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Abstract. This work gives a construction of the secondary characteristic homomorphism in
the category of regular Lie algebroids generalizing the theory of Kamber-Tondeur for foliated
principal bundles equipped with reductions. Part I is a preparation and concerns the concept
of the Weil algebra Wg of the Lie algebra bundle g adjoint to a regular Lie algebroid A. A
fundamental role is played by its subalgebra (WWg)jo of invariant cross-sections with respect to
adjoint representations. In Part II we give a construction of characteristic invariants of partially
flat regular Lie algebroids, measuring the incompatibility of two geometric structures: a partially
flat connection and a Lie subalgebroid. This generalizes the classical construction of Kamber-
Tondeur. Fundamental properties, for example, independence of the homotopy class of a Lie
subalgebroid, are given.

A comparison of the presented Lie algebroid theory with characteristic classes of foliated
principal bundles shows the algebroid nature of the latter. For globally flat connnections the
concept reduces to characteristic invariants of flat regular Lie algebroids in [K7].

In the Appendix we present the elementary theory of regular Lie algebroids in which the key
role is played by a global theorem on solutions of some system of partial differential equations
with parameters. One of the main structure theorems concerns invariant cross-sections on R x M,
the basic fact needed in the proof of homotopy independence of characteristic classes.
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1. Introduction. This work belongs to the direction initiated by K. Mackenzie in
[Mal, Chap. III, IV] and by Ph. Higgins & K. Mackenzie in [H-M] and developed by the
author ([K2], [K6], [K8], [K9], [K10]) and others and concerns the “pure” theory of Lie
algebroids. These works isolate this theory from the common theory of Lie groupoids and
Lie algebroids.

Originally, Lie algebroids were invented by J. Pradines (1967) in connection with the
study of differential groupoids, generalizing the construction of the Lie algebra of a Lie
group. Since every principal bundle P determines a Lie groupoid PP~! of Ehresmann
[E], therefore—in an indirect manner—it determines a Lie algebroid A(P). The construc-
tion of this object with the omission of the step of Lie groupoids (with the use of the
vector bundle T'P/G considered by M. Atiyah [At] and P. Libermann [L]) was made in-
dependently by K. Mackenzie [Mal] and by the author [K1]. In [K1] there is also a third
manner of constructing a Lie algebroid of a principal bundle P(M,G) as an associated
bundle W' (P) x¢1 (R™ x g) with the first-order prolongation of P.

Since 1977 another source of transitive Lie algebroids has been known, namely, the
theory of transversally complete foliations [Mol], in particular, the theory of foliations
of left cosets of nonclosed Lie subgroups in Lie groups. On this ground R. Almeida
and P. Molino discovered in 1985 [A-M] (see also [Mo2]) non-integrable transitive Lie
algebroids. In [K3] the author gives a direct definition of the Lie algebroid of the TC-
foliation of left cosets without using Molino’s theory.

Differential geometry revealed also other objects which yield Lie algebroids: Poisson
manifolds [C-D-W], some complete closed pseudogroups [S] and Jacobi manifolds [K-SBJ.
The results of pure theory of Lie algebroids can be used just to these geometric categories
which are a potential source of new results and methods.

PROBLEM 1.1. Can the Chern-Weil characteristic classes on the ground of principal
bundles be constructed on the level of Lie algebroids?

This problem was considered first by N. Teleman in 1972 [T1], [T2]. He constructed
the classes for some exact extensions of R-Lie-Rinehart algebras [under the terminology
of J. Huebschmann [H1]], R being a commutative unital ring containing rational numbers
Q C R. He also noticed that his construction is a generalization of the classical bundle
case, provided that the structure Lie groups are connected. The same result was repeated
in [K1] by keeping the apparatus of principal bundles only. The full answer is included in
[K2] and independently repeated by I. Belko [B1], [B2]. In [K2] one can find a construction
of an equivalent of the Chern-Weil homomorphism for regular Lie algebroids over foliated
manifolds whereas in [B1], [B2] for transitive case only. For application to the tangential
case (strengthening the Moore-Schochet construction [M-Sch]) see [K5]. In [K2], [Bl]
and [B2] there is an observation that the Chern-Weil homomorphism of a connected
principal bundle is an invariant of the Lie algebroid of this bundle (the structure Lie group
may be disconnected). In [K2] a class of transitive non-integral Lie algebroids having
nontrivial Chern-Weil homomorphism is discovered (on the ground of TC-foliations of
left cosets of nonclosed Lie groups in Lie groups). J. Huebschmann [H2] generalized
results of [T2] and [K2] on the exact extensions of R-Lie Rinehart algebras without
the assumption Q C R. We add that Lie-Rinehart algebras are algebraic equivalents
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of Lie algebroids and were known—under different names—considerably earlier than Lie
algebroids (namely, since 1953 (Herz), see the survey article by K. Mackenzie [Ma2]). The
Chern-Weil homomorphism can be generalized to pairs of Lie algebroids (L, A) with the
use of the so-called L-connections in A understood as linear homomorphisms V : L — A
compatible with anchors, y40V = v, [B-K-W]. The case when A = T'P/G for a principal
fibre bundle P(M, G) or A = A(f) for a vector bundle f was considered independently by
R. L. Fernandes [F2] and M. Crainic [Cr].

The extension of Problem 1.1 also for secondary characteristic classes of flat or par-
tially flat principal bundles was posed by the author in the late eighties. The full an-
swer concerning characteristic classes of flat or partially flat objects was accomplished
(in manuscript) in 1989, submitted in 1992 to Publ. Départ. Math., Université Claude
Bernard - Lyon 1, and accepted (see [D, 1994]). However, this work has not appeared in
print because the publication of the journal was discontinued (see http://www.desargues.
univ-lyonl.fr/home/portier /bib.html). For a sketch of these results see [K4|. Part of re-
sults concerning flat objects appeared in [K7] in 1998.

The present work (Part I and Part IT) is devoted to characteristic classes of partially
flat regular Lie algebroids constructed in the spirit developed by Kamber and Tondeur of
foliated bundles equipped with a reduction [K-T1], [K-T2]. In part I the Weil algebra for
the Lie algebra bundle adjoint to a regular Lie algebroid is constructed (adapting classical
theory for Lie algebras [Ca], [K-T2]); some ideas of G. Andrzejczak (unpublished) of a
change of variables in the Weil algebra are used. As an explicit application, the Chern-Weil
homomorphism of regular Lie algebroids is obtained once more. The results of part I are
done as a preparation for construction of the secondary characteristic homomorphism, the
aim of part II, measuring the incompatibility of two geometric structures on a regular Lie
algebroid: a partially flat connection and a given Lie subalgebroid. The tangent bundle
to a characteristic foliation of a regular Lie algebroid considered plays the role of the
tangent bundle for classical characteristic classes. The case of transitive Lie algebroids
B C A and a partially flat connection over a regular foliation F is a simple generalization
of the characteristic homomorphism for a regular foliation (for A the Lie algebroid of the
principal bundle P of transversal frames and B the Lie algebroid of some O(n) reduction
in P).

Recently, Rui Loja Fernandes [F2] proposes an approach to secondary characteristic
classes including singular Stefan’s foliations appearing as the images of anchors in Lie
algebroids. The Fernandes approach is in the spirit of the original papers of Chern and
Simons [C-S1], [C-S2] of comparing two connections: a basic connection and a metric
one acting from a given (nonregular in general) Lie algebroid A. This is very important
in Poisson geometry [F1]. M. Crainic [Cr] has defined secondary characteristic classes
for a representation of a Lie algebroid, i.e. a Lie algebroid homomorphism L — A(f).
They vanish if the values of the representation are contained in the Lie subalgebroid of
some O(n)-reduction of f. For a general approach to Lie algebroids of G-vector bundles
see [K5]. The common part of the Crainic theory and the one considered in this paper
concerns Lie algebroids L = F C TM, and partial connections in vector bundles f,
N :L=F — A= A(f) and Lie subalgebroids B C A which are O(n)-reductions of §. In
my opinion, it is possible to unify the Fernandes and Crainic theory with the one below.
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PART I. WEIL ALGEBRA FOR REGULAR LIE ALGEBROIDS

2. Homomorphism (dw)Y. We continue our work [K2], [K7] concerning characteris-
tic homomorphisms of regular Lie algebroids. We assume that all the manifolds considered
are C* and Hausdorff, and that the manifolds M, M’... over which Lie algebroids are
considered, are, in addition, connected. By Q°(M) we denote the ring of C* functions
on a manifold M, by X(M) the Lie algebra of C* vector fields on M, and by Sec A the
Q%(M)-module of all C*° global cross-sections of a given vector bundle A over M.

By a regular Lie algebroid over a foliated manifold (M, E), we mean a system A =
(A, [-,-],7) consisting of a vector bundle A on M and mappings [-,-] : Sec A X Sec A —
Sec A, v : A = TM, such that (1) (Sec A, [-,-]) is an R-Lie algebra, (2) v, called the
anchor, is a homomorphism of vector bundles such that Im~y = E, (3) [§,f - 7] =
Flen)+ (yo &) (f), f € Q°(M). The anchor is bracket preserving, i.e. Secy : Sec A —
X(M), & = vo¢&, is a homomorphism of Lie algebras (see [H], [B-K-W]). In the sequel,
we adopt the notions and the notations from [Mal], [K2] and mainly from [K7]. We also
write A W and \/ W for the exterior and symmetric algebras for a given vector space W.

Let A = (A,[-,-],v) be an arbitrary regular Lie algebroid over a foliated manifold
(M, E) with the Atiyah sequence 0 — g — A RN 0, equipped with a connection
A: E — A having w : A — g as its connection form. Below, the exterior derivative of
forms on the Lie algebroid A, with values in g, [also in the associated vector bundles]
with respect to the adjoint representation ads : A — A(g) [or induced ones] will be
briefly denoted by d9. dw at a point x € M is a 2-linear skew-symmetric tensor (dw)), :
Az X Az — g understood sometimes equivalently as an element of /\2 Al ® g, It

|z

defines a linear mapping with the property
(dw)e (wT) A (dw)a(w3) = (dw)a(ws) A (dw)e(w]), wy € g,

Therefore, by the universal property of the symmetric algebra \/ gl*m, see [G], we obtain
the existence and uniqueness of a homomorphism of algebras

(2.1) (dw)y : Vg, = NA;
extending (dw), and such that (dw)y(1) = 1.
LEMMA 2.1. LetT' € \/lg‘*w, then for wi, ..., wy € A,
{(dw)Y (D), w1 A ... Away)
1
= o7 28800 (T (@w)j (wo, Atigy) VoV (d°0) 3 (o, A wioy)).
Proof. 1t is sufficient to prove this for a simple tensor I' = w} V...V w;:

(dw)Y (wi V...V wS), w1 A... \Nway)
= ((dw)z (W) A ... A (dw)z(w] ), w1 A ... Aws)

= %ngna- (dw)z (W) (Woy A Wey) + v (dw) g (W) (Weg_y A Wy, )

1 * *
= ? ZSgnJ ! <U)1, (dgw)\:c(wo’l A wUz)) et <wl ) (dgw)\:c(wffzz—l A w021)>
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= Z seno - Z(wf, (W) 1o (W, 1)y A Woyrr))) -

01<02,...,021-1<02] T
01<03<...<02]-1

oo (upy (dgw)\w(wﬂzw(z)q A wUz«(z))>

1 . .
IR > sgno - (wi V..V wf, (dw) s (W, Awg,) V.

\ (dgw)lm(wazzA A w021)>' .

According to this lemma and the fact that the canonical duality \/l g* x \/l g — R
[defined pointwise by the permanent] is a C*° 2-linear homomorphism of vector bundles,
we have the following

COROLLARY 2.2. ForT € \/l g*, the cross-section
(dw)V () : M — N A", 2 (dw)) (T),
is a C™ real 21-form on A, i.e. (dw)V(T) € Q% (M), and it is defined by

(dw)¥(I') = % D, dw .V d).

3. Weil algebra of the bundle g of Lie algebras. For the bundle g of Lie algebras,
adjoint to a given regular Lie algebroid A, we have:

. /\gl*x is an anticommutative graded algebra; (A g""m)’C = /\k gl*x, x e M,

o \/ 9|*x is an (anti)commutative graded algebra over the graded vector space g"’;C with
elements of degree two only, i.e. (\/ g‘*w)zl =\ g, and (V g‘*gE)QH‘1 =0.

e Wg|, = /\g‘*w ® \/g‘*w is the anticommutative (bi)graded tensor product of anti-
commutative graded algebras. The bidegree (Wg|m)k’21 = /\k gl*x ® \/l g|*x leads, as
usual, to the total degree r = k + 21.

Wg,, as an algebra is generated by 1, w* ® 1 and 1 ® w*, for w* € g‘*w. Put

Wg)2 = N'g @ V'g. (Wg) = @ (Wg)"?,
k+42l=r

(Wg)*? := Sec(Wg)™*,  (Wg)" :=Sec(Wg)" (= @ (Wg)"*),
k+2l=r

Wg = @(Wg)r.

e Wg is a bigraded algebra with the multiplication defined pointwise.

