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Abstract. We introduce a cohomology theory of Koszul-Vinberg algebroids. The relation-
ships between that cohomology and Poisson manifolds are investigated. We focus on the com-
plex of chains of superorders [KJL1]. We prove that symbols of some sort of cycles give rise
to so called bundlelike Poisson structures. In particular we show that if £ — M is a transi-
tive Koszul-Vinberg algebroid whose anchor is injective then a Koszul-Vinberg cocycle 6 whose
symbol has non-zero skew symmetric component defines a transversally Poissonian symplectic
foliation in M.

1. Background material. Let A be a real algebra whose multiplication map is
denoted by

(a,b) — ab.
Given three elements a, b, ¢ of A their associator in A is the quantity
(1) (a,b,c¢) = a(be) — (ab)c.
DEFINITION 1.1. A real algebra A is called a Koszul-Vinberg algebra if its associator
map satisfies the identity
(a) b7 C) = (b7 a) C)'
N.B. Koszul-Vinberg algebras are also called left symmetric algebras [NB1], [PA].

Let A be a Koszul-Vinberg algebra and let W be a real vector space with two bilinear
maps

@) AXW =W : (a,w)— aw;

WxA—=W: (w,a)— wa.
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We will set the following: given a € A and w € W
(a,b,w) = a(bw) — (ab)w,
(3) (a,w,b) = a(wb) — (aw)b,
(w,a,b) = w(ab) — (wa)b.
DEFINITION 1.2. A vector space equiped with two bilinear maps (2) is called a Koszul-
Vinberg module of A if the following identities hold for any a,b € A and w € W:
(a,b,w) = (b, a,w),
(a,w,b) = (w,a,b).
Given a Koszul-Vinberg algebra A and a Koszul-Vinberg module W of A, one of the
following spaces:
J(A) ={ce A/(a,b,c) =0,YVa € A Vb e A};
JW) ={w e W/(a,b,w) =0,Va € A,Vb e A}.
The subspace J(A) C A is a subalgebra of A and the induced multiplication map is
associative. In general the vector subspace J(W) is not invariant under the actions (2).

Ezxamples of Koszul-Vinberg algebras and their modules

(e1) Every associative algebra is a Koszul-Vinberg algebra.

(e2) Let (M, D) be a locally flat manifold, [KJL3]; then the vector space I'(T'M) of
smooth vector fields on M is a Koszul-Vinberg algebra; its multiplication map is defined
by

(X,Y) —» XY = DxY.
(e3) Given a locally flat manifold (M, D) let W be the vector space of real valued

smooth functions on M. For any f € W and X € I'(T'M) we define Xf € W and
fX € W by putting

(Xf)@) = <df.X > (2), (fX)()=0€R
With the above operations W becomes a Koszul-Vinberg module of A =T'(TM).
Given a Koszul-Vinberg algebra A and two Koszul-Vinberg modules of A, called V/

and W, let Hom(W, V') be the vector space of linear maps from W to V. We consider
the following actions of A in Hom(W,V): let 0 € Hom(W,V),a € A, w € W then we set

(4) (a0)(w) = a(0(w)) — b(aw),  (0a)(w) = (6(w))a.

Under the actions defined in (4) the vector space Hom(W,V) becomes a Koszul-
Vinberg module of .A. More generally the vector space Hom/(®?W, V) of g-linear mappings
from W to V is a Koszul-Vinberg module of A under the following actions: let 6 €
Hom(®W,V), a € A and wy, ...,wy € W, we set

(af) (w1, ..., wq) = a(O(w1, ..., wq)) — D21 <<, 0(-.awy, ..., wy),
(Ba) (w1, ...,wq) = (B(w1, ..., wq))a.

