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Abstract. The subject of this paper is the notion of the connection in a foliated groupoid
(briefly, F-groupoid) and the construction of the Chern-Weil homomorphism of an F-groupoid.
The author shows its independence of the choice of the connection.

1. Introduction. Relations between differential groupoids, their algebroids and prin-
cipal bundles have pushed many mathematicians to work over such notions as connection
or Chern-Weil homomorphism. There appeared many new sources of Lie groupoids and
Lie algebroids. They are, first of all, vector bundles, Poisson manifolds, transversally com-
plete foliations. At the same time, foliations are a rich source of non-transitive groupoids,
in which the space is not a manifold, in general. Examples of such groupoids are the
so-called Pradines-type groupoids. The author of this paper inspired by [K1] defined the
notion of a foliated groupoid (briefly, F-groupoid) over a foliation with singularities in
the sense of P. Stefan [ST1], [ST2] (see also [K4]).

Examples of F-groupoids are Pradines-type groupoids [K2] and the groupoid con-
structed as follows: for any fixed Lie groupoid (¥,a, S, M, ) and any foliation with
singularities in the sense of Stefan E C TM, we put ® := (a, 3)"![R] where R is an
equivalence relation determined by the foliation E.

Let (A, ], ],v) be a Lie algebroid on a differential manifold M.

If ~ is of a constant rank, then Im~ is a foliation without singularities and the Lie
algebroid is called regular. In the opposite case, Im~y is a foliation with singularities in
the sense of Stefan and the algebroid is called nonregular. In the present paper the author
builds the theory of connections in such algebroids.
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For a regular Lie algebroid A over the manifold M, by a connection we mean a
splitting A of the short exact Atiyah sequence 0 — kery < A - I'm~y — 0. For any
transitive Lie algebroid A over the manifold M for which the short exact Atiyah sequence
is 0 — kery — A TM — 0 and for any Stefan’s foliation E C T'M, the inverse image
A" = y7Y(E) of the foliation E by the mapping v is a nonregular algebroid. A’ is not
a vector bundle! But this algebroid possesses a connection which is a restriction of any
connection in A. Moreover, if the foliation E does not have a constant rank and A is a
vector bundle, then a splitting of the short exact Atiyah sequence does not exist. So the
connections in the algebroids over Stefan’s foliations appear if the algebroid is built on a
more general structure than a vector bundle. It appears that the most useful is the notion
of a vector semibundle which admits the existence of fibres of different dimensions, but we
have to go beyond the category of differential manifolds, into the category of differential
spaces. The basic difficulty in the building of connections in an algebroid over the Stefan
foliation is that there does not exist a local base of the module of cross-sections of a
semibundle. We can avoid these difficulties if the algebroid comes from an F-groupoid.
The second part of this paper contains a construction of the Chern-Weil homomorphism
of the F-groupoid and the proof of its independence of the choice of the connection in
the F-groupoid.

In 1999 J. Huebschmann [H] has considered Lie-Rinehart algebras and their exten-
sions. F-algebroids determine examples of Lie-Rinehart algebras. J. Huebschmann has
constructed the Chern-Weil homomorphism for extensions of Lie-Rinehart algebras. The
precise comparison of the constructions of Chern-Weil homomorphisms will be done in
another paper of the author.

2. Differential spaces. Let € be any non-empty family of real functions defined on
the set M, and 7, the weakest topology under which all functions from € are continuous.
Let A C M. We put

CA:{B:A—HR{; AV \/(6|AOU:a|AmU)}
z€A zeUETe aEC
and
sc€ ={po(ar1(:), .y am(*)); ai,...,am € €, ¢ € C(R™); m € N}.
The family € is called a differential structure on M if €y = € and sc€ = C. The pair
(M, €) is called a (Sikorski’s) differential space [SI].

A differential space (N,®) will be called a differential subspace of a differential space
(M,€) [K2|, if N C M and, if for each point y € N there is a neighbourhood U € 79
of the point y such that Dy = Cy. If D = €y, then (N,D) will be called a proper
differential subspace of a differential space (M, €).

Let (M, €) and (N,®) be any differential spaces. The mapping f : M — N is called
smooth if go f € € for g € D.

3. The category of vector semibundles

DEFINITION 3.1. By a vector semibundle over a differential space M we mean a sys-
tem f = (f,p, M, {fiz }xenm), in which § is a differential space, p : f — M is a smooth
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mapping, f, = p~1(z) is a set equipped with the structure of a real vector space and the
following axioms are fulfilled:

1. the mappings + : f*f — §, where fxf = {(u,v) € f X f: p(u) = p(v)} and
-t R x§ — § are defined as the ordinary addition of vectors in the same vector
space fand the multiplication of vectors by a number, are smooth,

2. the differential structure €(f) of the differential space f is identical with the struc-
ture (sc(Co(f))); where

Co(f)={dop;6 € C(M)} U {5 e e¢(f); /\ d |f+ is a linear mapping}.
reM
DEFINITION 3.2. Let (f',p', M, {f.}oenr) and (F%,p% M, {§%}zen) be two semi-
bundles over the same differential space M. By a (strong) homomorphism of semibundles
1 and {2 we mean a smooth mapping S : f — 2 such that

(1) p*o S =pl,
(2) for each x € M the mapping S, : fL, — §2, is linear.

DEFINITION 3.3. By a vector subsemibundle of the vector semibundle f = (f,p, M,
{fiz }zenm) we mean a vector semibundle g = (g, p, M, {g.2}zen) such that g is a proper
differential subspace of the differential space § and the inclusion i : g < § is a smooth
homomorphism of vector semibundles.

LEMMA 3.4. Let f = (f,p, M, {fz}zen) be a vector semibundle. If g is a proper dif-
ferential subspace of f and, for each x € M, the set gNp~*(x) C . is a vector subspace of
fiz, then the system g = (9,p | 9, M, {8z }zen) s a vector semibundle over the differential
space M.

All vector semibundles, together with homomorphisms, form a category. If (M, €(M))
is a differential space, then the differential space (T'M, €(T'M)), together with the natural
projection on M forms a vector semibundle. In particular, each vector bundle § over the
differential manifold M is a vector semibundle.

DEFINITION 3.5. By a Cartesian product of vector semibundles f' = (f,pt, M!,
{fL erenn) and 2 = (52, p%, M2, {2, } 2 m2) we mean a vector semibundle

fl X fz = (fl X f27p1 X anMl X MQ) {(fl X fz)\(zl,w2)}(w1,m2)€M1><M2)7

in which f! x 2 is a Cartesian product of differential spaces with its natural differential
structure.

DEFINITION 3.6. Let g = (g,p, M, {8z }zenm) be a vector semibundle over the dif-
ferential space M and let f : N — M be a smooth mapping. By the pull-back of the
vector semibundle g by the mapping f we mean a vector semibundle f*g = (f*g, pri, N,

{iL', g|f(:c)}m€N) where

fra={(z,v) € N xg; f(x) =p(v)} CN xg.
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4. The category of groupoids in the category of differential spaces

DEFINITION 4.1. By a groupoid in the category of differential spaces over a differential
manifold M we mean a groupoid ® = (¥, «, 3, M,-), in which ® is a differential space
and the mappings «, 3,7', u, - are smooth in the category of differential spaces.

PRrROPOSITION 4.2. The Cartesian product of groupoids in the category of differential
spaces is a groupoid in the category of differential spaces.

For z € M, we define ®, := a~'(z), G, = (a,8) () = (B,) '[{x}] and the
mapping B, : ®; — Ly, h — B(h), where f/x is the equivalence class of the relation
vy <= \/)cp(ah =z, 8h = y). Of course, L, contains z. The subsets ®, and G, are
equipped with the structures of proper differential subspaces of the differential space .
For z € M, the set G, together with the action induced from the groupoid ®, forms a
group. Moreover, the multiplication and taking inverse of elements in G, are smooth (in
the sense of differential spaces).

e together with the structure of the proper differential subspace of the differential
space ®, forms a generalized Lie group [SA].

Note that the mapping - : P, x Gy — B, is a smooth right action of the generalized Lie
group G, on the differential space ®,, orbits of which are identical with fibres of smooth
mappings 3, : Y, — L,. Additionally, the mapping D}, : Ci)gh — Dop, g g-h,is a
diffeomorphism of differential spaces. The space g, := T, (ém) tangent to the generalized
Lie group G, is equipped with a natural Lie algebra structure [SA]. Put g := {J, ¢ 81 C
T®. The differential structure on the set g is induced from the differential space T'®.

