see [K1]) of regular algebroids L and A over the

same foliated manifold (B,F ) is defined as a subbundle A ⊞ L of the direct sum A ⊕ L

such that fibres consist of pairs of vectors with equal anchors; a Lie bracket in the space

of cross-sections is defined by coordinates and the anchor is given in an evident manner.

This example shows that for a regular Lie algebroid the homomorphism hL,A constructed

in our work can be expressed in terms of the Chern-Weil homomorphism of the extension

eL,A (generally given by N. Teleman and J. Huebschmann).

(7) Let ∇ : L→ A be any L-connection in a regular Lie algebroid A (with the Atiyah

sequence 0 → g → A
ωA→ F → 0 ) and let Ω∇ be its curvatute form defined below. It is

easy to check that in the direct sum g⊕L there exists a Lie algebroid structure such that

ωL ◦ pr2 : g⊕L → Im(ωL) ⊂ TB serves as the anchor and the Lie bracket in Sec g⊕L is

defined via the formula

[[(ν1, ξ1), (ν2, ξ2)]] = ([ν1, ν2] + [[∇ξ1, ν2]] + [[ν1,∇ξ2]] + Ω∇(ξ1, ξ2), [[ξ1, ξ2]]).

The following is an extension of Lie algebroids

e∇ : 0→ g → g⊕L→ L→ 0,

g⊕L and L are of course over the same foliation Im(ωL).

(a) Clearly, L-connections in A are in 1-1 correspondence to splittings of e∇ :

∇+ r
∼=
7→ λr,

where r : L → g and λr : L → g⊕L, ξ 7→ (rξ, ξ). It is important that flat connections

correspond to flat splittings. (Remark: for a connection form of an L-connection ∇2 =

∇+r : L→ A we can take g⊕L→ g, (ν, ξ) 7→ ν−r(ξ), the connection form corresponding

to the suitable splitting λr of e∇.)

(b) If ∇2 = ∇+ r is another L-connection in A and e∇2 is the extension defined via

∇2 then the extensions are equivalent: ρ : g⊕L → (g⊕L)(2), (ν, ξ) 7→ (ν − rξ, ξ), is an

isomorphism of extensions of Lie algebroids.
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The above results generalize the standard case of L = Im(ωA) = F for regular Lie

algebroids [K8] (and the earlier one corresponding to transitive Lie algebroids [M1], [K3]).

2.2. The curvature of an L-connection and exterior covariant derivative. With a Lie

algebroid L and a vector bundle f on the same manifold B we can connect the space

of alternating forms ΩL(B; f) = ⊕nΩn
L(B; f), where Ωn

L(B; f) = Sec
∧n

L∗ ⊗ f. For Θi ∈

Ωqi
L (B; fi) and a multilinear homomorphism of vector bundles ϕ : f1 × . . . × fk → f we

assume that ϕ∗(Θ1, . . . ,Θk) ∈ Ωq1+...+qk
L (B; f) is given by the well-known formula

ϕ∗(Θ1, . . . ,Θk)(x; v1, . . . , vm)

=
1

q1! · . . . · qk!

∑

σ

sgnσ · ϕ(x; Θ1(x; vσ(1) ∧ . . .), . . . ,Θk(x; . . . ∧ vσ(m))).

In the case of standard homomorphisms ϕ of the form
∨k

: f× . . .× f→
∨k

f (symmetric

power), 〈·, ·〉 :
∨k

f∗×
∨k

f→R (duality) etc., it is better to use the notation from [G-H-V],

the form ϕ∗(Θ1, . . . ,Θk) will be denoted by Θ1 ∨ . . . ∨ Θk, 〈Θ1,Θ2〉, etc. For real forms

ΩL(B) there exists a derivative dL defined by the known formula [MR], [K2], [M1]

(dLθ)(ξ0, . . . , ξk) =

k∑

j=0

(−1)j(ωL ◦ ξi)(θ(ξ0, . . . ̂ . . . , ξk)) (2.6)

+
∑

i<j

(−1)i+jθ([[ξi, ξj ]], ξ0, . . . ı̂ . . . ̂ . . . , ξk).

Definition 2.5. Assume that L and A are Lie algebroids on B, and A is regular with

Atiyah sequence 0→ gA → A→ F → 0. By the curvature form of an L-connection ∇ : L

−→ A we shall mean the 2-form Ω∇ ∈ Ω2
L(B; gA) defined by

Ω∇(ξ, η) = [[∇ ◦ ξ,∇ ◦ η]]−∇ ◦ [[ξ, η]], ξ, η ∈ SecL,

(Ω∇(ξ, η) is a cross-section of the bundle gA since ωA ◦ Ω∇(ξ, η) = 0).

With a given L-connection ∇ : L −→ A we can connect the so-called exterior covariant

derivative ∇̃ : Ω∗
L(B; gA) −→ Ω∗+1

L (B; gA) defined for a k-form Θ by the formula (ξi ∈

SecL)

(∇̃Θ)(ξ0, . . . , ξk) =

k∑

j=0

(−1)j [[∇ ◦ ξj ,Θ(ξ0, . . . ̂ . . . , ξk)]] (2.7)

+
∑

i<j

(−1)i+jΘ([[ξi, ξj ]], ξ0, . . . ı̂ . . . ̂ . . . , ξk).

It is standard to check the so-called Bianchi identity

∇̃(Ω∇) = 0. (2.8)

Immediately from definition (2.7) we obtain ∇̃ν ∈ Ω1
L(B; gA), (∇̃ν)(ξ) = [[∇ ◦ ξ, ν]], for

ν ∈ Sec gA and ξ ∈ SecL. If θ ∈ ΩL(B) and ν ∈ SecgA, then

∇̃(ν · θ) = ∇̃ν ∧ θ + ν · dLθ. (2.9)
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Indeed, according to (2.2) and (2.1), for θ ∈ Ωk
L(B) and ξi ∈ SecL, we have

(∇̃ν ∧ θ + ν · dLθ)(ξ0, . . . , ξk)

=

k∑

j=0

(−1)j [[∇ ◦ ξj , ν]] · θ(ξ0, . . . ̂ . . . , ξk)

+
k∑

j=0

(−1)j(ωL ◦ ξj)(θ(ξ0, . . . ̂ . . . , ξk)) · ν +
∑

i<j

(−1)jθ([[ξi, ξj ]], ξ0, . . . ı̂ . . . ̂ . . . , ξk) · ν

=

k∑

j=0

(−1)j [[∇ ◦ ξj , θ(ξ0, . . . ̂ . . . , ξk) · ν]] +
∑

i<j

(−1)i+jθ([[ξi, ξj ]], ξ0, ..̂ı . . . ̂ . . . , ξk) · ν

= ∇(ν · θ)(ξ0, . . . , ξk).

