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Abstract. The subject of this paper is the notion of the connection in a foliated groupoid

(briefly, F-groupoid) and the construction of the Chern-Weil homomorphism of an F-groupoid.

The author shows its independence of the choice of the connection.

1. Introduction. Relations between differential groupoids, their algebroids and prin-

cipal bundles have pushed many mathematicians to work over such notions as connection

or Chern-Weil homomorphism. There appeared many new sources of Lie groupoids and

Lie algebroids. They are, first of all, vector bundles, Poisson manifolds, transversally com-

plete foliations. At the same time, foliations are a rich source of non-transitive groupoids,

in which the space is not a manifold, in general. Examples of such groupoids are the

so-called Pradines-type groupoids. The author of this paper inspired by [K1] defined the

notion of a foliated groupoid (briefly, F-groupoid) over a foliation with singularities in

the sense of P. Stefan [ST1], [ST2] (see also [K4]).

Examples of F-groupoids are Pradines-type groupoids [K2] and the groupoid con-

structed as follows: for any fixed Lie groupoid (Ψ, α, β,M, ·) and any foliation with

singularities in the sense of Stefan E ⊂ TM, we put Φ := (α, β)−1[R] where R is an

equivalence relation determined by the foliation E.

Let (A, [[·, ·]], γ) be a Lie algebroid on a differential manifold M .

If γ is of a constant rank, then Im γ is a foliation without singularities and the Lie

algebroid is called regular. In the opposite case, Im γ is a foliation with singularities in

the sense of Stefan and the algebroid is called nonregular. In the present paper the author

builds the theory of connections in such algebroids.
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For a regular Lie algebroid A over the manifold M, by a connection we mean a

splitting λ of the short exact Atiyah sequence 0 → kerγ →֒ A
γ
→ Imγ → 0. For any

transitive Lie algebroid A over the manifoldM for which the short exact Atiyah sequence

is 0 → kerγ →֒ A
γ
→ TM → 0 and for any Stefan’s foliation E ⊂ TM , the inverse image

A′ = γ−1(E) of the foliation E by the mapping γ is a nonregular algebroid. A′ is not

a vector bundle! But this algebroid possesses a connection which is a restriction of any

connection in A. Moreover, if the foliation E does not have a constant rank and A is a

vector bundle, then a splitting of the short exact Atiyah sequence does not exist. So the

connections in the algebroids over Stefan’s foliations appear if the algebroid is built on a

more general structure than a vector bundle. It appears that the most useful is the notion

of a vector semibundle which admits the existence of fibres of different dimensions, but we

have to go beyond the category of differential manifolds, into the category of differential

spaces. The basic difficulty in the building of connections in an algebroid over the Stefan

foliation is that there does not exist a local base of the module of cross-sections of a

semibundle. We can avoid these difficulties if the algebroid comes from an F-groupoid.

The second part of this paper contains a construction of the Chern-Weil homomorphism

of the F-groupoid and the proof of its independence of the choice of the connection in

the F-groupoid.

In 1999 J. Huebschmann [H] has considered Lie-Rinehart algebras and their exten-

sions. F-algebroids determine examples of Lie-Rinehart algebras. J. Huebschmann has

constructed the Chern-Weil homomorphism for extensions of Lie-Rinehart algebras. The

precise comparison of the constructions of Chern-Weil homomorphisms will be done in

another paper of the author.

2. Differential spaces. Let C be any non-empty family of real functions defined on

the setM , and τM the weakest topology under which all functions from C are continuous.

Let A ⊂M . We put

CA =
{
β : A→ R;

∧

x∈A

∨

x∈U∈τC

∨

α∈C

(β | A ∩ U = α | A ∩ U)
}

and

scC = {φ ◦ (α1(·), ..., αm(·)); α1, ..., αm ∈ C, φ ∈ C∞(Rm); m ∈ N}.

The family C is called a differential structure on M if CM = C and scC = C. The pair

(M,C) is called a (Sikorski’s) differential space [SI].

A differential space (N,D) will be called a differential subspace of a differential space

(M,C) [K2], if N ⊂ M and, if for each point y ∈ N there is a neighbourhood U ∈ τD
of the point y such that DU = CU . If D = CN , then (N,D) will be called a proper

differential subspace of a differential space (M,C).

Let (M,C) and (N,D) be any differential spaces. The mapping f : M → N is called

smooth if g ◦ f ∈ C for g ∈ D.

3. The category of vector semibundles

Definition 3.1. By a vector semibundle over a differential space M we mean a sys-

tem f = (f, p,M, {fpx}x∈M), in which f is a differential space, p : f → M is a smooth
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mapping, fpx = p−1(x) is a set equipped with the structure of a real vector space and the

following axioms are fulfilled:

1. the mappings + : f ∗ f → f, where f ∗ f = {(u, v) ∈ f × f: p(u) = p(v)} and

· : R × f → f are defined as the ordinary addition of vectors in the same vector

space fpxand the multiplication of vectors by a number, are smooth,

2. the differential structure C(f) of the differential space f is identical with the struc-

ture (sc(C0(f)))f where

C0(f) = {δ ◦ p; δ ∈ C(M)} ∪
{
δ ∈ C(f);

∧

x∈M

δ |fx is a linear mapping
}
.

Definition 3.2. Let (f1, p1,M, {f1px}x∈M ) and (f2, p2,M, {f2px}x∈M) be two semi-

bundles over the same differential spaceM . By a (strong) homomorphism of semibundles

f1 and f2 we mean a smooth mapping S : f1 → f2 such that

(1) p2 ◦ S = p1,

(2) for each x ∈M the mapping Spx : f1px → f2px is linear.

Definition 3.3. By a vector subsemibundle of the vector semibundle f = (f, p,M,

{fpx}x∈M) we mean a vector semibundle g = (g, p,M, {gpx}x∈M ) such that g is a proper

differential subspace of the differential space f and the inclusion i : g →֒ f is a smooth

homomorphism of vector semibundles.

Lemma 3.4. Let f = (f, p,M, {fpx}x∈M) be a vector semibundle. If g is a proper dif-

ferential subspace of f and, for each x ∈M, the set g∩p−1(x) ⊂ fpx is a vector subspace of

fpx, then the system g = (g, p | g,M, {gpx}x∈M) is a vector semibundle over the differential

space M .

