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Abstract. Triangular generalized Lie bialgebroids are a generalization of triangular Lie

bialgebroids in the sense of Mackenzie and Xu. For this type of structures two homology and

cohomology theories are considered. Moreover, we prove that the vanishing of a certain cohomo-

logy class, which we will call the modular class, implies the existence of a duality between these

homology and cohomology theories. As a consequence, we recover some previous results for

unimodular Poisson and Jacobi manifolds and unimodular triangular Lie bialgebroids.

1. Introduction. Lie bialgebroids were introduced and studied by Mackenzie and

Xu [MX1] (see also [Ko1]) as the infinitesimal invariants of Poisson groupoids. In fact,

a Poisson groupoid has associated a Lie bialgebroid and conversely, a Lie bialgebroid

structure on the Lie algebroid of a (suitably simply connected) Lie groupoid can be

integrated to give a Poisson groupoid structure on the underlying groupoid (see [MX1,

MX2]). A Lie bialgebroid is a pair (A,A∗) such that A is a Lie algebroid and the dual

vector bundle A∗ also carries a Lie algebroid structure which is compatible in a certain way

with that on A. If M is a Poisson manifold and on T ∗M (respectively, TM) we consider

the cotangent Lie algebroid structure induced from the Poisson structure (respectively, the
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trivial Lie algebroid structure) then the pair (TM, T ∗M) is a Lie bialgebroid (see [MX1]).

Other interesting examples of Lie bialgebroids are Lie bialgebras [D], or equivalently, Lie

bialgebroids over a single point.

On the other hand, a Jacobi structure on a manifold M is a 2-vector Λ and a vector

field E onM such that [Λ,Λ] = 2E∧Λ and [E,Λ] = 0, where [ , ] is the Schouten-Nijenhuis

bracket [L2]. If (M,Λ, E) is a Jacobi manifold one can define a bracket of functions, the

Jacobi bracket, in such a way that the space C∞(M,R) endowed with the Jacobi bracket

is a local Lie algebra in the sense of Kirillov [Ki]. Conversely, a local Lie algebra structure

on C∞(M,R) induces a Jacobi structure on M [GL, Ki]. Jacobi manifolds are natural

generalizations of Poisson and contact manifolds. The 1-jet bundle T ∗M × R → M

associated with a Jacobi manifold M admits a Lie algebroid structure [KS]. However,

if on the vector bundle TM × R → M we consider the natural Lie algebroid structure

then the pair (TM ×R, T ∗M ×R) is not a Lie bialgebroid [IM2, V3]. This fact and some

examples of linear Jacobi structures on vector bundles obtained in [IM1] motivated the

introduction, in [IM2], of the definition of a generalized Lie bialgebroid, a generalization of

the notion of a Lie bialgebroid. A generalized Lie bialgebroid is a pair ((A, φ0), (A
∗, X0)),

where A is a Lie algebroid, φ0 is a 1-cocycle in the Lie algebroid cohomology complex

of A with trivial coefficients, A∗ is the dual bundle to A which admits a Lie algebroid

structure and X0 is a 1-cocycle of A∗. Moreover, the Lie algebroids A and A∗ and the

1-cocycles φ0 and X0 must satisfy some compatibility conditions. When the 1-cocycles

φ0 and X0 vanish, we recover the notion of a Lie bialgebroid. Furthermore, it was proved

that the base space M of a generalized Lie bialgebroid is a Jacobi manifold (see [IM2]).

Examples of generalized Lie bialgebroids are the so-called triangular generalized Lie

bialgebroids. In fact, if A is a Lie algebroid over M with Schouten bracket [[ , ]], φ0 is a

1-cocycle and P ∈ Γ(∧2A) is a section of ∧2A→M such that [[P, P ]] = 2i(φ0)P∧P then it

was proved in [IM2] that the dual bundle A∗ admits a Lie algebroid structure in such a way

that the pair ((A, φ0), (A
∗, X0)) is a generalized Lie bialgebroid, where X0 = −i(φ0)P .

Under the above conditions, we say that the triple (A, φ0, P ) is a triangular generalized

Lie bialgebroid. An example of this situation are triangular Lie bialgebroids in the sense of

Mackenzie and Xu [MX1] (in this case φ0 = 0). Other interesting examples are triangular

generalized Lie bialgebras [IM2, IM3] and the triples of the form (A = TM × R, φ0, P ),

where (M,Λ, E) is a Jacobi manifold, φ0 = (0, 1) ∈ Ω1(M)⊕ C∞(M,R) ∼= Γ(T ∗M × R)

and P = (Λ, E) ∈ V2(M)⊕ X(M) ∼= Γ(∧2(TM × R)) (see [IM2]).

In this paper, we consider two homology and cohomology theories associated with

the dual Lie algebroid A∗ of a triangular generalized Lie bialgebroid (A, φ0, P ) and we

prove that the vanishing of a certain cohomology class implies the existence of a duality

between these homology and cohomology theories. In fact, if (A, φ0, P ) is a triangular

generalized Lie bialgebroid over M then the presence of the 1-cocycle X0 = −i(φ0)P of

A∗ allows us to deform the differential d∗ of the Lie algebroid A∗ and to define a new

cohomology operator d∗X0 given by d∗X0 = d∗+ e(X0), where e(X0) denotes the exterior

product by X0. Thus, we have two cohomologies: the cohomology of the Lie algebroid

A∗, H∗(A∗), and the X0-cohomology of A∗, H∗
X0

(A∗). We show that the cohomology

H∗(A∗) (respectively, H∗
X0

(A∗)) is related with the cohomology of the local Lie algebra

C∞(M,R) relative to the representation of C∞(M,R) on itself given by the hamiltonian
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vector fields (respectively, by the Jacobi bracket) ofM. These representations also allow us

to introduce two homology operators d and dX0 on Γ(∧∗A∗) = ⊕kΓ(∧
kA∗). Moreover, if

[[ , ]]∗ is the Schouten bracket of A∗, we prove that −d and −dX0 are generating operators

of the Gerstenhaber algebra (Γ(∧∗A∗),∧, [[ , ]]∗). Therefore, if n is the rank of A then,

using the results of [X], we deduce that −d and −dX0 define two flat A∗-connections ∇

and ∇X0 on ∧nA∗ →M and the corresponding homologies H∗(A
∗,∇) and H∗(A

∗,∇X0).

On the other hand, if the vector bundle A is orientable we introduce, in a natural way,

the modular class M(A,φ0,P ) of the triple (A, φ0, P ) as an element of the first cohomology

group H1(A∗) and we show that if M(A,φ0,P ) vanishes then

Hk(A∗) ∼= Hn−k(A
∗,∇), Hk

X0
(A∗) ∼= Hn−k(A

∗,∇X0), for all k.

This theorem generalizes the results of [BZ, ELW, X] about the duality between the

canonical homology and the Poisson cohomology for unimodular Poisson manifolds, the

results of [Ko2] for unimodular triangular Lie bialgebroids and the results of [LLMP,

V3] about the duality between the LJ-cohomology and the canonical LJ-homology (in

the terminology of [LLMP]) for unimodular Jacobi manifolds. We also apply the above

theorem to the particular case when A is a real Lie algebra g of finite dimension, φ0 = 0

and P = r is a solution of the classical Yang-Baxter equation on g, that is, the pair (g, r)

is a triangular Lie bialgebra.

2. Lie algebroids. Homology and cohomology theories. If M is a manifold

of dimension n, we will denote by C∞(M,R) the algebra of C∞ real-valued functions

on M , by Ωk(M) the space of k-forms, by Vk(M) the space of k-vectors, with k ≥ 2,

by X(M) the Lie algebra of vector fields, by [ , ] the Schouten-Nijenhuis bracket on

V∗(M) = ⊕kV
k(M) and by δ the usual exterior differential on Ω∗(M) = ⊕kΩ

k(M).

A Lie algebroid A over a manifold M is a vector bundle A overM together with a Lie

algebra structure [[ , ]] on the space Γ(A) of the global cross sections of A→M and a bun-

dle map ρ : A→ TM , called the anchor map, such that, if we also denote by ρ : Γ(A) →

X(M) the homomorphism of C∞(M,R)-modules induced by the anchor map, then:

(i) ρ : (Γ(A), [[ , ]]) → (X(M), [ , ]) is a Lie algebra homomorphism and

(ii) for all f ∈ C∞(M,R) and for all X,Y ∈ Γ(A), one has

[[X, fY ]] = f [[X,Y ]] + (ρ(X)(f))Y.

The triple (A, [[ , ]], ρ) is called a Lie algebroid over M (see [M, P]).

If A is a Lie algebroid, the Lie bracket on the sections of A can be extended to the

so-called Schouten bracket [[ , ]] on the space Γ(∧∗A) = ⊕kΓ(∧
kA) of multi-sections of A

in such a way that

[[X, f ]] = ρ(X)(f),

[[P, P ′]] = (−1)kk
′

[[P ′, P ]],

[[P, P ′ ∧ P ′′]] = [[P, P ′]] ∧ P ′′ + (−1)k
′(k+1)P ′ ∧ [[P, P ′′]],

(−1)kk
′′

[[[[P, P ′]], P ′′]] + (−1)k
′k′′

[[[[P ′′, P ]], P ′]] + (−1)kk
′

[[[[P ′, P ′′]], P ]] = 0,

(1)

for f ∈ C∞(M,R), X ∈ Γ(A), P ∈ Γ(∧kA), P ′ ∈ Γ(∧k′

A) and P ′′ ∈ Γ(∧k′′

A). The triple

(Γ(∧∗A) = ⊕kΓ(∧
kA),∧, [[ , ]]) is a Gerstenhaber algebra (see [M]).
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Remark 2.1. The definition of Schouten bracket considered here is the one given

in [V2] (see also [BV, L1]). Some authors, see for example [ELW], define the Schouten

bracket in another way. In fact, the relation between the Schouten bracket [[ , ]]′ in

the sense of [ELW] and the Schouten bracket [[ , ]] in the sense of [V2] is the following

[[P,Q]]′ = (−1)k+1[[P,Q]], for all P ∈ Γ(∧kA) and Q ∈ Γ(∧∗A).