Let ¢ be a positive integer every pair (j,wp) where j is a non-negative integer with
j < q and wy € W will define a linear map from Hom(®9,V) to Hom(®7 W, V), called
e;j(wo). Let 8 € Hom(®IW, V) then e;(wy)0 € Hom (@1 'W, V) is defined by

(ej(wo)e)(wla ey wqfl) = 9(’(1)1, ey Wi—1, Wo, Wy, '~wq71)~
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The linear map e;(wp) commutes with the right action of A, viz
(ej(wo)0)a = e;j(wo)(0a).

Thus the notation e;(wo)fa will be well defined.
We are now in a position to recall the definition of the complex

e CUAW) 2 Cor LA, W) = ..
Let A be a Koszul-Vinberg algebra and let W be a Koszul-Vinberg module of A. For
each positive integer g we set
CUA,W) = Hom(@7A, W)
and for ¢ = 0 we set
COUA,W) = J(W).
Then the graded vector space
C(A, W) = B4>0CI (A, W)
is a cochain complex whose boundary operator is defined by
S0 : CO(A,W) — CHA, W), (Sow)(a) = —aw + wa,
(5) 8q: CUA W) — CITHA W), .
(60)(a1, .., aq+1) = 32 <, (=1)7{(a;0)(..a;..aq+1) + (eq(aj)0aqs1(-.a;.., ag+1)}
The family (d,), satisfies the following identity
dg+104 = 0.

The ¢*" cohomology space of the cochain complex C(A, W) is denoted by HI(A, W). We
have

HY(A,W) = ker(dq)/im(0q—1)
for ¢ > 0 and
HO(A, W) = ker(dp).

EXAMPLE. Let (M, D) be a locally flat manifold and let A = T'(T'M) be the cor-
responding Koszul-Vinberg algebra. Regarding A as a Koszul-Vinberg module of itself
the subspace J(A) consists of affine vector fields. Thus ker(dy) is the subspace of lo-
cally linear vector fields. One sees that in general H°(A, A) will be non-trivial; e.g. if
(M, D) is the real flat torus then dimH°(A, A) = dimM. On the other hand we have
H'(A, A) =0, [NBs].

2. Koszul-Vinberg algebroids and coalgebroids. Let M be a smooth manifold
and FE a vector bundle over M. The space of smooth sections of E is denoted by I'(E).

DEeFINITION 2.1. A Koszul-Vinberg algebroid over M is a vector bundle E over M
with a bundle map a : E — T M, called the anchor map, such that

(P1) I'(E) is a Koszul-Vinberg algebra;

(P;) The anchor a : T'(E) — I'(T'M) satisfies the following identities: Vf € C*°(M,R),
Vs eT'(E), Vs’ e T(E)

(fs)s' = f(ss'),  s(fs') = f(ss')+ < df,a(s) > o'
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REMARK. It follows from conditions (P1) and (P2) that the anchor map is a homo-
morphism of the associated Lie algebras.

Ezxamples of Koszul-Vinberg algebroids

(e1) The tangent bundle of a locally flat manifold (M, D) is a Koszul-Vinberg alge-
broid. Its anchor is Identity map; given two sections of T'M, called X,Y then

XY =DxY.

(e2) Let F be an affine foliation in a smooth manifold M and let Ex be the tangent
bundle of F in T'M. Since each leaf of F is a locally flat manifold Er is a Koszul-Vinberg
algebroid over M.

(es) Each completely integrable system in an m-dimensional symplectic manifold
(M,w) gives rise to an action of R™ in M. The orbits of that action are locally flat man-
ifolds; thus every completely integrable system will generate a Koszul-Vinberg algebroid.

(e4) Given a lagrangian foliation F in a symplectic manifold (M,w) one defines a
Koszul-Vinberg algebroid E as in (e). If s,s" € I'(E) then ss’ is defined by the relation

(6) (88w = Lgt(s")w

where ¢(s’) is the inner product by s’ and L; is the Lie derivation w.r.t. s. The multipli-
cation in I'(F) given by (6) induces a locally flat structure in each leaf of F.