Wag is called the Weil algebra of the bundle g of Lie algebras. Fach element of Wg is
locally [even globally, by the paracompactness of M] a finite sum of cross-sections of the
form 1 A--- AP @T1V--- VI, ¢;,T; € Secg*, k,1 > 0. Here (and below), k, [, r are
nonnegative integers.

REMARK 3.1. Under the gradation considered, the homomorphism (2.1) is of degree
0. Analogously, introducing the ”pointwise” structure of an algebra in €p,., Sec \/l g*
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and the gradation as above, we see that
(dw)Y @Sec\/lg* — Qa(M)
1>0

is a homomorphism of algebras of degree 0.

4. Auxiliary operators k,7,d, §. Three fundamental operators i, d, § in Wg, as well
as the mapping k : Wg — Q4 (M), will be introduced in two steps passing through some
isomorphisms ¢, : Wg, — Wg|,, x € M [i.e. some change of variables|. This method,
due to G. Andrzejczak (unpublished), enables us to define and prove the property of these
objects in the clear and technically lucid manner. The main profit is that the differential
d is then defined by one simple formula.

We begin by defining some auxiliary objects k,i,d, . Firstly, we observe that, for
each point x € M, there exists exactly one homomorphism

Ew : VVg‘gC — /\Arw
of algebras of degree 0 such that k(1) = 1, ki(w* ® 1) = w)(w*) (for w) see [K7))
and k. (1 ® w*) = (dw)Y(w*) when w* € g, k, is directly defined by the formula
k. (U, ®0,) = wl (V) A(dw)Y (T,) for ¥, € A g}, and I'z € \/ gj;,. The homomorphisms
k., © € M, give rise to the homomorphism

k: Wg — Qa (M)

of algebras of degree 0 defined pointwise: k(V®T'), = k, (¥, ®I,), ¥ € @kzo Sec /\k g,
I'e @5 Sec \/! g*. It has the property

(4.1) B0 @T) = w () A (dw) (D).

LEMMA 4.1. For each x € M and for v € gy, there exists exactly one antiderivation
o WG, = Wy, of degree —1 such that

(1) izp(w* ®1) = (w*, ),
(2) Tep(1@w) = —(w oad,) @1, w* € gf,.

It has the following properties:

(Z) §$7U|(Wg\w)0’0 =0, R
(it) iz p(l@wiV---Vw))=—=> wioad, QWi V---i---Vw, [>1,
(ii) (Vo ®Tq) = iy(Va) @ Tq + (—1)*(Vy @1) iz o (1&T,) when ¥, € A" g}, and
Fl‘ € \/g‘*xa
(ZIU} Zﬂ?ﬂ) [(Wg\w)km] C (Wg\w)k_LZl D (ngm)k—i_lg(l_l)'
Proof. Uniqueness. The uniqueness of i, , is evident because every antiderivation is
uniquely determined by the values on generators. Properties (i)—(iv) of each antiderivation

iz fulfilling (1) and (2) above are evident.
Existence. For [ > 1, there exists exactly one linear mapping

1 I % * -1 %
le,v:\/ g\;c_>g\;c®v g\;c
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such that Zév(wf Ve V) == wioad, @ui V- eV w; . It has the property
i (T1e V Fae) = 07, (P1e) - 1@ Pog + 1@ T - 1 (D)

for I'v, € \/m g‘*w and 'y, € \/n g‘*w. For k > 0 and [ > 1, there exists exactly one linear

Happine 7 2l k2l _y k—1,21 k4+1,2(1—1)
t (W)™ = (W)™ % & (Wgp,)"

such that Zk 21(\1130 ®I‘m) = iy(U) @ T, + (—1)F (T, ®1) Zé:v(ra:) when ¥, € ¥ g, and
I'; e \/g‘w Set, additionally, zg:?} =0 and

i (W)™ — (Wg|x)’“_1’0 U, @10 0,0, ®1,

for £ > 1. All the linear mappings i k,l > 0, together define the operator

xvv

= —k 21
Zz,v = ;c ,V ngx — ngI

k,1>0
Of course, i, satisfies (1) and ( ). It remains to show that i, , is an antiderivation
of degree —1, i.e. iy (01 - O2) = i34(O1) - Oz + (—=1)"O1- iy,(02) for O1 € (Wg),)",
©2 € Wg|,, which is easy to obtain by considering elements ©; homogeneous with respect
to the bigradation only. m

For a cross-section v € Sec g and for © € Wg, the formula M > z + i, ,, (©,) defines
an element 7, (0) of Wg and

iyt Wg — Wg, O+ i,(0),

is an antiderivation of degree —1. The smoothness of i,,(©), by Lemma 4.1(i)—(iii), follows
from the smoothness in the cases © = ¥ ® 1 where ¥ € Sec /\IC g*, and © = 1® I where
T" € Sec \/l g*, which is easy to investigate. 7, has the property

(4.2) WD) =i, Pl +(-1)"(¥®1) i,(1el)
for ¥ € Sec \" g* and T € Sec /' g*.

LEMMA 4.2. For each x € M, there exists exactly one antiderivation d : Wg, —
Wgy, of degree +1 such that

1. dy(w* ®1) =1®w",
2. d,(1®w*) =0, w" € gj-
It has the properties:

() 2| (Vg )*° = 0. A

(ii) do(wi A= Awp @ 1) = X (=) wf AT A @uf, k> 1,

140 =d;(¥,®1)-(1®,) when ¥, € Ag’ and T', € \/ g} , in particular,
|z |z

I&I ul &.I &I &I

(W ®I‘

(1®T;) =0,
(iv) da[(Wg12)"2] C (Wap,)F 12040,
(v) dy is a differential, i.e. d, o d, —0

Proof. Uniqueness. The uniqueness of d, and properties (i)—(v) are evident.
Ezistence. For k > 1, there exists exactly one linear mappmg dk : /\ g| o=

(N gi,) @ gy, such that d5(wi A= Awp) = Y, (~1)Fwf AT A wf @ wf. Tt
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has the property ggb"’”(\lﬁx ANWy,) = (g;”\lllx) o @14+ (-1)"T, @1 - JQ\I'Q;E when
U, e A" gl*m and Uy, € A" g‘*w. For k > 0 and [ > 1, there exists exactly one linear map-
ping E:’Ql : W)k — (Wg‘w)k_l’Q(l‘H) such that 85’21(\11;5@1}) = (CTI;\I'QC)U@F;E) for
v, e A\ g, and I'y € \/lg‘*w. Add EZ’O =0 and put d, = D k150 35’21
Of course, d, satisfies (1) and (2). It remains to show that d, is an antiderivation of
degree +1 which is easy to obtain by considering elements homogeneous with respect to
the bigradation. m

: Wg|m — Wg‘w.

All homomorphisms d,, € M, define pointwise a homomorphism
d: Wg — Wg
which is an antiderivation of degree +1 and a differential. It has the property
(4.3) AU @I =dT®1)- (1), ¥eSecA\"g*, T eSec\ g
LEMMA 4.3. For each x € M and for v € g, there exists eractly one derivation
020 : W@z — Wgj, of degree 0 such that
1. 0y (w* ®1) = —w* o ad, ®1,
2. 0, ,(10w*) =18 (—w* oad,).
It has the property:
(i) 0z0(V,@T,) = (00V,) T+ ¥, @(0YT,) when ¥, € /\ng and T, € \/gl*m, where

62 and 6) denote the only derivations in the algebras \ g[‘;j and \/ gl*x, respectively,
induced by — ad;) : 9py = G-

Proof. The uniqueness and property (i) are evident. Formula (i) gives the required
operator. m

For v € Secg and © € Wg, the formula M > 2 + 0, ,,(6,) defines an element of
Wg and
0, : Wg —Wg, 6 0,(0),

is a derivation of degree 0. The adjoint representation ad4 : A — A(g) [K2] determines a
representation of A on each associated vector bundle such as /\k g, \/l g, /\k g ® \/l g,
etc. It will be denoted for brevity by ad. Then any element £ € Sec A determines a
covariant differential operator L,qo¢ in the vector bundle (Wg)*? and determines a
linear operator

(4.4) Ladoe : Wg — Wg

such that Laqo, = 0, for v € Secg.
LEMMA 4.4. The linear operator (4.4) is a differentiation of the Weil algebra Wg.
Proof. Trivial calculations on simple tensors. m
The relationships between the operators i, d, 0y, Lad o¢ are the following:

(45) Eadog OE = EO Ead o>
(4.6) ivod+doi, =0,
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Indeed, €1 := Lagoc © d—do Lo o¢ is an antiderivation, whereas 5 := ivod+doiy, is
a derivation, of the Weil algebra Wg, therefore to prove (4.5) and (4.6) it is sufficient to
show that 1 = 0 and &3 = 6, on the cross-sections ¥ ® 1 and 1 ® ¥, ¥ € Sec g*, which
is trivial.
PROPOSITION 4.5. For © € Sec /\k g ® \/lg*, the following equality holds:
— — 1
d*k(0) = kd(©) + T (O WA AW ® (Ww Vv diw))

where d9© € QL (M; \* g* @ \/' g*) (© is treated as a 0-form).

Proof. We first prove the equalities

(4.7) RV 1) = % (WA Aw)),
(4.8) (BFURIT),wA- - ANwRdwV -V dw)

= (Y, wA AWy AT, dwV - Vdw)+
+ (=) (W, wA - AW AET, 9w V - - V dIw)
for ¥ € Sec \" g* and T € Sec\/' g*. Thanks to the linearity of both sides with respect

to W, it is sufficient to show (4.7) on a simple tensor ¥ of the form ¥ = 1 A --- A ¢y
where 9; € Secg*. Let x € M and v; € Aj,; by [K7, (2.2)] we get

1
E'wl/\"'/\wkvdg(uf/\”'/\w»(96;111/\"'/\Uk+1)
1
RO YL A AN, PWA WA AW (3 0r A A Upg)

k—1 times
1
= 9. (k — 1)| ’ ngl’ld : <w1$ ARERRA wkx,dgw(x;vg(l) N UU(Q))

ANW(T; Vg 3)) A - A W(T5 Vo (og1)))
1 )
= T 2 2 (D) (W) (@ va(r) A ve(a):

. <¢1/\"'2'"/\wk7W/\"'/\w>($§Ua(3) /\"'/\Ua(kJrl))
=D (=1 dw)Y (i) Aw (Whr A Ab) (@5 v A Avkga)

= (Z(_l)iJrlw/\(wl A /Z\/\wk) A (dw)v(wi))(x;vl A "'/\UkJrl)

= (kd(¥ @ 1))(x;v1 A Avpyr)-

Equality (4.8) easily follows from the definitions. To prove the Proposition it is suffi-
cient to consider © = U @ T for ¥ € Sec A* g* and ' € Sec\/ g* and use Corollary 2.2
and the above equalities. m

Let (Wg)];(’?l denote the space of cross-sections invariant with respect to the adjoint
representation of A on (Wg)*? = A\* g*@\/' g*. Put Wag) o = @MZO(WQ)IF?Z. (Wg)?i)o
is equal to QY(M, F) the space of F-basic functions (i.e. constant along leaves of F).

The following easily follows from Lemma 4.4.
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COROLLARY 4.6. (Wg) 0 is a subalgebra of the Weil algebra Wag.

Equality (4.5) implies that d maps invariant elements of g into invariant ones,
defining an antiderivation of algebras dy : (Wg);0 — (Wg)o, whereas Proposition 4.5
yields that k restricted to the invariant cross-sections kg : (Wg) o — Qa(M) commutes
with the differentials dy and d*, giving a homomorphism ko : H((Wg)o,do) — Ha(M)

of algebras. However, ko4 is unimportant because the space ((Wg)jo,dp) is trivial:
(4.9) H((Wg)ro.do) = (Wa)jo (= We)7' = QM. F)).

Indeed, a chain homotopy joining id to 0 is defined by the family of invariant linear
homomorphisms of vector bundles ¢®! : (Wg)*? — (Wg)kH’Q(l_l) such that ¢*9 =0

k
and, for [ > 0, Pl (wi A Awp @Dy Ve vI) =0 52w A Awp AT ®T v
o §e VI, wi T Egl, v € M.

5. The change of variables in Wg|,

PROPOSITION 5.1. There exists exactly one isomorphism ¢, : Wg, — Wg,, of alge-
bras of degree 0 such that

1. 0. (1) =1,

2. pr(w®@l)=w*®1,

3 o (1@uw*)=1w*—jw* ®1, w"e g‘*w, where 6, denotes the differential in the
algebra )\ gj,,, defined in [K7, (2.5)].