Examples 2.2. i) A trivial example of a Lie algebroid is the triple (TM, [ , ], Id),

where M is a differentiable manifold and Id : TM → TM is the identity map.

ii) The Lie algebroid (TM × R, [ , ], π): Let M be a differentiable manifold and

A → M a vector bundle over M . It is clear that A × R is the total space of a vector

bundle overM . Moreover, the dual bundle to A×R is A∗×R and the spaces Γ(∧r(A×R))

and Γ(∧k(A∗×R)) can be identified with Γ(∧rA)⊕Γ(∧r−1A) and Γ(∧kA∗)⊕Γ(∧k−1A∗)

in such a way that

(P,Q)((α1, f1), . . . , (αr, fr)) = P (α1, . . . , αr) +

r∑

i=1

(−1)i+1fiQ(α1, . . . , α̂i, . . . , αr),

(α, β)((X1, g1), . . . , (Xk, gk)) = α(X1, . . . , Xk) +

k∑

i=1

(−1)i+1giβ(X1, . . . , X̂i, . . . , Xk),

for (P,Q) ∈ Γ(∧rA) ⊕ Γ(∧r−1A), (α, β) ∈ Γ(∧kA∗) ⊕ Γ(∧k−1A∗), (αi, fi) ∈ Γ(A∗) ⊕

C∞(M,R) and (Xj , gj) ∈ Γ(A) ⊕ C∞(M,R), with i ∈ {1, . . . , r} and j ∈ {1, . . . , k}.

Under these identifications, the contractions and the exterior products are given by

i(α, β)(P,Q) = (i(α)P + i(β)Q, (−1)ki(α)Q), if k ≤ r,

i(α, β)(P,Q) = 0, if k > r,

i(P,Q)(α, β) = (i(P )α+ i(Q)β, (−1)ri(P )β), if r ≤ k,

i(P,Q)(α, β) = 0, if r > k,

(P,Q) ∧ (P ′, Q′) = (P ∧ P ′, Q ∧ P ′ + (−1)rP ∧Q′),

(α, β) ∧ (α′, β′) = (α ∧ α′, β ∧ α′ + (−1)kα ∧ β′),

(2)

for (P ′, Q′) ∈ Γ(∧r′A)⊕ Γ(∧r′−1A) and (α′, β′) ∈ Γ(∧k′

A∗)⊕ Γ(∧k′−1A∗).

Now, suppose that A is the tangent bundle TM of an arbitrary manifold M . In this

case, the spaces Γ(∧r(TM × R)) and Γ(∧k(T ∗M × R)) can be identified with Vr(M)⊕

Vr−1(M) and Ωk(M)⊕ Ωk−1(M).

Using the above identifications, we will exhibit a natural Lie algebroid structure on

the vector bundle TM ×R. If π : TM ×R → TM is the canonical projection on the first

factor and [ , ] is the bracket given by

[(X, f), (Y, g)] = ([X,Y ], X(g)− Y (f)),

for (X, f), (Y, g) ∈ X(M) ⊕ C∞(M,R) ∼= Γ(TM × R), then (TM × R, [ , ], π) is a Lie

algebroid over M (see [M, N]).

iii) The Lie algebroid (T ∗M × R, [[ , ]](Λ,E), #̃(Λ,E)) of a Jacobi manifold: A Jacobi

structure on a manifold M is a 2-vector Λ and a vector field E on M satisfying (see [L2])

[Λ,Λ] = 2E ∧ Λ, [E,Λ] = 0. (3)

The manifoldM endowed with a Jacobi structure is called a Jacobi manifold. If (M,Λ, E)

is a Jacobi manifold, we can define a bracket of functions (the Jacobi bracket) by the
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formula

{f, g} = Λ(δf, δg) + fE(g)− gE(f), (4)

for all f, g ∈ C∞(M,R). The space C∞(M,R) endowed with this Jacobi bracket is a local

Lie algebra in the sense of Kirillov (see [Ki]). Conversely, a structure of local Lie algebra

on C∞(M,R) defines a Jacobi structure on M (see [GL, Ki]).

If (M,Λ, E) is a Jacobi manifold, the 1-jet bundle T ∗M × R → M admits a Lie

algebroid structure ([[, ]](Λ,E), #̃(Λ,E)), where [[, ]](Λ,E) and #̃(Λ,E) are defined by

[[(α, f), (β, g)]](Λ,E)= (L#Λ(α)β−L#Λ(β)α−δ(Λ(α, β))+fLEβ−gLEα− i(E)(α ∧ β),

Λ(β, α)+#Λ(α)(g)−#Λ(β)(f)+fE(g)−gE(f)),

#̃(Λ,E)(α, f) = #Λ(α) + fE,

(5)

for (α, f), (β, g) ∈ Ω1(M) ⊕ C∞(M,R) (see [KS]). Here, L denotes the Lie derivative

operator and #Λ : Ω1(M) → X(M) the homomorphism of C∞(M,R)-modules given by

#Λ(α) = i(α)Λ. Note that from (4) and (5) it follows that

[[(δf, f), (δg, g)]](Λ,E) = (δ{f, g}, {f, g}). (6)

In the particular case when (M,Λ) is a Poisson manifold (i.e., E = 0) we recover,

by projection, the Lie algebroid (T ∗M, [[ , ]]Λ,#Λ), where [[ , ]]Λ is the bracket of 1-forms

defined by (see [F]):

[[ , ]]Λ : Ω1(M)× Ω1(M) → Ω1(M), [[α, β]]Λ = L#Λ(α)β − L#Λ(β)α− δ(Λ(α, β)). (7)

Next, we will recall the definition of the Lie algebroid cohomology complex with trivial

coefficients. For this purpose, we will recall the definition of the cohomology of a Lie

algebra A with coefficients in an A-module (we will follow [V2]).

Let (A, [ , ]) be a real Lie algebra (not necessarily finite dimensional) and M a real

vector space endowed with a R-bilinear multiplication

A×M → M, (a,m) 7→ a ·m,

such that

[a1, a2] ·m = a1 · (a2 ·m)− a2 · (a1 ·m), (8)

for a1, a2 ∈ A and m ∈ M. In other words, we have a representation of A on M. In

such a case, a k-linear skew-symmetric mapping ck : Ak → M is called an M-valued

k-cochain. These cochains form a real vector space Ck(A;M) and the linear operator

σk : Ck(A;M) → Ck+1(A;M) given by

(σkck)(a0, . . . , ak) =
k∑

i=0

(−1)iai · c
k(a0, . . . , âi, . . . , ak)+

∑

i<j

(−1)i+jck([ai, aj ], a0, . . . , âi, . . . , âj, . . . , ak)
(9)

defines a cohomology operator. Hence, we have the corresponding cohomology spaces

Hk(A;M). This cohomology is called the cohomology of the Lie algebra A with coefficients

in M, or relative to the given representation of A on M.
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Now, if (A, [[ , ]], ρ) is a Lie algebroid, we can define the representation of the Lie algebra

(Γ(A), [[ , ]]) on the space C∞(M, R) byX ·f = ρ(X)(f), forX ∈ Γ(A) and f ∈ C∞(M,R).

We will denote by d the cohomology operator of the corresponding cohomology complex.

Note that the space of the k-cochains which are C∞(M,R)-linear is just Γ(∧kA∗), where

A∗ is the dual bundle to A. Moreover, we have that d(Γ(∧kA∗)) ⊆ Γ(∧k+1A∗), for all k,

and thus one can consider the subcomplex (Γ(∧∗A∗), d|Γ(∧∗A∗)). The cohomology of this

subcomplex is the Lie algebroid cohomology with trivial coefficients and the restriction

of d to Γ(∧∗A∗) is the differential of the Lie algebroid A (see [M]). We will denote the

corresponding cohomology spaces by H∗(A).

By the above definitions, a 1-cochain φ ∈ Γ(A∗) is a 1-cocycle if and only if

φ[[X,Y ]] = ρ(X)(φ(Y ))− ρ(Y )(φ(X)), for all X,Y ∈ Γ(A). (10)

On the other hand, if X ∈ Γ(A) then one can introduce the Lie derivative by X as the

operator LX : Γ(∧kA∗) → Γ(∧kA∗) given by LX = i(X) ◦ d+ d ◦ i(X).

Examples 2.3. i) For the Lie algebroid (TM, [ , ], Id), the Lie algebroid cohomology

with trivial coefficients is just the de Rham cohomology of M .

ii) The Lie algebroid (TM × R, [ , ], π): In this case, the dual bundle to TM × R

is T ∗M × R and, under the identification Γ(∧k(T ∗M × R)) ∼= Ωk(M) ⊕ Ωk−1(M), the

differential δ̃ of the Lie algebroid (TM × R, [ , ], π) is given by

δ̃(α, β) = (δα,−δβ), (11)

for (α, β) ∈ Ωk(M)⊕ Ωk−1(M).

iii) The Lie algebroid (T ∗M × R, [[ , ]](Λ,E), #̃(Λ,E)) of a Jacobi manifold: If (T ∗M ×

R, [[ , ]](Λ,E), #̃(Λ,E)) is the Lie algebroid associated with a Jacobi manifold (M,Λ, E) then,

under the identification Γ(∧k(TM × R)) ∼= Vk(M)⊕ Vk−1(M), the differential d(Λ,E) of

the Lie algebroid is given by (see [LLMP, LMP])

d(Λ,E)(P,Q) = (−[Λ, P ] + kE ∧ P + Λ ∧Q, [Λ, Q]− (k − 1)E ∧Q+ [E,P ]), (12)

for (P,Q) ∈ Vk(M) ⊕ Vk−1(M). The resultant cohomology H∗
LJ(M,Λ, E) was termed

in [LMP] the Lichnerowicz-Jacobi cohomology (LJ-cohomology, for brevity) of M . This

cohomology plays an important role in the geometric quantization of the Jacobi manifold

M and in the existence of prequantization representations for complex line bundles over

M (for more details, see [LLMP, LMP]).