Now given a Koszul-Vingberg algebroid E' whose anchor map is injective, it is natural
to ask whether the locally flat structure of leaves of E extends to a locally flat structure
in M. The notion of Koszul-Vinberg co-algebroid together with cochain complex (5) help
to study the extension that we just raised, [NBW] (see also [KI] for the notion of partial
connection).

DEFINITION 2.2. Given a Koszul-Vinberg algebroid £ — M, a Koszul-Vinberg coal-
gebroid of F is a vector bundle N — M together with a bundle map o : N — TM
satisfying the following conditions:

(c1) T(N) is a Koszul-Vinberg algebra.

(c2) There exists a linear map j : I'(TM) — I'(N) such that the sequence

T(E) % T(TM) % T(N) =0
is exact and j o a(s) = s,Vs € I'(N).
(c3) Let s, s" be elements of T'(IV) and f € C°°(M,R); then
(fs)s" = f(ss)
and if < df,a(o) >= 0 for every o € T'(E) then
s(fs') = f(ss)+ < df,a(s) > s'.

ExXAMPLE. Let F be a locally flat foliation which is a transversally affine foliation
at the same time. Then the Koszul-Vinberg algebroid Ex corresponding to F admits a
Koszul-Vinberg coalgebroid, [NBW].

Indeed let £ be the sheaf of locally linear sections of Ex, i.e. s € L iff s's = 0,
Vs' € I'(Ex). We consider the quotient vector bundle TM/Ex. Since F is transversally
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affine the space of smooth sections of N = T'M/Ex admits a structure of Koszul-Vinberg
algebra (every germ of submanifold which is transverse to F is a germ of affine manifold).
Thus I'(N) admits a Koszul-Vinberg algebra structure. Let us write

J(N) = J(I(N)).
Then C*°(M,R)J(N) =T'(N). Using a riemannian metric on M one constructs a section
a:N—=>TM
of the exact sequence
0 Er STM L N0

where j is the canonical projection.
In [NBW] we have used the Lie algebra

A =norm(L) N i~ (J(N))

to study the extension problem of the locally flat structure of F; norm(L) is the normal-
izer of L in the Lie algebra I'(T'M).

Remark that every Koszul-Vinberg algebroid E gives rise to a Lie algebroid Ep; the
total space of Ey, is F; for s and s in I'(FL) the bracket is defined by

(7) [5,5'] = ss’ — §'s.

The anchor map of E satisfies the identity

a([s, s']) = [a(s), a(s")].
Indeed let s, s, s be elements of T'(E) and f € C*°(M,R), then
[s,8'[(fs") = (s8")(fs") — (5'5)(fs") = s(s'(fs")) — &'(s(f5"))
and property (P») of definition 2.1 implies that
< df,a([s, s']) >= a(s)(a(s")f) — a(s")(a(s)[),

where a(s)f =< df,a(s) >.

3. Real cohomology of Koszul-Vinberg algebroids. Let E — M be a Koszul-
Vinberg algebroid. The vector space W = C*°(M,R) is a Koszul-Vinberg module of
A =T(FE). The left action and the right action are defined by

(sf)(@) =<df,a(s) >, (f.s)(x) =0,
where a is the anchor map of E.
We will focus on the cochain complex

8) e CUAW) 28 COr (A, W) 5
The ¢ cohomology space of (8) is denoted by H?(E,R), i.e. H(E,R) = H1(A,W).

DEFINITION 2.3. The vector space HY(E,R) is called the ¢! cohomology space of
the Koszul-Vinberg algebroid E — M.

EXAMPLE. Let E be a regular Koszul-Vinberg algebroid whose anchor map is denoted
by a. Then a(E) defines a foliation on M. A function f belongs to J(W) iff L, o
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Lq(sy(f) = 0 for arbitrary sections s, s’ of E. Thus if the anchor is injective then J(W)
consists of smooth functions which are affine along each leaf of a(E). Since H(E,R) =
ker(8o) we see that H(E,R) is just the vector space of first integrals of a(FE).