Proof. We recall that 4, is equal to minus the classical Chevalley-Eilenberg differential.
The uniqueness is evident. To prove the existence, take two uniquely determined linear
mappings @+, Pa— :\ g}, = Wgjs, satisfying the conditions

(i) @z+(1) =1,
(i) Pt (T1e V- Vi) = [[i, (1@ Ty £ 0,(Tie) ®11), T € g5, 121,

They are homomorphisms of algebras of degree 0 [the degree I',, = 2 for ', € gl*m] and

l
~ I % 2(l—mr * *
Zo:V'grl <P N g @V ghh).
m=0

Clearly, there exist two linear mappings @+, @, : Wg, — Wg|, such that
(ilix) 0p2 (Vo @T0) =V ®1-§,x(T), Vo € Ag,, To €V,

They are homomorphisms of algebras of degree 0 (which can be easily proved by
considering tensors bihomogeneous only), and fulfil the property

(ive) pex(l@w") =1@w" £4w* ®1, w"Eg,.

To end the proof, put ¢, := ¢,-. To see that ¢, is an isomorphism, we check the
equalities @,- o @+ = id, @,+ o p,— = id. Both sides of these are homomorphisms of
algebras, therefore it is sufficient to check them on the generators, which is trivial. m

All the isomorphisms ¢,, = € M, establish an isomorphism of algebras

w: Wg — Wg,
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©(0)(z) = ¢, (0,), = € M. By the proof above,
e ' (T®1)=U®1 and ¢ '(1@V) =100 +i0®1
for ¥ € Sec g*. Moreover, ¢, establish linear homomorphisms of vector bundles

l
* * = * l * —m m
NG OV g S Ng eV g, M (Wt - P (gt

m=0

The following equality holds:
(51) "o (D) =0l ("% o(1®T)), ¥eSecA'g*, TeSeV g*
PROPOSITION 5.2. ©*2! s an invariant homomorphism.

Proof. We have to prove only that

(5'2) Laa OE(SDle © @) = @kﬂl o Lag og@
for £ € Sec A and © € Sec /\k g*® \/l g*. First, we check the equality
(5.3) Ladog(6T) = 6(Lad oel')

for I' € Sec g*. To this end, take vy, 5 € Secg. The Jacobi identity implies
(Ladog(0T), 11 Ava) = (v 0 )T, w1, w2]) — (I, €, v ], val) — (T [, [€, v2ll])
= (Ladoel, [v1,12]) = (0(Ladoel), v1 A a).

Next, we obtain

(54)  Ladoe(@™?0(131) =1® Ladoel — 6(Ladoel) @1 = ¢"2 0 (1 ® Lagoel),

for I' € Secg*. As usual, to obtain (5.2) it is sufficient to consider © = ¥ A -+ Ay ®
IV VI, ¢, T'; € Secg*. By (5.1), (5.4) and Lemma 4.4 we obtain

Ladog(@™2 o (1 A Ah @T1 V- VIY))
:Zwl/\"'/\ﬁadog(ﬂ)i)/\"'/\wk@l-apo’mo(l@I‘l\/...\/I‘l)

+¢1/\"'/\wk®1'z<p0’20(1®rl)'---'@0’20(1®£ado§Fi))""

'(500’20(1@)1_‘[)
_ k21
= O(21/)1/\-../\Cadog(z/;i)/\.../\z/;k®rl\/...\/I‘l

YL A AU @Y TV eV Lagoe (D) Vo V)

=" o Logoc(P1 A~ AP @TV---VT). u

COROLLARY 5.3. (1) ' : /\g*®\/§l gt — /\g*®\/§lg* is an invariant isomorphism
of vector bundles, therefore (')~ is invariant, too.

(2) ©(O) is an invariant element of Wg whenever © € Wag is invariant.

(3) wo : Wg) 0 = WVG) 0, the restriction of ¢ to invariant cross-sections, is an
isomorphism of algebras.
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6. Operators i,, d, 6, and their properties. We define the fundamental opera-
tors i,, d, 6, in Wg in such a way that the following diagram commutes:

W, _vr W,
iy, d, 0, iy, d, 0,

Wy T’Wg

Of course, one can follow this procedure on each level of x € M to obtain the operators
iz,v, e, 02,0 o0 Wg|,, with the relations i, ., (0;) = i,(0)(z), etc.

PROPOSITION 6.1. The fundamental properties of the operators i,,d, 8, are as follows:

(1) 0, =0,, (2) Ladogod=do Lagog, (3)iyod+doi,=0,.

Proof. To prove (1) we recall that 6, and 6, are derivations, therefore it is sufficient
to show the equality 6, () = 0,,(0) for the cross-sections @ = V@1 and © = 1@ ¥, ¥ €
Secg* which is easy to obtain. Equality (2) is evident because Laqo¢ commutes with
@, " and d. Analogously we check (3). m

PROPOSITION 6.2. (1) i, is an antiderivation of degree —1 defined uniquely by the

conditions i,(¥ ® 1) =i,¥, and i, (1 @ ¥) =0, ¥ € Secg*. It has the property
(i) i,(T@T) =i, (V)T for U e Sec \*g*, T €SecV'g*.
(2) d is an antiderivation of degree +1 defined uniquely by the conditions
(1°) d¥P ®1) =1 ¥+ i¥R1,
() d(1®V) is an element of (Wg)*? = Sec(g* ®g*) such that i, od(10 V) =6,V
for v € Secg.
Proof. Trivially follows from Prop. 6.1. m

The families of operators i, ,,,ds, 0z, , indexed by x € M, give rise, for k,I > 0, to
the linear homomorphisms of vector bundles
Z-lli,Ql . (Wg)k,Zl - (Wg)k—l,Zl, 95,2l . (Wg)k,Ql N (Wg)k,Zl,
dk,Zl : (Wg)k,Ql N (Wg)k—i-l,Zl P (Wg)k—l,Z(l-i-l).
Proposition 6.1(2) implies
COROLLARY 6.3. d maps invariant elements of Wq into invariant ones, defining an
antiderivation do : (Wg) 0 = OVG) jo-

vo : (Wg) ;0 — (Wg) o commuting with dy and do gives an isomorphism

poz  H(Wg) 1o, do) = H((Wg) 0, do),
therefore H((Wg);o,do) is trivial according to (4.9).
The cross-sections © € Wg, for which i,© = 0 for each v € Sec g, are called horizontal
(or more precisely, g-horizontal). Since i, is an antiderivation, all horizontal cross-sections
form a subalgebra of Wg denoted by (Wg),. This construction can be performed on each
level of z € M to obtain the algebra (Wg,):. Of course, © € (Wg), <= 0, € (Wg|,),
for each x € M.
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LEMMA 6.4. (Wg), = B =" W) =~ P20 Sec \/' g*; equivalently,

for each x € M. In consequence, each nontrivial homogeneous element of (Wg), has an
even degree.

Proof. Let ¢, = >-, 91 @ T%, € Wgp.)i, ¥4 € A gy, and I e V gj,; we can assume
the linear independence of I'J, [G, p. 7]. Since 0 = iy, (1) = > iz0(13) @ TJ, therefore
iz,0(¥)) = 0 for each v € g|,. But () keriy, = R [G, p. 117], then we obtain
=1  €RC \gf,. =

VEYG|

Lemma 4.4 and Proposition 6.1 yield

COROLLARY 6.5. d maps invariant and (simultaneously) horizontal elements of Wg
into such elements, defining the antiderivation d; o : (Wg|z)i,r0 — WV@G|z)ir0-

7. The mapping k. Put k = ko ¢ : Wg — Q4(M), which is a homomorphism of
algebras.

LEMMA 7.1. ko : WVg)0 — Qa(M), the restriction of k to the invariant cross-
sections commutes with the differentials dy and d*.

Proof. For © € (Wg) o we have, by Corollary 5.3(2), d* o ko(©) = d* o kg o ¢(0) =
kodop(©) =kyody(O©). m

PROPOSITION 7.2. k(¥ @ T') = w™(¥) A QV(T).

Proof. k(P @T)=k(T®1-10T7)=k(YR1)AE1IQT) =wMNU)Ak1IQD). It
remains to verify that k(1@T") = QV(T"). But the mappings I' — k(1®T) and T — QY (T)
are homomorphisms of algebras such that 1 — 1, therefore it is sufficient to check the
equality for I' = ¥ € Sec g*. Formula [K7, (2.6)] yields

E1@0)=kop(1®0)=k(1V¥ —§¥®1)
= (dw)" () — w™(0W) = (¥, d9w) — w"(0V) = QY (V). =
PROPOSITION 7.3. i, ok =k oi, for v € Secg.

Proof. By the horizontality of the forms in Im €V [which easily follows from the
horizontality of €], the standard property of the substitution operator i, : Qa(M) —
Qa(M), equality [K7, (2.3)] and Prop. 6.2(1)(i) above, we get, for ¥ € Sec A\* g* and

T'e @120 Sec \/lg*7
i, o k(W @T) =i, (w(¥) AQY(D)) + (=1)Fu™(®) Ad, (QV(T))
= Wiy, (P) AQV(D) = k(i (¥) @T) = k(i, (¥ @ T)).
Our proposition now follows from the linearity of k and i,. =m
8. The Chern-Weil homomorphism of regular Lie algebroids, revisited. As

a simple consequence of Proposition 7.2 we obtain the Chern-Weil homomorphism of
regular Lie algebroids constructed earlier in [K2].
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k maps horizontal elements of Wg into horizontal real forms on A, giving a ho-
momorphism of algebras k; : Wg), — Qa4,;(M). This mapping is defined by the for-
mula k;(1®T) = QY(), T € @,>,Sec \/' g*. Consider the further restriction of k,
ko : OVg) 0, — Qa,i(M) where (Wg) o, denotes the algebra of elements horizontal
and invariant ,simultaneously. We prove that

(8.1) d[(Wg)yo,; = 0.

Let 0 # © € Wg) 0. By Corollary 6.5, d© € (Wg)o ;. But © has an even degree
(see Lemma 6.4), whereas d is an antiderivation of degree +1, therefore dO has an odd
degree. Using Lemma 6.4 once again, we assert that d© = 0.

According to Lemma 7.1 and (8.1), the forms in Im kg ; are d“-closed. The isomor-
phism A, : Q4:(M) — Qg(M) ([K7, sec. 2]) maps d4-closed forms into d¥-closed forms,
see [K7, (2.1)]. By the above, there exists a homomorphism of algebras
(8.2) P(Sec V' g* )0 = He(M), T — [A.(2"(D))].

1>0
However, A, (QV(T)) = # - (0LAQV -V AQ) = % - (0, V -+ V ), therefore
A (QV@)] =[5 - (0, % V- V)] = ha(D) according to [K2, Ch. 4], which means
that (8.2) is the Chern-Weil homomorphism of the regular Lie algebroid A.

PART II. SECONDARY CHARACTERISTIC HOMOMORPHISM OF
PARTIALLY REGULAR LIE ALGEBROIDS

9. Regular Lie algebroids and ideals. Take two vector bundles F’ and F on a

paracompact manifold M, such that F’ C F, and define (see [K6, sec. 2]), for k > 1,
Ineg = U Ipnwer) ©NF.
reM

1 A is a vector subbundle of A F' and the space of global cross-sections Sec(I A is
an ideal in the algebra Sec(/ F'); moreover, SeC(I/\k o) = (Sec(Ip/)*, k> 1.

Let E' C E C TM be two C* constant dimensional distributions on M, and suppose
E to be integrable. Denote by E’* the vector subbundle of E* consisting of all covectors
vanishing on E’. Using the above (for F = E*, F' = E't| k = 1), we obtain an ideal [
in the algebra Qg (M) = Sec A E* of tangential defferential forms, generated by 1-forms
vanishing on E’. Standard calculations give the following

F/)

THEOREM 9.1 (The Frobenius Theorem for subdistributions). E’ is involutive if and
only if the ideal I is differential, i.e. d¥[I] C I.

Consider a regular Lie algebroid (A, [, -], ) over a foliated manifold (M, E') and an in-
volutive subdistribution E’ C E. This produces a new regular Lie algebroid (4, [-,-],v|4’)
in which A’ = y~1[E'].

In the sequel, the symbols A’ and E’* are understood with respect to the canonical
dualities A* x A — R and E* x E — R (see [K6]). Consider the ideal

Sec(I/\k(A,L)) C Qa(M) = Sec ) A*
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which is the k-power of the ideal of real forms on the Lie algebroid A, vanishing on A’.
Since U € Sec A" if and only if ¥ = ~,6 for some # € Sec E'*, we obtain that each
form ¥ € Sec(I/\k(A,L)) is globally of the form ¥ = 22:1 Y (OF Ao A OF) AT, for an

integer 1, #/ € Sec(E't) and ¥; € Q4(M). The above Theorem 9.1, and the equalities
dAye = 7dP (K7, (2.1)]), ieVe = Yalnot, 9?7* = il o¢ for £ € Sec A’, make the
following proposition obvious:

PROPOSITION 9.2. The ideal SeC(I/\k
d4, g, 9? for € € Sec A'.
The fact that Av*: AE* — A A* is a monomorphism and the equality

(A'L)) is closed with respect to the operators

iwl/\"'/\wh,—k+1 (7*9) = ’Y*i’ywl/\"'/\’ywh—k+19
for 0 € Qp(M) and w; € Sec A (see also [K6] and [An]) imply

COROLLARY 9.3. 0 € SeC(I/\k(E,L)) = b€ SeC(I/\k(A,L)).