All vector semibundles, together with homomorphisms, form a category. If (M,C(M))

is a differential space, then the differential space (TM,C(TM)), together with the natural

projection on M forms a vector semibundle. In particular, each vector bundle f over the

differential manifold M is a vector semibundle.

Definition 3.5. By a Cartesian product of vector semibundles f1 = (f1, p1,M1,

{f1
px1}x1∈M1) and f2 = (f2, p2,M2, {f2

px2}x2∈M2) we mean a vector semibundle

f1 × f2 = (f1 × f2, p1 × p2,M1 ×M2, {(f1 × f2)p(x1,x2)}(x1,x2)∈M1×M2),

in which f1 × f2 is a Cartesian product of differential spaces with its natural differential

structure.

Definition 3.6. Let g = (g, p,M, {gpx}x∈M) be a vector semibundle over the dif-

ferential space M and let f : N → M be a smooth mapping. By the pull-back of the

vector semibundle g by the mapping f we mean a vector semibundle f∗g = (f∗g, pr1, N,

{x, gpf(x)}x∈N) where

f∗g = {(x, v) ∈ N × g; f(x) = p(v)} ⊂ N × g.
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4. The category of groupoids in the category of differential spaces

Definition 4.1. By a groupoid in the category of differential spaces over a differential

manifold M we mean a groupoid Φ = (Φ, α, β,M, ·), in which Φ is a differential space

and the mappings α, β,−1 , u, · are smooth in the category of differential spaces.

Proposition 4.2. The Cartesian product of groupoids in the category of differential

spaces is a groupoid in the category of differential spaces.

For x ∈ M, we define Φ̃x := α−1(x), G̃x := (α, β)−1(x) = (βx)
−1[{x}] and the

mapping βx : Φ̃x → L̃x, h 7→ β(h), where L̃x is the equivalence class of the relation

x ≈ y ⇐⇒
∨

h∈Φ(αh = x, βh = y). Of course, L̃x contains x. The subsets Φ̃x and G̃x are

equipped with the structures of proper differential subspaces of the differential space Φ.

For x ∈ M, the set G̃x, together with the action induced from the groupoid Φ, forms a

group. Moreover, the multiplication and taking inverse of elements in G̃x are smooth (in

the sense of differential spaces).

G̃x, together with the structure of the proper differential subspace of the differential

space Φ, forms a generalized Lie group [SA].

Note that the mapping · : Φ̃x×G̃x → Φ̃x is a smooth right action of the generalized Lie

group G̃x on the differential space Φ̃x, orbits of which are identical with fibres of smooth

mappings βx : Φ̃x → L̃x. Additionally, the mapping Dh : Φ̃βh → Φ̃αh, g 7→ g · h, is a

diffeomorphism of differential spaces. The space gpx := Tux
(G̃x) tangent to the generalized

Lie group G̃x is equipped with a natural Lie algebra structure [SA]. Put g :=
⋃

x∈M gpx ⊂

TΦ. The differential structure on the set g is induced from the differential space TΦ.

Lemma 4.3. The system (g, p,M, {gpx}x∈M ), in which p : g→M is the projection

defined by p−1(x) = gpx, is a vector semibundle over the differential manifold M .

T̃αΦ =
⋃

h∈Φ ThΦ̃αh ⊂ TΦ is a vector subsemibundle.

The module XR(Φ) of smooth right invariant vector fields on Φ forms a module over

the ring C∞(M) with respect to the addition of vector fields and their multiplication by

functions f •X = f ◦ β ·X , f ∈ C∞(M).

The set of all smooth α-fields on Φ, i.e. the set of all smooth cross-sections of the

semibundle T̃αΦ, is denoted by Xα(Φ).

Definition 4.4. Let Φ and f be a groupoid in the category of differential spaces and

a vector semibundle, both over the same differential manifold M . By a representation

of the groupoid Φ in the semibundle f we mean the smooth mapping T : Φ ∗ f → f, (

Φ ∗ f = {(h, v) ∈ Φ× f ;α(h) = p(v)} ⊂ Φ× f is a proper differential subspace of Φ × f),

which fulfils the following conditions:

1. p ◦ T (h, v) = β(h), for (h, v) ∈ Φ ∗ f,

2. for any h ∈ Φ, the mapping T (h) : fpαh → fpβh, v 7→ T (h, v), is a linear isomor-

phism,

3. T (g · h) = T (g) ◦ T (h) for (g, h) ∈ Φ ∗ Φ,

4. T (ux) = id fpx ,x ∈M.

The trivial representation of Φ in f =M × R is defined by T (h) = idR.
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Definition 4.5. By the adjoint representation of the groupoid Φ we mean the map-

ping Ãd : Φ ∗ g → g which is defined by the formula Ãd(h) = (τ̃h)∗uαh
: gpx → gpy where

τ̃h : G̃x → G̃y, a 7→ h · a · h−1 for h ∈ Φ such that αh = x and βh = y.

Theorem 4.6. Ãd is a representation of the groupoid Φ in the semibundle g.

Proof. We shall show the smoothness of the mapping Ãd : Φ ∗ g → g. The differential

structure of g ⊂ TΦ is generated by the set {f ◦ π | g; f ∈ C(Φ)} ∪ {(df) | g; f ∈ C(Φ)}.

It is enough to prove that for any f ∈ C(Φ) we have

1. f ◦ π | g ◦ Ãd ∈ (C(Φ)× C(TΦ)g)Φ∗g,

2. (df) | g ◦ Ãd ∈ (C(Φ)× C(TΦ)g)Φ∗g.

(1) Let f ∈ C(Φ) and (h, v) ∈ Φ ∗ g. Then: f ◦ π | g ◦ Ãd(h, v) = f ◦ π(Ãd(h)(v)) =

f(uβh), because Ãd(h)(v) ∈ Tuβh
Φβh , so π(Ãd(h)(v)) = uβh. So we get (f ◦ π | g) ◦

Ãd(h, v) = f ◦ u ◦ β ◦ pr1 | Φ ∗ g ∈ (C(Φ)× C(TΦ)g)Φ∗g .