A trivial verification again shows that

ϕ∗(ν1 · θ1, . . . , νk · θk) = ϕ(ν1, . . . , νk) · θ1 ∧ . . . ∧ θk, (2.10)

ϕ∗(ν1, . . . , ∇̃νi, . . . , νk) ∧ θ1 ∧ . . . ∧ θk (2.11)

= (−1)q1+...+qi−1ϕ∗(ν1 · θ1, . . . ,∇νi ∧ θi, . . . , νk · θk)

for νi ∈ Sec gA, θi ∈ Ωqi
L (B), ϕ : gA × . . .× gA → R.

2.3. Representations and their invariant cross-sections. Let f be a vector bundle on

a manifold B. By a representation (action) of a Lie algebroid A on f we mean a strong

homomorphism of Lie algebroids R : A → A(f) [M1]. A cross-section ν ∈ Sec f is called

R-invariant (or briefly invariant—unless it leads to confusion) if (R ◦ ξ)(ν) = 0 for all

ξ ∈ A. If two invariant cross-sections are equal at a point, then they are equal along

the leaf of the characteristic foliation which contains this point. An important example

of a representation for a regular Lie algebroid A is the so-called adjoint representation

adA : A→ A(gA) defined so that (adA ◦ξ)(η) = [[ξ, η]], ξ ∈ SecA, η ∈ Sec gA.

A single representation R determines (as in the case of a representation of a Lie

algebra on a vector space) new representations on associated bundles [K4], for example

the contragredient representation R♮ on the dual bundle f∗, the symmetric power
∨k

R

on the symmetric product
∨k

f, Homk(R) on the bundle of k-linear homomorphisms

Homk(f;R). The last one is given by

(Homk(R) ◦ ξ)(ϕ)(v1, . . . , vk) (2.12)

= (ωL ◦ ξ)(ϕ(v1, . . . , vk))−

k∑

i=1

ϕ(v1, . . . , (R ◦ ξ)(νi), . . . , vk),

ϕ : f× . . .× f→ R, νi ∈ Sec f.

Lemma 2.6. Let ϕ : gA× . . .×gA → R be a Homk(adA)-invariant cross-section. Then

for Θi ∈ Ωqi
A (B; gA) the following equality holds:

dA(ϕ∗(Θ1, . . . ,Θk)) =
k∑

i=1

(−1)q1+...+qi−1ϕ∗(Θ1, . . . , ∇̃Θi, . . . ,Θk). (2.13)
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Proof. Observe that for forms of degree zero, i.e. cross-sections νi ∈ SecgA, the formula

(2.13) can be written as follows:

dA(ϕ(ν1, . . . , νk)) =

k∑

i=1

ϕ∗(ν1, . . . , ∇̃νi, . . . , νk), νi ∈ Sec gA. (2.14)

In view of (2.12) (for R = adA), from definition (2.6) we have

dA(ϕ(ν1, . . . , νk))(ξ) = (ωA ◦ ξ)(ϕ(ν1, . . . , νk)) =

k∑

i=1

ϕ(ν1, . . . , [[∇ ◦ ξ, νi]], . . . , νk)

=

k∑

i=1

ϕ(ν1, . . . , ∇̃νi(ξ), . . . , νk) =

k∑

i=1

ϕ∗(ν1, . . . , ∇̃ν1, . . . , νk)(ξ)

for ξ ∈ SecA.

It is sufficient to prove the equality (2.13) for forms Θi = νi · θi where νi ∈ Sec gA,

θi ∈ Ωqi
A (B). From the equalities (2.9)–(2.11) and (2.14) we obtain

dA(ϕ∗(ν1 · θ1, . . . , νk · θk))

= dA(ϕ(ν1, . . . , νk)) ∧ θ1 ∧ . . . ∧ θk + ϕ(ν1, . . . , νk) · dA(θ1 ∧ . . . ∧ θk)

=

k∑

i=1

ϕ∗(ν1, . . . , ∇̃νk, . . . , νk) ∧ θ1 ∧ . . . ∧ θk

+ ϕ(ν1, . . . , νk)
k∑

i=1

(−1)q1+...+qi−1θ1 ∧ . . . ∧ dAθi ∧ . . . ∧ θk

=
k∑

i=1

(−1)q1+...+q−1ϕ∗(ν1 · θ1, . . . , ∇̃ν1 ∧ θi + ν1 · dAθi, . . . , νk · θk)

=

k∑

i=1

(−1)q1+...+qi−1ϕ∗(ν1 · θ1, . . . , ∇̃(νiθi), . . . , νk · θk).

By definition, the contragredient representation R♮ of R : A −→ A(f) is such that

R♮ ◦ξ is a covariant differential operator in the dual bundle f∗, satisfying (R♮ ◦ξ)(ϕ)(ν) =

(ωA ◦ ξ)〈ϕ, ν〉 − 〈ϕ, (R ◦ ξ)ν〉. The symmetric product
∨k

R on
∨k

f is defined as the one

for which ((
∨k

R) ◦ ξ)(ν1 ∨ . . .∨ νk) =
∑k

i=1 ν
1 ∨ . . .∨ (R ◦ ξ)(νi)∨ . . .∨ νk, νi ∈ Sec f. If

γ1 ∈ Sec
∨k

f and γ2 ∈ Sec
∨l

f are invariant cross-sections with respect to representations∨k
R and

∨l
R, respectively, then their symmetric product γ1 ∨ γ2 ∈ Sec

∨k+l
f is also

invariant [K4]. This implies that the space of invariant cross-sections of all symmetric

powers of f forms an algebra. In the cited work it is also proved (using the permanent of

a matrix) that the symmetric product of the contragredient representation of R,
∨k

R♮,

is given by the formula
〈((∨k

R♮
)
◦ ξ

)
(Γ), ν1 ∨ . . . ∨ νk

〉

= (ωA ◦ ξ)〈Γ, ν
1 ∨ . . . ∨ νk〉 −

k∑

i=1

〈Γ, ν1 ∨ . . . ∨ νk(R ◦ ξ)(νi) ∨ . . . ∨ νk〉, (2.15)

Γ ∈ Sec
∨k

f∗, νi ∈ Sec f.
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3. The Chern-Weil homomorphism

3.1. Classical theory for principal bundles. The Chern-Weil homomorphism for a G-

principal bundle P (B,G, π) is a homomorphism of algebras

hP : (
∨

g∗)I → HdR(B).

The domain

I(G) := (
∨

g∗)I

is the space of polynomials Γ : g × . . . × g → R invariant with respect to the adjoint

representation AdG of G on
∨
g∗. The homomorphism hP is defined by the formula

hP (Γ) = [χP (Γ)]

where

π∗(χP (Γ)) =
1

k!
[〈Γ,Ω ∨ . . . ∨ Ω〉] (for Γ ∈ (

∨k
g∗)I)

and Ω ∈ Ω2(P, g) is the curvature form of some connection H ⊂ TP and Ω ∨ . . . ∨ Ω

denotes the standard skew-product of forms with symmetric multiplication of the values

[G-H-V].