Recall that [K-T2], [K6, Rem. 4.2] by a partial connection in A over E' we mean any
connection \' : E' — A’ in the regular Lie algebroid A’ = v~ 1[E].

If ) is flat, then the pair (A4, )) is called a partially flat regular Lie algebroid. Any
foliated principal bundle [K-T2, p. 20] gives in a natural manner a partially flat regular
Lie algebroid. A connection A : E — A in A is said to be adapted to N when X' = \|E’
(an adapted connection always exists).

Assume that A is equipped with a connection A\ and a partial connection N over
E’. Let Q and Q' (Q and ;) be the curvature forms (the curvature tensors) of these
connections (see [K7, Sec. 2], and [K2, 3.1.1]). From the equality Q = v, and Corollary
9.3 (see also [K6]), we obtain

THEOREM 9.4. If X is adapted to N, then

(a) X is flat if and only if (v*,€;) GIX%(A/L) for any x € M and v* € gj,,
|

(b) X is basic if and only if (v*,Q,) € I/\Q(A/‘i) for any x € M and v* € gjy-

We now pass to the Weil algebras Wg),, and Wg. Wg|, has a standard even decreasing
filtration by ideals

* > *
FQp(Wg\w) = ro\/rgr, /\g\z ®V _pg|m'
These, for all z € M, define an even decreasing filtration by ideals of the Weil algebra
Wg

F*(Wg) := {© € Wg; Va2 € M, ©, € F**(Wg,,)} = @Sec(/\g* V' g).
Izp
The algebras /\Al*m and A E‘*w possess decreasing filtrations by ideals

Fp(/\ Arw) = I/\’“(A"i)’ Fp(/\ E|*a:) = I/\‘“(E";)
which determine decreasing filtrations by ideals of the algebras Q4 (M) and Qg (M)
FP(Qa(M)) ={¥ € Qu(M); Vz € M, ¥, € FP(\A],)} = SecI/\p(A,L)7
FP(Qp(M)) ={© € Qp(M); Yz € M, ©, € FP(AE[,)} = SecI/\p(E,L).
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PROPOSITION 9.5. Let (A, X') be a partially flat reqular Lie algebroid and A an adapted
connection. Then the homomorphism k : Wg — Qa(M) (defined in Part I for \) is
filtration-preserving in the sense that k[F??(Wg)] C FP(Q4(M)), p > 0. Moreover, if A
is basic, then k[F?P(Wg)] C F?P(Qa(M)), p > 0.

Proof. Of course, it is sufficient to verify that k, : Wg, — /\Arw preserves the

filtrations. Since IR®\/ pgr = (IR‘X’Q\* )P, therefore F27(Wg,) = (F2(Wg),))". On the
" =

other hand, k, is a homomorphism of algebras, thus we need only check the inclusion
k.[F?(Wg),)] C F'(A A},), whereas, in the case of a basic connection k;[F*(Wg),)] C
F2(A\ AT;)

F2(Wg.), FY(A\ Afr,) and F2(A\ Afr,) are ideals and F2(Wg,,) equals I]R®g‘*w’ so it
suffices to check that k(1 ®@ w*) € IX) gty w* € gl*m, and for a basic connection A, that

|z
(2) w* *

km(1®w)€f/\ (arty’ w* € g,

However, k. (1 ® w*) = (w*,§,), so the assertion follows from Theorem 9.4. m

COROLLARY 9.6. Let the situation be as in the previous proposition. If g=rank(E/E")
(i.e. q equals the codimension of F' with respect to F; F' and F being the foliations
determined by E and E’, respectively), then

E[F??(Wg)| =0 for p>q+ 1.
If X\ is, in addition, basic, then
K[F*(Wg)] =0 for p>[5]+1.

Proof. Clearly, ¢ = rank(A/A’) = dim(A@) for each x € M, which gives /\p(ATjE-) =
for p > ¢+ 1 and, in consequence, FP(Q2(A4)) = 0 for p > ¢ + 1; then Proposition

9.5 implies k[F?’(Wg)] = 0 for such p. Under the additional assumption concerning A,
[FQP(WQ)] =0for2p>q+1,ie. forp>[ J+1. =

The filtration of Wg in the intersection with the subalgebra P, Sec(\/' g*) o gives
a filtration of the latter with
FQP(@SeC\/g Io): (@Sec\/g ) NF?*Wg) = @Sec\/g
1>0 I1>p
Notice also, see Corollary 9.3 and [K7, s. 2], that the isomorphism 7, : Qg (M) — Q4 (M)
preserves the filtration. As a corollary we obtain the so-called ” Vanishing Bott’s Phe-
nomenon” [K6] for regular Lie algebroids.

10. The truncated Weil algebra

DEFINITION 10.1. By the symmetric truncated algebra over a vector space g we shall
mean the space \/Sl g* with the canonical even gradation, and with the structure of an
(anti)commutative graded algebra such that

(uiv...\/uz).(viv.“\/v:):{u{\/...\/u;\/v{\/...\/vzwhen k+s<l

0 when k& + s > [.
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This algebra can be constructed isomorphically as a quotient algebra (\/ g*)/ I\/>z, o of

I+1

the symmetric algebra \/ g* by the ideal generated by \/""" g*. The mapping

VE'g = (Ve Dy o ),

establishes the canonical isomorphism of algebras. The canonical projection m; : \/ g* —
\/Sl g* is, of course, a homomorphism of algebras.

Denote by
(We) = Ag"®V='g"

the anticommutative graded tensor product of the anticommutative graded algebras. It
is called the truncated Weil algebra of the vector space g.

We return to the consideration of a regular Lie algebroid A over (M, E), with the
Atiyah sequence 0 — g < A % E — 0. Notice that, for each z € M,

(Wajo)i = (Wgj,) [F2 D (Wgy,)
(0, — [0;] establishes the canonical isomorphism) and, by the relation
dy [(Wg\:c)k723] c (Wg‘x)k-i-l,Qs D (ngx)k—1,2(3+1)7
d, defines a new differential

[de]i : (Wgpa)i = (Wgpe)i

Writing d, = df, + dJ where d,[(Wg;)"?*] C (Wg,)*"* and d)[(Wg,)"**] C
(Wg‘gc)]“_l’Z(S"’l)7 we see that

dy(py @T,) when ', € \/<lg‘*gc7

d;]; x Fﬁf =
[de]i(pe @ T's) {d;(% ®T,) when T, € \/l!]rx~

Put (Wg), := A\g* ®\/Slg*and (Wg); := Sec(Wg);. Of course,
(W) = (Wg)/F*IHD(Wg).

(Wg); will be called the truncated Weil algebra of the vector bundle g.
The family [d;];, * € M, determines an endomorphism [d]; : (Wg); — (Wg); and a
differential, denoted by the same letter,

(10.1) [d]: : Wg)r = (Wa)i.

For s < I, the projection (Wg); — (Wg)s is a homomorphism of algebras commuting
with the differentials [d]; and [d]s.

Take the canonical adjoint representation ad4 of A on (Wg); and denote by (Wag); 1o
the space (in fact, a subalgebra of (Wg);) of invariant cross-sections. (Wg); o is stable
under the operator [d];. Indeed, let © be a bihomogeneous element of (Wg); jo. Then d©
is invariant, in particular, d’'© is invariant; [d];© being equal to d© or d’©, is invariant,
too.

Let A be any connection in A and let k : Wg — Q4(M) be the homomorphism of
algebras determined by A.
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PROPOSITION 10.2. Assume that k[F2(+D)(Wg)] = 0. Then

(1) there exists a homomorphism of algebras [k]; : Wg); — Qa(M) such that the
diagram

wa), —E L, )

Wg

commutes (T being the canonical projection),

(2) [K]; is equal to the restriction k|(Wg)i,

(3) k| restricted to the invariant cross-sections (Wg); o commutes with the differen-
tials [d); and d*, defining a homomorphism of algebras

[Klig - H(OVG)1, 10, [d]i) = Ha(M).

The class [k|x[©] for © € (Sec/\k g* @\’ g, s < 1, has the form = -
(O,wA...ANw®QV...VQ) as its representative.

k times s times

Proof. (1) and (2) are evident.
(3) Let © € Wg);,10 (C (Wg)s0). By Lemma 7.1

d* o [E];(©) =d? o k(©) =k od(©) = [k]; om0 d(O)
= [k]i o [d]; o 7(©) = [K]: o [d]:(©).

The last sentence is a consequence of Proposition 7.2 (see also [K7, Sec. 2]). m

@]

EXAMPLE 10.3. Assume that A is equipped with a flat partial connection X over E’ C
E (as in Prop. 9.5) and let ¢ = rank(E/E"). According to Corollary 9.6, k[F2(a+1) (Wg)]
= 0 for an adapted connection \, and k[F2(4/2+1)(Wg)] = 0 for a basic connection \.
Prop. 10.2 produces in these situations the homomorphisms of algebras [kl : (Wg)y —
Qa(M) for ¢ > q and ¢’ > [q/2], respectively, and next, the corresponding homomor-
phisms on cohomology. The homomorphism [k]gx : H((WVg)g, [dlq) = Ha(M) generalizes
the wy described in [K7, Cor. 2.3 and Rem. 1]: In the case when E’ = E, i.e. when X is
a flat connection in A, we have ¢ = 0 and [k]o = w{.

11. Characteristic homomorphism—construction. Here we construct some
characteristic homomorphism of a partially flat regular Lie algebroid, which is a gen-
eralization of the one constructed in [K7] for a flat regular Lie algebroid.

Consider, in a given regular Lie algebroid A over (M, E), two geometric structures:

(1) a partial flat connection A\’ over an involutive subdistribution E’ C E,
(2) a subalgebroid B C A over (M, E), see the following diagram:
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va'[E]
I
0 g~ A E' 0
no X
I
0 gC A—4A g 0
[
U
(11.1) 0 hC B—2 +F 0

The system (A4, B, \') is called a PFS-reqular Lie algebroid over (M, E, E").
The construction of the characteristic homomorphism of a PFS-regular Lie algebroid
has, as in the case of an FS-regular Lie algebroid [K7], a number of steps.

1) Let s:g — g/h denote, as in [K7, Sec. 3|, the canonical projection. Put, for a
positive integer I, W(g:h); := A(g/h)* © V=" g* and W(g:h); := Sec W (g;h);. W(g;h);
with the natural structure of an algebra will be called the truncated relative Weil algebra.

The representation adgg of Bon A(g/h)* described in [K7, p. 211], together with the
representation ad4 |B of B on \/Sl g* (the restriction to B of the adjoint representation
of A on \/= g"), yields the representation of B on W(g;h); denoted also - for brevity -
by ad. For an arbitrary £ € Sec B, the differential operator Laqoe : W(g;h); — W(g;h)
is a differentiation of the truncated relative Weil algebra W(g;h);, from which we obtain
that the space W(g;h); ro of invariant cross-sections is a subalgebra of W(g;h);.

The monomorphisms A s*: A(g/h)* — A g* and

As*@id : Ng/h)" ©V='g" = Ng" @ V=g
of vector bundles are invariant with respect to the representations considered of the Lie
algebroid B, which is easy to see by the definitions. As a corollary from the above we
obtain that (As* ®id') o ¥, ¥ € W(g;h);, is an invariant cross-section if and only if ¥
is invariant, and that

W(g;h); o 2V = (As™® id') oW € WI(g)i,10

is a homomorphism of algebras. On the other hand, a cross-section ¥’ of (Wg); is of the
image of some cross-section of the bundle W (g;h); if and only if ¥’ is h-horizontal (i.e.
if and only if ¢, ¥ = 0 for v € Sec h, where ¢, is the operator defined in subsection 6), so

W(g;h)i 10 = W(@)ino, ¥ (As™® idl) oV,

is an isomorphism of algebras where W(g), ;, ;o0 C W(g), jo is a subalgebra of h-invariant
elements.

2) The subspace W(g); 5,0 is stable under the differential (10.1). Indeed, for an in-
variant element U’ of W(g);, we have ¢, od(¥’) = —d o, (¥’) by Lemma 4.4 and Propo-
sition 6.1, and, in consequence, ¢, o d'(¥’) = —d’ 01, (¥’). Therefore, for a bihomoge-
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neous element ¥ € W(g)i, ¢y o [di(¥') = 1,(d¥V') = —d(:, V') = 0 or ¢, o [d];(¥') =
w(d'¥') = —d'(1,,¥') = 0, see Section 10.1. This enables us to define the differen-
tial dip : W(gih) o — W(g;h); 0o in such a way that the following diagram com-
mutes:

W(g; h)l,jo — W(g)l,h,lo

di.n [d],

)

(11.2) W(g;h), o W) 10

3) Consider any connection A : E — A in A and let the homomorphism k be con-
structed for A. Assuming k[F2(+Y(Wg)] = 0 (see Proposition 10.2) the form ¢(¥) :=
K], ((As* ®id") o ¥), ¥ € W(g;h);, is h-horizontal, which follows in an easy way from
Propositions 6.2 and 7.3. Therefore, the form j*(p(¥)) € Qp(M) is horizontal. Then
there exists a form AW € Qg (M) such that

(78):(A®) = j* ([Kli(As* @id') o ¥)).
REMARK 11.1. One can easily check that if A is a connection in B, then for ¥ €
Sec \*(g/h)" @ V' g"

0 when k>0
AT = ’
{)\*(QV\I/) when k£ =0.
4) Let ¢ =rank(E/E’) and let A be adapted to \'. Defined in the above manner, the
mapping
Aq/ : W(g;h)q/ — QE(M), U A\I/,

q > q (and ¢’ > [¢/2] in the case of a basic connection), is a homomorphism of algebras,
see Example 10.3 and the following commutative diagram.