LEMMA 4.3. The system (g,p, M,{@x}tzenr), in which p : g—M is the projection
defined by p~1(x) = gz, is a vector semibundle over the differential manifold M.

TP = Uhe@ Thfi)ah C T'® is a vector subsemibundle.

The module X%(®) of smooth right invariant vector fields on ® forms a module over
the ring C°°(M) with respect to the addition of vector fields and their multiplication by
functions fe X = fo - X, f € C®(M).

The set of all smooth a-fields on ®, i.e. the set of all smooth cross-sections of the
semibundle T*®, is denoted by X(®).

DEFINITION 4.4. Let ® and § be a groupoid in the category of differential spaces and
a vector semibundle, both over the same differential manifold M. By a representation
of the groupoid ® in the semibundle f we mean the smooth mapping T : @ xf — f, (
O xf={(h,v) € P xf;a(h) =pv)} C P xfis a proper differential subspace of ¢ x ),
which fulfils the following conditions:

1. poT(h,v) = B(h), for (h,v) € ® *f,

2. for any h € @, the mapping T'(h) : fiah — fign, v — T'(h,v), is a linear isomor-
phism,

3. T(g-h)=T(g)oT(h) for (g,h) € D * P,

4. T(ug) = ids, v € M.

The trivial representation of ® in f = M x R is defined by T'(h) = idg.
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DEFINITION 4.5. By the adjoint representation of the groupoid ® we mean the map-
ping Ad : ® g — g which is defined by the formula Ad(h) (Th)suan © 8z — 81y Where
i Gy — Gy, a— h-a-h~! for h € ® such that ah = 2 and Bh = y.

THEOREM 4.6. Ad is a representation of the groupoid ® in the semibundle g.

Proof. We shall show the smoothness of the mapping Ad : ® * g — g. The differential
structure of g C T'® is generated by the set {fon | g; fe €(@)}U{(df)|g; f € C(P)}.
It is enough to prove that for any f € €(®) we have

L. for|goAd € (€(®) x E(T®)g)aug,
2. (df) | go Ad € (€(®) X E(TD)y)dug-

(1) Let f € €(®) and (h,v) € @ g. Then: fon | go Ad(h,v) = f ow(Ad(h)(v)) =
f(ugn), because Ad(h)(v) € Ty, ®pn s s0 W(Ad(h)( )) = ugn. So we get (fom | g)o
Ad(hyv) = fouofopr | ®xge (€(D) X CTB)g)ou.

) (@)l 0 Ad(1.) = () | 0 AR)0) = @)(T)eren (0)) = (1) O)F) =
(Th)suen (@) (f | Gpn) = v(f | Gonomh) = v(Gan 3 @) = f(hah™")) = v(Gap 3 a) =
fopla,(h,v)), where p: ® % (® xg) — ®, (a,(h,v)) = h-a-h™! and ® * (® * g) =
{(a, (h,v)) € ®x (P xg); aa = fa = Bh}. By the smoothness of the multiplication on @,
we have fop € (€(D) X €(TP)y)psg.- Pt N=0xgand Y : N - TP, (h,v) — v. The
mapping Y is smooth, of course. Fix (hg,v9) € ® * g and find an open neighbourhood
QC ® x (B *g) of the point (Uan,, (ho, o)) and the mapping f € (€(®) X C(TP)g)puq-
such that

Fop|Qe(@s(®rg) = F| Qs (®x(@xg)).

Then, for the point (h,v) from some neighbourhood of the point (hg,v9) € P*g we have:

((df)lg) © Ad(h,v) = v(Gan 3 ar> f o p(a, (h,v)))
= o(f(+ (h,v))) = Y (h,0)(f (-, (b, ).
Now, the fact that (df) | g) o Ad € (€(®) x C(T'P)g)a+g we get from the lemma below
putting: M =P xgand N =P * (P xg). m

LEMMA 4.7. For differential spaces (M,E(M)) and (N,D(N)), a smooth mapping
Y : (N,D(N)) = (TM,C(T'M)) and a smooth function g : M x N — R, the function
N3z —Y(x)(g9(,z)) €R, belongs to D(N).

Notation. Let T be a representation of the groupoid ® in the vector semibundle f and
let o €Secf be any smooth cross-section of the semibundle f. Denote

ol @ =, he T(h™) (o0 B(h)). (4.1)

The mapping a is smooth and o7 [®,] C f, for z € M. So, ¢” induces the family of
mappings U?; Dy = iz

THEOREM 4.8. For any smooth a-field & € X“(@) on ® and for a smooth mapping
o:® — § such that o[®,] C i, the mapping £(o) : @ = §, h— &p(0 | Pon), is smooth.

Proof. To prove the smoothness of £(o), we have to show the smoothness of the
mapping § o &(o) for any function § € €(f). The differential structure of €(f) is generated
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by the set {61 0p; 1 € C®(M)}U{d1 € €(f); 1 | fi is a linear mapping}, so it is enough
to check the smoothness of § o £(o) for any § from this set.
(a) Let 6 = 61 0p for 6; € C°°(M). Then d o &(0) = 01 0po&(o) = 01 0 a, and the
function 4 o £(o) is smooth.
(b) Let 6 € €(f) be a linear mapping in each fibre f,, © € M. We define 0, =
6| @z : Py = fio. Then 60 &(0)(h) = 0(En(0ian)) = (0 | fian)(En(oian)) =
En(6 | fan © 0ian) = &(d 0 0)(h). And so, §o&(0) =&(do0g), but doo : ® — Ris
smooth as a superposition of smooth mappings. Then £(§ o) is a smooth function
on ®. =
COROLLARY 4.9. The mapping £(c) ou : M — § is a smooth cross-section of the
vector semibundle f.
DEFINITION 4.10. By a covariant differential operator (briefly CDO) in the vector

semibundle f we mean an R-linear mapping £ : Secf — Secf for which there exists a vec-
tor field X € X (M) such that £(f-0) = X(f)o+ f - £(o) for f € C°(M) and o € Secf.

The vector field X is called an anchor of the CDO £ and denoted by ¢(£). It is easy
to see that the field X is uniquely determined.
THEOREM 4.11. For ¢ € X%(®), the mapping T’(f) : Secf —Secf, o+ E(0T)ou is a
CDO with the anchor ~(§).
Proof. Since for f € C*(M) and o € Secf we have (f - o) = fo -0l it follows
that for £ € XB(®) we get
O o) =&(f o) ou= (& (foB-0T))
= (2> &0, (foB) - oy, + B(us) - &u,(07))
= (z = Y& )a(f) - 0z + f2) - T'(§)(0)2)
=)o+ f-T'(€)(0).
The mapping 7" () is R-linear, thus a CDO in the semibundle § with anchor (). m
LEMMA 4.12. The set CDO(f) of all covariant differential operators in the vector

semibundle § forms a real Lie algebra with a bracket defined by the formula [£1, £2] =
21 022 —22021.

DEFINITION 4.13. By the derivative of the representation T" : ®xf — f of the groupoid
® in the vector semibundle § we mean the mapping 7" : X%(®) — CDO(}), & — T'(€).

The mapping 7" is a C°° (M )-linear homomorphism. Moreover, 7" is a homomorphism
of Lie algebras.

Let f =M X R be a trivial bundle. Then, for any vector field X € X(M), the mapping
X :C®(M)— C=(M), f— X(f),isa CDO.

5. Algebroids of F-groupoids

DEFINITION 5.1. The distribution E C TM on the differential space (M, €(M)) is
called regular if, for any vector v € Ej, (h € M), there exists a vector field X such that
v=X(h).
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DEFINITION 5.2. The differential space (L, €(L)) is called a semimanifold if there
exists a structure ® of a manifold on L of some constant dimension, such that

1. (L,®) is a differential subspace of the differential space (L, (L)) (not proper),
2. for any locally arcwise connected topological space X and for a continuous mapping
f:X — (L,&(L)), the mapping f: X — (L,®), x> f(z), is continuous.

The manifold (L, D) is called a leaf of the semimanifold (L,&(L)). The differential
structure ® is uniquely determined.

Let (L, €(L)) be a semimanifold with the leaf (L,®). For any differential space (X, €)
with a locally arcwise connected topology and for any smooth mapping f : (X,€) —
(L,&(L)) such that f[X] C L, the mapping f : (X,&) — (L,®), x + f(z) is smooth
[K1].

The Cartesian product of semimanifolds is a semimanifold.