Equivalently, we can define hP directly on B without using the lifting to P ; we can

use the Atiyah sequence

0→ P ×G g→ TP/G
ω
→ TB → 0 (3.1)

of P instead the lifting. Let ∇ : TB → TP/G be the splitting of this sequence correspond-

ing to a connection H ,

0→ P ×G g→ TP/G
ω
→
←−
∇

TB → 0.

Recall that P ×G g is a Lie algebra bundle (LAB); for z ∈ P|x we have an isomorphism

of Lie algebras

ẑ : g→ (P ×G g)|x, v 7→ (Az)∗e(v),

Az : G → P, a 7→ za, provided that g is the right Lie algebra of G (not left!). Next, we

make the following observations:

• each invariant polynomial Γ ∈ (
∨k

g∗)I determines a symmetric k-linear homomor-

phism

Γ̃ : P ×G g× . . .× P ×G g→ B × R

(i.e. a cross-section of
∨k(P ×G g)∗) defined by

Γ̃x =
∨k

(ẑ−1)∗(Γ), z ∈ P|x,

(the formula is independent of the choice of z since Γ is invariant).

• the curvature form Ω = π∗(Ωb), where Ωb ∈ Ω2(B;P ×G g) is defined by

Ωb(X,Y ) = [[∇X,∇Y ]]−∇ [X,Y ] .
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We have the equality

〈Γ,Ω ∨ . . . ∨Ω〉 = π∗〈Γ̃,Ωb ∨ . . . ∨Ωb〉,

and

χP (Γ) =
1

k!
〈Γ̃,Ωb ∨ . . . ∨ Ωb〉,

therefore

hP (Γ) =
1

k!

[
〈Γ̃,Ωb ∨ . . . ∨ Ωb〉

]
.

Now we describe the space

{Γ̃; Γ ∈ (
∨k

g∗)I}

in terms of the Lie algebroid TP/G. We notice that (
∨k

g∗)I depends on G, not only on

its Lie algebra g = gl(G) (unless G is a connected Lie group) but in TP/G we have no

information about the structural Lie group G. We need to use the adjoint representation

of the Lie algebroid TP/G in the vector bundle P ×G g

adTP/G
: TP/G → A(P ×G g)

defined by

adTP/G
(ξ)(ν) = [[ξ, ν]], ξ ∈ Sec(TP/G), ν ∈ Sec(P ×G g).

The representation adTP/G
induces representations of TP/G on associated vector bundles,

among others, on
∨k

(P ×G g)∗, by

adTP/G
(ξ)(ϕ)(ν1, . . . , νk) = (ωξ)(ϕ(ν1, . . . , νk))−

∑

i

ϕ(ν1, . . . , [[ξ, νi]], . . . , νk),

where ϕ ∈ Sec
∨k

(P ×G g)∗, equivalently ϕ is a symmetric tensor ϕ : (P ×G g) × . . . ×

(P ×G g)→ B × R. ϕ is called invariant if adTP/G
(ξ)(ϕ) = 0 for all ξ ∈ Sec(TP/G). We

define the algebra of invariant tensors

I(TP/G) =

k⊕
(Sec

∨k
(P ×G g)∗)I .

Theorem 3.1 (Kubarski [K4]; Belko [B1], [B2]). The homomorphism

ρ : (
∨

g∗)I → I(TP/G), Γ 7→ Γ̃,

is a monomorphism of algebras and is an isomorphism if P is connected (G may be

disconnected!).

By the Chern-Weil homomorphism of the Lie algebroid TP/G we mean the homomor-

phism

hTP/G
: I(TP/G)→ HdR(M), ϕ 7→

1

k!
[〈ϕ,Ωb ∨ . . . ∨ Ωb〉]

(for ϕ of degree k) where Ωb ∈ Ω2(B;P ×G g) is the curvature of any connection ∇ : TB

−→ TP/G in the Lie algebroid TP/G.

We have the commuting diagram
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hP

�
�
�✒
HdR(B)

hTP/G

❅
❅
❅❘

I(TP/G)

(
∨
g∗)I

✻

ρ

Therefore, if P is connected, its Chern-Weil homomorphism is equivalent to the Chern-

Weil homomorphism of the Lie algebroid TP/G.

3.2. The Chern-Weil homomorphism for a pair of Lie algebroids. Assume that L

and A are Lie algebroids on a manifold B, and A is regular (assumptions as in Definition

2.5). We shall construct a characteristic homomorphism which will somehow measure

obstructions to existence of a flat L-connection in A. The Chern-Weil homomorphism

in the case of an integrable Lie algebroid A = TP/G is closely connected with the one

obtained recently by R. L. Fernandes [F2].

3.2.1. Construction. Let x ∈ B be a fixed point. Since
∧ev

L∗
|x :=

⊕
k≥0

∧2k
L∗
|x is a

symmetric algebra, there exists precisely one homomorphism of algebras (see [G, p. 192])

χ∇,x :
∨
(gA)

∗
|x −→

⊕

k≥0

∧2k
L∗
|x

such that

1. χ∇,x(1) = 1,

2. χ∇,x(Γ) = 〈Γ,Ω∇x〉, Γ ∈ (gA)
∗
|x.

Lemma 3.2. For Γ ∈
∨k

(gA)
∗
|x we have the equality

χ∇,x(Γ) =
1

k!
· 〈Γ,Ω∇x ∨ . . . ∨ Ω∇x︸ ︷︷ ︸

k times

〉. (3.2)

Proof. We give an elementary proof using properties of permanents of matrices. An-

other proof, using a tensor algebra
⊗

(gA)
∗
|x and its relation to a symmetric algebra [G,

pp.91, 193], is similar to the proof of Lemma 4.1.1 in [K4]. It is sufficient to show the

equality (3.2) for Γ = Γ1 ∨ . . . ∨ Γk, Γi ∈ (gA)
∗
|x:

1

k!
· 〈Γ1 ∨ . . . ∨ Γk,Ω∇x ∨ . . . ∨ Ω∇x〉(v1 ∧ . . . ∧ v2k)

=
1

k!
· 〈Γ1 ∨ . . . ∨ Γk,

1

2k

∑

σ

sgnσ · Ω∇x(vσ1
∧ vσ2

) ∨ . . . ∨ Ω∇x(vσ2k−1
∧ vσ2k

)〉

=
1

k!
·
1

2k

∑

σ

sgnσ · perm[〈Γi,Ω∇x(vσ2j−1
∧ vσ2j )〉]i,j=1,...,k

=
1

k!
·
1

2k

∑

σ

sgnσ · k! · 〈Γ1,Ω∇x(vσ1
∧ vσ2

)〉 · . . . · 〈Γk,Ω∇x(vσ2k−1
∧ vσ2k

)〉

= 〈Γ1,Ω∇x〉 ∧ . . . ∧ 〈Γk,Ω∇x〉(v1 ∧ . . . ∧ v2k)