(2) (df)|g ◦ Ãd(h, v) = (df) | g ◦ Ãd(h)(v) = (df)((τh)∗uαh
(v)) = (τh)∗uαh

(v)(f) =

(τh)∗uαh
(v)(f | G̃βh) = v(f | G̃βh ◦ τh) = v(G̃αh ∋ a) 7→ f(hah−1)) = v(G̃αh ∋ a) 7→

f ◦ ρ(a, (h, v)), where ρ : Φ ∗ (Φ ∗ g) → Φ, (a, (h, v)) 7→ h · a · h−1, and Φ ∗ (Φ ∗ g) =

{(a, (h, v)) ∈ Φ× (Φ×g); αa = βa = βh}. By the smoothness of the multiplication on Φ,

we have f ◦ ρ ∈ (C(Φ) × C(TΦ)g)Φ∗g. Put N = Φ ∗ g and Y : N → TΦ, (h, v) 7→ v. The

mapping Y is smooth, of course. Fix (h0, v0) ∈ Φ ∗ g and find an open neighbourhood

Ω ⊂ Φ× (Φ ∗ g) of the point (uαh0 , (h0, v0)) and the mapping f̃ ∈ (C(Φ)× C(TΦ)g)Φ∗g.

such that

f ◦ ρ | Ω ∗ (Φ ∗ (Φ ∗ g)) = f̃ | Ω ∗ (Φ ∗ (Φ ∗ g)).

Then, for the point (h, v) from some neighbourhood of the point (h0, v0) ∈ Φ∗g we have:

((df)|g) ◦ Ãd(h, v) = v(G̃αh ∋ a 7→ f ◦ ρ(a, (h, v)))

= v(f̃(·, (h, v))) = Y (h, v)(f̃ (·, (h, v))).

Now, the fact that (df) | g) ◦ Ãd ∈ (C(Φ) × C(TΦ)g)Φ∗g we get from the lemma below

putting: M = Φ ∗ g and N = Φ ∗ (Φ ∗ g).

Lemma 4.7. For differential spaces (M,C(M)) and (N,D(N)), a smooth mapping

Y : (N,D(N)) → (TM,C(TM)) and a smooth function g : M × N → R, the function

N ∋ x 7→ Y (x)(g(·, x)) ∈ R, belongs to D(N).

Notation. Let T be a representation of the groupoid Φ in the vector semibundle f and

let σ ∈Secf be any smooth cross-section of the semibundle f. Denote

σT : Φ → f, h 7→ T (h−1)(σ ◦ β(h)). (4.1)

The mapping σT is smooth and σT [Φ̃x] ⊂ fpx for x ∈ M. So, σT induces the family of

mappings σT
px : Φ̃x → fpx.

Theorem 4.8. For any smooth α-field ξ ∈ X̃α(Φ) on Φ and for a smooth mapping

σ : Φ → f such that σ[Φ̃x] ⊂ fpx, the mapping ξ(σ) : Φ → f, h 7→ ξh(σ | Φ̃αh), is smooth.

Proof. To prove the smoothness of ξ(σ), we have to show the smoothness of the

mapping δ ◦ ξ(σ) for any function δ ∈ C(f). The differential structure of C(f) is generated
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by the set {δ1 ◦ p; δ1 ∈ C∞(M)} ∪ {δ1 ∈ C(f); δ1 | fpx is a linear mapping}, so it is enough

to check the smoothness of δ ◦ ξ(σ) for any δ from this set.

(a) Let δ = δ1 ◦ p for δ1 ∈ C∞(M). Then δ ◦ ξ(σ) = δ1 ◦ p ◦ ξ(σ) = δ1 ◦ α, and the

function δ ◦ ξ(σ) is smooth.

(b) Let δ ∈ C(f) be a linear mapping in each fibre fpx, x ∈ M . We define δx =

δ | Φ̃x : Φ̃x → fpx. Then δ ◦ ξ(σ)(h) = δ(ξh(σpαh)) = (δ | fpαh)(ξh(σpαh)) =

ξh(δ | fpαh ◦ σpαh) = ξ(δ ◦ σ)(h). And so, δ ◦ ξ(σ) = ξ(δ ◦ σ), but δ ◦ σ : Φ → R is

smooth as a superposition of smooth mappings. Then ξ(δ ◦σ) is a smooth function

on Φ.

Corollary 4.9. The mapping ξ(σ) ◦ u : M → f is a smooth cross-section of the

vector semibundle f.

Definition 4.10. By a covariant differential operator (briefly CDO) in the vector

semibundle f we mean an R-linear mapping L : Secf → Secf for which there exists a vec-

tor field X ∈ X(M) such that L(f · σ) = X(f)σ+ f ·L(σ) for f ∈ C∞(M) and σ ∈ Secf.

The vector field X is called an anchor of the CDO L and denoted by q(L). It is easy

to see that the field X is uniquely determined.

Theorem 4.11. For ξ ∈ XR(Φ), the mapping T̃ ′(ξ) : Secf →Secf, σ 7→ ξ(σT ) ◦ u is a

CDO with the anchor γ(ξ).

Proof. Since for f ∈ C∞(M) and σ ∈ Secf we have (f · σ)T = f ◦ β · σT , it follows

that for ξ ∈ XR(Φ) we get

T̃ ′(ξ)(f · σ) = ξ(f · σ)T ◦ u = (x 7→ ξux
(f ◦ β · σT ))

= (x 7→ ξux
(f ◦ β) · σT

ux
+ β(ux) · ξux

(σT ))

= (x 7→ γ(ξ)x(f) · σx + f(x) · T̃ ′(ξ)(σ)x)

= γ(ξ)(f) · σ + f · T̃ ′(ξ)(σ).

The mapping T̃ ′(ξ) is R-linear, thus a CDO in the semibundle f with anchor γ(ξ).

Lemma 4.12. The set CDO(f) of all covariant differential operators in the vector

semibundle f forms a real Lie algebra with a bracket defined by the formula [L1,L2] =

L1 ◦ L2 − L2 ◦ L1.

Definition 4.13. By the derivative of the representation T : Φ∗f → f of the groupoid

Φ in the vector semibundle f we mean the mapping T̃ ′ : XR(Φ) → CDO(f), ξ 7→ T̃ ′(ξ).

The mapping T̃ ′ is a C∞(M)-linear homomorphism. Moreover, T̃ ′ is a homomorphism

of Lie algebras.

Let f =M ×R be a trivial bundle. Then, for any vector field X ∈ X(M), the mapping

X̃ : C∞(M) → C∞(M), f 7→ X(f), is a CDO.