Another description of the LJ-cohomology is the following. Consider the representa-

tion of the Lie algebra of functions on itself given by the hamiltonian vector fields, that is,

C∞(M,R)× C∞(M,R) → C∞(M,R)

(f, g) 7→ Xf (g) = Λ(δf, δg) + fE(g).

The resultant cohomology is called the H-Chevalley-Eilenberg cohomology of M (see

[LLMP, LMP]). The LJ-cohomology is just the cohomology of the subcomplex of the

H-Chevalley-Eilenberg complex which consists of the 1-differentiable cochains, i.e., the

k-linear skew-symmetric differential operators of order 1 (see [LLMP] for more details).

When (M,Λ) is a Poisson manifold, the differential of the Lie algebroid (T ∗M, [[ , ]]Λ,

#Λ) is the operator dΛ = −[Λ, · ]. This operator was introduced by Lichnerowicz in [L1]

to define the Poisson cohomology H∗
LP (M,Λ) of M .
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Now, we will recall the definition of the homology operator associated with a Lie

algebroid A over M of rank n and a flat A-connection on ∧nA→M (see [X]).

Let (A, [[ , ]], ρ) be a Lie algebroid over M of rank n. An A-connection on a vector

bundle E →M is a R-bilinear mapping

∇ : Γ(A)× Γ(E) → Γ(E)

X ⊗ s 7→ ∇Xs

such that

∇fXs = f∇Xs, ∇X(f s) = (ρ(X)(f))s+ f∇Xs, for all f ∈ C∞(M,R).

The curvature R of an A-connection ∇ may be defined as for the usual connections. ∇

is said to be flat if R vanishes.

Any A-connection on ∧nA → M defines a differential operator D : Γ(∧kA) →

Γ(∧k−1A) locally given by

D(i(ω)Φ) = (−1)n−k
(
i(dω)Φ +

n∑

j=1

i(αj ∧ ω)∇Xj
Φ
)
, (13)

where Φ ∈ Γ(∧nA), ω ∈ Γ(∧n−kA∗), {Xj} is a local basis of Γ(A) and {αj} is the dual

basis of Γ(A∗). The operator D generates the Gerstenhaber algebra (Γ(∧∗A),∧, [[ , ]]),

that is, for all U1 ∈ Γ(∧k1A) and U2 ∈ Γ(∧k2A),

[[U1, U2]] = D(U1 ∧ U2)−DU1 ∧ U2 − (−1)k1U1 ∧DU2,

or, equivalently

[[f,X ]] = D(fX)− fD(X), [[X,Y ]] = D(X ∧ Y )− (DX)Y + (DY )X,

for f ∈ C∞(M,R) and X,Y ∈ Γ(A).

Moreover, the connection ∇ can be recovered from the operator D. More precisely,

we have that

∇XΦ = X ∧DΦ, (14)

for all X ∈ Γ(A) and Φ ∈ Γ(∧nA).

In fact, (13) and (14) define a one-to-one correspondence between A-connections on

∧nA→M and linear operators D generating the Gerstenhaber algebra (Γ(∧∗A),∧, [[ , ]]).

Under this correspondence, a flat A-connection ∇ corresponds to an operator D of zero

square. Thus, a flat A-connection ∇ induces a homology operator ∂ = −D. The resultant

homology H∗(A,∇) is the homology of the Lie algebroid A with respect to the flat A-

connection ∇.

If ∇ and ∇′ are two A-connections on ∧nA, then there exists α ∈ Γ(A∗) such that

∇′
XΦ = ∇XΦ+ α(X)Φ, for Φ ∈ Γ(∧nA). (15)

As a consequence,

D′ −D = i(α), (16)

where D and D′ are their corresponding generating operators. Moreover, (D′)2 −D2 =

−i(dα). Therefore, if ∇ and ∇′ are two flat A-connections, then α ∈ Γ(A∗) is a 1-cocycle.

In particular, if α = df , with f ∈ C∞(M,R), one has that Hk(A,∇) ∼= Hk(A,∇
′), for all

k (for more details, see [X]).
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Remark 2.4. There are some differences of sign between the above formulas and

those ones in [X]. The reason is the definition of the Schouten bracket (see Remark 2.1).

Example 2.5. Let (M,Λ, E) be a Jacobi manifold of dimension n and { , } the as-

sociated Jacobi bracket. Then, one can consider the flat (T ∗M × R)-connection ∇ on

∧n+1(T ∗M × R) ∼= {0} ⊕ ∧nT ∗M defined by

∇(α,f)(0,Φ) = (0, fδi(E)Φ + α ∧ (δi(Λ)Φ− n i(E)Φ)),

for (α, f) ∈ Ω1(M)⊕C∞(M,R) and Φ ∈ Ωn(M). The connection∇ induces the homology

operator ∂(Λ,E) : Ωk(M)⊕ Ωk−1(M) → Ωk−1(M)⊕ Ωk−2(M) given by

∂(Λ,E)(α, β) = (i(Λ)δα− δi(Λ)α+ k i(E)α − LEβ,

−i(Λ)δβ + δi(Λ)β − (k − 1) i(E)β + i(Λ)α).
(17)

This homology operator was introduced by Vaisman in [V3]. The corresponding homology

H∗(T
∗M × R,∇) was studied in [LLMP, V3].

If (M,Λ) is an n-dimensional Poisson manifold, then the flat T ∗M -connection on

∧nT ∗M defined by

∇αΦ = α ∧ δi(Λ)Φ, for Φ ∈ Ωn(M) and α ∈ Ω1(M),

induces the homology operator ∂Λ given by the commutator of i(Λ) and δ, that is,

∂Λ = i(Λ)δ − δi(Λ). The complex (Ω∗(M), ∂Λ) is just the canonical homology complex

introduced by Koszul [K] and studied by Brylinski in [B].

3. Differential calculus on Lie algebroids in the presence of a 1-cocycle φ0

3.1. φ0-cohomology. Let (A, [[, ]], ρ) be a Lie algebroid over M and φ0 ∈ Γ(A∗) be a

1-cocycle in the Lie algebroid cohomology complex with trivial coefficients. Using (10),

we can define a representation ρφ0 : Γ(A) × C∞(M,R) → C∞(M,R) of the Lie algebra

(Γ(A), [[ , ]]) on the space C∞(M,R) given by

ρφ0(X)f = ρ(X)(f) + φ0(X)f, (18)

for X ∈ Γ(A) and f ∈ C∞(M,R) (see [IM2]). Thus, one can consider the cohomology of

the Lie algebra (Γ(A), [[, ]]) with coefficients in C∞(M,R) and the subcomplex Γ(∧∗A∗)

consisting of the C∞(M,R)-linear cochains. The cohomology operator dφ0 : Γ(∧kA∗) →

Γ(∧k+1A∗) of this subcomplex is called the φ0-differential of A. We have that

dφ0α = dα+ φ0 ∧ α, (19)

where d is the differential of the Lie algebroid (A, [[ , ]], ρ). The corresponding cohomology

spaces will be denoted by H∗
φ0
(A) (see [IM2]).

Remark 3.1. If φ0 is a 1-coboundary, that is, there exists f ∈ C∞(M,R) such that

φ0 = df then the map Γ(∧kA∗) → Γ(∧kA∗), φ 7→ e−fφ, induces an isomorphism between

the cohomology groups Hk(A) and Hk
φ0
(A).

Examples 3.2. i) If ω is a closed 1-form on a manifold M then ω is a 1-cocycle for

the trivial Lie algebroid (TM, [ , ], Id) and we can consider the operator dω. Some results

about the cohomology defined by dω were obtained in [GL, LLMP, V1]. These results
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were used in the study of locally conformal Kähler and locally conformal symplectic

structures.

ii) For the Lie algebroid (TM × R, [ , ], π), the 1-cochain φ0 = (0, 1) ∈ Ω1(M) ⊕

C∞(M,R) ∼= Γ(T ∗M × R) is a 1-cocycle (see (11)) and the φ0-differential is given by

δ̃(0,1)(α, β) = (δα, α− δβ), (20)

for (α, β) ∈ Ωk(M)⊕ Ωk−1(M). Note that, in this case, H∗
(0,1)(TM × R) ∼= {0}.

iii) Let (T ∗M × R, [[ , ]](Λ,E), #̃(Λ,E)) be the Lie algebroid associated with a Jacobi

manifold (M,Λ, E). Denote by d(Λ,E) the differential of this Lie algebroid. From (3) and

(12), it follows that X0 = (−E, 0) ∈ X(M) ⊕ C∞(M,R) ∼= Γ(TM × R) is a 1-cocycle.