THEOREM 3.1. If a reqular Koszul-Vinberg algebroid E — M admits a dense leaf then
dimH°(E,R) = 1.

4. Koszul-Vinberg algebroids and Poisson manifolds. To every Koszul-Vin-
berg algebroid E we attach the following new Koszul-Vinberg algebroid

E=EXxR
where R is the trivial vector bundle R =: M x R. We identify I'(R) with the associative
algebra C*° (M, R) of smooth real valued functions on M. Thus we will identify I'(£) with
T(E) x C*°(M,R) as well.
Henceforth I'(€) is an algebra whose multiplication is
(9) (5, 1), 1) = (55, £+ < df'als) ).
It is easy to see that (9) endows I'(€) with a structure of Koszul-Vinberg algebra. Morever
it g € C*°(M,R) then we have
(905, (S £) = 9((5, F)(', )
and
(5, 9", 1)) = 9((5, £)('s )+ < dgals) > (5, ).

Naturally the anchor map of £ is defined by

ac(s, f) = a(s)
where a is the anchor of E — M. The Koszul-Vinberg algebra I'(£) is the semi-product

I'(E) x C*°(M,R).

Now let V' be a vector space, let r be a non-negative integer; we will put

(V) = @"V.
Henceforth we are concerned with the cochain complex

e CUG, W) L UG W)
where G is the Koszul-Vinberg algebra (9) and W = C*°(M,R). For each non-negative
integer ¢ the vector space C4(G, W) is bigraded
1 (g, W) = @r+s=qcr’8(ga W)
with
C™(G,W)=Hom(T"AQT°W,W),
r and s being non-negative integers.

The boundary operator &, goes from C™*(G, W) to the direct sum C™T15(G, W) &
C™st1(G,W). Thus we will equip the cohomology space H(G, W) with the bigradation

Hq(g, W) — @rJrs:qu’S(ga W)
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with
ker(d, : C™*(G, W) — C™T15(G, W) & C™T1(G, W))

dg—1(C=HG,W))NC™s(G, W)

HT?S(ga W) =

Naturally one sees that
Gg—1(CT7HG, W) NCT*(G, W) = 641 (C"™15(G, W) + C™*7H(G, W) N C*(G, W).

We will develop the analogue of the complex of differential forms of superorder intro-
duced by Jean-Louis Koszul, [KJL2].

To begin with, let ¢ € G, for a non-negative integer k and z € M j*¢ is the k'" jet at
x of £ € G. We will present j¢ by

= (dg€, - dy€, . d5E)
where d..¢ is the [t" differential at = of the section ¢ € T'(£).
DEFINITION [KJL2]. A cochain 8 € C9(G, W) is of order < k if at every v € M and
for &1,..,&, € G the value at x of 6(¢1,..€,) depends on, j¥&,..jk¢,.

Let I = (i1,..,i4) be a g-tuple of non-negative integers such that i; < k. Given a
g-cochain 6 € C9(G, W) of order < k, we set

(11) 0 (€1, .., &) () = B(d2 €y, .., diaE,).

Since 6 is g-multilinear (11) makes sense.
Thus every § € C?(G, W) which is of order < k will be decomposed as follows

flwagq ZHI flwagq

where I = (i1, ..,14) with 0 <41, ..,34 < k.
We call # the component of type I of 6.
The following definition is crucial for the forthcoming applications.

DEFINITION 4.1 Given a cochain of order < k, say § € C9(G, W), then its component
of type (k, .., k) is called the symbol of 6.

Notice that the symbol of § may be zero.

PROPOSITION [NB4]. The symbol o(8) of every q-cocycle § € C%4(G, W) is d,closed
and satisfies the identity
so(f) =0
for any arbitrary element s € T'(E).
We recall that

(5(0(0)) (€1, &) = a(s)(a(O) (61, -, &g)) = D 0 (0)(-585, --&g)-
J<q
For every non-negative interger r, H™?(G, W) = 0. (That phenomenon may be ex-
plained by using an appropriate spectral sequence.)
We are going now to relate symbols of so called Koszul-Vinberg cocycle to Poisson
manifolds structures.