5. Algebroids of F-groupoids

Definition 5.1. The distribution E ⊂ TM on the differential space (M,C(M)) is

called regular if, for any vector v ∈ Eh (h ∈ M), there exists a vector field X such that

v = X(h).
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Definition 5.2. The differential space (L,C(L)) is called a semimanifold if there

exists a structure D of a manifold on L of some constant dimension, such that

1. (L,D) is a differential subspace of the differential space (L,C(L)) (not proper),

2. for any locally arcwise connected topological spaceX and for a continuous mapping

f : X → (L,C(L)), the mapping f̄ : X → (L,D), x 7→ f(x), is continuous.

The manifold (L,D) is called a leaf of the semimanifold (L,C(L)). The differential

structure D is uniquely determined.

Let (L,C(L)) be a semimanifold with the leaf (L,D). For any differential space (X,C)

with a locally arcwise connected topology and for any smooth mapping f : (X,C) →

(L,C(L)) such that f [X ] ⊂ L, the mapping f̄ : (X,C) → (L,D), x 7→ f(x) is smooth

[K1].

The Cartesian product of semimanifolds is a semimanifold.

Definition 5.3. By a foliated groupoid (F-groupoid) (see [L1], [L2]) we mean a

groupoid in the category of differential spaces (Φ, α, β,M, ·) in which:

FG1 for each x ∈ M, the differential spaces Φ̃x and L̃x are semimanifolds (leaves of

these spaces we will be denoted by Φx and Lx respectively),

FG2 for each x ∈M the mappings βx : Φx → Lx are submersions,

FG3 the distribution TαΦ =
⊔

h∈Φ Th(Φαh) ⊂ TΦ has the following property: for any

h ∈ Φ and v ∈ Th(Φαh) there exists a smooth right-invariant vector field X on Φ

such that X(h) = v.

Corollary 5.4. For the F-groupoid Φ, the distribution TαΦ on Φ and the distribu-

tion E on M of all vectors tangent to all leaves Lx ⊂ M are regular. In particular, the

family of immersed submanifolds Lx is a foliation with singularities in the sense of P.

Stefan.

An important example of an F-groupoid is given by

Theorem 5.5. The Cartesian product of F-groupoids is an F-groupoid.

Proposition 5.6. If (Φ, α, β,M, ·) is an F-groupoid, then the system (Φx, βx, Lx,

Gx, ·) where Φx, Lx, Gx are leaves of semimanifolds Φ̃x, L̃x, G̃x respectively, is a principal

bundle. Moreover, for x ∈ M, we have gpx := Tux
Gx = ker(βx)∗ux

and Im(βx)∗ux
=

TxLx = Ex. So we have the exact sequence of vector spaces 0 →֒gpx →֒Tux
(Φx)→Ex→0.

Due to the construction of a smooth algebroid of a smooth groupoid we build an

algebroid of an F-groupoid. We put

A(Φ) :=
⋃

x∈M

Tux
Φx ⊂ TΦ, p : A(Φ) →M, p(v) = x⇐⇒ v ∈ Tux

Φx.

On the set A(Φ) we introduce the differential structureC(A(Φ)) = (C(TΦ))A(Φ).

The differential space obtained above is a proper differential subspace of the differen-

tial space (TΦ,C(TΦ)). Moreover, the mapping p : A(Φ) →M is smooth.

Proposition 5.7. The system (A(Φ), p,M, {A(Φ)px}x∈M ) is a vector semibundle.
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Proof. The differential space (TM,C(TM)) with the natural projection on (M,C(M))

forms a vector semibundle. Then the assertion follows from the construction of the space

A(Φ) and lemma 3.4.

The following theorem establishes a relation between the module XR(Φ) and the set

SecA(Φ) of all global cross-sections of the projection p : A(Φ) →M.

Theorem 5.8. If X ∈ XR(Φ), then X0 :M → A(Φ), x 7→ X(ux), is a smooth cross-

section of the projection p. Conversely, for any smooth cross-section η : M → A(Φ) of p

there exists exactly one smooth right-invariant vector field η′ on Φ such that (η′)0 = η.

Moreover, the mappings XR(Φ) ∋ X 7→ X0 ∈ SecA(Φ) and SecA(Φ) ∋ η 7→ η′ ∈ XR(Φ)

establish a canonical isomorphism of the C∞(M)-modules XR(Φ) and SecA(Φ).

Now, in the module SecA(Φ) we introduce some structure of a Lie algebra by the

formula [[ξ, η]] := ([ξ′, η′])0 for ξ, η ∈ SecA(Φ). The pair (SecA(Φ), [[·, ·]]) forms an R-Lie

algebra. Moreover, the canonical isomorphism described above is an isomorphism of Lie

algebras.

Define a mapping β̃∗ : A(Φ) → TM , v 7→ β∗(v). Note that the diagram below is

commutative:

A(Φ)
β̃∗ //

p

��

TM

π

��
M M

Then the mapping β̃∗ is a (strong) homomorphism of the vector semibundles A(Φ) and

TM.

Theorem 5.9. Any vector field X ∈ XR(Φ) is β-projective, i.e. there exists exactly

one vector field Y ∈ X(M) with which X is β-related. It is the field Y := β̃∗ ◦ (X0).

Further, the field β̃∗ ◦ ξ, ξ ∈ SecA(Φ), will be briefly denoted by β̃∗. The following

equality is true: ξ′(f ◦ β) = (β∗ξ)(f) ◦ β, ξ ∈ SecA(Φ) and f ∈ C∞(M). The following

proposition gives an important property of the mapping Secβ̃∗.

Proposition 5.10. The mapping Secβ̃∗ : SecA(Φ) → X(M), ξ 7→ β∗ξ is a homo-

morphism of Lie algebras.

Proposition 5.11. For right-invariant vector fields X,Y ∈ XR(Φ) and a function

f ∈ C∞(M), [X, f ◦ β · Y ] = f ◦ β · [X,Y ] + (β∗X
0)(f) ◦ β · Y.

Corollary 5.12. The Lie algebra SecA(Φ) has the property [[ξ, f · η]] = f · [[ξ, η]] +

(β∗ξ)(f) · η for ξ, η ∈ SecA(Φ) and f ∈ C∞(M).