DEFINITION 5.3. By a foliated groupoid (F-groupoid) (see [L1], [L2]) we mean a
groupoid in the category of differential spaces (®, a, 8, M, -) in which:

FG1 for each x € M, the differential spaces ®, and L, are semimanifolds (leaves of
these spaces we will be denoted by ®, and L, respectively),

FG2 for each x € M the mappings 5, : &, — L, are submersions,

FG3 the distribution T7® = | |, . Th(Pan) C T'® has the following property: for any
h € ® and v € T} (P,p) there exists a smooth right-invariant vector field X on ®
such that X (h) = v.

COROLLARY 5.4. For the F-groupoid ®, the distribution T*® on ® and the distribu-
tion E on M of all vectors tangent to all leaves L, C M are reqular. In particular, the
family of immersed submanifolds L, is a foliation with singularities in the sense of P.

Stefan.

An important example of an F-groupoid is given by
THEOREM 5.5. The Cartesian product of F-groupoids is an F-groupoid.

PROPOSITION 5.6. If (®,«,8,M,-) is an F-groupoid, then the system (®u, Bz, Ls,
G, ) where ®,, L., G, are leaves of semimanifolds ®,, L, Gy respectively, is a principal
bundle. Moreover, for x € M, we have g, := T,, G, = ker(Bz)su, and Im(By)wu, =
T,.L, = E,. So we have the exact sequence of vector spaces 0 g, =Ty, (Ps) — Ex —0.

Due to the construction of a smooth algebroid of a smooth groupoid we build an
algebroid of an F-groupoid. We put

A@) = | Tu, 2, cT®, p:A®) =M, po)=z<=>veT,,.
xeM

On the set A(®) we introduce the differential structure €(A(®)) = (€(T'P)) a¢a)-
The differential space obtained above is a proper differential subspace of the differen-
tial space (T'®, €(T'®)). Moreover, the mapping p : A(®) — M is smooth.

PROPOSITION 5.7. The system (A(®),p, M,{A(®)z}zem) is a vector semibundle.
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Proof. The differential space (T'M, €(TM)) with the natural projection on (M, €(M))
forms a vector semibundle. Then the assertion follows from the construction of the space
A(®) and lemma 3.4. m

The following theorem establishes a relation between the module X #(®) and the set
SecA(®) of all global cross-sections of the projection p : A(®) — M.

THEOREM 5.8. If X € X*(®), then X°: M — A(®), z — X (uy), is a smooth cross-
section of the projection p. Conversely, for any smooth cross-section n: M — A(®) of p
there exists exactly one smooth right-invariant vector field ' on ® such that (7')° = 7.
Moreover, the mappings X ®(®) 3 X — X% € SecA(®) and SecA(®) > n+— n' € XE(®)
establish a canonical isomorphism of the C°° (M )-modules X '(®) and SecA(®).

Now, in the module SecA(®) we introduce some structure of a Lie algebra by the
formula [¢,n] := ([¢/,7])° for &, € SecA(®). The pair (SecA(®),[-,-]) forms an R-Lie
algebra. Moreover, the canonical isomorphism described above is an isomorphism of Lie
algebras.

Define a mapping J3, : A(®) — TM, v — PB«(v). Note that the diagram below is
commutative:

A®) LT
/| l
M=—=M
Then the mapping f, is a (strong) homomorphism of the vector semibundles A(®) and
TM.

THEOREM 5.9. Any vector field X € XT(®) is B-projective, i.e. there exists evactly
one vector field Y € X (M) with which X is B-related. It is the field Y := 3, o (X©).

Further, the field B, o €, € € SecA(®), will be briefly denoted by f.. The following
equality is true: &'(f o 8) = (B:&)(f) o B, £ € SecA(P) and f € C°°(M). The following
proposition gives an important property of the mapping Secp,.

PROPOSITION 5.10. The mapping SecBs SecA(®) — X(M), £ — B.& is a homo-

morphism of Lie algebras.

PROPOSITION 5.11. For right-invariant vector fields X,Y € XT(®) and a function
feC®M), [ X,foB-Y]=fop - [X,Y]+ (B*XO)(f)oﬁ-Y.

COROLLARY 5.12. The Lie algebra SecA(®) has the property [&, f -n] = - [&,n] +
(BE)(f) - m for &,m € SecA(®) and f € C>(M).

DEFINITION 5.13. By an F-algebroid over the differential manifold M we mean the
system
A=(AT 1, (5.1)
in which:
(1) A= (A,p,M,{A}zem) is a vector semibundle,
(2) (SecA(®),[-,]) is a Lie R-algebra,
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(3)v: A — TM is a (strong) semibundle homomorphism such that Secy : SecA(®) —
X (M) is a homomorphism of Lie algebras,

(4) for any cross-sections &, € SecA(®) and the mapping f € C°°(M), the equality
[& f-nl = F-[&n]+ (v o &)(f) -0 holds.

Clearly, (SecA(®)) forms a Lie-Rinehart algebra.

ExAMPLE 1. For any F-groupoid ® = (®,a,8,M,-) the system ((A(®),p, M),
[-,-], B«) is an F-algebroid. It is called the F-algebroid of the F-groupoid ®.

DEFINITION 5.14. Let A" = (A", [-,-]',7') and A = (4, [, ],7) be F-algebroids over
the same differential manifold M. The mapping H : A" — A is called a (strong) homo-
morphism of F-algebroids A’ and A if:

(i) H is a (strong) homomorphism of vector semibundles,

(ii) the mapping SecH : SecA’ — SecA is a homomorphism of Lie algebras.
(iii) vo H =+,

PROPOSITION 5.15. For any x € M, the pair (g, [,]) is a Lie algebra called the
isotropy algebra at the point x with the commutator defined by [v,w] = [&,n](x) for
&, n € SecA such that £(x) = v and n(x) = w, v,w € g,,. Moreover, the Lie algebra g,
is the right Lie algebra of the Lie group G.

DEFINITION 5.16. By the derivative of the representation T : ® = § — f of the F-
groupoid @ in the semibundle f we mean the C°° (M )-linear homomorphism of Lie algebras
T': XB(®) — CDO(J), which is the restriction of 7" : X#(®) — X (M) to the subalgebra
XE(®).

Of course, the following equality holds: T"(¢)(c) = £(oT) o u.

DEFINITION 5.17. By the inner representation of the F-groupoid ® we mean the
mapping Ad : ® x g — g defined by the formula Ad(h) = (Th)su, @ 8z — gy Where
x =ah,y = Bh, 7, : G = Gy, a— h-a-h™! ie. such that the following diagram
commutes Ad(h)

Jix — Oy

|

Gz — g\y

The smoothness of Ad follows from the smoothness of Ad(h).

LEMMA 5.18. Right-invariant vector fields on ® restricted to the manifold ®, generate
the module of all smooth vector fields on @,.

6. The Cartesian product of F-algebroids. Consider the Cartesian product of
differential manifolds M* x M?. We identify T{,, »,)(M*' x M?) =Ty, M* x T,,M?.

Let X = (X1, X?%),Y = (YL Y?) € X(M! x M?) be two vector fields tangent to the
Cartesian product M*' x M?2. The decomposition of the vector field [X,Y] to the part
[X,Y]! tangent to M* and the part [X,Y]? tangent to M? is given by the formulae

[Xa Y]%th) = [Xl('v'xQ)le('va)](xl) =+ X(Qxl,xg)(yl(xlv )) - Y(Q;cl,;cQ)(Xl(xlv ))7
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[X Y](ajl,wz) [Xl( .132) Yl( .732)](331) + X(Qajl,ajz)(yl(xh )) - Y(le,wz)(Xl(xh ))
where X/, €Ty, M' and X2, ) € Ty, M?.

(z1,22 (z1,22

THEOREM 6.1. Let ®,, ®y be F-groupoids which algebroids are (A(®1), [, -], (B1)+)
and (A(®2), [, ], (Bg)*), respectively. Then the F-algebroid of the Cartesian product ®1 x
Dy is (A(D1) X A(DP2), [,-], (B1)s X (B2)x),where A(®1) x A(D2) is a Cartesian product of
vector semibundles and, for any cross-sections &€ = (€1,€2), 7= (n*,n?) of the projection
p1 X p2, the commutator [-,-] = ([-,-]%, [, -]?) is given by the formulae

[6: 7y 2y = [E°Co2) 0" (s 22)] (1) + B2 (62) (01 20y (0" (21, 7))
_62*( 2) (z1,22) ( (1‘1, ))a
[6, 7172, 20y = [2 (21, 0P (@1, )] (22) + Bre (€ (@1 20) (0 (-, 22)))

_61*(77 )($1,$2) (7’2(') xQ))
This algebroid will be denoted briefly by A(®1) x A(D3).