= χ∇,x(Γ1 ∨ . . . ∨ Γk)(v1 ∧ . . . ∧ v2k).
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For a fixed integer number k ≥ 0, the family of homomorphisms χ∇,x determines a

strong homomorphism of vector bundles

χk
∇ :

∨k
g
∗
A −→

∧2k
L∗

such that, for Γ ∈ Sec
∨k
g
∗
A, we obtain the equality χk

∇ ◦ Γ = 1
k! · 〈Γ,Ω∇ ∨ . . . ∨ Ω∇〉,

which, in particular, implies smoothness of the constructed homomorphism. Finally, we

have the homomorphism of C∞(B)-modules

χ∇ :
⊕

k≥0

Sec
∨k
g
∗
A −→ Ωev

L (B),

which restricted to the algebra of invariant cross-sections I(A) gives the homomorphism

χ∇,I . The forms from its image are closed. In fact, a cross-section Γ determines, in a

standard way, a multilinear map Γ̃ : gA × . . . × gA → R. Then 〈Γ,Θ1 ∨ . . . ∨ Θk〉 =

Γ̃∗(Θ1, . . . ,Θk). If Γ is invariant, then so is Γ̃. Hence, in view of the Bianchi identity (2.8)

and formula (2.13), the form χk
∇ ◦ Γ is closed. This gives a homomorphism of algebras

which acts into cohomologies HL(B)

h∇ : I(A) −→ kerdL −→ HL(B).

All we need is to show that this homomorphism is independent of the choice of an L-

connection∇. This will imply that h∇ is a characteristic object for a pair of Lie algebroids

(L,A) on the same manifold.

3.2.2. Independence of the choice of an L-connection ∇. One of the ways to show that

the characteristic homomorphism h∇ does not depend on the choice of the connection

needs the use of nonstrong homomorphisms between two Lie algebroids, the notion of

homotopy joining such homomorphisms, and the fact that homotopic homomorphisms

induce the same mappings on cohomology. Let (A, [[·, ·]], ωA) and (A′, [[·, ·]]′, ωA′) be two

Lie algebroids (not necessarily regular) on manifolds B and B′, respectively. By a homo-

morphism between them [M1], [K4], [K6], we mean a homomorphism of vector bundles

H : A→ A′, say, over f : B → B′, such that (1) ωA′ ◦H = f∗◦ωA, (2) for arbitrary cross-

sections ξ, η ∈ SecA with H-decompositionsH◦ξ =
∑

i f
i ·(σi◦f), H◦η =

∑
j g

j ·(τj ◦f),

f i, gj ∈ C∞(B), σi, τj ∈ SecA′, we have

H ◦ [[ξ, η]]

=
∑

i,j

f i · gj · [[σi, τj ]]
′ ◦ f +

∑

j

(ωA ◦ ξ)(g
j) · τj ◦ f −

∑

i

(ωA ◦ η)(f
i) · σi ◦ f.

Although this notion seems to be complicated it is quite obvious from the Lie groupoid

point of view (a nonstrong homomorphism of groupoids preserves source and target and

partial multiplication; after infinitesimal linearization we obtain a homomorphism of al-

gebroids). Notice that in the case of Lie algebroids on the same manifold B, a strong

homomorphism is just a homomorphism of bundles which commutes with anchors and

Lie brackets. Let H and H ′ be homomorphisms A→ A′. By a homotopy [K6] joiningH to

H ′ we mean a homomorphism of Lie algebroids H̄ : TR×A→ A′ such that H̄(θ0, ·) = H

and H̄(θ1, ·) = H ′ where θ0 and θ1 are null vectors tangent to R at 0 and 1, respectively.

The homotopy H̄ induces a chain homotopy operator k : Ω∗
A′(B′) → Ω∗−1

A (B) by the
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formula

k(Φ)x(v1 ∧ . . . ∧ vs) =

∫ 1

0

(H̄∗Φ)(t,x)

(
∂

∂t
|(t,x) ∧ v1 ∧ . . . ∧ vs

)
dt

which implies that H and H ′ induce the same mappings on cohomology.

If (A, [[·, ·]], ωA) and (A′, [[·, ·]]′, ωA′) are regular Lie algebroids over manifolds B and

B′, respectively, and H : A→ A′ is a homomorphism of these algebroids over f : B → B′,

then [K4] the induced homomorphism of Lie algebra bundles H+ : gA → gA′ induces pull-

backs of cross-sections of dual bundles and their symmetric powers H+∗ : Sec
∨k
g
∗
A′ →

Sec
∨k
g
∗
A given by the evident formula. The pull-back of an invariant section is again

an invariant section. Hence we obtain a homomorphism of algebras H+∗ : I(A′)→ I(A)

[K4]. Assume that L and L′ are Lie algebroids on B and B′, respectively. First we check

the functoriality of the homomorphism h∇.

Theorem 3.3. If ∇ : L → A and ∇′ : L′ → A′ are connections, HL : L −→ L′ and

HA : A −→ A′ are homomorphisms of algebroids such that the diagram

L′ A′✲
∇′

L A✲∇

❄

HL

❄

HA

commutes, then

h∇ ◦H
+∗
A = H

#
L ◦ h∇′ . (3.3)

Proof. Observe that

Ω∇′(HL(v), HL(w)) = H+
A (Ω∇(v, w)), v, w ∈ L|x, x ∈ B. (3.4)

Indeed, let ξ, η be two cross-sections of L such that ξ(x) = v and η(x) = w, and consider

their (local) HL-decompositions HL ◦ ξ =
∑

i f
i · (ξ′i ◦ f) and HL ◦ η =

∑
i g

i · (ξ′i ◦ f),

ξ′i ∈ SecA′. The equality (3.4) is an immediate consequence of the fact that the diagram

below is commutative

M ×M L× L✲ξ × η

L× L gA
✲

Ω∇

❄

ξ × η

L′ × L′✲HL ×HL

gA′ .✲
H+

A

❄

Ω∇′

To show this, take HA-decompositions of ∇ ◦ ξ and ∇ ◦ η, HA ◦ (∇ ◦ ξ) = ∇
′ ◦HL ◦ ξ =∑

i f
i · (∇′ ◦ ξ′i ◦ f) (similarly for η). Hence

H+
A ◦ Ω∇(ξ, η) = HA ◦ [[∇ ◦ ξ,∇ ◦ η]]−HA ◦ ∇[[ξ, η]]

= HA ◦ [[∇ ◦ ξ,∇ ◦ η]]−∇
′ ◦HL ◦ [[ξ, η]]

=
∑

i,j

f i · gj · [[∇′ ◦ ξ′i,∇
′ ◦ ξ′j ]] +

∑

j

ωA ◦ (∇ ◦ ξ)(g
j) · ∇′ ◦ ξ′j ◦ f

−
∑

i

ωA ◦ (∇ ◦ η)(f
i) · ∇′ ◦ ξ′i ◦ f −

∑

i,j

f i · gj · ∇′ ◦ [[ξ′i, ξ
′
j ]] ◦ f
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−
∑

j

(ωL ◦ ξ)(g
j) · ∇′ ◦ ξ′j ◦ f +

∑

i

(ωL ◦ η)(f
i) · ∇′ ◦ ξ′i ◦ f

=
∑

i,j

f i · gj · ([[∇′ ◦ ξ′i,∇
′ ◦ ξ′j ]]−∇

′ ◦ [[ξ′i, ξ
′
j ]]) ◦ f

= Ω∇′ ◦ (HL ◦ ξ,HL ◦ η) = Ω∇′ ◦ (HL ×HL)(ξ, η).