Definition 5.13. By an F-algebroid over the differential manifold M we mean the

system

A = (A, [[·, ·]], γ), (5.1)

in which:

(1) A = (A, p,M, {Apx}x∈M ) is a vector semibundle,

(2) (SecA(Φ), [[·, ·]]) is a Lie R-algebra,
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(3) γ : A→ TM is a (strong) semibundle homomorphism such that Secγ : SecA(Φ) →

X(M) is a homomorphism of Lie algebras,

(4) for any cross-sections ξ, η ∈ SecA(Φ) and the mapping f ∈ C∞(M), the equality

[[ξ, f · η]] = f · [[ξ, η]] + (γ ◦ ξ)(f) · η holds.

Clearly, (SecA(Φ)) forms a Lie-Rinehart algebra.

Example 1. For any F-groupoid Φ = (Φ, α, β,M, ·) the system ((A(Φ), p,M),

[[·, ·]], β̃∗) is an F-algebroid. It is called the F-algebroid of the F-groupoid Φ.

Definition 5.14. Let A′ = (A′, [[·, ·]]′, γ′) and A = (A, [[·, ·]], γ) be F-algebroids over

the same differential manifold M . The mapping H : A′ → A is called a (strong) homo-

morphism of F-algebroids A′ and A if:

(i) H is a (strong) homomorphism of vector semibundles,

(ii) the mapping SecH : SecA′ → SecA is a homomorphism of Lie algebras.

(iii) γ ◦H = γ′.

Proposition 5.15. For any x ∈ M, the pair (gpx, [·, ·]) is a Lie algebra called the

isotropy algebra at the point x with the commutator defined by [v, w] := [[ξ, η]](x) for

ξ, η ∈ SecA such that ξ(x) = v and η(x) = w, v, w ∈ gpx. Moreover, the Lie algebra gpx
is the right Lie algebra of the Lie group Gx.

Definition 5.16. By the derivative of the representation T : Φ ∗ f → f of the F-

groupoid Φ in the semibundle fwe mean the C∞(M)-linear homomorphism of Lie algebras

T ′ : XR(Φ) → CDO(f), which is the restriction of T̃ ′ : X̃R(Φ) → X(M) to the subalgebra

XR(Φ).

Of course, the following equality holds: T ′(ξ)(σ) = ξ(σT ) ◦ u.

Definition 5.17. By the inner representation of the F-groupoid Φ we mean the

mapping Ad : Φ ∗ g → g defined by the formula Ad(h) = (τh)∗ux
: gpx → gpy where

x = αh, y = βh, τh : Gx → Gy, a 7→ h · a · h−1, i.e. such that the following diagram

commutes
gpx

Ad(h) //

��

gpy

��
g̃px

Ãd(h) // g̃py

The smoothness of Ad follows from the smoothness of Ãd(h).

Lemma 5.18. Right-invariant vector fields on Φ restricted to the manifold Φx generate

the module of all smooth vector fields on Φx.

6. The Cartesian product of F-algebroids. Consider the Cartesian product of

differential manifolds M1 ×M2. We identify T(x1,x2)(M
1 ×M2) = Tx1M

1 × Tx2M
2.

Let X̄ = (X1, X2), Ȳ = (Y 1, Y 2) ∈ X(M1 ×M2) be two vector fields tangent to the

Cartesian product M1 ×M2. The decomposition of the vector field [X̄, Ȳ ] to the part

[X̄, Ȳ ]1 tangent to M1 and the part [X̄, Ȳ ]2 tangent to M2 is given by the formulae

[X̄, Ȳ ]1(x1,x2)
= [X1(·, x2), Y

1(·, x2)](x1) +X2
(x1,x2)

(Y 1(x1, ·))− Y 2
(x1,x2)

(X1(x1, ·)),
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[X̄, Ȳ ]2(x1,x2)
= [X1(·, x2), Y

1(·, x2)](x1) +X2
(x1,x2)

(Y 1(x1, ·))− Y 2
(x1,x2)

(X1(x1, ·)).

where X1
(x1,x2)

∈ Tx1M
1 and X2

(x1,x2)
∈ Tx2M

2.

Theorem 6.1. Let Φ1, Φ2 be F-groupoids which algebroids are (A(Φ1), [[·, ·]], (β̃1)∗)

and (A(Φ2), [[·, ·]], (β̃2)∗), respectively. Then the F-algebroid of the Cartesian product Φ1×

Φ2 is (A(Φ1)×A(Φ2), [[·, ·]], (β̃1)∗× (β̃2)∗),where A(Φ1)×A(Φ2) is a Cartesian product of

vector semibundles and, for any cross-sections ξ̄ = (ξ1, ξ2), η̄ = (η1, η2) of the projection

p1 × p2, the commutator [[·, ·]] = ([[·, ·]]1, [[·, ·]]2) is given by the formulae

[[ξ̄, η̄]]1(x1,x2)
= [[ξ1(·, x2), η

1(·, x2)]](x1) + β2∗((ξ
2)(x1,x2)(η

1(x1, ·)))

−β2∗(η
2)(x1,x2)(η

1(x1, ·)),

[[ξ̄, η̄]]2(x1,x2)
= [[ξ2(x1, ·), η

2(x1, ·)]](x2) + β1∗((ξ
1)(x1,x2)(η

2(·, x2)))

−β1∗(η
1)(x1,x2)(η

2(·, x2)).

This algebroid will be denoted briefly by A(Φ1)×A(Φ2).

7. Cohomology with coefficients of F-groupoids. Let Φ and f be an F-groupoid

and a vector semibundle, both over the same manifoldM . In the vector space
∧
T ∗
hΦαh⊗

fpαh there exists a structure of a left module over the algebra
∧
T ∗
hΦαh , defined uniquely

by the formula φ ∧ (ψ ⊗ v) := (φ ∧ ψ)⊗ v for φ, ψ ∈
∧
T ∗
hΦαh and v ∈ fpαh.

The canonical duality 〈·, ·〉 :
∧
T ∗
hΦαh ×

∧
ThΦαh → R uniquely determines a 2-R-

linear mapping 〈·, ·〉 : (
∧
T ∗
hΦαh ⊗ fpαh) ×

∧
ThΦαh → fpαh by the formula 〈φ⊗ v, ψ〉 =

〈φ, ψ〉 ⊗ v for φ, ψ ∈
∧
T ∗
hΦαh and v ∈ fpαh.