7. Cohomology with coefficients of F-groupoids. Let ® and § be an F-groupoid
and a vector semibundle, both over the same manifold M. In the vector space A\ T} ®an ®
fiah there exists a structure of a left module over the algebra A T ®s, , defined uniquely
by the formula ¢ A (Y @ v) := (¢ AY) ® v for ¢, € AT Pqn and v € fian.

The canonical duality (-,-) : ATy ®an X ATh®Par — R uniquely determines a 2-R-
linear mapping (-,-) : (AT;®Par @ fian) X AThPar — fian by the formula (¢ @ v,v¢) =
(6, 0) @ for ¢, € NTjPqpn and v € fian.

DEFINITION 7.1. An a-form of order ¢ on ® with values in f is a mapping ¥ which
assigns a covector W(h) € A" Ty ®an @ fian to each element h € .

DEFINITION 7.2. The a-form ¥ of order ¢ on ® with values in § will be called
smooth if for any right-invariant vector fields &1, ...,&; on the F-groupoid ®, the map-

ping ®(&1,...,&4) 1 ® = f, h = (U(h),&(h) A ... A&y(h)), is smooth.

If f = M x R is a trivial linear bundle of rank 1, then ¥ will be called a (real) a-form
of order ¢ on the F-groupoid ®. The set Q%(®;§) of all smooth a-forms on ¢ with values
in the semibundle f forms a left graded €(f)-module and a left module over the algebra
0%(®) of all smooth real a-forms on P.

Let iy : ®, — ® denote an inclusion for x € M. It is a smooth mapping allowing
to pull back the a-forms ¥ € Q*(®;f). For a ¢-form ¥ € Q*9(®;f), U, = % (V) is
the g-form on ®, defined by the formula i* (¥)(h) = ¥(h) € A?T;®, ® f. Since the
right-invariant vector fields on ®, generate the whole module of smooth vector fields on
®,, then % (V) is a g-form on ®, smooth in the ordinary sense. For &1, ...,&, € XF(®),
we have

(V)& | Doy &g | Pa) = (U(&1, -5 &g)) | P
DEFINITION 7.3. Let T be a representation of the groupoid & in the semibundle f. An
a-form ¥ € Q¥(®;§) will be called T-equivariant if \,cq(D5)(Vian) =T (A1) (¥ 5n).

LEMMA 7.4. An a-form ¥ of order q on the F-groupoid ® is T-equivariant if and only
if, for any right-invariant vector fields &1, ...,&, € XB(®) the mapping (&1, ...,&,) has
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the form o for some cross-section o of the semibundle §, i.e. W (&1, ...,&,)(h) = o1 (Bh)
for h € ®.

LEMMA 7.5. A T-equivariant a-form W is smooth if and only if, for any cross-
section &9, ...,52 € SecA(®) the cross-section o : M — § defined by the formula o(z) =
<\Iluw,§(1)m AN §2I> s smooth.

The real forms equivariant with respect to the trivial representation T'(h) = idr are
usual right-invariant forms, i.e. such that D} (¢an) = ¥gn for h € ®. The set of all such

forms will be denoted by Qg (®). The vector space of all T-equivariant a-forms on ® with
values in f will be denoted by Q3(®;f).

LEMMA 7.6. The space Q3(®;§) is

1. a graded module over the ring C*° (M), with respect to the multiplication f e U :=

foB-w.

2. a module over the algebra Qg (®) of all equivariant a-forms on ®.

Now let A = (A, [-,-],7v) be an algebroid over the foliated manifold M where A is
a vector semibundle over M, and the anchor v : A — E is an epimorphism on the
regular distribution E. The mapping ¥ assigning to the point z € M the covector ¥(z) €
AT A%, @ f. will be called smooth if the mapping @ +— (J(z), &1z A ... A ge) is smooth,
where &1, ..., &, are right-invariant vector fields on the F-groupoid ®.

Denote Qaa)(M;f) == @, Qi@)( :f) where Qi((b)(M;f) consists of mappings
¥ assigning to each point z € M a covector ¥(z) € A? A%, @ f,. In particular, for
f=MxR, Qu(M) = D 5o % (M) where Q% (M) consists of the smooth mappings
9= (z—J(x) e N\TAL).

THEOREM 7.7. The mapping 0 : Q3 (®;f) — Qa@)(M;]), defined by the formula
r(¥)(z) = U(ug), © € M, is an isomorphism of C*° (M )-modules.

(a) Let X be any right-invariant vector field on the groupoid ®. There exist endomor-

phisms Z'?(’f, def, 9;?‘: of the vector space Q*(®;§) defined uniquely by the condition:
for any x € M, the diagram below commutes:

ic)"(’i7d”’f70;’f
Q%P f) ————— (95 )

- -
zwl lzw

A(Ps; fia) Py fia)
(b) These endomorphisms are defined by the global formulae:
1 (9TO) (X, ey Xg1) = U(X, X1,y Xy,
2. (0%7T0)(X1, .., Xg) = X(U(X1, ..., X)) — S0 \I/(Xl,. LXK X X ),
3. (dT0) (KXo Xy) = Ty (~1IX (UKo, XKy 0 X))
+ i (= DI (X, X5, .. Xl,...,Xj,...,Xq),
where ¥ € Q%9(®;§), and X1, ..., X, € XE(P).

X0y 40X |2y

(¢) For any representation T of the groupoid ® in the semibundle §, the subspace
Q% (®;f) is stable with respect to the above endomorphisms.



186 K. LISIECKI

(d) For € Q®(®;f), ¥ € Q(®;f) and a field X € XF(®) we have:

1T A) =T AT 4 (—1)9 AT,
2. 09T () AW) = 03T AU+ 4p AOYTD,

3. daf(wmlf) doTp AW+ (—1)%4 A d*F D,
4.1 [XY] —foolgf_zafozx )

5. 9[°;jy] =03 00T — 03T 0 0T,

6. 07T = 0% 0 d>f 4 doT o il

7.

d*f o d* fo
8. d*T oyt = 0% 0 d* .

DEFINITION 7.8. For £ € SecA(®) define the endomorphisms i?’f, dA . and 9?’f of
the space Q4 (¢)(M;§) such that the diagram below commutes

AT gAT gALS

Qa@)(M;F) SR Qa@)(M;F)
l ig/T,d™ 08 l
QF(®;§) QF.(®;§)

In the diagram above &' denotes the right-invariant vector field on the groupoid ®
generated by the cross-section £ € SecA(®P).

THEOREM 7.9. (a) The endomorphisms i?’f, d4 7, and Héﬁ have the properties:

S A) =i () AT+ (—1) 7 Ai (D),
9?’*(¢A\I/)—0§(w)my+wm“( ),
A AW) = dA () AW+ (- )qud“( ),
ZAvf :ZAvaZ'A,f 'AfOiAvf
[&,m] 13 n £

9E4,f]_9Af09Af 9Af0914f
HA’f—ZAfodAf—defozgf,
dAT o dAT =0,

8. d4T o0l =02 o dAT,

.\I.OI.QH*F\PON'.‘

(b) The above endomorphisms are defined by the global formulae:

180 (€, o €)= W(E €1, oy Egm1),

2. (00T0)(€1, oy &) = T (EN(W(E, &) — D0y UGt [€.65], &),

3. (dA’f\I/)(an--wfq): ?:1(_1)jT/(§j)(‘I'(§0a---aéjv---qu))
+Zi<j(_1)i+jq/([[€i7§j]]a"'aéiv"'7éj7"'7£Q)

(¢) In particular, for real forms and the trivial representation T in the bundle M x R
(then T'(€) = vy 0 &) we have:

1 (B80) (1,0 &g) = (Yo ) (W (s s &g)) — X0y W(En, oo, [€, 65, &0),

2. (d*)(&o, -, &) = 321(—1)}(70@)(\1/(50,...,gj,. 2&)
i CO IO, 5], s i oy € vos Eg)-
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8. Connections. Fix an F-groupoid ® over the foliated manifold (M, F) and its
algebroid (A(q))a [['a ']]a 7)

DEFINITION 8.1. By a connection in the F-groupoid ® over the foliated manifold
(M, E) we mean a regular distribution H C T*® on the differential space ®, such that:

1. (Dn)«[Hg] = Hyp, for (g,h) € ® x D,

2. Th(Pan) = g9, ® Hp, where g, = ker(Bian)«n is the vertical subspace of the space
Th(®an),

3. for any smooth vector field X € X (F), its horizontal lifting X € X (H) defined
by the conditions X (h) € T2® and ((B.an)«n) X (h) = X (Bh) is smooth.