Observe that it suffices to show that (3.3) is satisfied by forms. Let Γ ∈ Sec
∨k
g
∗
A′ , x ∈

B and v1, . . . , v2k ∈ L|x. Then

(χ∇ ◦H
+∗
A )(Γ)(x; v1, . . . , v2k)

=
1

k!
· 〈H+∗

A (Γ),Ω∇ ∨ . . . ∨ Ω∇〉(x; v1, . . . , v2k)

=
1

k!
· 〈Γ|fx,

1

2k

∑

σ

sgnσ ·H+
A ◦ Ω∇(x; vσ1

, vσ2
) ∨ . . . ∨H+

A ◦Ω∇(x; vσ2k−1
, vσ2k

)〉

=
1

k!
· 〈Γ|fx,

1

2k

∑

σ

sgnσ · Ω∇′(f(x);HL(vσ1
), HL(vσ2

)) ∨ . . .

. . . ∨ Ω∇′(f(x);HL(vσ2k−1
), HL(vσ2k

))〉

=
1

k!
· 〈Γ,Ω∇′ ∨ . . . ∨ Ω∇′〉(f(x);HL(v1), . . . , HL(v2k))

= χ∇′(Γ)(f(x);HL(v1), . . . , HL(v2k))

= H∗
L(χ∇′(Γ))(x; v1, . . . , v2k).

Theorem 3.4. Let L and A be Lie algebroids and assume that A is regular. If ∇0,∇1 :

L −→ A are L-connections, then h∇0
= h∇1

.

Proof. Define ∇ : TR× L −→ TR×A by

∇(vt, w) = (vt, (1− t)∇0(w) − t∇1(w)), vt ∈ TtR, w ∈ L.

Observe that ∇ is a TR× L-connection, i.e. (id, ωA) ◦ ∇(vt, w) = (id, ωL)(vt, w). Define

now HL,t : L −→ TR × L, HA,t : A −→ TR× A by HL,t(w) = (θt, w), HA,t(v) = (θt, v),

w ∈ L, v ∈ A andG : TR×A−→ A by G(v, w) = w, v ∈ TR, w ∈ A. The mappings above

are non-strong homomorphisms of Lie algebroids [K4] such that HA,t ◦ ∇i = ∇ ◦HL,t,

G ◦HA,i = id, i = 0, 1. Hence by Theorem 3.3 we have

h∇0
= h∇0

◦ (H+∗
A,0 ◦G

+∗) = (h∇0
◦H+∗

A,0) ◦G
+∗

= (H♯
L,0 ◦ h∇) ◦G+∗ = (H♯

L,1 ◦ h∇) ◦G
+∗

= (h∇1
◦H+∗

A,1) ◦G
+∗ = h∇1

◦ (H+∗
A,1 ◦G

+∗) = h∇1
.

According to this theorem, the Chern-Weil homomorphism defined in terms of a given

L-connection does not depend on the choice of the connection. Thus, it will be denoted

simply by hL,A. The image of hL,A, ImhL,A ⊂ HL(B), is a subalgebra of HL(B); it is

called the Pontryagin algebra of (L,A) and is denoted by

Pont(L,A).

Cohomology classes of Pont(L,A) are called Pontryagin classes of the pair (L,A).
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Let A and L be Lie algebroids over a foliated manifold (B,F ) and consider the split-

ting eL,A given by their Whitney product A ⊞ L. Clearly hL,A = heL,A ; therefore the

Chern-Weil homomorphism of a pair of Lie algebroids can be obtained by using J. Hueb-

schmann’s theory. However, constructions and proofs given in our paper are simpler, and

in fact, they are adapted from the case of one regular Lie algebroid, see [K4].

In general, there is no relation between hL,A and hA,L: one of them can be zero and

the other one not. For example, if A is a regular Lie algebroid over (B,F ), then hA,L = 0

and hL,A is not always zero.

3.2.3. G-equivariant Chern-Weil homomorphisms

Definition 3.5 [K6]. Let A be a Lie algebroid on a manifold B and let G be a Lie

group. A is called a Lie G-algebroid if there is a right action of G on the manifold A,

R̃ : A ×G → A, and a right action of G on the manifold B, R : B × G → B, such that

R̃g : A→ A is an automorphism of A over Rg : B → B for each g ∈ G.

According to this definition, the diagram

TB TB✲
Rg∗

A A✲R̃g

❄

ωA

❄

ωA

is commutative and R̃g ◦ [[ξ, η]] = [[ξ̄, η̄]] ◦ Rg, where ξ̄, η̄ ∈ SecA are sections such that

R̃g ◦ξ = ξ̄◦Rg and R̃◦η = η̄◦Rg. This definition of a Lie G-algebroid is more general than

the definition of a Mackenzie PBG-algebroid [M4] (recall that a transitive G-algebroid A

is a PBG-algebroid if the base manifold is the total space of a principal bundle P (B,G, p)

and the action of G on P is the structural action of this bundle).

Assume that L and A are Lie G-algebroids on a base B.

Definition 3.6. An L-connection χ in A, χ : L → A, is called G-equivariant if χ is

a G-equivariant homomorphism.

Assume additionally that A is regular and 0 → gA → A → F → 0 is its Atiyah

sequence. Clearly, the bundle gA is G-invariant. Let Ω : L × L → gA be the curvature

form of a G-equivariant L-connection χ in A. It is standard to check that

Ω(Rgv,Rgw) = RgΩ(v, w)

which means that the 2k-form 〈Γ,Ω ∨ . . . ∨ Ω〉 isG-equivariant for aG-equivariant section

Γ ∈ Sec
∨k
g
∗
A. Hence we obtain the G-equivariant Chern-Weil homomorphism for the

pair (L,A)

hG
L,A : I(A)G −→ HG

L (B),

where the upper index G denotes the space of G-equivariant elements of I(A) and the

cohomology of G-equivariant forms respectively. The proof that hG
L,A does not depend on

the choice of the G-equivariant connection is nearly the same as the proof of Theorem

3.4. The difference is that we introduce the Lie G-algebroids TR×L and TR×A given by

Rg(vt, w) = (vt, Rgw), and next we observe that the joining connection is G-equivariant
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and the homomorphisms HL,t, HA,t and T are G-equivariant as well. Moreover,HL,0 and

HL,1 are homotopic via a G-equivariant homotopy.