Wigi k) = Qs (M)
= (vB)«

2 Qpi(M)

~ | g

s W) g 04(M) +——00(M)

PROPOSITION 11.2. The mapping Ay restricted to the invariant cross-sections
Ags : W(gih)y 0 — Qp(M)
commutes with the differentials dg p, and d¥.

Proof. 7 and g are homomorphisms of regular Lie algebroids; then, according to the
commutativity of j* with the differentials d* and d?, and from the last diagram and the
definition of d; j,, we notice that it is sufficient to show that [k], : W(g)y n, 10 — Qa(M)
commutes with [d],, and d*, but this follows from Proposition 10.2. m



CHARACTERISTIC HOMOMORPHISMS 155

As a corollary we obtain

THEOREM 11.3. The mapping
(11.4) Ay s HOV(Gh) g 10, dg ) = Hp(M), [0] 1 [Ag. 0],
is a correctly defined homomorphism of algebras.

5) If X is basic, then the following diagram commutes:
H(W(g7 h)q710)

Aq#
Hg(M)

Alg/a)s

H(W(gvh)[q/Q],IO)
in which the vertical arrow is a homomorphism of algebras, induced by the projection.
Ay (also Apg 4 for a basic connection) is called the characteristic homomorphism
of the PFS-regular Lie algebroid (A, B, '), its image is a subalgebra of Hg(M) called
the characteristic algebra of the PFS-regular Lie algebroid (A, B, \), and its elements
the characteristic classes of this algebroid.

12. The functoriality and other properties. Let (A;, B;, \;) be PFS-regular Lie
algebroids over (M;, E;, Ef), i =1,2.

DEFINITION 12.1. By a homomorphism H : (A1, B1,\]) — (Ag, Bz, \;) we mean a
homomorphism H : A; — Ay of regular Lie algebroids, say over f : (M1, E1) — (Ma, Es)
such that (1) f.[E] C Eb, (2) Ho X, = X, o f.|E}, (3) H[B1] C Ba.

In the sequel g;, h;, A}, E; denote the analogous objects related to A;, B; and E; as
in diagram (11) for g, h, A and E, respectively.

By the pullback of a PFS-regular Lie algebroid (A, B, ') over (M, E, E') via a map-
ping f : (M, E1,E{) — (M,E,E’), i.e. a smooth mapping f : M; — M such that
f«[E1] C E and f.[E}] C E’, we mean the PFS-regular Lie algebroid (f"A, f"B,)\)
where X' : Ef — f7A; is the pullback of X' [K2, 3.2.1] : M (v) = (v, N (fwv)), v € E.
Proposition [K2, Prop. 3.3.2] gives the flatness of X. The canonical homomorphism
pry : fAA — A is a homomorphism of PFS-regular Lie algebroids.

Let H : Ay — As be a homomorphism of regular Lie algebroids over f : (M;, Ey) —
(M3, E5). Define the pullback

H*™ : W(g2) = W(g1)
in the standard way: H*(¥)(z) = H*(V(y)), * € M, where H}* = /\H‘J;* ® \/H‘J;*
It is clear that H** is a homomorphism of algebras of bidegree (0,0).
PROPOSITION 12.2. The pullback HT* has the following properties:

(1) igwo HF* = HI* 0ty gty for v € g1z, * € My; in consequence, H™* maps
ho-horizontal elements into hi-horizontal ones.
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(2) 5o HM*(©) = H"*04§(0) for © € Sec(/\ g3), where §’s denote the differentials [K7,
(2.5)].

(8) oo H™* = H™ o ¢ where p’s denote the change of variable, see Subsec. 5.1.

(4) do H** = H* od,

(5) [dl, o H™ = H™* o [d]s, for Iy <.

(6) Laaw) o HY* = Hf* o Loq(pe) for v € Ayy; in consequence, HT* maps invariant
elements into invariant ones.

Proof. (1) Since H;* is a homomorphism and i, , is an antiderivation, it is sufficient
to check the equality for the elements of W (g f(2)) of the forms 6 ® 1 and 1 ® 6, where
0 € 9140y

e O HI*(0®1) =iy (HI*0® 1) = iy o(H*0) = (0, H (v))
= (), (o) (0) = H" 0dp() mi) (0 ®1).
i 0 Hy "(1®0) = ipo(1® H"0) = H* 0y g (o) (1 ©6).

(2) §’s are antiderivations, therefore it is sufficient to consider © € Sec g;. For x € M;

and w; € g1|z
<(5 ] H+*9)w, wo N\ U)1> = <6f(x)v H:[U)o, wl])
= ((00) f(2), Hy (wo) N H (w1)) = (H ™ 06(8))z, wo A wr).

(3) By (2) above we easily check the equality on generators 1, 0 ® 1, 1 ® O.

(4) Thanks to the previous property, it follows from the equality d o H** = H** o d
which can be checked trivially.

(5) Property (4) yields d' o Ht* = H** o d’ and then (5) follows immediately.

(6) First, we show, for © € Sec g3, that

<‘Cadu o1 (H+*@)ﬂ V1> = <I_‘r+*(£adn 0526)7 I/1>

where Ho&; =& 0 f and vy € Secg; is a cross-section for which there exists o € Secgo
fulfilling H* ovy = g0 f. For this purpose, we notice [K2] that H™ o [&1, 1] = [é2,v2] 0 f.
Thus

<‘C‘adu o&1 (H+*®)a V1> = (71 © 51) o <H+*®a V1> - <H+*®a [[fh Vl]]>

= (120&)(0,1) 0 f —(O,[&2,12]) o f = (Loqz 0,0, v2) © f

= <I{+*(‘£adh 0526)7 V1>'
Lemma 4.4 leads now to the equality
(12.1) (Ladog, (HTW),v1) = (H (Lad o, V), 1),

U € Wgs, where v, §; are as above.

The equality Ladog, (HT*¥) = HT*(Ladog, ¥) follows in an evident manner from
those for a strong homomorphism and for a canonical one. In each of these cases, this
follows from (12.1) and the observation that

e for arbitrary x € My and v € gy, there exist local cross-sections v and vz such
that v (z) = v and v1 and s fulfil the required condition H* o1y = vy 0 f.

Hence we obtain (6). m
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COROLLARY 12.3. HT* maps hy-horizontal and invariant elements into hq-horizon-
tal and invariant ones, defining, for lo > 11, a homomorphism of algebras
H™ : (W@2) 155,10 = VG1)1, by, 10
commuting with the differentials (i.e. [d];, o H™* = H* o [d],, ).
Each homomorphism H : (41, B1, \]) — (A2, B2, A;) of PFS-regular Lie algebroids
can be represented in the form of a superposition of a strong homomorphism with the

canonical one )
(A1, By, M) 5 (" Az, [ B, 3y) 23 (Az, By, Xy).
In the standard way, one can define the pullback
[H]** : W(g2, ha) = W(g1, hi)
([H]™ () (x) = A[HF]* @ \V H:(¥(z)) where [H]* : g1/h1 — g2/hs is the induced
linear homomorphism). Since the following diagram (for Iy > I;)

W(g1; hl)lhIO — Wgi)i, w10
[H]*™ [H]*™

W(gs; h2)12,10 = (W@2)i1, by, 10

commutes, we obtain by the above that [H]|™* commutes with the differentials, i.e. H*o
[d]i5.hs = [d]11 n, © [H]T* giving a homomorphism on cohomology

[H]"# - HOW(g2, ha)i, 10) = HOV(g1, ha)i, 1o0).

THEOREM 12.4 (Functoriality of Ayx). Let (A1, B1,\) and (As, Ba, A,) be PEFS-reg-
ular Lie algebroids over (My, E1, E1) and (Ma, E2, EY), respectively; put ¢;=rank(E;/E}).
Let H : (A1,B1,\]) — (A2,Ba,\,;) be a homomorphism over f : (M, E1,E]) —
(My, Es, EY). Assume that the adapted connections A1 and Mg, such that Ho Ay = Az o0 f.,
are given. Then the following diagram commutes:

A

HOW(gs; hs) max(q1,q92)# H(Eg)

max(‘h#]z),fo)

[H]* s

HW(g1; h1))g, 10 H(E1)

Ath#
Proof. From the commutativity of diagrams (11.2) and (11.3) it follows that it is
sufficient to check the same for the diagram

ko

W(g2) Q4,(M)

*

=
1
S

QAI (M)
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in which ks and k; are defined for Ay and A1, respectively. Using (a) Hfw; = H *ws
and (b) H}Qy = H*Qy (w; and Q; being the connection forms and the curvature forms
of A\;, ¢ = 1,2), one can prove the commutativity at each point € M, considering the
generators 1, 1® 6, 0® 1, 0 € gg‘ £ only. Equality (a) is evident, whereas (b) follows
from [K2, 3.2.2] and the horizontality of the curvature forms. m

THEOREM 12.5 (Independence of Ay of an adapted connection). For any PFS-
regular Lie algebroid (A, B,\') over (M, E,E'), the characteristic homomorphism 11.4
for ¢’ > rank(E/E'") is independent of the choice of an adapted connection.

Proof. Let us consider any two connections Ao, A\ : £ — A adapted to X and the
connection A\ : TR x E — TR x A in TR x A defined by

At,z) (v, w) = (v, Ao(w) - (1 =) + A (w) - 1), (v,w) € TR X Ej,.

A is adapted to the flat partial connection id x\ : TR x E/ — TR x A’. Of course, the
system (TR x A, TR x B,id x\’) is a PFS-regular Lie algebroid and A is an adapted
connection. One can prove that the connection form w : TR x A — 0 X g of X\ equals
Wity (v, w) = (0,wo(w) - (1 —t) +wi(w) - 1), (v,w) € IR x A}, where wy and w; are
the connection forms of Ag and A1, respectively. The homomorphisms F; : A — TR x A,
w +— (0;,w), i = 0,1, of regular Lie algebroids (over f; : M — R x M, =z — (i,x2)),
defined in [K7, Sec. 5], give homomorphisms F; : (A, B,\) — (TR x A, TR x B,id x\’)
of PFS-regular Lie algebroids such that F; o A\; = Ao fi, ¢ = 0,1. The principle of
functoriality (Theorem 12.4) ensures the commutativity of the diagrams

HW(0 x g,0xh)y) Aot Hrpyp(R x M)
[Fi]T# fF
H(W(g,h)y) Xis Hp(M)

i = 0,1. Since fg‘7£ = f1# (see the proof of Th. 4.3.1 from [K2]) and the superposition
AL TR« A™E A of homomorphisms of regular Lie algebroids is equal to id4, this
gives [F;]7# o [pry]T# = id (pry does not determine a PFS-homomorphism, but this is no
problem), therefore we have

Ao = Dog4 o [Fo] 7# o [pro] 7 = [ 0 Agg4 o [pro] T
= [{ 0 Dogrg o [pro] P = Argrg o [F1]7# 0 [pr] T = Ay w
DEFINITION 12.6. Let us consider two PFS-regular Lie algebroids (A, B;, \'), i = 0,1
(which differ only in subalgebroids) over (M, E, E’). By analogy with definition [K7,
Def. 5.4] we say that the characteristic homomorphisms Ajgx : HOV(g,hi) g 10) —
Hg(M), i = 0,1, ¢ > rank(E/E’), are equivalent if there exists an isomorphism of
algebras oo : HOW(g,ho)q 10) = H(W(g,h1)y 10) such that Aggy = Argu oo

THEOREM 12.7 (Homotopic independence). If By and By are homotopic (for defini-
tion, see [K7, Def. 5.1]), then Nogy and Agy are equivalent.
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Proof. By the same argument as in the proof of [K7, Prop. 5.3], we see that Agg s
and Ay 4 are related via the commutative diagram:

H(W(g,ho)q)
[Fo] "7 Aog #
HW(0 x g,0x h)y) Hg(M).