Then, using (2), (12) and (19), we obtain the following expression for the X0-differential

(d(Λ,E))X0 = (d(Λ,E))(−E,0),

(d(Λ,E))(−E,0)(P,Q) = (−[Λ, P ] + (k − 1)E ∧ P + Λ ∧Q,

[Λ, Q]− (k − 2)E ∧Q+ [E,P ]),
(21)

for (P,Q) ∈ Vk(M) ⊕ Vk−1(M). Note that (d(Λ,E))(−E,0) is just the cohomology op-

erator of the 1-differentiable Chevalley-Eilenberg cohomology complex of M (see [GL,

L2]). We denote by H∗
1−diff (M,Λ, E) the cohomology of this complex. In fact, in [GL]

the 1-differentiable Chevalley-Eilenberg complex is described as the subcomplex of the

Chevalley-Eilenberg complex which consists of the 1-differentiable cochains. We recall

that the Chevalley-Eilenberg complex is the one defined by the representation of the Lie

algebra of functions on itself given by

C∞(M,R)× C∞(M,R) → C∞(M,R), (f, g) 7→ {f, g},

for all f, g ∈ C∞(M,R), where { , } is the Jacobi bracket of M .

3.2. φ0-Schouten bracket. If (A, [[ , ]], ρ) is a Lie algebroid then, imitating the defini-

tion of the Schouten bracket of two multilinear first-order differential operators on the

space of C∞ real-valued functions on a manifold N (see [BV]), we introduced in [IM2]

the φ0-Schouten bracket of a k-section P and a k′-section P ′ as the (k + k′ − 1)-section

given by

[[P, P ′]]φ0 = [[P, P ′]] + (−1)k+1(k − 1)P ∧ (i(φ0)P
′)− (k′ − 1)(i(φ0)P ) ∧ P

′, (22)

where [[ , ]] is the usual Schouten bracket of A. The φ0-Schouten bracket satisfies the

following properties. For f ∈ C∞(M,R), X,Y ∈ Γ(A), P ∈ Γ(∧kA), P ′ ∈ Γ(∧k′

A) and

P ′′ ∈ Γ(∧k′′

A),

[[X, f ]]φ0 = ρφ0(X)(f),

[[X,Y ]]φ0 = [[X,Y ]],

[[P, P ′]]φ0 = (−1)kk
′

[[P ′, P ]]φ0 ,

[[P, P ′ ∧ P ′′]]φ0 = [[P, P ′]]φ0 ∧ P
′′ + (−1)k

′(k+1)P ′ ∧ [[P, P ′′]]φ0 − (i(φ0)P ) ∧ P
′ ∧ P ′′,

(−1)kk
′′

[[[[P, P ′]]φ0 , P
′′]]φ0 + (−1)k

′k′′

[[[[P ′′, P ]]φ0 , P
′]]φ0 + (−1)kk

′

[[[[P ′, P ′′]]φ0 , P ]]φ0 = 0.

Example 3.3. For the Lie algebroid (TM × R, [ , ], π), we have that the Schouten

bracket is given by

[(P,Q), (P ′, Q′)] = ([P, P ′], (−1)k+1[P,Q′]− [Q,P ′]),
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for (P,Q) ∈ Vk(M) ⊕ Vk−1(M) and (P ′, Q′) ∈ Vk′

(M) ⊕ Vk′−1(M). Consequently (see

(2) and (22)),

[(P,Q), (P ′, Q′)](0,1) =
(
[P, P ′] + (−1)k+1(k − 1)P ∧Q′ − (k′ − 1)Q ∧ P ′,

(−1)k+1[P,Q′]− [Q,P ′] + (−1)k+1(k − k′)Q ∧Q′
)
.

(23)

Note that (Λ, E) ∈ Γ(∧2(TM × R)) defines a Jacobi structure on M if and only if

[(Λ, E), (Λ, E)](0,1) = 0 (see (3) and (23)). Moreover, using (21) and (23), we have that

the X0-differential (d
(Λ,E))X0 = (d(Λ,E))(−E,0) of the Lie algebroid associated with a

Jacobi manifold (M,Λ, E) is given by

(d(Λ,E))(−E,0)(P,Q) = −[(Λ, E), (P,Q)](0,1), (24)

for (P,Q) ∈ Vk(M)⊕Vk−1(M). Compare equation (24) with the expression of the differ-

ential of the Lie algebroid associated with a Poisson manifold (see iii) of Example 2.3).

4. Homology and cohomology theories and triangular generalized Lie bial-

gebroids. Let (A, [[ , ]], ρ) be a Lie algebroid over M and φ0 ∈ Γ(A∗) a 1-cocycle. More-

over, let P ∈ Γ(∧2A) be a bisection satisfying

[[P, P ]]φ0 = [[P, P ]]− 2P ∧ i(φ0)P = 0. (25)

The triple (A, φ0, P ) is a triangular generalized Lie bialgebroid in the sense of [IM2] (note

that if φ0 = 0 then the pair (A,P ) is a triangular Lie bialgebroid [MX1]).

Denote by #P : Γ(A∗) → Γ(A) the homomorphism of C∞(M,R)-modules given by

#P (φ) = i(φ)P. (26)

If A∗ → M is the dual bundle to A, (A∗, [[ , ]]∗, ρ∗) is a Lie algebroid, where the bracket

[[ , ]]∗ : Γ(A∗)× Γ(A∗) → Γ(A∗) and the map ρ∗ : Γ(A∗) → X(M) are defined by

[[φ, ψ]]∗ = i(#P (φ))dφ0ψ − i(#P (ψ))dφ0φ+ dφ0(P (φ, ψ)),

ρ∗ = ρ ◦#P ,

(27)

for φ, ψ ∈ Γ(A∗). Moreover, X0 = −#P (φ0) ∈ Γ(A) is a 1-cocycle for the Lie algebroid

(A∗, [[ , ]]∗, ρ∗) (see [IM2]). In what follows, we will say that (A∗, [[ , ]]∗, ρ∗) is the dual Lie

algebroid associated with the triple ((A, [[ , ]], ρ), φ0, P ).

Example 4.1. Let (M,Λ, E) be a Jacobi manifold. Then, (0, 1) ∈ Ω1(M)⊕C∞(M,R)

is a 1-cocycle in the cohomology of the algebroid (TM ×R, [ , ], π) and the pair (Λ, E) ∈

V2(M)⊕ X(M) ∼= Γ(∧2(TM × R)) satisfies [(Λ, E), (Λ, E)](0,1) = 0 (see Example 3.3).

Thus, ((TM × R, [ , ], π), (0, 1), (Λ, E)) is a triangular generalized Lie bialgebroid.

In this case, the dual Lie algebroid is just the algebroid (T ∗M × R, [[, ]](Λ,E), #̃(Λ,E))

associated with the Jacobi structure. Indeed, using (2), (5), (20) and (26), we deduce

[[(α, f), (β, g)]](Λ,E) = i(#(Λ,E)(α, f))(δ̃(0,1)(β, g))− i(#(Λ,E)(β, g))(δ̃(0,1)(α, f))

+ δ̃(0,1)((Λ, E)((α, f), (β, g))),

#̃(Λ,E) = π ◦#(Λ,E),

for (α, f), (β, g) ∈ Ω1(M)⊕ C∞(M,R).
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4.1. Cohomology theories and triangular generalized Lie bialgebroids. The following

result shows an explicit expression of the differential d∗ and of the X0-differential d∗X0

of the dual Lie algebroid (A∗, [[ , ]]∗, ρ∗).

Proposition 4.2. Let ((A,[[, ]], ρ),φ0, P ) be a triangular generalized Lie bialgebroid.

Then,

d∗Q = −[[P,Q]] + P ∧ i(φ0)Q− k X0 ∧Q,

d∗X0Q = −[[P,Q]]φ0 ,

for Q ∈ Γ(∧kA), where d∗ (respectively, d∗X0) is the differential (respectively, the X0-

differential) of the dual Lie algebroid (A∗, [[ , ]]∗, ρ∗).

Proof. Let φ, ψ two sections of A∗ and X a section of A. A direct computation, using

(18) and (27), proves that

ρ∗X0(α)(f) = ρφ0(#P (α))(f), (28)

for α ∈ Γ(A∗) and f ∈ C∞(M,R). Then, from (9), (27) and (28), we obtain that

d∗X0X(φ, ψ) = ρ∗X0(φ)(ψ(X)) − ρ∗X0(ψ)(φ(X)) − [[φ, ψ]]∗(X)

= ρφ0(#P (φ))(ψ(X)) − ρφ0(#P (ψ))(φ(X))

−
(
i(#P (φ))dφ0ψ − i(#P (ψ))dφ0φ+ dφ0(P (φ, ψ))

)
(X)

= ρφ0(X)(P (φ, ψ)) + ψ([[#P (φ), X ]]) − φ([[#P (ψ), X ]]).

(29)

On the other hand, if L denotes the Lie derivative of the algebroid A, we have that

[[Z, i(ω)Q]] = i(Q) (LZω) + i(ω)[[Z,Q]],

for ω ∈ Γ(∧kA∗), Q ∈ Γ(∧kA) and Z ∈ Γ(A). Using this fact and (1), we get that

ρ(X)(P (φ, ψ)) = (LXψ)(#P (φ))− ψ([[#P (φ), X ]])

= −(LXφ)(#P (ψ)) + φ([[#P (ψ), X ]]).

Substituting these expressions in (29), we deduce that

d∗X0X(φ, ψ) = −ρ(X)(P (φ, ψ)) + (LXψ)(#P (φ)) − (LXφ)(#P (ψ)) + φ0(X)P (φ, ψ).

Finally, using (22) and the properties of the Schouten bracket, we conclude that

d∗X0X(φ, ψ) = −([[P,X ]]− φ0(X)P )(φ, ψ) = −[[P,X ]]φ0(φ, ψ).