Similarly, if we consider an extension of Lie algebroids

e : 0 −→ K −→ A
π
−→L −→ 0,

where A and L are Lie G-algebroids and π is a G-equivariant homomorphism, then we

obtain the G-equivariant Chern-Weil homomorphism for the extension e in terms of

G-equivariant connections

hG
e
: I(K)G −→ HG

L (B).

3.2.4. Comparison of hL,A with hA

Theorem 3.7. If L and A are Lie algebroids over a manifold B, A is regular over

(B,F ) and ImωL ⊂ F , then the diagram

I(A) HF (B)✲hA

hL,A

❅
❅
❅
❅❘
HL(B)

❄

ω
♯
L

(3.5)

commutes. In particular

ω
♯
L [Pont(A)] = Pont(L,A).

Proof. Consider the L-connection ∇ : L→ A given by ∇ = λ ◦ ωL, where λ : F → A

is a connection in A. It is easy to show that the curvature tensors Ωλ ∈ Ω2
F (B, gA) and

Ω∇ ∈ Ω2
L(B, gA) satisfy

Ω∇ = ω∗
L(Ωλ).

Hence for an invariant section Γ of the symmetric polynomials bundle we obtain

ω∗
L ◦ χλ(Γ) =

1

k!
〈Γ, ω∗

LΩλ ∨ . . . ∨ ω∗
LΩλ〉 = χ∇(Γ).

An immediate result is the implication

hA = 0ongrightarrowhL,A = 0,

for each pair (L,A) of Lie algebroids over a foliated manifold (B,F ). Hence, if A is a

Lie algebroid with Atiyah sequence 0 → gA → A → F → 0 and if we consider an

L-connection in A for another Lie algebroid L, then it can turn out that the amount

of obstructions for the existence of a flat L-connection will decrease. In the special case

L = A we obtain no such obstructions: hA,A = 0 since idA : A→ A is a flat A-connection

in A. Hence the diagram below is commutative

I(A) HF (B)✲hA

hA,A = 0
❅
❅
❅
❅❘
HA(B)

❄

ω
♯
A

which means that

Pont(A) ⊂ kerω♯
A,
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i.e. the images of Pontryagin classes under the anchor ωA are zero: for an invariant section

Γ ∈ I(A) of rank k and any connection χ in A

ω∗
A(〈Γ,Ωλ ∨ . . . ∨ Ωλ〉) = dΦ,

for some form Φ. One of that forms is given in [K10]; let η : A → gA be the form of λ.

Then

Φ = k!
∑

i+j=k−1

1

k + j
·

〈
Γ, η ∨

1

i!
(dAη)

i ∨
1

j!

(
−
1

2
[[η, η]]

)j
〉
.

Corollary 3.8. If ω♯
L : HF (B)→ HL(B) is a monomorphism, then

hA = 0 ⇐⇒ hL,A = 0.

In the class of transitive unimodular invariantly oriented Lie algebroids L on an ori-

ented manifold B [K8], ω♯
L is a monomorphism if and only if the fibre integral of forms

with fibre-compact carrier 6
∫ ♯

L,c : HL,c(B) → Hc(B) [K9] is an epimorphism. In the

smaller class of so-called s-Lie algebroids [K10], ω♯
L is a monomorphism if and only if

the Euler class of a Lie algebroid L, χE , vanishes (for example, if Hn+1(B) = 0, where

n = rankgL).

3.2.5. Comparison of hL,A with Fernandes L-Chern-Weil homomorphism. Fernandes

[F2] has constructed an L-Chern-Weil homomorphism hL,P : I(G) → HL(B) of a G-

principal fibre bundle P (B,G) in such a way that hL,P = ω
♯
L ◦hP (see Proposition 4.3 in

[F2]). According to the diagrams (1.2) and (3.5) the Chern-Weil homomorphisms hL,A(P )

and hL,P are joined via the following diagram

hL,P

�
�
�✒
HL(B)

hL,A(P )
❅
❅
❅❘

I(A(P ))

I(G)

✻

ν

If P is connected then identifying I(G) = I(A(P )) we obtain hL,P = hL,A(P ) which

proves the algebroid nature of the Fernandes L-Chern-Weil homomorphism.

3.2.6. Comparison of hL,A with the Chern-Weil homomorphism of an extension. Let

A and L be two Lie algebroids on a manifold B and let π : A→ L be a given epimorphism

of Lie algebroids. Then L′ := kerπ is a subbundle of A.

Lemma 3.9. There is precisely one structure of a Lie algebroid in L′ for which

e(π) : 0 −→ L′ i
−→ A

π
−→ L −→ 0

is a short exact sequence of Lie algebroids. The anchor of L′ is ωL′ = 0.

Proof. The uniqueness is a consequence of the fact that the anchor and Lie bracket

must be given by ωL′ = ωA ◦ i and [[ξ, η]]L
′

= [[ξ, η]]A for ξ, η ∈ SecL′. Observe now that

ωL′(ξ′) = ωA ◦ i(ξ
′) = (ωL ◦ π)i(ξ

′) = ωL ◦ (π ◦ i)(ξ
′) = 0.
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Given an epimorphism π : A → L and the induced extension e(π) consider the

structural diagram:

e(π) : 0 L′✲ A✲i
L✲π

0✲

0

gA

❄

❄

FA

❄

ωA

0
❄

0

gL

❄

❄

FL

❄

ωL

0
❄

✲π+

✲
ι

j

�
�
�
�✒

The existence of the e(π)-connection implies the equality FA = FL.

There is a representation ad
e(π) of the Lie algebroid A in the bundle L′ satisfying

ad
e(π)(ξ)(η

′) = [[ξ, η′]]A, η′ ∈ SecL′, ξ ∈ SecA. Indeed, [[ξ, η′]]A ∈ SecL′ and ad
e(π) :

SecL′ → SecL′ is a covariant differential operator with the anchor ωA(ξ). ade(π) and the

adjoint representation adA of A induces representations in
∨k

L′ and
∨k
g
∗
A, k = 1, 2, . . .

given by (2.15) where the domains are the algebras of invariant sections I(e) and I(A),

respectively. If Γ ∈ Sec
∨k
g
∗
A is adA-invariant, then the restriction Γ|L′ ∈ Sec

∨k
L′∗ is

ad
e(π)-invariant and

I(A) −→ I(e), Γ 7→ Γ|L′,

is a homomorphism of algebras. Characteristic classes from the image of the Chern-Weil

homomorphims of an extension e(π) of Lie-Rinehart algebras (see [H2] and [T2]) give

obstructions to the existence of a flat e(π)-connection. In brief, we give the construction

of the Chern-Weil homomorphism of an extension e(π). The curvature tensor of an e(π)-

connection ∇ : L→ A is a 2-form Ω
e(π)
∇ ∈ Ω2

L(B;L′) such that

Ω
e(π)
∇ = [[∇ξ,∇η]]A −∇[[ξ, η]]L. (3.6)