Definition 7.1. An α-form of order q on Φ with values in f is a mapping Ψ which

assigns a covector Ψ(h) ∈
∧q

T ∗
hΦαh ⊗ fpαh to each element h ∈ Φ.

Definition 7.2. The α-form Ψ of order q on Φ with values in f will be called

smooth if for any right-invariant vector fields ξ1, ..., ξq on the F-groupoid Φ, the map-

ping Φ(ξ1, ..., ξq) : Φ → f, h 7→ 〈Ψ(h), ξ1(h) ∧ ... ∧ ξq(h)〉 , is smooth.

If f =M ×R is a trivial linear bundle of rank 1, then Ψ will be called a (real) α-form

of order q on the F-groupoid Φ. The set Ωα(Φ; f) of all smooth α-forms on Φ with values

in the semibundle f forms a left graded C(f)-module and a left module over the algebra

Ωα(Φ) of all smooth real α-forms on Φ.

Let ix : Φx → Φ denote an inclusion for x ∈ M . It is a smooth mapping allowing

to pull back the α-forms Ψ ∈ Ωα(Φ; f). For a q-form Ψ ∈ Ωα,q(Φ; f), Ψpx := i∗x(Ψ) is

the q-form on Φx defined by the formula i∗x(Ψ)(h) = Ψ(h) ∈
∧q

T ∗
hΦx ⊗ fpx. Since the

right-invariant vector fields on Φx generate the whole module of smooth vector fields on

Φx, then i∗x(Ψ) is a q-form on Φx smooth in the ordinary sense. For ξ1, ..., ξq ∈ XR(Φ),

we have

i∗x(Ψ)(ξ1 | Φx, ..., ξq | Φx) = (Ψ(ξ1, ..., ξq)) | Φx.

Definition 7.3. Let T be a representation of the groupoid Φ in the semibundle f. An

α-form Ψ ∈ Ωα(Φ; f) will be called T -equivariant if
∧

h∈Φ(D
∗
h)(Ψpαh) = T (h−1)∗(Ψpβh).

Lemma 7.4. An α-form Ψ of order q on the F-groupoid Φ is T -equivariant if and only

if, for any right-invariant vector fields ξ1, ..., ξq ∈ XR(Φ) the mapping Ψ(ξ1, ..., ξq) has
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the form σT for some cross-section σ of the semibundle f, i.e. Ψ(ξ1, ..., ξq)(h) = σT (βh)

for h ∈ Φ.

Lemma 7.5. A T -equivariant α-form Ψ is smooth if and only if, for any cross-

section ξ01 , ..., ξ
0
q ∈ SecA(Φ) the cross-section σ : M → f defined by the formula σ(x) =〈

Ψux
, ξ01x ∧ ... ∧ ξ0qx

〉
is smooth.

The real forms equivariant with respect to the trivial representation T (h) = idR are

usual right-invariant forms, i.e. such that D∗
h(ψpαh) = ψpβh for h ∈ Φ. The set of all such

forms will be denoted by Ωα
R
(Φ). The vector space of all T -equivariant α-forms on Φ with

values in f will be denoted by Ωα
T (Φ; f).

Lemma 7.6. The space Ωα
T (Φ; f) is

1. a graded module over the ring C∞(M), with respect to the multiplication f •Ψ :=

f ◦ β ·Ψ.

2. a module over the algebra Ωα
R
(Φ) of all equivariant α-forms on Φ.

Now let A = (A, [[·, ·]], γ) be an algebroid over the foliated manifold M where A is

a vector semibundle over M , and the anchor γ : A → E is an epimorphism on the

regular distribution E. The mapping ϑ assigning to the point x ∈M the covector ϑ(x) ∈∧q
A∗

px ⊗ fpx will be called smooth if the mapping x 7→ 〈ϑ(x), ξ1x ∧ ... ∧ ξqx〉 is smooth,

where ξ1, ..., ξq are right-invariant vector fields on the F-groupoid Φ.

Denote ΩA(Φ)(M ; f) :=
⊕

q≥0 Ω
q

A(Φ)(M ; f) where Ωq

A(Φ)(M ; f) consists of mappings

ϑ assigning to each point x ∈ M a covector ϑ(x) ∈
∧q

A∗
px ⊗ fpx. In particular, for

f = M × R, ΩA(M) =
⊕

q≥0 Ω
q
A(M) where Ωq

A(M) consists of the smooth mappings

ϑ = (x 7→ ϑ(x) ∈
∧q

A∗
px).

Theorem 7.7. The mapping τT : Ωα
T (Φ; f) → ΩA(Φ)(M ; f), defined by the formula

τT (Ψ)(x) = Ψ(ux), x ∈M, is an isomorphism of C∞(M)-modules.

(a) Let X be any right-invariant vector field on the groupoid Φ. There exist endomor-

phisms iα,fX , dα,f, θ
α,f
X of the vector space Ωα(Φ; f) defined uniquely by the condition:

for any x ∈M, the diagram below commutes:

Ωα(Φ; f)
i
α,f

X
,dα,f,θ

α,f

X //

i∗x

��

Ωα(Φ; f)

i∗x

��
Ω(Φx; fpx)

iX|Φx ,d,θX|Φx // Ω(Φx; fpx)

(b) These endomorphisms are defined by the global formulae:

1. (iα,fX Ψ)(X1, ..., Xq−1) = Ψ(X,X1, ..., Xq−1),

2. (θα,fX Ψ)(X1, ..., Xq) = X(Ψ(X1, ..., Xq))−
∑q

j=1 Ψ(X1, ..., [X,Xj], ..., Xq),

3. (dα,fΨ)(X0, ..., Xq) =
∑q

j=1(−1)jXj(Ψ(X0, ..., X̂j, ..., Xq))

+
∑

i<j(−1)i+jΨ([Xi, Xj], ..., X̂i, ..., X̂j , ..., Xq),

where Ψ ∈ Ωα,q(Φ; f), and X1, ..., Xq ∈ XR(Φ).