In order to prove that this relation holds for Q ∈ Γ(∧kA) it is sufficient to proceed by

induction on k and to use the following fact,

d∗X0 (R ∧R′) = d∗X0R ∧R′ + (−1)rR ∧ d∗X0R
′ −X0 ∧R ∧R′,

for R ∈ Γ(∧rA) and R′ ∈ Γ(∧∗A).

Finally, from (19), (22) and since X0 = −i(φ0)P , we deduce that

d∗Q = −[[P,Q]] + P ∧ i(φ0)Q − kX0 ∧Q.

Now, denote by #P : A∗ → A the bundle map induced by the homomorphism of

C∞(M,R)-modules #P : Γ(A∗) → Γ(A) and by #k
P : ∧kA∗ → ∧kA the bundle maps

characterized by

#k
P (φ1 ∧ . . . ∧ φk) = #P (φ1) ∧ . . . ∧#P (φk), for φ1, . . . , φk ∈ Γ(A∗). (30)
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Proposition 4.3. Let ((A, [[ , ]], ρ), φ0, P ) be a triangular generalized Lie bialgebroid.

Then:

i) The map #P : A∗ → A defines a homomorphism between the Lie algebroids (A∗,

[[ , ]]∗, ρ∗) and (A, [[ , ]], ρ).

ii) For all k, d∗ ◦#
k−1
P = −#k

P ◦ d (resp. (d∗)X0 ◦#
k−1
P = −#k

P ◦ dφ0).

iii) The map #k
P : Γ(∧kA∗) → Γ(∧kA) induces a homomorphism between the cohomo-

logy groups Hk(A) and Hk(A∗) (resp. Hk
φ0
(A) and Hk

X0
(A∗)).

Proof. Note that

#2
P (γ)(φ, ψ) = γ(#P (φ),#P (ψ)), (31)

for γ ∈ Γ(∧2A∗) and φ, ψ ∈ Γ(A∗). Using (1), (26) and (31), we obtain

1

2
i(α)[[P, P ]] = #2

P (dα) − [[#P (α), P ]], (32)

for α ∈ Γ(A∗). Thus, from (25), (32) and Proposition 4.2, we deduce that

d∗(#P (α)) = −#2
P (dα). (33)

Therefore, since ρ∗ = ρ ◦#P , (33) implies that #P [[φ, ψ]]∗ = [[#P (φ),#P (ψ)]], for φ, ψ ∈

Γ(A∗). This proves i).

ii) follows from i), (19) and (30). Finally, using i) and ii), we obtain iii).

On the other hand, if (A, φ0, P ) is a triangular generalized Lie bialgebroid over M ,

one can define a Jacobi bracket on the base space M as follows (see [IM2])

{f, g} : = dφ0f(d∗X0g) = −dφ0g(d∗X0f) = P (dφ0f, dφ0g), for f, g ∈ C∞(M,R). (34)

The Jacobi structure (Λ, E) induced by this bracket { , } is characterized by

Λ(δf, δg) = df(d∗g) = P (df, dg), for f, g ∈ C∞(M,R),

E = −ρ(X0) = ρ∗(φ0),
(35)

(see [IM2] for more details).

Now, if (A, [[ , ]], ρ) is a Lie algebroid over M and φ0 ∈ Γ(A∗) is a 1-cocycle, we can

consider the homomorphism of C∞(M,R)-modules (ρ, φ0) : Γ(A) → X(M)⊕ C∞(M,R)

given by

(ρ, φ0)(X) = (ρ(X), φ0(X)), for all X ∈ Γ(A). (36)

This homomorphism induces a Lie algebroid homomorphism, which we also denote by

(ρ, φ0), between the Lie algebroids (A, [[ , ]], ρ) and (TM ×R, [ , ], π). We will denote by

(ρ, φ0)
∗ : T ∗M × R → A∗ the adjoint homomorphism of (ρ, φ0).

Proposition 4.4. Let ((A, [[ , ]], ρ), φ0, P ) be a triangular generalized Lie bialgebroid

over M. Suppose that (Λ, E) is the associated Jacobi structure over M . Then, the bundle

map (ρ, φ0)
∗ : T ∗M × R → A∗ induces a Lie algebroid homomorphism between (T ∗M ×

R, [[ , ]](Λ,E), #̃(Λ,E)) and the dual Lie algebroid (A∗, [[ , ]]∗, ρ∗).

Proof. If (α, f) ∈ Ω1(M)⊕C∞(M,R) and dimM = n then for every point x ∈M there

exists an open subset U ofM , x ∈ U , and there exist hi, gi ∈ C∞(U,R), i ∈ {1, . . . , n+1},
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such that on U

(α, f) =

n+1∑

i=1

hi(δgi, gi).

Thus, it is sufficient to prove that (ρ∗ ◦ (ρ, φ0)
∗)(δf, f) = #̃(Λ,E)(δf, f), for all f ∈

C∞(M,R).

Now, we have that

(ρ, φ0)
∗(δf, f) = dφ0f. (37)

Using this fact, (5), (19) and (35) we conclude that

ρ∗((ρ, φ0)
∗(δf, f))(g) = ρ∗(dφ0f)(g) = df(d∗g) + f ρ∗(φ0)(g)

= Λ(δf, δg) + f E(g) = #̃(Λ,E)(δf, f)(g),

for all g ∈ C∞(M,R).

Next, we will show that (ρ, φ0)
∗ induces a homomorphism of Lie algebras, i.e.,

(ρ, φ0)
∗[[(α, f), (β, g)]](Λ,E) = [[(ρ, φ0)

∗(α, f), (ρ, φ0)
∗(β, g)]]∗.

Again, it is sufficient to prove this equality for pairs of the form (δf, f) and (δg, g).

But, from (6), (27), (34) and (37), we obtain that

(ρ, φ0)
∗[[(δf, f), (δg, g)]](Λ,E) = (ρ, φ0)

∗(δ{f, g}, {f, g}) = dφ0{f, g}

= dφ0(P (dφ0f, dφ0g)) = [[dφ0f, dφ0g]]∗

= [[(ρ, φ0)
∗(δf, f), (ρ, φ0)

∗(δg, g)]]∗.

Using Proposition 4.4, we deduce that

Corollary 4.5. Let ((A, [[ , ]], ρ), φ0, P ) be a triangular generalized Lie bialgebroid

over M. Suppose that (Λ, E) is the associated Jacobi structure on M and that (ρ, φ0)
k :

Γ(∧kA) → Γ(∧k(TM × R)) is the homomorphism of C∞(M,R)-modules induced by the

map (ρ, φ0) : Γ(A) → X(M)⊕ C∞(M,R) ∼= Γ(TM × R).

i) If d(Λ,E) is the cohomology operator of the LJ-cohomology complex of M and d∗
is the differential of the dual Lie algebroid (A∗, [[ , ]]∗, ρ∗) then d(Λ,E) ◦ (ρ, φ0)

k =

(ρ, φ0)
k+1 ◦ d∗.

ii) If H∗
LJ(M,Λ, E) is the LJ-cohomology of M then the map (ρ, φ0)

k induces a homo-

morphism between the cohomology groups Hk(A∗) and Hk
LJ(M,Λ, E).

Note that (ρ, φ0)(X0) = (−E, 0). Therefore, from (19), (21) and Corollary 4.5, we con-

clude that

Corollary 4.6. Under the same hypotheses as in Corollary 4.5, we have that:

i) For all k, (d(Λ,E))(−E,0) ◦ (ρ, φ0)
k = (ρ, φ0)

k+1 ◦ d∗X0 , where X0 = −#P (φ0).

ii) If H∗
1−diff (M,Λ, E) is the 1-differentiable Chevalley-Eilenberg cohomology of M

then the map (ρ, φ0)
k induces a homomorphism between the cohomology groups

Hk
X0

(A∗) and Hk
1−diff(M,Λ, E).

Remark 4.7. A triangular generalized Lie bialgebroid is an example of a generalized

Lie bialgebroid (see [IM2]). A generalized Lie bialgebroid over a manifold M is a pair

(((A, [[ , ]], ρ), φ0), ((A
∗, [[ , ]]∗, ρ∗), X0)), where (A, [[ , ]], ρ) is a Lie algebroid over M , φ0 is
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a 1-cocycle in the Lie algebroid cohomology complex of A with trivial coefficients, A∗

is the dual bundle to A which admits a Lie algebroid structure ([[ , ]]∗, ρ∗) and X0 is a

1-cocycle of A∗. Moreover, the Lie algebroids A and A∗ and the 1-cocycles φ0 and X0

must satisfy the following conditions

d∗X0 [[X,Y ]] = [[X, d∗X0Y ]]φ0 − [[Y, d∗X0X ]]φ0

φ0(X0) = 0, ρ(X0) = −ρ∗(φ0)

i(φ0)d∗X0X + d∗X0(φ0(X)) + [[X0, X ]] = 0.

for X,Y ∈ Γ(A) (see [IM2]). When φ0 = 0 and X0 = 0, we recover the notion of a Lie

bialgebroid.

Every generalized Lie bialgebroid on M induces a Jacobi bracket { , } on M . { , } is

defined as in (34) and satisfies the following condition

dφ0{f, g} = [[dφ0f, dφ0g]]∗, for all f, g ∈ C∞(M,R).

Using these facts, one can prove that Proposition 4.4 and Corollaries 4.5 and 4.6 are true

for generalized Lie bialgebroids (not necessarily triangular).

4.2. Homology theories and triangular generalized Lie bialgebroids. Let (A, φ0, P ) be

a triangular generalized Lie bialgebroid over M. Then, it is possible to define a Lie

algebroid structure ([[ , ]]∗, ρ∗) on the dual bundle A∗ and, moreover, M admits a Jacobi

structure (Λ, E).