[ Argrg

H(W(g,h1)q)

It remains to show that [F;]*# is an isomorphism of algebras, i = 0,1. We do it as
in the proof of [K7, Th. 5.5]. For F; being the superposition pryoF; (in which F; is
an isomorphism), the problem reduces to the consideration of the canonical projection
pry : (fANTR x A), fAB,id xX) — (TR x A, B,id x \'), more exactly, to the investigation
of the homomorphism

pI;_* : W(O X 970 X h’)q’,lo — W(fz*(o X g)mfz*(o X h))q',lo-
After the canonical identification

FNO % g/h)" @ V=7(0 % g)") = A(£(0 x 9)/ £7(0 x h))* @ V=7 £7(0 x )",
according to f;(adp,g) = adfrp fg [K7] and the fact that f/(& T = Q*(f:T) for
any representation T (cf. [K2, 2.3.3] and the proof of [K7, Prop. 4.2]), we obtain that
fM(ad) = ad (the ad’s denote the canonical representations induced by the adjoint one),
and that pry ¥ = f*U. As in the proof of [K7, Th. 5.5], the rest follows from Theorem
20.2 below. =

13. A comparison with the tangential classes of partially flat principal bun-
dles. A PFS-regular Lie algebroid (4, B, ') over (M, E, E") determines an FS-regular
Lie algebroid (A’, B', \') over (M, E') in which A’ = v;'[E'], B’ = y5'[E’]. With these
objects we have associated some homomorphisms: Ag. : W(g,h)y 1o — Qp(M) and
JAVE: W(g,h)OJ%I — Qp/(M) (see Theorem 11.3 and [K7, Prop. 3.3]). The indices B
and B’ on I indicate the regular Lie algebroid with respect to which the invariant ele-
ments are taken. A simple relation between Ay, and A, is described by the following
diagram:

Aql*

(SecA\(g/h)") 1y~ W(g: h)g' 19 Qg(M)

(Sec/\(g/h)*)fg, x Qp (M).

REMARK 13.1. The problem of what the relation looks like on the cohomology level
will not be investigated here. We only notice that each element ¥ € (Sec A(g/h)")r



160 J. KUBARSKI

being a cycle in W(g,h), o (i.e. with respect to [d]y) is a cycle in W(g,h)o (i.e. with
respect to §); the converse is not true in general, which may be the source of the char-

acteristic classes (in Hg/(M)) measuring the concordance of X with B, which cannot be
obtained by Ag.

14. A comparison with the characteristic classes of foliated bundles. Let
there be given:

(a) a G-principal fibre bundle P = (P, 7, M, G, -),
(b) a flat partial connection in P over an involutive regular distribution F' C T'M,
(¢) a closed Lie subgroup H C G and an H-reduction P’ C P.

In other words, we are given some foliated principal bundle with a reduction, con-
sidered, for example, in [K-T2]. As usual, let g and b denote the Lie algebras of G and
H, respectively. In [K-T2], to such a bundle there corresponds a characteristic homomor-
phism Alqz# :H(g,H)y — Har(M) (denoted there by A) where ¢’ > codim F, F being
the foliation determined by F, and

/ s /

(14.1) H(g, H)y = (Ng" @ V=" g = (Ag/9)" © V=7 g1,

is the truncated relative Weil algebra constructed isomorphically as the subalgebra of
the truncated algebra A(g/h)* ® \/Sq g*, consisting only of those elements which are
invariant with respect to the representation Ad? of H induced by the restriction to H of
the adjoint representation Adg : G — GL(g). The differential dy in W(g, H)y, defined
in the standard way, comes from the differential, denoted here by dé, in the Weil algebra
Wg = ANg* ® Vg*, defined as follows: we treat g as a left Lie algebra of G (with the
bracket denoted by [-,-]%) and dQL! : Wg — Wy is an antiderivation of total degree +1 such
that dl(w* ®1) = 1@ w* +dyw* ® 1 and 1, df (1@ w*) = fw* for v € g, w* € g* (d is
the Chevalley-Eilenberg differential, whereas Hng* = —w*o adé where adﬁ () = [, p]*
u € g). In the sequel, as opposed to the left Lie algebra, the bracket in the right Lie
algebra of G will be denoted by [-,-]%; there is a relation [v, u]* = —[v, u]**, and we recall

)

once again that, for z € P, £ : g — g|, is an isomorphism of Lie algebras when g is
equipped with the right structure.

The partial connection in P determines a partial connection X in the transitive Lie
algebroid A(P), and the system obtained (A(P), A(P’),)\') is a PFS-transitive Lie al-
gebroid. In Theorem 11.3 the characteristic homomorphism Ay x : HOV(g,h)y o) —
Hir(M) is obtained (g and h being the Lie algebra bundles adjoint to A(P) and A(P'),
respectively). We compare Alqz# with Ag. For this purpose, consider the adjoint repre-

sentation Adp : P — L(g) [K2, 5.3.2] and the representation Ad}’;,g : P — L(W(g/h)y),
Adql.!,g = Ad/\/7g®\/§q/(Adp |P")8 (for AdA/7g see [?(7, Sec. 6]), induced by it. As in
[K7, Sec. 6], we notice that the differential of Ad%,g is equal to the representation

’ <q o
adi,(p,)’g = adﬁ(p/)g@\/*q (ada(pry |A(P)7 : A(P') — A(W(g/h)y). Propositions
5.5.2-3 from [K2] give a monomorphism

oy

R (Ag/0)" @V g%)1, 5 (Sec Alg/h)* @ V=7 g*)r
—+ (Sec A(g/R)* @ V=7 g")ro
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defined by the formula &(¢)(x) = Ad‘};/’g(z) (), 2 € B, ie.
R (@) = (AE " o V=T 2 h)(),
which is an isomorphism when P’ is connected.

THEOREM 14.1. RoS (see (14.1)) commutes with the differentials dy and dy p, giving
the commutative diagram

H(W (g, H)y)
Agy
(FoS)y Hap(M)
Agry

H(W(ga h)q’,IO)

Proof. The evident commutativity of the diagram

(AD @V 0 )n 1 (As/5) @ V=T g*)1,,

K K

(Sec Ag"@ V=" g )10 —=— (Sec ANg/h)* @ V=" g")1o

in which x(¢)(z) = (A2* ' ® ng’ 2 H), z € P/, and of diagram (11.2), implies
that the commutativity of & o .S with the differentials follows from the commutativity of
ke =N2"t@ Vil Wg —» W), with dé and d, which can be checked directly on

generators:
Kz © dg(w* ®1) =1k, w" + K (daw™) ® 1 =dy o k(w* @ 1).
Ly O Kz O dELl(l Rw*) =k (1® 95_1(1))11)*) =—b0,0kr,(lQW") =1,0d, 0ok (1R@wW").

Passing to the second part of our theorem we can write a diagram analogous to the
one in the proof of [K7, Th. 6.1]. Analogously, we need the equality j*(ky (wp)(0)) = po
(di)*[k]q (R (6)) where £ is the superposition W (g, H)y — W(g,h)y 10 — W(g)d', h,I°,
where wp is the connection form of an adapted connection. The equality (checked trivially
on generators when one only knows the relations wj, ow“i = Zowpys, Q‘Zo/\2 w“i = 2oQ);
w is the connection form in A(P) corresponding to wp) is equivalent to the commutativity
of the following simple diagram

Wy iz

. Ay
/\ A|x

NTZP

Wg\:c

K
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for any x € M and z € P,. In this diagram, k. is a homomorphism of algebras fulfilling
5(0) = (k(wp)(0)).. =

PART III. APPENDIX: LOCAL PROPERTIES OF REGULAR LIE
ALGEBROIDS, ELEMENTARY THEORY

The fundamental role in the elementary proofs of some structural theorems on the lo-
cal shape of regular Lie algebroids and their properties is played by a theorem concerning
global solutions of some system of differential equations.

15. Global smooth solution of some system of differential equations with
parameters. We prove (by methods of differential geometry) the existence of a global
smooth solution of a system of linear partial differential equation with parameters, whose
coefficients are smooth functions on the whole Euclidean space. The simple classical
theorem asserts only the existence and uniqueness of some C'*° solution determined locally
in some neighbourhood of an arbitrary point of the form (0, y).

Denote the canonical coordinates on R™ x R by (z!,...,2™,y',...,y"). In the proof
of the following theorem we use only the global existence of a solution of some system of
ordinary differential equations without parameters and some elementary facts concerning
the theory of foliations as for example:

(T) if (M, F) is a foliated manifold and N — M is a transversal submanifold of F such
that each leaf L of F' cuts N in at most one point, then the sum of leaves passing
through N is also a submanifold of dimension dimF+dimN.

THEOREM 15.1. Let C*° functions bf, ak, R xR" = R, r k< q, i <m, be given.
Consider the following system of linear partial differential equations with parameters:
0zF

q
%($7y):_bf(x7y)+za‘ﬁz($7y)ZT) kSQ7 ZSm7

r=1

(15.1)

satisfying the conditions of local integrability:
obk bk !
83;3 T ot —Zam bu+z%e i

k
aa’ o AP k. _u
8$€ a‘us Qrg Qi * Qs
u=1

i,s < m,r < q. Then, for every C°° mapping g : R™ — RY, there exists exactly one
globally defined C* solution z : R™ x R™ — RY of (15.1) such that 2(0,y) = g(y), y € R™.

Proof. Put M R™ x R™ x R? with coordinates (x%,y7,2*) and define C> differ-
ential 1-forms w® = dz* + Em (bF(z,y) — D20_, aF,(z,y) - 27)da’ on M. Consider the
system (wl,..., w9 dy', ..., dy") of linearly independent differential 1-forms on M. The
distribution E generated by this system of 1-forms has dimension m and is integrable:

d(dy?) =0, dw® =", ak Aw" + Zj ﬁjk A dy?, where

N I L R N
W=D audet, 7= (- Dy Zayy'z)'dx'
i=1 r=

i=1
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A C®° mapping z : R™ x R™ — RY? is a solution of (15.1) if and only if, for each point
yo € R™, the manifold Ly, (2) := {(z, y0, 2(x, y0)); * € R™} is an integral of E. We easily
check that

(*) The space Ej(,,y,.) lies on the plane 0.X Z. Moreover, for v =}, at % +>,.c %,
we have wk(v) = cF + Zz(biC — >, ak, - 2") - a?, which implies that, for v € E\(2,y,2),
if a* = 0 for all 4, then v = 0.

Let L be the leaf of the distribution F, passing through a point (xo,yo,zo). Take the
projection pry : L — R™. Since (pr;).(>_, a’- a?ci +>,.c - azr) > a 82:“ (*) above
gives that (pr;). is an isomorphism at each point, therefore pr; is a local diffeomorphism.

Since R™ is simply connected, to see that pr; is a diffeomorphism, we only have to
notice that pr; is a covering, but this is equivalent to the fulfilment of the following two
properties (see lemma 15.2 below):

— the surjectivity of this projection, and
— the lifting property for smooth paths.

To check the surjectivity, take 1 € R™ and A\ := x; — xg. Define the embedding
o :RxRI = R™ x R" x RY, o(t,z) = (x0 +t- A yo,2), and calculate: ¢*(da®) =
\edt, pfwk = d2F —G—Z(Bk 1_ak; - Z7) N dt, k< g, where DF, ¥, : R R
are defined by b¥(t) = bF(xo +t - N\ yo), @ (t) = a¥,(xo +t- X\, y0). The 1-forms @*w*
correspond to the linear nonhomogeneous system of ordinary differential equations of the
first order

2 MO N D00 X)), ks

Consider the initial condition z¥(0) = 2§. The well-known classical theorem states that
there exists a unique globally determined (on the whole space R) solution z = (z!,. .., 29)
of this system, satisfying the initial condition. As previously,

L={(t,2(1));t € R}

is a maximal integral of the one-dimensional distribution determined by the system of 1-
forms (¢*w!, ..., ¢*w?). The mapping x : R — L, t— (t,z(t)), is a global trivialization of
L. Using (*) above, we can easily prove that [L] is an integral manifold of the distribution
E. Then z; = pry(z1,v0,2(1)) = pryop o k(1) € pry[L]. To check the lifting property
for smooth paths, take a smooth path 7 = (71,...,7™) : R — R™, such that 7(0) = .
The lifting of 7 to the point (0, Y0, 20) is a smooth path 7* : R - Rm x R™ x RY such

that 7(0) = (a:o,yo,zo) (t) € Ejr+y) and pry o™ = 7 (i.e. 7% = = 7%, i < m). Since
dT (t) € Ej;«) if and only 1f w (dT (t)) = 0 and dyj(de—t(t)) = 0, we see that 7* is the
hftmg of 7 if and only if 7% = 7%, i < m, ¥ =yJ j <n, and

dr *m-{—n+k d ae . dri(t

— Zb’“ - T (). o) - T ey

r=11i=1
k < g, with the initial condition 7*¥(0) = z§. According to the above-mentioned classical
theorem, there exists exactly one globally determined (on the whole space R) solution
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(prmAntl  prmAnta) of this system, satisfying the initial condition. The path
THE) = (T )y T () gy g, TR, (1)),

t € R, is the desired lifting.