The connection H restricted to the principal bundle @, is a connection in the usual
sense.

Take any transitive algebroid A over the manifold M, together with the short exact
Atiyah sequence 0 —kery < A % TM — 0, and take any foliation E with singularities
in the sense of P. Stefan. Define the algebroid A’ as the inverse image of the foliation
E by the mapping v, i.e. A’ = y~}(E). Since the dimensions of fibres over different
points of the distribution are different, the algebroid A’ is not regular. A’ is not a vector
bundle. The sequence 0 — kery < A’ — E — 0 has, as a splitting, the restriction of any
connection in the algebroid A. Of course, it is a connection in A’.

It is easy to see that if the foliation FE does not have a constant rank and A is not
a vector bundle, then such a splitting does not exist. We shall consider only groupoids
in which there exists a connection. Let H be a connection in the groupoid ®. Define the
mapping A : E — A(®) by the formula A(v) = (v, | Hy,) '(v) for v € E,, z € M.

THEOREM 8.2. Let H be any connection in the F-groupoid ®. The mapping A : E —
A(®) defined above has the following properties:

1. M| Eg: Eyx — A(®),, is a linear mapping,

2. for any vector field X € X(E), Ao X is a smooth cross-section of the vector semi-
bundle A(®),

3. yoA=1id.

Conversely, any mapping A\ : E — A(®) which has the above properties uniquely
determines some connection in the F-groupoid ®.

Proof. < Let A : E — A(®) be a mapping fulfilling the above three conditions of the
theorem. First, we show that A determines a regular distribution. The mapping A deter-
mines, for any h € @, the subspace Hy, C T*® = T}, @4y, such that Hy, = (Dp,)«sn[ImAgs],
so it determines some regular distribution H = J,,cq Hn C T®.

Now, we show that the distribution H fulfils conditions (1)-(3) from the definition of
a connection.

(1) Let (g,h) € ® * ®. From the definition we have Hy = (Dp)wuy, [ImAgs], then
(Dn)«[Hn] = Hgp.

(2) Note that dimg$ +dimH;, =dim(ker(Ban)«n)+dim(Dy).gq[ImAgy] =dimTy (Pon)
and glc;L N Hy, :ker(ﬁlah)*h n (Dg)*gg[Im)\gg] = . So, Th(q)ah) = g?;L ® Hy,.
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(3) Since (A o X)" is a smooth vector field, therefore, for any vector field X € X(FE),
the smoothness of its horizontal lifting follows from the above lemma.

LEMMA 8.3. Let X € X(E). Then X = (Ao X)'.
Proof. For any h € ® we have
XH(R) = ((By)en | Hy) ™ (Xa) = (Dn)sa, © ((By)su, | Huy) ™ )(Xy)
= (Dn)su, (Ao X);, ) = (Ao X)j.
= Follows from the linearity of 7,, and from the smoothness of the horizontal lifting
and the fact that the diagram below commutes
A(®) —=T°0
)\OXT xH
M—sd .
DEFINITION 8.4. The mapping A : E — A(®) defined in theorem 8.2 will be called a
connection in the algebroid A(®).
The theorem below shows an obstacle to the existence of a connection.

THEOREM 8.5. If there exists a connection in the groupoid ®, then the sequence
A(D) S—>SecE = X(E) — 0 is ezxact.
ecy

REMARK 8.6. If A(®) is a vector bundle over the manifold M and E C TM is a
foliation with singularities in the sense of P. Stefan, then the connection does not exist
in such an algebroid. This is the reason to use the notion of a semibundle to define an
F-algebroid.

DEFINITION 8.7. Let A : E — A(®) be the connection in the algebroid A(®) and
g = kery be a semibundle. By the connection form of the connection A\ we mean the
mapping w : A(®) — g uniquely defined by the conditions:

1. wlg=id,

2. kerw = ImA.

THEOREM 8.8.  (a) If X is a connection in the F-algebroid A(®), then its connection
form w fulfils the condition:

(*) for any cross-section & € SecA(®) the mapping w o & is smooth.
(b) If for the F-algebroid A(®) the sequence A(P) P SecE = X(E) — 0 is exact
ecy
then the mapping w : A(®) — g is the connection form of some connection if and
only if it fulfils the condition (*) and the equality w | g = id.

Proof. (a) Take some cross-section £ € SecA(®). Then yo& € SecE. Let £ =& + Ao
(v 0 &) where & is the horizontal part and A o (o &) is the vertical part of £. Since &; is
smooth and & = £ — A(yo A\) € Secg then w(§) = & — A(y o A) € Secg.

(b) Assume that the mapping w : A(®) — g fulfils (1) and (2). According to theorem
8.2 it is enough to construct a mapping A : E — A(®) linear on the fibres of semibundles,
right-inverse to v and such that, for any vector field X € X (FE) tangent to the foliation
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E, the field A o X is smooth. Put A(v) = (v, | kerw,)"1(v) for v € E, x € M. The
mapping A is linear on the fibres and v o A = id. Now, take some vector field X € X (E).
The smoothness of the field A o X follows from the lemma below.

LEMMA 8.9. Let A\ : E — A(®) be the mapping defined above. For any vector field
X € SecE the field Ao X is smooth if and only if the sequence A(P) S—>SecE =X(E)—0
ecy

18 exact.

Consider the mapping v : T*® — & x E, v — (7%, 8yv) where 7% : T*® — & is
the natural projection. Denote g* =kery®. From lemma 3.4 it follows that g¢ is a vector
semibundle.

DEFINITION 8.10. Let H be a connection in the F-groupoid ®. By a connection a-
form of H we mean a mapping w® : T%® — g® such that

1. w® | g* =14d,
2. kerw® = H.

LEMMA 8.11. For the given connection H its connection a-form has the property:
(Dn)sg o wiy = wigy © (Dh)sg-

THEOREM 8.12. 1. If H is a connection in the F-groupoid ®, then its connection
a-form w® fulfils the condition:

(*) for any right-invariant vector field X on ® the mapping w® o X is smooth.

2. 1If, for the F-groupoid ® the sequence A(P) P SecE = X(FE) — 0 s exact and
ecy
the mapping w® : T*® — g is such that:

(a) w*|g*=id,
(b) for any X € XB(®) the cross-section w* o X is smooth,
(¢) (Dp)sgowfy = Wigh © (Dh)+g;

then kerw® is some connection in the F-groupoid ®.

Proof. (1) Take any right-invariant vector field X on ®. There exists a unique smooth
cross-section £ € SecA(®) corresponding to it. The image (&) of this cross-section by
the anchor is a smooth cross-section of the semibundle E. Then its horizontal lifting to
the smooth vector field (v(£)) € X(H) exists. Then X = (X — (7(6))) + (y(¢)) is a
smooth decomposition into the vertical part X — (v(¢))* and the horizontal part (y(£))H.
So the mapping

w*o X =w*o (X — (v()") + ((vE)") = X — (v(&)"

is smooth.

(2) Suppose that w® : T*® — ¢g* is a mapping fulfilling conditions (a), (b), (c). The
subspace kerw® C T*® is a regular distribution on ®. It is sufficient to show that kerw®
fulfils conditions (1)-(3) from the definition of a connection 8.1. In fact, (1) follows from
the diffeomorphy of Dy, (2) is obvious and condition (3) follows from the condition (a)
of theorem 8.8. m
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PROPOSITION 8.13. Let the mappings k and & be defined as follows
kE:a*g— g%  (hov) = (Ap)su,, (v), (8.1)
a:a*g—g%  (hv) .
where Ap : Gan — Pan, a — h-a. Then:

1. the mapping k is an isomorphism on the fibres of vector semibundles over ®,

2. the diagram below commutes B .
@ y P
Biag ~— (0& g)\g — g?;]

Ad(h_l)t l (Dh)*gl
k

Qigh (a* ) \gh a
Jiah =< 9)igh «glgh

Let w® : T*® — g% be an a-form of some connection H in the F-groupoid ®. Then
the mapping @® := @ok low® : T®® — g is a smooth a-form of order 1 on ® with
values in the semibundle g.

PROPOSITION 8.14. The form @ is Ad-equivariant.

Proof. Follows from the equality (Dp,)s«g 0 kig © (o‘z‘g)_1 = kign 0 (o‘z‘gh)_1 o Ad(h™1).