As we have previously mentioned, the LJ-cohomology (respectively, the 1-differen-

tiable Chevalley-Eilenberg cohomology) of M, H∗
LJ(M,Λ, E), (respectively, H∗

1−diff (M,

Λ, E)) is the cohomology of a subcomplex of the H-Chevalley-Eilenberg (respectively, the

Chevalley-Eilenberg) complex of M . Furthermore, H∗
LJ(M,Λ, E) and H∗

1−diff (M,Λ, E)

are related with the cohomologies H∗(A∗) and H∗
X0

(A∗) (see Corollaries 4.5 and 4.6).

Next, we will introduce two homologies on the dual Lie algebroid (A∗, [[ , ]]∗, ρ∗) as-

sociated with the triple ((A, [[ , ]], ρ), φ0, P ). These homologies are related with the ones

defined by the representations of the Lie algebra (C∞(M,R), { , }) on itself using the

hamiltonian vector fields and the Jacobi bracket { , } of M .

In order to describe these homologies, we recall the definition of the homology of a

Lie algebra A with coefficients in an A-module (see, for instance, [CE]).

Let (A, [ , ]) be a real Lie algebra (not necessarily finite dimensional) and M a real

vector space endowed with a R-bilinear multiplication A × M → M, (a,m) 7→ a · m

satisfying (8).

An M-valued k-chain is an element of the vector space Ck(A;M) = M⊗∧kA. We

can consider the linear operator δk : Ck(A;M) → Ck−1(A;M) characterized by

δk(m⊗ (a1 ∧ . . . ∧ ak)) =

k∑

i=1

(−1)i+1ai ·m⊗ (a1 ∧ . . . ∧ âi ∧ . . . ∧ ak)+

∑

i<j

(−1)i+jm⊗ ([ai, aj ] ∧ a1 ∧ . . . ∧ âi ∧ . . . ∧ âj ∧ . . . ∧ ak),

which satisfies δk−1 ◦ δk = 0, for all k. Thus, we have the corresponding homology spaces

Hk(A;M). This homology is said to be the homology of the Lie algebra A with coefficients

in M or relative to the given representation of A on M.
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In particular, for a Jacobi manifold (M,Λ, E) with associated Jacobi bracket { , }, we

can consider the homology of the Lie algebra (C∞(M,R), { , }) on itself relative to the

representation defined by the hamiltonian vector fields (respectively, the Lie bracket { , }).

This homology is called the H-Chevalley-Eilenberg (respectively, Chevalley-Eilenberg) ho-

mology associated with M .

Now, let ((A, [[ , ]], ρ), φ0, P ) be a triangular generalized Lie bialgebroid overM . Denote

by (Λ, E) the associated Jacobi structure on M , by Ck(M) the space of k-chains in the

Chevalley-Eilenberg and H-Chevalley-Eilenberg homology complex of M and by ∂
(Λ,E)
HCE

(respectively, ∂
(Λ,E)
CE ) the homology operator of the H-Chevalley-Eilenberg (respectively,

Chevalley-Eilenberg) complex.

Imitating the construction of the canonical homology operator of a Poisson manifold

[B] and of the canonical LJ-homology operator of a Jacobi manifold [LLMP], we consider

the skew-symmetric k-linear mapping π̃k : C∞(M,R)× (k. . . ×C∞(M,R) → Γ(∧kA∗)

defined by

π̃k(f1 ∧ . . . ∧ fk) = dφ0f1 ∧ . . . ∧ dφ0fk.

This mapping induces a linear mapping πk : Ck(M) → Γ(∧kA∗) characterized by

πk(f ⊗ (f1 ∧ . . . ∧ fk)) = fdφ0f1 ∧ . . . ∧ dφ0fk.

A direct computation, using (19), shows that

dφ0(dφ0f1 ∧ . . . ∧ dφ0fk) = −(k − 1)φ0 ∧ dφ0f1 ∧ . . . ∧ dφ0fk,

i(P )(α ∧ β) = i(#P (α))β + α ∧ i(P )β,
(38)

for all f1, . . . , fk ∈ C∞(M,R), α ∈ Γ(A∗) and β ∈ Γ(∧∗A∗).

These formulas allow us to deduce the following facts

d ◦ πk = −πk−1 ◦ ∂
(Λ,E)
HCE , dX0 ◦ πk = −πk−1 ◦ ∂

(Λ,E)
CE ,

where d : Γ(∧kA∗) → (∧k−1A∗) and dX0 : Γ(∧kA∗) → (∧k−1A∗) are the operators defined

by

d(φ) = i(P )dφ− di(P )φ− ki(X0)φ+ φ0 ∧ i(P )φ, (39)

dX0 (φ) = d(φ) − i(X0)φ. (40)

The following result proves that −d and −dX0 are generating operators of the Gersten-

haber algebra (Γ(∧∗A∗),∧, [[ , ]]∗) with zero square.

Theorem 4.8. Let ((A, [[ , ]], ρ), φ0, P ) be a triangular generalized Lie bialgebroid over

M . If d and dX0 are the operators defined in (39) and (40), then −d and −dX0 are

generating operators of the Gerstenhaber algebra (Γ(∧∗A∗),∧, [[ , ]]∗) and

d2 = 0, d2X0
= 0.

Proof. Using (1), (27) and (39), we obtain that

d(fφ) − fdφ = −ρ∗(φ)(f) = −[[f, φ]]∗,

for f ∈ C∞(M,R) and φ ∈ Γ(A∗).

Furthermore, from (19), (27), (38), (39) and since that X0 = −#P (φ0), it follows that

d(φ ∧ ψ)− (dφ)ψ + (dψ)φ = −[[φ, ψ]]∗,
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for φ, ψ ∈ Γ(A∗). Thus,−d is a generating operator of the Gerstenhaber algebra (Γ(∧∗A∗),

∧, [[ , ]]∗). Consequently, using (40), the fact that X0 is a 1-cocycle and the results of [X]

(see Section 2), we have that −dX0 is also a generating operator of the Gerstenhaber

algebra (Γ(∧∗A∗),∧, [[ , ]]∗).

Next, we will show that d2 = 0.

Denote by γ the commutator of i(P ) and d, that is,

γ = [i(P ), d] = i(P )d− d i(P ). (41)

Then,

γ2 = −i(P )i(X0)d− d i(P )i(X0). (42)

Indeed, it is clear that

γ2 = i(P )d i(P )d− d i(P )i(P )d+ d i(P )d i(P ). (43)

Moreover, since X0 = −#P (φ0) and

[[i(R), d], i(Q)] = i([[R,Q]]), for R,Q ∈ Γ(∧∗A), (44)

we deduce that

γi(P )− i(P )γ = [[i(P ), d], i(P )] = i([[P, P ]])

= i([[P, P ]]φ0 )− 2i(X0)i(P ) = −2i(X0)i(P ).
(45)

On the other hand, using (41), we have that

γi(P )− i(P )γ = 2i(P )d i(P )− d i(P )i(P )− i(P )i(P )d. (46)

Therefore, from (45) and (46), we conclude

i(P )d i(P ) = −i(X0)i(P ) +
1

2

(
d i(P )i(P ) + i(P )i(P )d

)
. (47)

Substituting (47) in (43), we obtain (42).

Now, using (38), (39), (41), (42) and the fact that dφ0 = 0, we deduce that

d2(φ) = k([[i(X0), d], i(P )])(φ) − φ0 ∧ (γi(P )− i(P )γ + 2i(X0)i(P ))(φ), (48)

for φ ∈ Γ(∧kA∗). Thus, from (44), (45), (48) and since 0 = d∗X0 = [[P,X0]], it follows

that d2 = 0.

Finally, using that d is a generating operator of the Gerstenhaber algebra (Γ(∧∗A∗),∧,

[[ , ]]∗), that d2 = 0 and that X0 is a 1-cocycle for the Lie algebroid (A∗, [[ , ]]∗, ρ∗), we

conclude that d2X0
= 0.

If the rank of A is n then the generating operators −d and −dX0 define the following

flat A∗-connections on ∧nA∗ →M (see (14) and (38))

∇αΦ = −α ∧ dΦ = α ∧
(
d i(P )Φ + n i(X0)Φ− φ0 ∧ i(P )Φ

)

= α ∧
(
d i(P )Φ + (n− 1)i(X0)Φ

)
,

(49)

∇X0
α Φ = −α ∧ dX0Φ = α ∧

(
d i(P )Φ + (n− 1)i(X0)Φ− φ0 ∧ i(P )Φ

)

= α ∧
(
d i(P )Φ + n i(X0)Φ

)
,

(50)

for all α ∈ Γ(A∗) and Φ ∈ Γ(∧nA∗).
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4.3. Triangular generalized Lie bialgebroids, duality and modular class. In this Sec-

tion, we will introduce the modular class for a triangular generalized Lie bialgebroid.

Moreover, we will study the role played by this cohomology class in the duality between

the cohomology and homology theories introduced in Sections 4.1 and 4.2.

Assume that (A, [[ , ]], ρ) is an orientable Lie algebroid of rank n and let ν ∈ Γ(∧nA∗)

be a nowhere vanishing n-section. If φ0 ∈ Γ(A∗) is a 1-cocycle and P ∈ Γ(∧2A) is a

bisection satisfying [[P, P ]]φ0 = 0, we can consider the dual Lie algebroid (A, [[ , ]]∗, ρ∗)

associated with the triple ((A, [[ , ]], ρ), φ0, P ).

Define the ∗-operator from Γ(∧kA) to Γ(∧n−kA∗) as follows

∗Q = i(Q)ν, for Q ∈ Γ(∧kA).