Take g : R™ — R? and a submanifold N = {(0,y,9(y));y € R"} C M. Using (*) as
above we assert that IV is a transversal of the foliation E, T(g 4, ¢(y))N N E|(0,y,9(y)) = O-
Denote by L, the leaf of E passing through (0,y,¢(y)), and define L = UyER" L, L
is, of course, a submanifold of M (see (T) above). We prove that pr = pry 5 |L : L —
R™ x R™ is a diffeomorphism. Clearly, pr is a smooth bijection (see the previous step).
Take (z0,¥0,20) € L and v € T(x07y0720)f1 such that pr,(v) = 0. The equality v = 0
is what we need to show; v is of the form v = Y, c* - %. Consider two complete
transversals T and Ty, of E' determined by the equations x = 0 and x = xo, respectively,
and a diffeomorphism ¢ : T,,, — Ty such that the points (zg,y, z) and ¢(zo, y, z) lie on
one of the leaves of F. The diffeomorphism ¢ is, of course, uniquely determined. The
vector v is tangent to Ty,. Since ¢ is of the form ¢(zg,y,2) = (0,y,¢(y, z)) for some

function @, therefore w := . (v) is of the form w =), & - %, i.e. its coordinates with

respect to the vectors aiyj are zero. On the other hand, v € T(xmymz())f/ NTwo,y0,20) L0 =
T(zo,0,20) (LN Twy) (LNTy, is equal to ¢! [N] and is a submanifold) and ¢(zo,yo, 20) =
(0,90, 9(y0)); then w € T(g,yy,(yo))N- However, N is the image of the mapping 1 : R™ —
R™ x R™ x R?, y — (0,y,9(y)), 80, W = sy, (w) for some w € Ty R™. Therefore 0 =
pr,(w) = pr, (¢sy, (@0)) = w, which implies w = 0 and, next, v = 0.

Let prg : R™ x R™ x RY — R? denote the projection onto the last factor. The mapping
z:R™ x R® — RY equal to z := pryo(pr)~! is the required solution of (15.1). m

LEMMA 15.2. A surjective local diffeomorphism w : M — N of connected manifolds
is a covering if and only if it possesses the lifting property for smooth paths.

Proof. This clearly follows from Ehresmann’s lemma in P. Molino’s version [Mo2,
p. 114]. We only need to take an arbitrary family L/, of smooth compact support vector
fields on N generating at each point x € N the entire tangent space T, N. Under the
lifting property for smooth paths, the family L. of the liftings of X € L. consists of
complete fields. m

16. Trivial regular Lie algebroids. If the anchor is equal to zero, a Lie algebroid
is called [Mal] completely intransitive. It is simply a bundle of Lie algebras (Lie algebras
Ajp and A}y, x,y € M, need not be isomorphic, although the bracket [£,7] of C* cross-
sections of A, defined pointwise: [, 7], = [£z, 1], is C°°, to0).

One of the most important constructions is the inverse-image f"A by a homo-
morphism of foliated manifolds f : (M',E') — (M,E) [K2]: f*A = E' x(;,,) A =
{(v,w) € E" x A; fu(v) =v(w)} C E'® f*A,

(XD 0 f), (V> g% mof)]
J k

= ([X,Y],ij g TG o F Y X(g") o f =D Y() -4 of)
J.k k J
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for f7, g% € QO(M'), &;,m1. € Sec A. The projection onto the first component pry : fAA =
E" x(f.4) A — E' serves as the anchor. A nonstrong homomorphism H : A" — A of
regular Lie algebroids (over f : (M', E') — (M, E)) [K2] can be defined as a superposition
AL fAA S A of some strong homomorphism H and the canonical one x = pr, . Here
are the basic properties of the inverse-image operation:

—(go HNA= fNg"A),

— if iy : {x} < M is the inclusion, then i) A = g|,.

DEFINITION 16.1. By a trivial regular lie algebroid over (M, E) we shall mean each
algebroid isomorphic to f* A for some completely intransitive Lie algebroid A.

Each C*° constant dimensional and completely integrable distribution £ on a manifold
M is a regular Lie algebroid being, of course, trivial.

EXAMPLE 16.2 (Transitive trivial Lie algebroid). Let a trivial Lie algebroid f"A
(where A is a completely intransitive Lie algebroid on a manifold N) be transitive (this
means that it is over (M,TM)). Then f is a constant mapping, say f(z) = y. Put
g: M —{y}, z— y, and let 43, : {y} — N be the inclusion. Then

frA=g" iy A) =g () =TM x g (3= g)-
Clearly, 4" (g) is the usual trivial transitive Lie algebroid [NVQ], [K2].

EXAMPLE 16.3. Consider two manifolds M and N, the projection pry : M x N — N
and a vector bundle of Lie algebras f on N considered as a completely intransitive Lie
algebroid. Of course, pry : (M x N,TM x 0) — (N,0) is a homomorphism of foliated
manifolds. We see that the inverse-image pr5 (f) is equal to (T'M x 0) @ pr3(f). Each cross-
section of pr4 (f) is a sum of cross-sections of the form (X, f-copr,) for X € Sec(TM x0),
f € Q%M x N), 0 € Secf. Therefore the structure of a Lie algebra in Secpr) (f) is
determined uniquely by demanding that

[[(Xaf *0 OprZ)v (ng : ﬂoprz)]]
= ([X,Y],f-g-[§n] opra +X(g) - nopry =Y (f) - & opry).

17. A regular Lie algebroid over (R? xR?, TR? x0) possesses a flat connection.
The following theorem generalizes the result of K. Mackenzie [Mal] concerning transitive
Lie algebroids (see also [A-M]).

THEOREM 17.1. Every regular Lie algebroid over (R? x R, TRP x 0) possesses a flat
connection.

Proof. Consider any regular Lie algebroid B over (RP x R, TRP x 0), let g = ker~y
where v : B — TRP x 0 is the anchor. Denote by (y',...,y?,y?*!, ... 4P*9) the canonical
coordinates on RP x R?. We prove, by induction with respect ton =1,2,...,p, that there
exist linearly independent cross-sections Y7,...,Y,, of B such that

(17.1) yoY; = [Vi.Y;] =0, ij<n.

0
oy
Of course, the cross-sections Y1, ...,Y,, fulfilling (17.1) for n = p give rise to a connec-
tion A : TR? x 0 — B defined uniquely by demanding that Ao Biyi =Y;, i < p. Clearly, \is
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flat. (17.1) is evidently valid for n = 1. Let (17.1) be valid for some m € {1,...,p—1}. We
prove that it is true for m + 1. For this purpose, take linearly independent cross-sections
X1,..., Xy, Y1,..., Y, of Bsuch that X;,..., X, form a basis of g and Y7, ...,Y,, fulfil
(17.1) for n = m. Let Y be an arbitrary cross-section of B for which yoY = %.
We shall find C° functions 21,29 € QORP x RY) such that [Y;, Yyq1] = 0, i < m,
where Yi,41 = Y ¢_, 2" - X; + Y. To this end, put [V;, Y] = ZZ’:l b Xy, i < m, and
[(X:, X;] = Zz;l aij-Xk7 i,j < ¢'. Then the equations [Y;, Yin4+1] = 0,4 < m, are all equiv-
alent to the following system of differential equations with parameters y™*1, ..., yP+9:

2k ;
a—yi(~~~;y’Lv"'amerla"'vprrq)

q
:_bf("'ayzv"'amerla"'vprrq)+Zafi("'7ylv"'aym+1;~"ayp+q)'er

k < ¢ and i < m. A system like this is always uniquely integrable. The following
conditions of local integrability hold by the Jacobi identities: [[Ys, Y], Yi] + cycl = 0 and
X, Ys],Yi] + cyel = 0. According to Theorem 15.1, the system has a global solution
(z4,...,27) € QO(R? x R?,RY) fulfilling an arbitrary initial condition To prove our
lemma, take the system (Y7,...,Y.,, Yi41) where Y41 = Zz 1 2 X;+Y. nm

18. A regular Lie algebroid over (R? x R?, TR? x 0) is trivial. Let B be any
regular Lie algebroid over (RP x R4, TRP x 0). We begin with the following lemma.

LEMMA 18.1 (cf. [A-M]). Let Y1,...,Y, be cross-sections of B satisfying conditions
(17.1) for n =p. Then there exists a basis (X1,...,Xy) of g such that

(18.1) VLX) =0, i<p, j<d.

Proof. The vector bundle g being over RP x R? is trivial, therefore it possesses a global
basis (X1,...,Xy) of cross-sections. We find C*° functions Ii < q', such that

(19) det[f] ()] # 0 for all z € RP x RY,

(2°) the cross-sections X; = > fr - X, satisfy (18.1) above.

Condition (2°) 1§ equivalent to. a?/i (f]’.“) +2, 1 af, =0,i<p, k,j<q, where a¥,
are defined by [Y;, X,] =", ak. - Xj.. Consider the following system of partial differential

equations (with parameters (yP*1, ... yPT9))
92~ ' 1 ’ k i 1
(18.2) oy (oo yPTE P = —Zar’i(...,yz,...,y”"' s yP D) 2T
r=1

k < ¢, 1 < p. The conditions of its local integrability are equivalent to the true equality
[X,, [Y:, Ys]] = 0. Consider ¢’ initial conditions of the form
(18.3)

270 ,y)z&f, k=1,...,¢, yeRY,
indexed by j =1,...,¢". Let fjl, ceey qu, be the solution of (18.2) defined on RP x RY and

satisfying condition (18.3) (the existence is obtained by Th. 15.1). It remains to show
condition (1°) above. Assume to the contrary that, at some point (zg,y0) € RP x RY,
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det[f] (z0,y0)] = 0. This means that the vectors [fjl(xo,yo), .. .,qul(aco,yo)], j < ¢, are
linearly dependent. Changing, if necessary, the num’pering of the initial cond%tions, we
may assume that [ff(ffo,yo)a~~~aff (xo,yoﬂ = ?:2 c7 - [fjl(xo,yo)a~~~aqu (fﬂoayo)]
Fix in equations (18.2) the parameters (y?*!,...,y?T9) by setting them equal to yo. In
the equations thus obtained (without parameters) consider the initial condition 2*(zg) =

;1.,:2 I - ff(mo,yo), k < ¢'. Tt is clearly fulfilled by the solution (fi(-,v0),--, ff/(-, Y0))

and, simultaneously, by the family g* = ?/:2 . fJ’»“(-, Yo), k < ¢, which is also a solution
of the system of differential equations obtained. By the uniqueness of solutions of this sys-
tem, fF(-,y0) = g* for k < ¢. In particular, we have fF(0,y0) = ¢*(0), which means that
the vector [f1(0,40), .., ffl (0,y0)] is a linear combination of [fjl(O,yo), e f;’l (0,90)],
2 < 7 < ¢/, which is not possible. m

THEOREM 18.2. Every reqular Lie algebroid B over (RP x R?, TRP x 0) is trivial.

Proof. Assume that the cross-sections (Xi,...,Xq,Y1,...,Y,) satisfy conditions
(17.1) and (18.1). Then the structure functions ¢f; such that [X;, X;] = 3, cfj - Xp
are constant on plaques of the foliation TRP x 0, i.e. on the submanifolds RP x {x}. In-
deed, 0 = Y5, [X;, X;]] +cycl =", %(cfj) - X). The mapping A : TRP x 0 — B given
by Ao a%i =Y; is a flat connection. Take the embedding ¢ : R? — R? x R, y — (0,y),
and put f = ¢*g. The system (Xi,..., Xy ) of cross-sections given by X;(y) = X;(0,y)
serves as a basis of §. Consider the projection pr, : RP x R? — R? and an isomorphism
of vector bundles ¢ : pr3(f) — g such that ¢, ,)(>; a’ - Xi(y)) = 3, a’ - X;(z,y). Next,
we shall treat § as a completely nontransitive Lie algebroid over R?. Using Ex. 16.3 we
can easily prove that the isomorphism of vector bundles

Fpry(f) = (TR? x 0) & pr(f) = B, (v,w0) = A(v) + ¢ (w),
is an isomorphism of regular Lie algebroids. m
As a simple corollary we obtain the well known fact

COROLLARY 18.3. Any transitive Lie algebroid over R™ is isomorphic to the trivial
Lie algebroid TR™ x g for some Lie algebra g.

Using a distinguished chart U % R? x RY of a given regular foliation E on a manifold
M with ¢ 1[RP x {*}] as plaques we obtain as a corollary that for any regular Lie
algebroid A on M and any point x € M there exists a neighbourhood U of x such that
A restricted to U (i.e. i A where i : U — M is the inclusion) is trivial.

19. Representations of the trivial transitive Lie algebroid on R™ on a vector
bundle. The main results of this section easily follow from a more general Theorem
IV.1.19 by K. Mackenzie [Mal]. We give here an elementary proof using Th. 15.1.