We will deal with the vector spaces C™*(G, W) such that rs = 0. For instance
C%%(G,W) may contain Poisson tensors as well as Jacobi tensors.
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On the other hand let us suppose that the Koszul-Vinberg algebroid £ — M has an
injective anchor map. Then Riemannian metrics or symplectic structures on the vector
bundle E — M give rise to elements of C*%(G, W).

DEFINITION 4.2. (i) A cochain § € C?(G, W) is called a Koszul-Vinberg cochain if for
arbitrary elements &1, &2, &3 of G one has

(€1,62,83)0 = (£2,61,83)0
where
(€1,82,83)0 = 0(&1,0(&2,83)) — 0(0(&1,62), &3)-

(i) @ € C%(G,W) is a Koszul-Vinberg cocycle if 6llyg = 5.0 = 0 and (£1,&2,83)9 =
(€2,61,83)0-

Definition 4.2 makes sense because W may be regarded as a subspace of G.

Every Koszul-Vinberg cochain § € C?(G, W) defines a Koszul-Vinberg algebra struc-
ture whose multiplication is given by

§1§2 = 0(61,&2).

Therefore we define in G a new Lie algebra structure called Gy, whose bracket is given by

[€1,&alo = 0(&1,&2) — 0(&2,61).

Before continuing we will recall some differential geometry structures related to the
cohomology of Koszul-Vinberg algebroids.

DEFINITION 4.3. (i) A Poisson foliation in a manifold M is a foliation F whose leaves
are Poisson manifolds.

(ii) A transversally Poisson foliation in M is a foliation whose sheaf of basic functions
is a sheaf of Poisson algebra.

Part (ii) in definition 4.3 has the following meaning: the sheaf of local first integrals
of F admits a Lie algebra bracket

(f,9) = {f. g}
such that
{figh} = g{f,h} +{f,g9}h.

Let us go back to considerations regarding the complex
L CUG,W) L Ct (G W) s

which is defined by a Koszul-Vinberg algebroid £ — M. The following claim is easily
verified [KM]. Let A be an associative and commutative algebra and let C'(4, A) be its
Hochschild complex. Given any 2-cocycle § € C?(A, A) and any £ € A, then the linear
map say 0
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is a derivation of the algebra A. This elementary result has deep consequences; for example
given a smooth manifold M with a start product in C*° (M, R), say

frxg="rfg+> h*Bi(f.g)
k>0
the bilinear map By : C®°(M,R)? — C>(M,R) is a cocycle of the Hochschild complex
of C*°(M,R). One deduces that B is a bidifferential operator of order 1 whose skew
symmetric component defines a Poisson manifold structure on M, [KM]. The same claim
doesn’t hold in the cohomology theory of Koszul-Vinberg algebras. For instance in a
Koszul-Vinberg algebra A the multiplication map

(a,b) = ab
is an exact cocycle of C'(A, A), but the linear map
b— ab—ba

for a fixed a is a derivation of A iff @ € J(A). That makes relevant the theorem which is
stated below.

Let E— M be a Koszul-Vinberg algebroid and let C(G, W) be the complex associated
to G =T(&).

THEOREM I [NBy]. Let € C%2(G, W) be a cocycle of order < k. If the skew symmetric
component of the symbol o(0) is non-zero, then k = 1.

An important consequence of theorem is the following statement:

THEOREM II [NB4]. The skew symmetric component of the symbol o(0) of every
Koszul-Vinberg cocycle § € C%%(G, W) is a Poisson tensor.

Now let us assume the Koszul-Vinberg algebroid £ — M to be regular. Then E
defines a foliation Ex in M. Given any Koszul-Vinberg cocycle § € C%2(G, W) of order
< k we denote by IIp the skew symmetric component of o(#). The following corollary
follows directly from theorem II.