Clearly, ∗ is an isomorphism of C∞(M,R)-modules. Moreover, we have that

∂0(∗Q) = (−1)k+1 ∗ (d∗Q), (∂0)X0 (∗Q) = (−1)k+1 ∗ (d∗X0Q), (51)

where d∗ (respectively, d∗X0) is the differential of the Lie algebroid (A∗, [[ , ]]∗, ρ∗) (respec-

tively, the X0-differential) and ∂0 and (∂0)X0 are the homology operators associated with

the flat A∗-connections ∇0 and ∇X0
0 on ∧nA∗ →M characterized by

(∇0)αν = 0, (∇X0
0 )αν = α(X0)ν, (52)

for all α ∈ Γ(A∗). Thus, (51) implies that

Hk(A∗) ∼= Hn−k(A
∗,∇0), Hk

X0
(A∗) ∼= Hn−k(A

∗,∇X0
0 ), (53)

for all k ∈ {0, . . . , n}.

Now, we will compare the homology Hk(A
∗,∇0) (respectively, Hk(A

∗,∇X0
0 )) with the

homology of the dual Lie algebroid (A∗, [[ , ]]∗, ρ∗) associated with the flat A∗-connection

∇ (respectively, ∇X0) defined in (49) (respectively, (50)).

In fact, using (49), (50) and (52), we obtain that

∇αν − (∇0)αν = ∇X0
α ν − (∇X0

0 )αν = α ∧
(
d i(P )ν + (n− 1)i(X0)ν

)
, (54)

for all α ∈ Γ(A∗).

On the other hand, if L is the Lie derivative on A, from (38), we deduce that

0 = d(i(P )(α ∧ ν)) = d(i(#P (α))ν) + dα ∧ i(P )ν − α ∧ d i(P )ν

= L#P (α)ν + dα ∧ i(P )ν − α ∧ d i(P )ν

= L#P (α)ν + i(P )(dα)ν − α ∧ d i(P )ν,

0 = i(X0)(α ∧ ν) = α(X0)ν − α ∧ i(X0)ν.

Substituting in (54), we conclude that

∇αν − (∇0)αν = ∇X0
α ν − (∇X0

0 )αν = L#P (α)ν +
(
i(P )(dα) + (n− 1)α(X0)

)
ν. (55)

Now, we consider the section Mν
(A,φ0,P ) ∈ Γ(A) characterized by the condition

α(Mν
(A,φ0,P ))ν = L#P (α)ν +

(
i(P )(dα) + (n− 1)α(X0)

)
ν, (56)

for all α ∈ Γ(A∗). From (55) and (56), it follows that

∇αν − (∇0)αν = ∇X0
α ν − (∇X0

0 )αν = α(Mν
(A,φ0,P ))ν, (57)
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and, since ∇ and ∇0 (respectively, ∇X0 and ∇X0
0 ) are flat A∗-connections, we have that

Mν
(A,φ0,P ) is a 1-cocycle for the Lie algebroid (A∗, [[ , ]]∗, ρ∗) (see Section 2).

Furthermore, using (15), (16) and (57), we obtain that

d− ∂0 = dX0 − (∂0)X0 = −i(Mν
(A,φ0,P )), (58)

where d (respectively, dX0 ) is the homology operator given by (39) (respectively, (40)).

The cohomology class M(A,φ0,P ) = [Mν
(A,φ0,P )] ∈ H1(A∗) does not depend on the

chosen section ν. In fact, if ν′ ∈ Γ(∧nA∗) is another nowhere vanishing section, there

exists f ∈ C∞(M,R), f 6= 0 at every point, such that ν′ = fν. We can suppose, without

loss of generality, that f > 0. Then, a direct computation, using (56), proves that

Mν′

(A,φ0,P ) = Mν
(A,φ0,P ) + d∗(ln f).

Definition 4.9. The cohomology class M(A,φ0,P ) = [Mν
(A,φ0,P )] ∈ H1(A∗) is called

the modular class of the triangular generalized Lie bialgebroid (A, φ0, P ). The triangu-

lar generalized Lie bialgebroid is said to be unimodular if its associated modular class

M(A,φ0,P ) vanishes.

From (53) and (58), we conclude

Theorem 4.10. Let (A, [[ , ]], ρ) be an orientable Lie algebroid of rank n, φ0 ∈ Γ(A∗) a

1-cocycle and P ∈ Γ(∧2A) satisfying [[P, P ]]φ0 = 0. If the triangular generalized bialgebroid

(A, φ0, P ) is unimodular then

Hk(A∗) ∼= Hn−k(A
∗,∇), Hk

X0
(A∗) ∼= Hn−k(A

∗,∇X0),

where X0 = −#P (φ0), and ∇ (respectively, ∇X0) is the flat A∗-connection defined by

(49) (respectively, (50)).

Next, we will relate the modular class of a triangular generalized Lie bialgebroid

(A, φ0, P ) over M with the modular class of the Lie algebroids A and A∗ and with the

modular class of the base Jacobi manifoldM. For this purpose, we will recall the definition

of the modular class of a Lie algebroid introduced by Evens, Lu and Weinsten [ELW] (see

also [W]) and the definition of the modular class of a Jacobi manifold introduced by

Vaisman [V3] (see also [LLMP]).

Let (M,Λ, E) be an orientable Jacobi manifold of dimension m and Ω a volume form

on M . We consider the section MΩ
(Λ,E) of the vector bundle TM × R →M given by

MΩ
(Λ,E) = (XΩ

(Λ,E) −mE, divΩE) ∈ X(M)⊕ C∞(M,R) ∼= Γ(TM × R), (59)

where XΩ
(Λ,E) is the vector field characterized by the relation

L#Λ(δf)Ω = (XΩ
(Λ,E)(f))Ω, for all f ∈ C∞(M,R), (60)

and divΩE is the divergence of the vector field E with respect to Ω, that is, LEΩ =

(divΩE)Ω. The section MΩ
(Λ,E) is a 1-cocycle in the LJ-cohomology complex of M and

the cohomology class M(Λ,E) = [MΩ
(Λ,E)] ∈ H1

LJ(M,Λ, E) is the modular class ofM (see

[LLMP, V3]). As we know (see Example 4.1), the triple ((TM ×R, [ , ], π), (0, 1), (Λ, E))

is a triangular generalized Lie bialgebroid and (T ∗M × R, [[ , ]](Λ,E), #̃(Λ,E)) is the dual

Lie algebroid of ((TM×R, [ , ], π), (0, 1), (Λ, E)). Using this fact, (2), (56), (59) and (60),

we deduce that M(Λ,E) is the modular class of ((TM × R, [ , ], π), (0, 1), (Λ, E)).
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On the other hand, if (E , [[ , ]], ρ) is an orientable Lie algebroid of rank n over an orien-

table manifold M of dimension m, one can introduce the modular class of E as follows

(see [ELW]). Let ν ∈ Γ(∧nE∗) be a nowhere vanishing n-section and let Ω ∈ Ωm(M) be

a volume form on M . Then, we define the section M
(ν,Ω)
E of E∗ →M given by

M
(ν,Ω)
E (X) = divΩρ(X)− divνX, (61)

for all X ∈ Γ(E), where divΩρ(X) is the divergence of the vector field ρ(X) with respect

to Ω and divνX is the function on M characterized by LXν = (divνX)ν. The section

M
(ν,Ω)
E is a 1-cocycle in the Lie algebroid cohomology complex of E and the cohomology

class ME = [M
(ν,Ω)
E ] ∈ H1(E) is the modular class of E .

Remark 4.11. Let (M,Λ, E) be an orientable Jacobi manifold of dimension m and

(T ∗M × R, [[ , ]](Λ,E), #̃(Λ,E)) the 1-jet Lie algebroid associated with M. Suppose that

Ω ∈ Ωm(M) is a volume form on M and denote by VΩ the m-vector on M defined by

α1 ∧ . . . ∧ αm = VΩ(α1, . . . , αm)Ω, for all α1, . . . , αm ∈ Ω1(M).

From (5), we obtain that L#̃(Λ,E)(δf,f)
Ω = (divΩ#Λ(δf) + fdivΩE + E(f))Ω and, using

(2) and (12), we deduce that

d(Λ,E)(i(δf, f)(0, VΩ)) = −(divΩ#Λ(δf)−mE(f) + fdivΩE)(0, VΩ).

Thus, from (59), (60) and (61), it follows that

MT∗M×R = 2M(Λ,E) + (m+ 1)[(E, 0)],

where MT∗M×R (respectively, M(Λ,E)) is the modular class of the Lie algebroid (T ∗M ×

R, [[ , ]](Λ,E), #̃(Λ,E)) (respectively, of the Jacobi manifold M).

Now, suppose that ((A, [[ , ]], ρ), φ0, P ) is a triangular generalized Lie bialgebroid of

rank n over an orientable manifold M of dimension m. Let ν ∈ Γ(∧nA∗) be a nowhere

vanishing n-section and Ω ∈ Ωm(M) a volume form. We consider the section Vν of

∧nA→M characterized by the relation

α1 ∧ . . . ∧ αn = Vν(α1, . . . , αn)ν, for α1, . . . , αn ∈ Γ(A∗).

A direct computation proves that

(divVν
α)ν = −[[α, ν]]∗, for α ∈ Γ(A∗). (62)

Therefore, using (56), (61) and (62), we conclude that

#P (M
(ν,Ω)
A ) = −M

(Vν ,Ω)
A∗ +Ψ = Mν

(A,φ0,P ) − (n− 1)X0 −Ψ′, (63)

where Ψ and Ψ′ are the 1-cocycles of the Lie algebroid (A, [[ , ]], ρ) characterized by the

relations

α(Ψ)ν = L#P (α)ν + [[α, ν]]∗, α(Ψ′) = divΩρ(#P (α)) + i(P )(dα), (64)

for all α ∈ Γ(A∗).