(c) For any representation T of the groupoid Φ in the semibundle f, the subspace

Ωα
T (Φ; f) is stable with respect to the above endomorphisms.
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(d) For ψ ∈ Ωα,q(Φ; f), Ψ ∈ Ωα(Φ; f) and a field X ∈ XR(Φ) we have:

1. iα,fX (ψ ∧Ψ) = i
α,f
X ψ ∧Ψ+ (−1)qψ ∧ iα,fX Ψ,

2. θα,fX (ψ ∧Ψ) = θ
α,f
X ψ ∧Ψ+ ψ ∧ θα,fX Ψ,

3. dα,f(ψ ∧Ψ) = dα,fψ ∧Ψ+ (−1)qψ ∧ dα,fΨ,

4. iα,f[X,Y ] = i
α,f
X ◦ iα,fY − i

α,f
Y ◦ iα,fX ,

5. θα,f[X,Y ] = θ
α,f
X ◦ θα,fY − θ

α,f
Y ◦ θα,fX ,

6. θα,fX = θ
α,f
X ◦ dα,f + dα,f ◦ iα,fX ,

7. dα,f ◦ dα,f0,

8. dα,f ◦ θα,fX = θ
α,f
X ◦ dα,f.

Definition 7.8. For ξ ∈ SecA(Φ) define the endomorphisms iA,f
ξ , dA,f, and θ

A,f
ξ of

the space ΩA(Φ)(M ; f) such that the diagram below commutes

ΩA(Φ)(M ; f)
i
A,f

ξ
,dA,f,θ

A,f

ξ //

τT ∼=

��

ΩA(Φ)(M ; f)

∼= τT

��
Ωα

T (Φ; f)
i
α,f

ξ′
,dα,f,θ

α,f

ξ // Ωα
T (Φ; f)

In the diagram above ξ′ denotes the right-invariant vector field on the groupoid Φ

generated by the cross-section ξ ∈ SecA(Φ).

Theorem 7.9. (a) The endomorphisms iA,f
ξ , dA,f, and θA,f

ξ have the properties:

1. iA,f
ξ (ψ ∧Ψ) = iAξ (ψ) ∧Ψ+ (−1)qψ ∧ iA,f

ξ (Ψ),

2. θA,f
ξ (ψ ∧Ψ) = θAξ (ψ) ∧Ψ+ ψ ∧ θA,f

ξ (Ψ),

3. dA,f(ψ ∧Ψ) = dA(ψ) ∧Ψ + (−1)qψ ∧ dA,f(Ψ),

4. iA,f

[ξ,η] = i
A,f
ξ ◦ iA,f

η − iA,f
η ◦ iA,f

ξ ,

5. θA,f

[ξ,η] = θ
A,f
ξ ◦ θA,f

η − θA,f
η ◦ θA,f

ξ ,

6. θA,f
ξ = i

A,f
ξ ◦ dA,f + dA,f ◦ iA,f

ξ ,

7. dA,f ◦ dA,f = 0,

8. dA,f ◦ θA,f
ξ = θ

A,f
ξ ◦ dA,f.

(b) The above endomorphisms are defined by the global formulae:

1. (iA,f
ξ Ψ)(ξ1, ..., ξq−1) = Ψ(ξ, ξ1, ..., ξq−1),

2. (θA,f
ξ Ψ)(ξ1, ..., ξq) = T ′(ξ′)(Ψ(ξ1, ..., ξq))−

∑q
j=1 Ψ(ξ1, ..., [[ξ, ξj ]], ...ξq),

3. (dA,fΨ)(ξ0, ..., ξq) =
∑q

j=1(−1)jT ′(ξj)(Ψ(ξ0, ..., ξ̂j , ..., ξq))

+
∑

i<j(−1)i+jΨ([[ξi, ξj ]], ..., ξ̂i, ..., ξ̂j , ..., ξq)

(c) In particular, for real forms and the trivial representation T in the bundle M × R

(then T ′(ξ) = γ ◦ ξ) we have:

1. (θAξ Ψ)(ξ1, ..., ξq) = (γ ◦ ξ)(Ψ(ξ1, ..., ξq))−
∑q

j=1 Ψ(ξ1, ..., [[ξ, ξj ]], ...ξq),

2. (dAΨ)(ξ0, ..., ξq) =
∑q

j=1(−1)j(γ ◦ ξj)(Ψ(ξ0, ..., ξ̂j , ..., ξq))

+
∑

i<j(−1)i+jΨ([[ξi, ξj ]], ..., ξ̂i, ..., ξ̂j , ..., ξq).
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8. Connections. Fix an F-groupoid Φ over the foliated manifold (M,E) and its

algebroid (A(Φ), [[·, ·]], γ).

Definition 8.1. By a connection in the F-groupoid Φ over the foliated manifold

(M,E) we mean a regular distribution H ⊂ TαΦ on the differential space Φ, such that:

1. (Dh)∗[Hg] = Hgh for (g, h) ∈ Φ ∗ Φ,

2. Th(Φαh) = gα
ph ⊕Hh where gα

ph = ker(βpαh)∗h is the vertical subspace of the space

Th(Φαh),

3. for any smooth vector field X ∈ X(F ), its horizontal lifting XH ∈ X(H) defined

by the conditions XH(h) ∈ Tα
h Φ and ((βpαh)∗h)X

H(h) = X(βh) is smooth.

The connection H restricted to the principal bundle Φx is a connection in the usual

sense.

Take any transitive algebroid A over the manifold M , together with the short exact

Atiyah sequence 0 →kerγ →֒ A
γ
→ TM → 0, and take any foliation E with singularities

in the sense of P. Stefan. Define the algebroid A′ as the inverse image of the foliation

E by the mapping γ, i.e. A′ = γ−1(E). Since the dimensions of fibres over different

points of the distribution are different, the algebroid A′ is not regular. A′ is not a vector

bundle. The sequence 0 → ker γ →֒ A′ → E → 0 has, as a splitting, the restriction of any

connection in the algebroid A. Of course, it is a connection in A′.

It is easy to see that if the foliation E does not have a constant rank and A is not

a vector bundle, then such a splitting does not exist. We shall consider only groupoids

in which there exists a connection. Let H be a connection in the groupoid Φ. Define the

mapping λ : E → A(Φ) by the formula λ(v) = (γx | Hux
)−1(v) for v ∈ Ex, x ∈M.