Since ∇ is an L-connection in A as well, it possesses its curvature tensor Ω∇ ∈ Ω2
L(B; gA)

which is given by (3.6). Hence

Ω∇ = jΩ
e(π)
∇ . (3.7)

The Chern-Weil homomorphism h
e(π) of the extension e(π) satisfies

h
e(π)(Γ) =

1

k!
· [〈Γ,Ω

e(π)
∇ ∨ . . . ∨ Ω

e(π)
∇ 〉].
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The four Chern-Weil homomorphisms hA, hL, hL,A, he(π) (A and L are regular Lie

algebroids over a foliated manifold (B;F )) are connected by the commutative diagram

I(L) I(A)✲π+∗
I(e(π))✲j+∗

HF (B) HL(B).✲
ω
♯
L

❄

hA

❄

h
e(π)hL

❅
❅
❅
❅❘

hL,A

❅
❅
❅
❅❘

(3.8)

Commutativity of the left-hand side triangle is a consequence of the fact that the Chern

-Weil homomorphism of regular Lie algebroids is functorial. The next triangle is commu-

tative by Theorem 3.7. To see that the triangle on the right-hand side is commutative we

compute
h
e(π)(j

+∗(Γ)) =
1

k!
· [〈j+∗Γ,Ω

e(π)
∇ ∨ . . . ∨ Ω

e(π)
∇ 〉]

=
1

k!
· [〈Γ, jΩ

e(π)
∇ ∨ . . . ∨ jΩ

e(π)
∇ 〉]

=
1

k!
· [〈Γ,Ω∇ ∨ . . . ∨ Ω∇〉] = hA(Γ).

hL,A ◦ π
+∗ = 0 since ImhL ⊂ kerω♯

L. Hence, if π
+∗ is an epimorphism, then hL,A = 0.

In the case of G-Lie algebroids we can put the superscript G in the diagram (3.8).

Problem 3.10. Find an example of an extension e with he 6= 0 (then there is no flat

e-connection) and such that there is a flat L-connection in A (in particular hL,A = 0). In

this example j+∗ cannot be a surjective homomorphism. A wide class of objects with an

epimorphism j+∗ (in the non-transitive case where π : A → L comes from an extension

of principal bundles Q(B,H, q)
π
→ P (B,G, p) with respect to an extension of Lie groups

0 → N → H → G → 0) was given by K. Mackenzie [M5]. It is true when N , H and G

are compact and connected. The problem is to study the non-compact case which can be

extended to the case of Lie algebroids.

3.2.7. Induced tangential case. If A is a transitive Lie algebroid and ImωL is contained

in a regular foliation F ⊂ TB, then together with an L-connection ∇ : L → A we can

consider an induced tangential L-connection ∇F : L→ AF defined by the same formula

(see Introduction). According to Theorem 3.7 we have the following diagram joining the

Chern-Weil homomorphisms hL,A and hL,AF .

I(A) H(B)✲hA

I(AF ) HF (B)✲
hAF

❄ ❄

i
♯
F

HL(B)

hL,A

❅
❅
❅
❅❘

ω
♯
L

❅
❅

❅
❅■

hL,AF

�
�
��✒

ω
♯
L

�
�

��✠
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Since—in general—the domain I(AF ) is not generated as an Ωb(B,F )-module by

I(A) (see [K5]) we can pose the problem:

Problem 3.11. Find an example in which hL,A = 0 and hL,AF 6= 0.

4. Transversal Lie algebroids and transversal lifting of connections

4.1. Mackenzie algebroid. Consider an extension e : 0 → K → A
π
→ TP/G → 0

of transitive Lie algebroids where TP/G is the Lie algebroid of a principal fibre bundle

P . Recall the construction (given by K. Mackenzie) of a lifting of e via a projection

p : P → B to some PBG-Lie algebroid p∗A on P with the Atiyah sequence

0 −→ p∗K −→ p∗A
q̃
−→TP −→ 0,

where q̃ is a lifting of π (under the identification TP ∼= p∗(TP/G)). We identify also

Sec(p∗A) ∼= C∞(P )⊗C∞(B) SecA. The reader can find the next theorems in [M5].

Theorem 4.1 (K. Mackenzie). There is a structure of a Lie algebroid in the bundle

p∗A. The anchor is q̃ and sections of p∗A satisfy

[[f ⊗ ξ, f ⊗ η]] = f · g · [[ξ, η]] + f · (π ◦ ξ)→(g)⊗ η − g · (π ◦ η)→(f)⊗ ξ,

where X→ denotes the right-invariant vector field on P induced by X ∈ Sec(TP/G).

The canonical homomorphisms p and p in the diagram

0 p∗K✲ p∗A✲ TP✲q̃
0✲

0 K✲ A✲ TP/G✲
π 0✲

❄ ❄

p

❄

p

are non-strong homomorphisms of Lie algebroids (over p : P → B). Notice that p∗A is

not a pull-back of A according to the definitions in [H-M] and [K4].

Theorem 4.2 (K. Mackenzie). A right action R of G on p∗A is given by

Rg(z, v) = (zg, v).

Rg : p∗A → p∗A is an automorphism of the Lie algebroid p∗A over the right translation

Rg : P → P and hence p∗A is a PBG-algebroid.

Definition 4.3. The transitive algebroid p∗A on P (constructed above) will be called

the Mackenzie algebroid of an extension e or the algebroid transversal to e (by analogy

with the notion a transversal principal bundle when e comes from an extension of principal

bundles [M5]).

Proposition 4.4. If χ : TP/G → A is an e-connection, then its lifting χ̃ = p∗(χ) is a

G-equivariant connection in the transversal algebroid p∗A. Conversely, any G-equivariant

connection in p∗A is of this form.

The last proposition corresponds to Prop. 3.2 in [M5] for extensions of principal

bundles. χ̃ will be called the transversal lifting of the e-connection χ.



94 B. BALCERZAK ET AL.

4.2. Some generalizations of connection. We now study lifting of any TP/G-connec-

tion in A.

Proposition 4.5. Let χ : TP/G → A be an arbitrary TP/G-connection in A (i.e. a

linear homomorphism with ωA◦χ = ω). Then, the lifting χ̃ : TP → p∗A is a G-equivariant

homomorphism such that p∗(q̃ ◦ χ̃) = p∗ (i.e. the difference between q̃ ◦ χ̃(v) and v is a

vertical vector, one which is tangent to an orbit of the action of G on P ). Conversely,

if γ : TP → p∗A is a G-equivariant homomorphism with p∗(q̃ ◦ χ̃) = p∗, then γ = χ̃ for

some TP/G-connection χ in A.