From (63), we obtain that

#P (MA) = −MA∗ + [Ψ] = M(A,φ0,ρ) − (n− 1)[X0]− [Ψ′], (65)

#P : H1(A) → H1(A∗) being the homomorphism between H1(A) and H1(A∗) induced

by the map #P : Γ(A∗) → Γ(A) (see Proposition 4.3).
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Finally, if (Λ, E) is the Jacobi structure induced by the triangular generalized bialge-

broid (A, φ0, P ) over the base manifold M , using (65), we conclude that

(ρ, φ0)(#P (MA)) = (ρ, φ0)(M(A,φ0,P ))−M(Λ,E) + (n−m− 1)[(E, 0)], (66)

where (ρ, φ0) : H1(A∗) → H1
LJ(M,Λ, E) is the homomorphism in cohomology induced

by the map (ρ, φ0) : Γ(A) → Γ(TM × R) ∼= X(M)⊕ C∞(M,R) (see Corollary 4.5).

4.4. Examples

1. Triangular Lie bialgebroids. Let (A,P ) be a triangular Lie bialgebroid over M

in the sense of [MX1], that is, (A, [[ , ]], ρ) is a Lie algebroid and P ∈ Γ(∧2A) satisfies

[[P, P ]] = 0. Then, (A, φ0 = 0, P ) is a triangular generalized Lie bialgebroid and the dual

bundle A∗ →M to A admits a Lie algebroid structure ([[ , ]]∗, ρ∗) given by (27).

In this case, X0 = −#P (φ0) = 0, the base space M is a Poisson manifold, the

cohomology operators d∗ and d∗X0 coincide and H∗(A∗) = H∗
X0

(A∗). Moreover, the

homology operator d : Γ(∧∗A∗) → Γ(∧∗−1A∗) defined as in (39) is just d = i(P )d −

d i(P ) = [i(P ), d].

If n is the rank of A, the flat A∗-connection on ∧nA∗ →M associated with d is given

by ∇αΦ = α ∧ d i(P )Φ, for α ∈ Γ(A∗) and Φ ∈ Γ(∧nA∗) (see (49)).

Now, assume that A is orientable and that ν ∈ Γ(∧nA∗) is a nowhere vanishing

n-section. Then, the section Mν
(A,0,P ) ∈ Γ(A), which we will denote by Mν

(A,P ), is char-

acterized by the condition (see (56))

α(Mν
(A,P ))ν = L#P (α)ν + i(P )(dα)ν,

for α ∈ Γ(A∗). The cohomology class M(A,P ) = [Mν
(A,P )] ∈ H1(A∗) is just the modular

class of the triangular Lie bialgebroid (A,P ) introduced in [Ko2]. Furthermore, from

Theorem 4.10, it follows that if M(A,P ) is zero then Hk(A∗) ∼= Hn−k(A
∗,∇), for all k.

This result was also proved in [Ko2].

Next, we will consider some particular examples.

1a) Poisson manifolds. Let Λ be a Poisson structure on a manifold M . If we consider

the trivial Lie algebroid structure ([ , ], Id) on TM then the pair (TM,Λ) is a triangular

Lie bialgebroid. Moreover, the corresponding Lie algebroid structure on T ∗M is the one

associated with the Poisson structure Λ, that is, [[ , ]]∗ = [[ , ]]Λ and ρ∗ = #Λ. Thus,

H∗(T ∗M) is the Lichnerowicz-Poisson cohomology H∗
LP (M,Λ) of M .

On the other hand, in this case, d is just the homology operator of the canonical

homology complex of M and H∗(T
∗M,∇) is the canonical homology Hcan

∗ (M,Λ) of M .

Furthermore, if M is orientable, the modular class of (TM,Λ) is just the well-known

modular class of the Poisson manifold (M,Λ) (see (56) and [W]). As a consequence, we

deduce the following result (which it was proved in [BZ, ELW, X]): if the modular class

of M vanishes then Hk
LP (M,Λ) ∼= Hcan

n−k(M,Λ), for all k.

1b) Triangular Lie bialgebras. Let (g, [ , ]g) be a real Lie algebra of dimension n and let

r be a solution of the classical Yang-Baxter equation on g, that is, r ∈ ∧2g and [r, r]g = 0,

where [ , ]g is the algebraic Schouten bracket of g or, in other words, [ , ]g is the Schouten

bracket of the Lie algebroid g → { point }. The 2-vector r can be viewed as an algebraic

Poisson structure on g.
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Using this algebraic Poisson structure, one can introduce the homology complex

. . .→ ∧k+1g∗
d
→ ∧kg∗

d
→ ∧k−1g∗ → . . . ,

where d is the operator given by d = i(r)◦d−d◦ i(r). The resultant homology Hcan
∗ (g, r)

is the algebraic canonical homology of g associated with r.

The condition [r, r]g = 0 also implies that the operator σ : ∧kg → ∧k+1g given by

σ(Q) = −[r,Q]g,

is of square zero. Thus, we have the cohomology complex

. . .→ ∧k−1g
σ
→ ∧kg

σ
→ ∧k+1g → . . . .

The corresponding cohomology H∗
P (g, r) is the algebraic Poisson cohomology of g asso-

ciated with r.

On the other hand, since the pair (g, r) is a triangular Lie bialgebroid, the dual space

g∗ admits a Lie bracket [ , ]g
∗

defined by (27). Moreover, if d∗ is the algebraic differential

of (g∗, [ , ]g
∗

) then d∗ = σ (see Proposition 4.2) and therefore H∗(g∗) = H∗
P (g, r).

Now, denote by Mg ∈ g∗ the modular character of (g, [ , ]g) and by M(g,r) ∈ g the

modular class of the triangular Lie bialgebroid (g, r). Mg is the modular class of the

Lie algebroid g → {point} (see [ELW]). Therefore, using (63) and (64), we can prove

that M(g,r) = #r(Mg) + ξ, where #r : g∗ → g is the homomorphism induced by r and

ξ ∈ g is characterized by the condition φ(ξ) = i(r)(dφ), for all φ ∈ g∗. Consequently,

if #r(Mg) = −ξ then we deduce that Hk
P (g, r)

∼= Hcan
n−k(g, r), for all k. A particular

example of the above situation is the following one.

Let (u(2), [ , ]u(2)) be the Lie algebra of the unitary group U(2). Then, there exists a

basis {X,Y, Z, T } of u(2) such that T belongs to the center of u(2) and

[X,Y ]u(2) = Z, [X,Z]u(2) = −Y, [Y, Z]u(2) = X.

Thus, the 2-vector r ∈ ∧2g given by r = X ∧ T satisfies [r, r]u(2) = 0. Therefore, since

u(2) is a unimodular Lie algebra and i(r)(dφ) = 0, for all φ ∈ u(2)∗, we conclude that

Hk
P (u(2), r)

∼= Hcan
4−k(u(2), r), for all k.

On the other hand, a direct computation shows that

Hi
P (u(2), r)

∼= Hcan
4−i(u(2), r)

∼= R, for i = 0, 4,

H
j
P (u(2), r)

∼= Hcan
4−j(u(2), r)

∼= R
2, for j = 1, 2, 3.

2. Jacobi manifolds. Let (M,Λ, E) be a Jacobi manifold of dimension n. For the

dual Lie algebroid (T ∗M × R, [[ , ]](Λ,E), #̃(Λ,E)) associated with the triangular gener-

alized Lie bialgebroid ((TM × R, [ , ], π), (0, 1), (Λ, E)), the cohomology operator d∗
(respectively, d∗(−E,0)) is just the LJ-cohomology operator d(Λ,E) (respectively, the 1-

differentiable Chevalley-Eilenberg cohomology operator (d(Λ,E))(−E,0)) described in (12)

(respectively, (21)).

On the other hand, in this case, the homology operator d (see (39)) associated with

the flat (T ∗M × R)-connection ∇ given by (49) is just the homology operator ∂(Λ,E)

introduced by Vaisman in [V3] (see (17)). Moreover, the modular class of the triangular
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generalized Lie bialgebroid ((TM × R, [ , ], π), (0, 1), (Λ, E)) is the modular class of the

Jacobi manifold (M,Λ, E) (see Section 4.3).

Therefore, for unimodular Jacobi manifolds (i.e., with vanishing modular class) we

have that

Hk
LJ(M,Λ, E) ∼= Hn+1−k(T

∗M × R,∇), (67)

Hk
1−diff (M,Λ, E) ∼= Hn+1−k(T

∗M × R,∇(−E,0)), (68)

whereH∗
LJ(M,Λ, E) (respectively,H∗

1−diff (M,Λ, E)) is the LJ-cohomology (respectively,

the 1-differentiable Chevalley-Eilenberg cohomology) ofM and∇(−E,0) is the flat (T ∗M×

R)-connection given by

∇
(−E,0)
(α,f) (0,Φ) = ∇(α,f)(0,Φ) + (α, f) ∧ i(−E, 0)(0,Φ),

for (α, f) ∈ Ω1(M)⊕ C∞(M,R) and (0,Φ) ∈ Γ(∧n+1(T ∗M × R)) ∼= {0} ⊕ Ωn(M).

H∗(T
∗M × R,∇) is the canonical LJ-homology (respectively, the Jacobi homology)

of M in the terminology of [LLMP] (respectively, [V3]) and the isomorphism in (67) was

obtained by Vaisman in [V3].

Examples of Jacobi manifolds such that its modular class vanishes (respectively, does

not vanish) can be found in [LLMP, V3].
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