COROLLARY 4.4. Every germ of submanifold in M which is normal to Fg is a germ
of Poisson submanifold of (M,1ly). In particular if Fg is simple then the quotient man-
ifold M/Fg admits a Poisson manifold structure (M/Fg, 1) such that the canonical
projection from M to M/Fg is a Poisson morphism from (M,Ily) to (M/]:E,ﬁg).

Considering the case of Koszul-Vinberg algebroids with injective anchor maps, we see
that such algebroids define locally flat foliations in their base manifolds. Thus we can
state the following

THEOREM III [NB4]. Let E — M be a Koszul-Vinberg algebroid whose anchor map
is injective. If E is transitive, then every Koszul-Vinberg cocycle § € C%2(G, W) defines
a regular Poisson structure on M.

_ Remark that W being a Koszul-Vinberg submodule of G every Koszul-Vinberg cochain
6 € C*(G,G) induces a Koszul-Vinberg cochain § € C%2(G, W).
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5. The Koszul-Vinberg analogues of star product. Let M be a smooth man-
ifold and let W be the vector space C*°(M,R) endowed with its natural structure of
associative and commutative algebra.

Given a start product in W, say

Sl =1+ S B S
k>0
it is well known that the skew symmetric component of B is a Poisson tensor on M,
[KM]. Regarding theorem II a natural question arises: does the same phenomenon persist
in Koszul-Vinberg algebra structures.

Henceforth we will consider a Koszul-Vinberg algebroid £ — M. As before we denote
by G the vector space of smooth sections of the Wihtney sum E @ R. We consider the
multiplication already defined by (9), i.e. for £ = (s, f),& = (¢, f')

£ = (ss', ff'+ < df',a(s) >)
where a is the anchor map of E. Let h be some parameter; we will focus on the familly
of multiplication in G

(12) Exn & =8+ hF0u(f. 1)
k>0
with 0 € C?(G,G). We suppose the multiplication (12) to satisfy Definition 1.1, viz

(€1, &2,83)xn = (2,81, 83)*n

for elements &1, &2, &3 of G. Thus we obtain a family G;, of Koszul-Vinberg algebras. The
coefficient 6 is a cocycle of the complex C(G,G).
Each Koszul-Vinberg algebra G, give rise to a Lie algebra whose bracket is given by

6,60 =&xn € =& xn €= 16,1+ D hFA(EE)

k>0

with Ak(fa 5/) = 916 (57 fl) - gk(flv 5)
In order that the pair (E @ R, Gy ) define a Koszul-Vinberg algebroid with the same
anchor map a as the pair (£ @® R,G) it is necessary that

a([¢, €'n) = a([§,€]).

Thus we must have
(13) a(D_h* AR €)) = 0.

k>0
Therefore we see that for every positive integer k one has a(Ax(&,¢')) = 0. On the
other hand recall that W is a two-sided ideal of the Koszul-Vinberg algebra G whose
multiplication is (9). Then the W-component of the cocycle 6, is a W-valued 2-cocycle
of the cochain complex C(G, W). By assuming that the map a is also the anchor map of
the pair

(E®R,Gh)

we deduce from the condition

E(f #n &) = f(€x &)+ < df,a(§) > ¢
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that the chains 6y are of order zero, that is to say that each 6 is tensorial. This phe-
nomenon is in contrast to the case of star products in the associative and commutative
algebra C*°(M, R).

To end the present paper we deduce from (13) the following statement.

PRrROPOSITION 5.1. Let E — M be a Koszul-Vinberg algebroid whose anchor map is
injective. Suppose that the associated algebroid E & R admits a one parameter family of
deformations (E @ R, Gr) whose multiplication is

Exn & =8+ PO ).
k>0
Then the coefficients 0y, are symmetric chains of the cochain complex C(G,G).
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