COROLLARY 8.15. For any connection a-form w®, we have @5 = Ad(h™') owgy, o
(Dp1)-

DEFINITION 8.16. The form ¥ € Q*(®;§) will be called a horizontal form if for any
vertical vector field X (i.e. for any cross-section of g%), i%fll' =0.

DEFINITION 8.17. The form ¥ € Q4(M;f) will be called a horizontal form if i?’f\ll =
0 for any £ € Secg.

The horizontal forms form a vector space denoted by Q4 ;(M;§). Moreover Q4 (M)
is an algebra and Q4 ;(M;§) is a submodule of the Q4 ;(M)-module Q4(M;¥).
Let T be a fixed representation of the F-groupoid ¢ in the vector semibundle f.

DEFINITION 8.18. A form ¥ € Q%(®;f) will be called a T-basic form (or, briefly,
basic) if it is horizontal and T-equivariant.

The space of T-basic a-forms will be denoted by Q7. , (®;§) (or Qf(®) if T is trivial).

THEOREM 8.19. The space Q(®) is an algebra. Moreover, the linear isomorphism
T restricts to a linear isomorphism Tr; @ QF ,(®:f) — Qai(M;f) and the mapping
Tr,i : Q5 (®) = Qa (M) is an isomorphism of algebras.

Let w® : T*® — g® be a connection a-form in the F-groupoid ®. Define

1. the horizontal projection of vectors H® : T*® — T® by the formula H* :=
id — j% o w®,

2. the horizontal projection of differential forms HS : Q(®; f) = Q*(®;f) by the
formula Hf’f\ll(h,vl, w0y Vg) = U(h; H*1, ..., H%y),

3. the exterior covariant derivative in ® with values in the semibundle §, associated
with the connection form w®

vl . Hf"f odT.
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THEOREM 8.20. 1. The forms ¥ € ImH®" are horizontal.

2. The subspace Q3 (®;f) of equivariant a-forms with respect to a given representation
T is stable with respect to H™.

3. The operator V¥ carries equivariant forms over to T-basic forms.

4. VoFo vl =0.

DEFINITION 8.21. By the curvature a-form of the connection a-form w® in the group-
oid ® we mean the a-form Q% := V*8w® with values in g.

THEOREM 8.22. Q% is a T-basic form.

Fix a connection A : E — A(®) in the F-algebroid A(®) = (A(®),[,],y) whose
connection form is w and take some vector semibundle §f over the manifold M and a
representation T' of the F-groupoid & in f.

DEFINITION 8.23. Let w : A(®) — g be a connection form in the F-algebroid A(®).
By the horizontal projection of vectors corresponding to the connection form w we mean
the mapping H : A(®) — A(®) defined by the formula H :=id — j o w.

DEFINITION 8.24. By the horizontal projection of forms in the F-algebroid A(®) we
mean the linear mapping H:"' : Q4 (M;§) — Qa(M;§) defined by the formula

(HAT0) (501, 0y 04) = W5 Hon, oy Hoy),

where H : A(®) — A(®) is a horizontal projection in the F-algebroid A(®) corresponding
to the connection form w. If f = M x R, then the letter § will be omitted.

THEOREM 8.25. The operator HM has the following properties:

1. HM | Qai(M;§) = id,

2. ImHM = Qu,(M;),

3. HM (A W) = HM Y A HAT, for o € Qa(M) and ¥ € Q4 (M;7),
4. the diagram below commutes

a,f

08 ) = 2(@; )

HM

Qa(M;§) —— Qa(M;F)

DEFINITION 8.26. By the exterior covariant derivative in the F-algebroid A(®) with
values in the semibundle f, associated with the connection A we shall mean the linear
endomorphism VA4 := HAT o d47 If f = M x R, then the letter § will be omitted.

THEOREM 8.27. The exterior covariant derivative VA has the following properties:

1. ImVAT C Qa4(M;f),

2. VAT (Y A W) = VAY A HITO 4+ (=1)1HAY A VATE, for ¢ € Q4(M) and ¥ €
QAz(M7 f)a

3. VAT o TAd = TAd © VAT,

Our next step will be to define some endomorphism of the vector space Qg (M;¥§) of
tangential forms with the help of an exterior covariant derivative in the algebroid A(®)
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with values in the semibundle f. For this purpose, define the mappings v Qp(M;f) —
Qa(M;7) and A} : Qa(M;f) — Qg(M;§) by the formulae:

V5 (0) (301, .., vg) = O(2;7(v1), ..., V(vg)),
A;(\Il)(x, Wi,y .oy Wq) = U(x; Mwy), ..oy AM(wy))

for © € QL(M;f), Ve Q4 (M;f), z € M, v; € Ay, w; € Eg, i =1,..,q.

PROPOSITION 8.28. The mappings % and )\]f are linear homomorphisms fulfilling the
equalities: { (0 A ©) = O ANYO for 6 € Qp(M), © € Qp(M;f), and Xf (Y A ¥) =
NYAXNE fori e Qa(M), ¥ € Qa(M;F).

COROLLARY 8.29. If § is a trivial bundle, the mappings v* : Qg(M) — Qa(M) and
A Qa(M) — Qr(M) are algebra homomorphisms.

ProposITION 8.30. 1. A}O € Q4 (M) for © € Qp(M;F),

2.

the mappings 7, + Qe(M;f) — Qai(M;f), © = 70 and Aj; : Qai(M;f) —
Qr(M;f), ¥ — APV are linear isomorphisms. Moreover, the mappings 7 : Qg (M)
= QaA(M) and X : Qa(M) — Qr(M) are the isomorphisms of algebras.

DEFINITION 8.31. The only endomorphism V/ of the vector space Q2 (M;§) for which
the diagram below commutes

Qp(M; ) — = Qp(M; )

’v;‘l ”lﬁi

Qa(M; ) L2 QM5 )

will be called the partial exterior covariant derivative in the semibundle f, associated with
the connection .

PROPOSITION 8.32. The endomorphism V' has the following properties:

Cuds o o~

Vi= X, 0 VAT onr = X0 VAT ot

Vi=XodMony,

if f = M x R is a trivial bundle, then VI = d¥, so d¥ = \* o d? o v*,
VIOAO)=dPONO + (—1)10 AV'O, for 0 € QL(M), © € Qp(M;F),
(Vf(_))(X(h "'7Xq) = E?:l(_l)qvg(j (®(X07 ---7Xj,~~~7Xq>)
—|—Zi<j(—1)1+3@([Xi,Xj],...,Xi,...,Xj,...,Xq)

for Xo,..., X, € SecE, © € QL(M;¥).

COROLLARY 8.33. The endomorphism VT restricted to Secf, i.e. VI : Secf —
QL(M;¥), is defined by the formula VE((O') = (T'oXo X)(5) for o € Secf, X € SecE,
and fulfils the conditions: (a) V' is linear, (b) V;XU =f- VE(O', (c) VE(O'(f co) =
X(f) o+ f-Vio for f € C®(M), o € Secf.

COROLLARY 8.34. The endomorphism V' restricted to any leaf L of the foliation E,

i.e. the mapping VTL :Sec(fr) — QYL;fL), is the usual covariant derivative on the
mamnifold L.
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DEFINITION 8.35. The curvature form of the connection \ is the form Q := V49w €
Q2% (M;g), where w is the connection form of \.

PROPOSITION 8.36. The connection form ) has the following properties:

1. Qe Qiﬂv(M;g), which implies, in particular, HA90 = Q,
2. T44(QY) = Q, where Q% is the curvature a-form of the connection form w® in the
F-groupoid .
Proof. (1) According to theorem 8.27, ImV4T C Q4 ;(M;f) for any semibundle f.
Additionally, € is a 2-form with values in g, so € Q4,(M;g).
(2) The equalities 77 o dA = d*forp, mp o H® = HA 6 77 and the definitions of
the forms Q and Q% give: 74q(Q%) = 744(V¥Iw®) = VA9 0 7400 = VA = Q. =

COROLLARY 8.37. Q(&),&1) = —w([H 0 &, H 0 &1]) for &, & € SecA.
DEFINITION 8.38. The tangential curvature tensor of the connection A is the 2-form
O = Mg € OF(M; g)
where Q € Q2 (M;g) is the curvature form of the connection .

PROPOSITION 8.39. The tangential curvature tensor Qy, has the following properties:

1. Qb(Xh X2) = —W([[)\ o )(17 Ao )(2]])7

2. [[/\ 9 Xl, Ao XQ]] =)o [Xl, X2] — Qb(Xh XQ),

3. Q=0+ Q, =0,

4. Qp = 0 <= the Lie product of two horizontal vector fields is horizontal.

THEOREM 8.40. V¢Q, = 0.