With a real vector bundle § over M there is associated a transitive Lie algebroid
A(f) over M [Mal], [K2], whose fibre over x € M consists of all f-vectors at z, i.e.
linear homomorphisms [ : Secf — f), for which there exists a vector u € T, M such
that I(f -v) = f(z) - l(v) + u(f) - v(z), f € Q°(M) and v € Secf. The vector u is
determined by [ uniquely and serves as its anchor. A local trivialization of A(f) gives the
mapping ¢ : TU x End(V) — A(f)jo (V is the typical fibre of f) defined for a given local
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trivialization v : U x V' — fjy of § by the formula ¥ (v,a)(v) = ¥, (v(vy) + a(vy(z)))
where, for v € Secf, vy : U = V is a function z — 1l)|;1(Vx) [K2, Lemma 5.4.4]. A cross-
section { € Sec A(f) determines a covariant differential operator L¢ : Sec(f) — Sec(f)
by the formula L¢(v)(z) = & (v). The correspondence § — Lg¢ is 1-1. The bracket [-, ]
is defined classically (from the point of view of differential operators). The Lie algebra
bundle adjoint of A(f) can be identified with the vector bundle End(f). Lemma 5.4.4
from [K2] mentioned above asserts also that 1 is an isomorphism of Lie algebroids. In
particular, taking 1 = idgnxy, we find that the Lie algebroid A(R™ x V') of the trivial
vector bundle f = R™ x V is isomorphic to the trivial algebroid TR"™ x End(V) via
the canonical isomorphism £ : TR™ x End(V) — A(R™ x V) defined by the formula:
Liz(v,a)(v) = v(v) + a(v,). Denote by Lx ) the differential operator determined by
the cross-section £ o (X, o) of A(R" x V), where X € X(R") and o € Q°(R", End(V)).
Clearly

(19.1) Lixo): LR"x V)= QR xV), v X(v)+ o).

By a representation of a Lie algebroid A on f (both over M) we mean a strong homo-
morphism T : A — A(f) of Lie algebroids [Mal]. T' induces a linear homomorphism
T+ : g —End(f) of vector bundles of Lie algebras [K2]. A cross-section v € Sec(f) is
called T'-invariant if T'(v)(v) = 0 for all v € A. The space of all T-invariant cross-sections
is denoted by (Sec(f))o(ry (or, briefly, by (Sec(f)) o).

THEOREM 19.1 (cf. [Mal]). Let T : TR™ x g — A(f) be any representation of the
trivial Lie algebroid TR™ x g on f. Then, for each Tl;r—mvam'ant vector v € f,, there
exists exactly one T-invariant cross-section v € Sec(f) (determined globally) such that
Vg = 0.

Proof. A vector bundle f over R" is trivial, therefore we may assume that f = R™ x V.
T determines a homomorphism 7 : TR"™ x g — TR" x End(V) such that Lo T =T. T
can be written in the form 7 o (X,u) = T o (X,0) + T o (0,) = (X,w(X) +T" o p)
(X € X(R"), u € Q°R",g)) for a 1-form w € QY (R"; End(V)). w and T satisfy the
following identities (cf. [Mal, p. 102]):

(19.2) —dw(X,Y) = [w(X),w(Y)],

(19.3) X(T* o) = T+ o (X (1)) + [w(X), T+ o 4] =0,

v € Sec(f) is T-invariant if and only if (a) Lro(x,0)(¥) = 0, (b) Lro(0,.)(¥) = 0. Equation
(a) is equivalent to the invariance of v with respect to the ”reduced representation”
TR™ — TR™ x g EN A(R™ x V) whereas (b) says that, for each x € R™, the vector v,
is T‘I—invariant. Condition (a) yields that 0 = L(x .(x))(¥) = X(v) + Lyx)(v), i.e. the
differential equation

(19.4) X(v) = —Lyx)(v),

called the differential equation of an invariant cross-section, is satisfied. Taking a basis

wi,...,wg of V and writing v = >, z* - w,, we can equivalently replace equation (19.4)
by the following system of partial differential equations:

0zF 1
(19.5) = —Zaf’k 27 i<n, 1 <q,
r=1

ozt
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where az’k are functions such that w(%) = Zr}k az’k CUp kg, Ur g = Wy ® Wy is a basis
of End(V) = V* @ V. It is easy to see that equation (19.2) is the condition of the
local integrability of the equation (19.5). According to Th. 15.1, the initial conditions
210) = 23,...,29(0) = z¢ (uniquely) determine a solution (z1,...,29) of (19.5) defined
on the whole R™. It remains to solve the following problem: if the vector v(0) = Y, 2§ - w;
is (T‘Jg : g — End(V))-invariant, then, for each € R", the vector v(z) = >, z%(z) - w; is
T‘l'—invariant. The invariance of v(x) means that ,CT‘-:(h)(I/w) =0 for all h € g. Therefore

it is sufficient to show that the function Ly . (v) is identically zero, where h : R® — g
is the constant function h(z) = h. Put 8 = Ly +,;(v) and assume that 5(0) = 0. Using
(19.3) and (19.4), we obtain a linear first order differential equation X (8) = L_,(x)(8)
for X € X(R"), fulfilled by the function identically equal to zero. On account of the
uniqueness of solutions, we have § = 0, which ends the proof. m

As a corollary we obtain

COROLLARY 19.2. For an arbitrary representation T : A — A(f) of a transitive Lie
algebroid A on f, each invariant cross-section of f (defined locally on a connected subset)
is uniquely determined by the value at one point. In particular, if such a cross-section is
zero at one point, then it is zero globally.

20. Invariant cross-sections over R x M. Using the previous theorems, we prove
that the space of global cross-sections of a vector bundle f over R x M, invariant with
respect to a representation of a regular Lie algebroid B over (Rx M, TR x E), is canonically
isomorphic to the space of cross-sections of the vector bundle fif,}x s, invariant with
respect to a suitable "restricted” representation. First, we recall the inverse-image of a
representation [K2]. Let A be any regular Lie algebroid over (M, E) and § any vector
bundle on M, whereas f : (M', E’') — (M, E) any morphism of foliated manifolds. By
the inverse-image of a representation T : A — A(f) over f we mean the representation
T fAA — A(f*f) defined as the superposition f*T : f*A r FMNAR) S A
where (a) f T is a homomorphism of Lie algebroids defined by: f T (u,v) = (u,T(v)),
u€ E',veA(fiu=v), (b) ¢ is the canonical strong isomorphism of Lie algebroids
such that, for (u,1) € f*(A(f))s, w := ¢;(u, 1) has u as its anchor and satisfies the relation:
w(v o f) = I(v) for v € Sec(f). Obviously, c;r appears as the canonical isomorphism of
vector bundles f*(End(f)) = End(f*f), and, furthermore, we can write (f*T)‘J; = T|J}(z)
for x € M’. We can write f*(¢*T) = (g o f)*T, see Section 16.

According to [K2, Ch. 2], the linear mapping f* : Secf — Sec f*f, v+ v o f, can be
restricted to the space of cross-sections invariant under 7" and f*T, respectively:

f;O : (Sec f)IO(T) — (Sec f*f)lo(f*T)'
LEMMA 20.1. If the saturation of f[M'] with leaves of E equals M, then f}, is a
monomorphism.

Proof. Assume that f},(v) = 0 for an invariant cross-section v. This means that
Vizy = 0 for all z € M'. Take x9p € M’ and let ¢ : L < M be the leaf of E passing
through f(x¢), v|L is invariant with respect to *T : A — A(¢*f). Since (" A is transitive
Cor. 19.2 yields v|L = 0. Saturation of f[M’] with leaves of E implies the equality v = 0. =
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We prove that the space of global cross-sections of a vector bundle § over R x M
invariant with respect to the representation 7' : B — A(f) of a regular Lie algebroid
B over (R x M, TR x E) is canonically isomorphic to the space of cross-sections of the
vector bundle f|(4,}x s, invariant with respect to a suitable “restricted” representation.
The following theorem plays a crucial role in all problems of the homotopy independence
of the characteristic homomorphisms considered on the category of Lie algebroids.

THEOREM 20.2 (on invariant cross-sections over R x M). Let B be a regular Lie al-
gebroid over the foliated manifold (R x M, TR x E) and § a vector bundle over R x M,
and T : A — A(f) a given representation. Take t € R and the mapping fir : M — R x M,
x + (t,x). Then the restriction mapping fi : Secf — Secfiyxnr (fi{eyxm = f{f) maps
isomorphically the space of invariant cross-sections with respect to T" onto the space of
invariant cross-sections with respect to the restricted representation f;1T :

(ft*)IO : (Sec f)IO(T) :> (Secf‘{t}xM)IO(ft*T).

Proof. Thanks to the Lemma above it remains to show that (f;);o is an epimorphism.
Let o € Sec(f|{¢}xn) be an invariant cross-section. Then, for each x € M, the vector
o(x) € fi(¢,0) is invariant with respect to the representation T‘J(rtm) D G)(te) — End(fi(t,0))-
Consider the embedding f, : R — R x M, t — (t,x). Since Im(f,) = R x {«} is contained
in some leaf of TR x E, therefore (f,)"(B) is a transitive and, by Cor. 18.3, trivial Lie
algebroid. Th. 19.1 (also Th. IV.1.19 of [Mal, p.195]) yields that the vector o(x) can be
uniquely extended to some C'* cross-section o, of the vector bundle (f2)*(f) = firx{a},
invariant with respect to the representation (f;)*T : (fz)"(B) = A(fjrx{2})- The family
{0z : ¥ € M} determines a global cross-section o' : R x M — § by the formula: o' (t,z) =
o (t). It is evident that (f;)*(c!) = 0. To end the proof, all we need is to show (a) the
smoothness of ¢!, (b) the T-invariance of o'. First, we check (a). For this purpose, take
xg € M and a simple distinguished open neighbourhood U C M of zy [the domain of
some distinguished chart of the foliation E]. The foliation E;; has a global connected
transversal manifold, say IV, and its leaves are diffeomorphic to a Euclidean space. Then
N’ := {t} x N is a transversal manifold of the distribution TR x E. The cross-section

o0 : N' = finr, (t,2) = o(x),
is C* and invariant with respect to the representation j*T, j : N < M’ :=R x U C
R x M being the inclusion, moreover, o’ := o!| M’ is some extension of 7.

Let B’ := Bjyy. B’ is a regular Lie algebroid over (R x U, TR x (E|;)). Leaves of the
foliation TR x (E|7) are of the form R x L where L is a leaf of ;. They are diffeomorphic
to a Euclidean space and proper; N’ is a global transversal manifold of TR x (Ej;;) which
cuts each leaf in exactly one point. Therefore, it is obvious that, without loss of generality,
we may assume that

— M’ =RP x RY,

— B’ is over (RP x R?, TRP x 0).

In the context considered above, p is equal to the dimension of the foliation TR x E
and ¢ = dim N’. By the proof of Th. 17.1, we obtain the existence of global cross-

sections Y1, ...,Y, € Sec B’ such that yoY; = a?/i and [Y;,Y;] =0, 4,5 < p. Moreover,
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in the remainder of the proof of our theorem, we can assume that N’ = {0} x RY,
f=(RP x R?) x V and A(f) = T(R? x R?) x End(V'). In this context, a C* cross-section
00 : {0} X R? = fi0yxra such that g¢(0,y) is invariant with respect to the representation
:T\-(‘_O,y) : g)(0,y) — End(V) is given, and we know that there exists a cross-section ¢’ :
R? x R?—§ (whose smoothness we are proving) extending oy and such that o' |RP x {yo} is,
for each y° € RY, of class C™ and invariant with respect to the representation Tire x {40}
of the transitive Lie algebroid B"Rpx{yo} on firexyoy (the restriction ... |RP x {y°} is
understood as the inverse-image over the suitable inclusion).

Let ToY; = (22, ¢) for some ¢ : R? x RY — End(V), i < p. The fact that T is a

Dyt
representation gives the equality: 0 = T'[Y;, Y;] = (0, g;{ - g;j + (¢, ¢4]), ie.
oc;  Ocj . .
(201) [Ciacj] = ay; - asz’ 0] <D
Let w, ..., w, be a basis of V; write ¢;(z)(ws) = >_1_; ¥ () wi, z € RP xRY. It follows
immediately that (20.1) is equivalent to the following conditions:
ack. ack - - )
(202) ay:z - ayrf = Z Cﬁi : CZS - Z C;L"Ls : Cﬁiﬂ 1,8 < p, k,?“ <n.
u=1 u=1

The invariance of a cross-section 7 € Secf = Q°(R? x R, V) with respect to the repre-
sentation T : B — T(RP x R?) x End(V) means that Lrox(7) = 0 for all X € Sec(B'),
in particular, that Lpoy,(7) = 0, i < p. The last condition says that 51} + ¢i(1) =0,
i < p, or, equivalently,

or* L
(20.3) 8—yi_—;cﬂ
System (20.3) of differential equations is of the first order in the parameters (y?*!,...).
It is easy to notice that (20.2) forms conditions of the local integrability of (20.3). From
Th. 15.1 it follows that there exists exactly one (globally defined) C*° cross-section & :
R? x R? — § which is a solution of (20.3) and satisfies the given initial condition &(0,y) =
00(0,y), y € R%. Of course, & = ¢’, which confirms the smoothness of ¢’. Finally, we see
that (b) now follows trivially. m
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