Proof. ”ongrightarrow” It is easy to show that χ̃ is G-equivariant. To see that p∗(q̃ ◦

χ̃) = p∗ consider the diagram

p∗A TP✲q̃✛
χ̃

A
❄

p

TP/G

❄

p

✲π✛
χ

TB

p∗
❅
❅
❅
❅❘
✲ω

✲
ωA

Then

p∗ ◦ (q̃ ◦ χ̃) = ωA ◦ p ◦ χ̃ = ωA ◦ χ ◦ p = ω ◦ p = p∗.

”ongleftarrow” Let γ : TP → p∗A be a G-equivariant linear homomorphism with

p∗(q̃◦ χ̃) = p∗. Since γ is G-equivariant, there is a linear homomorphism of vector bundles

χ : TP/G → A, and its lifting is γ. It remains to check that ωA ◦χ = ω. Since p is a linear

homomorphism on the fibres, we have

ωA ◦ χ ◦ p = ωA ◦ p ◦ γ = p∗ ◦ q̃ ◦ γ = p∗ = ω ◦ p.

The proposition above suggests that we should generalize the notion of a connection

in a regularG-Lie algebroid A
ωA−→ F on B as follows: a linear homomorphism λ : F → A is

called a G-connection if the difference between ωA ◦λ(v) and v, v ∈ F , is a vector tangent

to an orbit of the action G on B (if the group G is trivial, then we obtain the standard

connection in A, ωA◦λ = id). Under this definition we can say that the transversal lifting

of a TP/G-connection in A is a G-connection in the G-Mackenzie algebroid p∗A and vice

versa.

4.3. Geometric interpretation of a Mackenzie algebroid. Recall the geometric inter-

pretation of a Mackenzie algebroid [M5]. Let (2.5) be an extension of principal bundles

(with respect to an extension of Lie groups 0 → N → H
π
→ G → 0) and consider the

corresponding exact sequence (an extension of transitive Lie algebroids)

e : 0 −→ Q×H n −→ TQ/H
πG
∗−→ TP/G −→ 0.

Let Q(P,N, π) be an N -principal bundle transversal to the extension of principal bundles

and let TQ/N be its Lie algebroid with the Atiyah sequence

0 −→ Q×N n −→ TQ/N
πN
∗−→ TP −→ 0.
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The Lie group G acts on TQ/N by

R̃g : TQ/N −→ TQ/N , [Xv]
N
7→ [Rh∗Xv]

N
,

where Xv ∈ TvQ and h ∈ π−1(g). R̃g is an automorphism of the Lie algebroid TQ/N over

the right translation Rg : P → P . Under this action, TQ/N is a PBG-Lie algebroid. The

homomorphism R̃g : TQ/N → TQ/N has a (not necesarily unique) lifting to an automor-

phism of the N -principal bundle π : Q → Q, z 7→ zh, with respect to an automorphism

of Lie group τh−1 : N → N , n 7→ h−1nh. Given g ∈ G denote by α(g) any element from

π−1(g). The family of these automorphisms gives a smooth mapping Q ×G→ Q if and

only if α is a smooth mapping, which is equivalent to the fact that the quotient bundle

H → H/N = G is trivial. Hence there is usually no action of the Lie group G on the

transversal bundle Q which gives R̃.

Situation like this seems to be more elegant from the Lie groupoids point of view: given

the Lie-Ehresmann groupoid T = Q × Q/N of a transversal bundle Q(P,N, π) there is a right

action (Mackenzie) R : T × G → T given by Rg(< v2, v1 >) =< v2h, v1h >, h ∈ π
−1(g).

The differential of Rg defines an automorphism of the Lie algebroid A(T ) of T and under the

canonical identification A(T ) ∼= TQ/N we obtain an action R̃ which is given as above. The

advantage of the groupoid and algebroid approach in comparison with principal bundles is now

clear (see [M5, Remark (1) ]).

A connection χ : TP/G → TQ/H in the extenision e has a unique lifting to a connec-

tion χ̃ : TP → TQ/N in the algebroid TQ/N (and next to a connection in the transver-

sal bundle). Indeed, if χ([uz]
G) = [Xv]

H (Xv ∈ TvQ, πz = h), then χ̃(uz) = [Xv]
N
.

Observe that R̃g induces an automorphism of p∗(TQ/H), (z, α) 7→ (zg, α). The connec-

tion χ̃, we have obtained is G-equivariant and conversely, each G-equivariant connection

γ : TP → TQ/N has the form of χ̃ for some connection χ in e. Under the identification

TQ/N
∼= p∗(TQ/H), we can introduce the Lie algebroid structure in p∗(TQ/H) obtaining

a Mackenzie algebroid.

4.4. The equivariant Chern-Weil homomorphism of a Mackenzie algebroid. Consider

an extension of Lie algebroids e : 0 → K → A → TP/G → 0 and the correspond-

ing transversal PBG-Mackenzie algebroid 0 → p∗K → p∗A → TP → 0. According

to Section 3.2.3, we have the well defined G-equivariant Chern-Weil homomorphism

hG
p∗A : I(p∗A)G → HG(P ) and this homomorphism is equivalent to the Chern-Weil

homomorphism of the extension e under the canonical isomorphisms

I(p∗A)G HG(P )✲
hG
p∗A

I(A) HTP/G
(B)✲

he

✻
∼=

✻
∼=

If manifolds P andQ in the extensionQ(B,H, q)
π
→ P (B,G, p)→ 0 are connected (the

Lie groups H and G need not to be connected), then I(G) ∼= I(TP/G), I(H) ∼= I(TQ/H),

I(N) ∼= I(TQ/N ) and in consequence, I(N)G ∼= I(TQ/N)G. Hence, given an extension
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e which comes from an extension of principal bundles Q → P , the diagram (3.8) (if we

omit hL,A) is equivalent to the diagram (1.3) given by K. Mackenzie.

Acknowledgments. The authors are grateful to Prof. Izu Vaisman for suggestions
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References

[B1] I. W. Belko, Characteristic classes of transitive Lie algebroids, preprint Minsk, 1994,

192 pp. (in Russian).

[B2] I. W. Belko, Characteristic homomorphism of a Lie algebroid, News Belarus Acad. Sci.

Ser. phys.-math. sci. 1, 1997 (in Russian).

[C] M. Crainic, Differentiable and algebroid cohomology, Van Est isomorphisms, and char-

acteristic classes, Preprint DG/0008064.

[F1] R. L. Fernandes, Connections in Poisson geometry I: holonomy and invariants, J.

Differential Geometry 54 (2000), 303–366 (math.DG/0001129).

[F2] R. L. Fernandes, Lie algebroids, holonomy and characteristic classes, preprint

DG/007132.

[G] W. Greub, Multilinear Algebra, Springer, 1967.

[G-H-V] W. Grueb, S. Halperin and R. Vanstone, Connections, Curvature and Cohomology,

Vols. I, II, Academic Press, 1972, 1973.
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