Proof. Follows from proposition 8.32, definition 8.38, the equality A o v = H, propo-
sition 8.36(1) and theorem 8.27(3) and theorem 8.39(4). m

9. The Chern-Weil homomorphism Let f1,...,fx,f be vector semibundles over
the same differential manifold M and let I' : f; x ... X f — f be a smooth k-linear
homomorphism of semibundles.

1. For forms ¥; € Q% (d,§;), i = 1, ..., k, define the form I'¢ (¥4, ..., Ug) € Q¥9(D, §),
q= Ele g;, by the formula:
o 1
F* (\Illv ) \Ijk)(ha U1y eeey Uq) = m Z Sgna_'rlah(\:[jl(h; Vo (1) )7 ) \Ijk(ha () va(q)))a
for v; € (T*®),,. Note that T¥(Uy, ..., ¥%)z = T2)s(P1zy oo, Pr), where (')
is a standard operation on vector valued differential forms.
2. Similarly for forms ¥; € Q% (M;f;), i = 1,..., k, we define the form I'}(¥y, ..., Uy)
by the formula

1
Ff(\lfl, s U (@01, ) = m ngna-F|x(\I'1(a:; Vg (1) )5 s YE(T5 oy Vo(q))

forze M, v; € A,.
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In particular the form I'Z (0, ...,0) € QL(M;F) is defined for ©; € Q% (M;F).

Let 73 : Q*(®;f) — Qa(M;f) be the mapping given by 73(¥)(z) = ¥(ug), & € M.
Note that 73 | Q3(®;f) = 7r for any representation T of the F-groupoid ® in the
semibundle f. If f = M x R then the letter § will be omitted.

THEOREM 9.1. The homomorphisms T'2 and T'E have the following properties:

1. Ff o (Tfl X ... X Tfk)(\:[fl, ceny \I’k) = Tf(r(:(\:[fl, ceey \I’k)),

2. F*E o ()\fl X ... X )\fk)(\:[fl, ,\I/k) = )\f(rf(\lll, ,\I/k)),

3 iAWy, ., Uy)) = S8 (1)t (W YT LWy for any a-field
X and forms ¥; € Q*(®;;),

4. i?’f(I‘ﬁ‘(\Ill,...,\Ilk)) = Ei(—l)‘I1+"'+Qi—1Ff(\Ill,...,i?’f"'\lli,...,\Ilk) for any cross-
section & and forms U; € Q4 (M;T;),

5. d¥T(TY(Wy, .., U)) = > (— 1)t FaaT (W L do T, Wy,

DEFINITION 9.2. The k-linear homomorphism I : f; X ... X fi — § is called (71, ..., Tk )-
invariant (T4, ..., T)-invariant, if T is the trivial representation), if, for any h € ®, the
diagram below commutes (x = ah, y = Bh):

flII X o X fk\z é fla:
Tl(h)meTk(h)l T(h)
Ly
Fliy X oo X flay —— fiy

THEOREM 9.3. Let T' : f1 X ... X fr, = f be a (11, ..., Ti; T)-invariant homomorphism.
Then

(a) T¢(Wy, ..., Uy) € Q%(D;§) for U; € Q4(D;f), i =1,.... k,

(b) dATTA(Wy, . Wy) = S8 (D)ot A DAY, L dA T, L, ),

(c) HATTA(W,, ..., Uy) = TAHS W, HA W) for 0, € Q% (M; ),

(d) VI(TE(Oy,...,01)) = S (-1)at-taTE(@,, .., Ve, .., 0y),
for ©; € Q(M; ;).

In particular, for the trivial bundle f =V x R we have:
(e) dE(TE(Oy,...,0p)) = X (—1)at-HaaTE@Q,, ..., VIO, ..., 60y).

Let @ be a fixed F-groupoid over the foliation E and let 5.1 be its algebroid with the
adjoint vector semibundle g. Let T' : g X ... X g — R be a k-linear homomorphism. Put

1. Bor :=T2(Q°, ..., Q%) € Q*2(),
2. BAD :=T2(Q,...,Q) € Q2 (M),
3. BED :=TE(Qy, ..., %) € Q9 (M)

where €, Q, Q¢ are the curvature tensor of a given connection A in the algebroid A,
the curvature form and the connection a-form associated with the connection in the
F-groupoid ®, respectively.

By theorem 9.1(3), theorem 9.3(a), theorem 8.25, theorem 9.1(4) and proposition 8.36
we have
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PROPOSITION 9.4. If the homomorphism T is (Ad, ..., Ad)-invariant, then

1. BoT € Q%% (@),

2. BAT ¢ Qikz(M)

The space @kSec(Sk (g;R)) of all cross-sections of the set £¥(g;R) is supplied with
the canonical structure (I'y,T's) — I'y ® I'y given by

(Fl & PQ)@ = Fl\w & FQII; (91)

ie. (Fl ® Fg)m(vl,...,vk) = Fllx(vl,...,vk) ® Fgm(vl,...,vk) for 'y € Ek(g;R), I'y €
e g;R), x € M, v; € gz

LEMMA 9.5. The set @" Sec(£*(g; R)) with the structure defined above forms an as-
sociative algebra with unity.

PROPOSITION 9.6. The subspace @kSec(Ek(g;R))l(@ of all (Ad, ..., Ad)-invariant
cross-sections is a subalgebra of the algebra @ Sec(£* (g; R)).

THEOREM 9.7. The mapping 5 : @kSec(Ek(g;R)) — QY(®), T — BT, is an alge-
bra homomorphism.

COROLLARY 9.8. The mappings 54, BE, B3, BF are homomorphisms of algebras.

Denote by £F(g;R) the subspace of all symmetric k-linear homomorphisms and let
S . £F(g;R) — £F(g;R) be the symmetrization operator given by: S, (I')(vy,...,v5) =
% Yo T(Vo(1)s oy Vo)) for . € M, v; € g2, T € £E (g R) ..

The homomorphism S o I' is called a symmetric part of the homomorphism T' for
I € Sec(£k(g; R)).

Note that any k-linear homomorphism I" at any point = € M is a linear combination
of homomorphisms of the form I', = 'y, ® ... ® [y, for I'; €Sec(L(g; R)), i = 1,..., k.

PROPOSITION 9.9. The symmetric part of a homomorphism (I'1 @ ... @ T') . equals
1
S o (Fl ® ® Fk‘)lx = E Z(FU(I)II ® ® Fg(k)m)

for x € M, T'; €Sec(L*(g; R)), i =1,..., k.

PROPOSITION 9.10. The value of B%(T") depends only on the symmetric part of the
homomorphism T.

PROPOSITION 9.11. The symmetric part of the (Ad, ..., Ad)-invariant k-linear homo-
morphism is (Ad, ..., Ad)-invariant.

Proposition 9.11 implies that S oI' belongs to the domain of the homomorphism A¢,
if I is an (Ad, ..., Ad)-invariant homomorphism. Then 5¢(S oI') = B¢(I"). The space
@k(Sec(Slg (g;R))) of symmetric homomorphisms possesses its own structure of an alge-
bra with respect to the canonical symmetric product (I'1,I's) — I’y V IT'y given by

1
(D1 V) (1, .oy V) = CER] me(vau), s Vo () )20 (Vo (kg 1) 5 -+ Vor () )

for Ty €Sec(£F(g;R)), T2 €Sec(LL(g;R)), © € M and v; € g,,. Otherwise, I'; VI'y =
S (¢] (Pl ® FQ)
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LEMMA 9.12. The set @k(S’ec(Eé (g;R))) with the above structure forms an associa-
tive algebra with unity.
Moreover, by propositions 9.9 and 9.11, the subspace @k(Sec(Eé(g;R)))I@) of sym-

metric invariant homomorphisms is a subalgebra of the algebra @ (Sec(£F(g;R))).

Now, define the mappings 7, ¥4, v¥ as restrictions of the mappings 5%, g4, ¥
to the algebra @k(Sec(Ef(g;R))) and the mappings ¢, 77, 7F as restrictions of the
mappings 3%, 84, ¥ to the algebra Q}lc(Sec()Z’sC (9;R))) (@), respectively.

PRrROPOSITION 9.13. The mapping v is a homomorphism of algebras.

COROLLARY 9.14. The mappings v*, v¥ and v, 7}4, vE are homomorphisms of
algebras.

THEOREM 9.15. d¥ o vF = 0.

Theorem 9.15 implies that Im~y¥ C Z(E) C Qp(M).

DEFINITION 9.16. The Chern- Weil homomorphism of the F-groupoid & is the super-
position

k k E
ha : D (Sec(£4(g;R)))r(@) = Z(E) = He(M), T 7 (D).
The image of the mapping h, is a graded subalgebra of the tangential cohomology

algebra Hp (M) called the Pontryagin algebra [K3| of the F-groupoid ® and denoted by
Pont®. The main property of the mapping he is described by the following

THEOREM 9.17. The Chern-Weil homomorphism he is independent of the choice of
a connection.

Let us make a few assumptions common to the three lemmas below. Let & and
@’ be any two F-groupoids over the foliations F and E’ of the manifolds M and M’,
respectively. Let (A, [-,],v) and (A’,[-,-]’,7’) be their F-algebroids. Let F': ® — &' be a
smooth homomorphism of F-groupoids over the mapping f: M — M’, andlet w: A — g
and w’ : A’ — g’ be any connection forms of A and A’, respectively, such that the diagram

A
o

/

below commutes

w
g=<——
(aF)* l
g <4
The mappings dF and (dF)" are the appropriate restrictions of the mapping F, : T® —
Td'.
LEMMA 9.18. For any x € M the diagram

Qliﬂ
g\w D Ala: X Ala:

(dF)tl (dF) o % (dF),z

Q.
f(zx)
LAy

) X Ay

i
9.f(2) (z)

commutes.
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LEMMA 9.19. If Qy and ) are the curvature tensors of the curvature forms Q and

Q', then the diagram
Qb

gla? EII X E\w

(dF)f;l lf*mem

/ Q;“f("r‘) El % El
@)~ Pif@) f (2)

commutes (E =TE, E' =TF').

LEMMA 9.20. The Chern-Weil homomorphisms he and he: built with the use of the
forms w and W' give a commutative diagram

D" (Sec(£4(g's R)) 10y —2> Hp (M)

(dF)'*'l lfﬁ

D" (Sec(Lh(g;R))) 1) —2> Hi(M)

where E = TE, E' = TE' and, for T" € Sec(£¥(¢’;R)), the mapping (dF)**(I") is the
k-linear homomorphism g X ... x g — R given by

(dF) (") (@301, .oy vr) = ' (f(2); (dF) f (01), ooy (AF) f (v1)).

Proof of theorem 17. Consider the Cartesian product ® x R? of the F-groupoid ® and
the trivial groupoid R?. Theorem 5.5 implies that it is an F-groupoid over the foliation
E xR ={L xR;L € E} of the manifold M x R. In this groupoid the source and target
mappings @ and /3 are defined by a(h,z,y) = (ah,y) and B(h,x,y) = (Bh,y). The leaf
of the F-groupoid ® x R? over the point (x,t) € M x R is ®, x ({t} x R). The algebroid
of the F-groupoid ® x R? is the Cartesian product A x TR defined in theorem 6.1. The
Atiyah sequence of this algebroid has the form 0 — g x 0 — A x TR % B TR — 0.
Consider the projection ® x R? — ®. It is a homomorphism of F-groupoids which defines
a homomorphism of vector semibundles, j = 0,1,

0 gx0 AxTRZZL BEx TR — >0
N O
0 g A il E 0

Now, let wp : A — g and w; : A — g be any two connection forms in the algebroid A.
Put &,(;.¢) (v, w) := (Woiz(v) - (1 —t) +w12(v) -y, 0). This formula defines some connection
form @ : A x TR — g x {0} in the algebroid A x TR.

Consider the following homomorphisms of F-groupoids F; : ® — ® xR2, h + (h,0,0),
F, : & - ® x R%2 h + (h,1,1) over the mappings ig : M — M x R, z — (x,0),
i1: M — M xR, z— (x,1), respectively. Then we have the commutative diagrams

0 g—=2 >4 il E 0

T

0 gx0—2> AxTRZS Ex TR —=0




198 K. LISIECKI

They allow one to use the previous lemma to get the commutativity of the diagrams,
J=0,1,

hg xr2

D" (Sec(£E(g x 0;R))) r(@xrz) ——> Hpxrr(M x R)

<dF_7~>+*l iu”

D" (Sec(£(g;R))) s (9) ——>—> Hg(M)

In the next step we shall prove the equality i(u) = Zﬁ It follows from

LEMMA 9.21. Let M and N be two manifolds over the foliations with singularities E
and E’, respectively. If f,g : M — N are smooth mappings and H : M x R — N is a
homotopy between them such that, for any leaf L € E the image H(L x R) is contained
in some leaf of the foliation E', then

f*=g¢": Hg(M) — Hp:/(N),
where E =TE, E' =TE'.

Coming back to the proof of the theorem, take the homotopy H : idpyxr : M X R —
M x R joining the mappings i¢p and ;. According to lemma 9.21 we have ig = zg Now,
consider the homomorphism p; : g x {0} = g, (v,0) — v. Then p; o (dFy)* = idy and

p1o (dFy)T =idg. So
id : Sec(£F(g; R)) — Sec(£F(g x 0;R)) — Sec(£F(g; R)).
Now, we can consider the commutative diagram

heg wr2

D" (Sec(Lh(g x 0;R)))r(@xrz) — HexTr(M x R)

(dFo)+*=(dF1)+*l/ iio”ﬂl”‘/

D" (Sec(£(g;R))) s(4) ——>—> Hp(M)

which implies

he = he o (dF0)+* op] = i(ﬁ] o hgxgr2 ©P]

and

he = hae o (dFy)™ o p} = if 0 heype o pf.
Then the Chern-Weil homomorphism hg is independent of the choice of a connection. m

ExaMPLE 2. If ® is a Pradines type groupoid over the foliation without singularities
the Chern-Weil homomorphism is the same as the one defined in [K5].

EXAMPLE 3. Let ¥ = (¥, a, 3, M, -) be a Lie groupoid and let ® = (a, 3)~![R] be a
groupoid of the equivalence relation R determined by the Stefan foliation with singulari-
ties of the manifold M. Then the elements of the form ) . f;I';, where f; are the foliated
functions and T'; are Ad-invariant cross-sections of the groupoid V¥, are contained in the
domain of the homomorphism he (see also [K7)).



(L1]

(L.2]
[SA]

(SI]
[ST1]

[ST2]

CONNECTIONS IN F-GROUPOIDS 199

References

J. Huebschmann, Extension of Lie-Rinehart algebras and the Chern-Weil construction,
Contemp. Math. 227, 1999.

J. Kubarski, Smooth groupoids over foliations and their algebroids. Part I, Preprint No
1, Instytut Matematyki Politechniki Lédzkiej, 1986.

J. Kubarski, Pradines type groupoids, in: Proc. Winter School Geometry and Physics,
Srni, January 1987, Czechoslovakia.

J. Kubarski, Pontryagin algebra of a transitive Lie algebroid, in: Proc. Winter School
Geometry and Physics, Srni, January 1989, Czechoslovakia.

J. Kubarski, About Stefan’s definition of a foliation with singularities: a reduction of the
azioms, Bull. Soc. Math. France 118, (1990), 391-394.

J. Kubarski, Pradines-type groupoids over foliations; cohomology, connections and the
Chern-Weil homomorphism, Preprint No 2, Instytut Matematyki Politechniki ¥L.édzkiej,
1986.

J. The Chern-Weil homomorphism of reqular Lie algebroids Kubarski, Publ. Dep. Math.
Université de Lyon 1,

J. Kubarski, Characteristic classes of some Pradines-type groupoids and a generalization
of the Bott vanishing theorem, in: Diff. Geom. and its Appl., Proc. Conf., August 24-30,
1986, Brno, Czechoslovakia.

K. Lisiecki, Foliated groupoids, Proc. Winter School Geometry and Physics, Srni, Jan-
uary 1989, Czechoslovakia.

K. Lisiecki, Koneksje w grupoidach sfoliowanych, Ph. D. Thesis, 1996, in Polish.

W. Sasin, Infinite cartesian product of differential groups, Math. Nachr. 149 (1990),
61-70.

R. Sikorski, Abstract covariant derivative, Coll. Math. 18 (1967), 251-272.

P. Stefan, Accessibility and foliations with singularities, Bull. Amer. Math. Soc. 80
(1974), 1142-1145.

P. Stefan, Accessible sets, orbits, and foliations with singularities, Proc. London Math.
Soc. 29 (1974), 699-713.