Theorem 8.2. Let H be any connection in the F-groupoid Φ. The mapping λ : E →

A(Φ) defined above has the following properties:

1. λ | Epx : Epx → A(Φ)px is a linear mapping,

2. for any vector field X ∈ X(E), λ ◦X is a smooth cross-section of the vector semi-

bundle A(Φ),

3. γ ◦ λ = id.

Conversely, any mapping λ : E → A(Φ) which has the above properties uniquely

determines some connection in the F-groupoid Φ.

Proof. ⇐ Let λ : E → A(Φ) be a mapping fulfilling the above three conditions of the

theorem. First, we show that λ determines a regular distribution. The mapping λ deter-

mines, for any h ∈ Φ, the subspace Hh ⊂ Tα
h Φ = ThΦαh such that Hh = (Dh)∗βh[Imλβh],

so it determines some regular distribution H =
⋃

h∈ΦHh ⊂ TαΦ.

Now, we show that the distribution H fulfils conditions (1)-(3) from the definition of

a connection.

(1) Let (g, h) ∈ Φ ∗ Φ. From the definition we have Hg = (Dh)∗uβh
[Imλβh], then

(Dh)∗[Hh] = Hgh.

(2) Note that dimgα
ph+dimHh =dim(ker(βpαh)∗h)+dim(Dg)∗βg[Imλβg] =dimTh(Φαh)

and gα
ph ∩Hh =ker(βpαh)∗h ∩ (Dg)∗βg[Imλβg] = ∅. So, Th(Φαh) = gα

ph ⊕Hh.
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(3) Since (λ ◦X)′ is a smooth vector field, therefore, for any vector field X ∈ X(E),

the smoothness of its horizontal lifting follows from the above lemma.

Lemma 8.3. Let X ∈ X(E). Then XH = (λ ◦X)′.

Proof. For any h ∈ Φ we have

XH(h) = ((βy)∗h | Hy)
−1(Xx) = (Dh)∗uy

◦ (((βy)∗uy
| Huy

)−1)(Xy)

= (Dh)∗uy
((λ ◦X)′uy

) = (λ ◦X)′h.

⇒ Follows from the linearity of γx, and from the smoothness of the horizontal lifting

and the fact that the diagram below commutes

A(Φ) // TαΦ

M

λ◦X

OO

i // Φ

XH

OO

Definition 8.4. The mapping λ : E → A(Φ) defined in theorem 8.2 will be called a

connection in the algebroid A(Φ).

The theorem below shows an obstacle to the existence of a connection.

Theorem 8.5. If there exists a connection in the groupoid Φ, then the sequence

A(Φ) −→
Secγ

SecE = X(E) → 0 is exact.

Remark 8.6. If A(Φ) is a vector bundle over the manifold M and E ⊂ TM is a

foliation with singularities in the sense of P. Stefan, then the connection does not exist

in such an algebroid. This is the reason to use the notion of a semibundle to define an

F-algebroid.

Definition 8.7. Let λ : E → A(Φ) be the connection in the algebroid A(Φ) and

g = kerγ be a semibundle. By the connection form of the connection λ we mean the

mapping ω : A(Φ) → g uniquely defined by the conditions:

1. ω | g = id,

2. kerω = Imλ.

Theorem 8.8. (a) If λ is a connection in the F-algebroid A(Φ), then its connection

form ω fulfils the condition:

(*) for any cross-section ξ ∈ SecA(Φ) the mapping ω ◦ ξ is smooth.

(b) If for the F-algebroid A(Φ) the sequence A(Φ) −→
Secγ

SecE = X(E) → 0 is exact

then the mapping ω : A(Φ) → g is the connection form of some connection if and

only if it fulfils the condition (*) and the equality ω | g = id.

Proof. (a) Take some cross-section ξ ∈ SecA(Φ). Then γ ◦ ξ ∈ SecE. Let ξ = ξ1 + λ ◦

(γ ◦ ξ) where ξ1 is the horizontal part and λ ◦ (γ ◦ ξ) is the vertical part of ξ. Since ξ1 is

smooth and ξ1 = ξ − λ(γ ◦ λ) ∈ Secg then ω(ξ) = ξ − λ(γ ◦ λ) ∈ Secg.

(b) Assume that the mapping ω : A(Φ) → g fulfils (1) and (2). According to theorem

8.2 it is enough to construct a mapping λ : E → A(Φ) linear on the fibres of semibundles,

right-inverse to γ and such that, for any vector field X ∈ X(E) tangent to the foliation
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E, the field λ ◦ X is smooth. Put λ(v) = (γx | kerωx)
−1(v) for v ∈ Epx, x ∈ M . The

mapping λ is linear on the fibres and γ ◦ λ = id. Now, take some vector field X ∈ X(E).

The smoothness of the field λ ◦X follows from the lemma below.

Lemma 8.9. Let λ : E → A(Φ) be the mapping defined above. For any vector field

X ∈ SecE the field λ◦X is smooth if and only if the sequence A(Φ) −→
Secγ

SecE = X(E) → 0

is exact.

Consider the mapping γα : TαΦ → Φ × E, v 7→ (παv, β∗v) where πα : TαΦ → Φ is

the natural projection. Denote gα =kerγα. From lemma 3.4 it follows that gα is a vector

semibundle.

Definition 8.10. Let H be a connection in the F-groupoid Φ. By a connection α-

form of H we mean a mapping ωα : TαΦ → gα such that

1. ωα | gα = id,

2. kerωα = H.

Lemma 8.11. For the given connection H its connection α-form has the property:

(Dh)∗g ◦ ω
α
pg = ωα

pgh ◦ (Dh)∗g.

Theorem 8.12. 1. If H is a connection in the F-groupoid Φ, then its connection

α-form ωα fulfils the condition:

(*) for any right-invariant vector field X on Φ the mapping ωα ◦X is smooth.

2. If, for the F-groupoid Φ the sequence A(Φ) −→
Secγ

SecE = X(E) → 0 is exact and

the mapping ωα : TαΦ → gα is such that:

(a) ωα | gα = id,

(b) for any X ∈ XR(Φ) the cross-section ωα ◦X is smooth,

(c) (Dh)∗g ◦ ωα
pg = ωα

pgh ◦ (Dh)∗g,

then kerωα is some connection in the F-groupoid Φ.

Proof. (1) Take any right-invariant vector field X on Φ. There exists a unique smooth

cross-section ξ ∈ SecA(Φ) corresponding to it. The image γ(ξ) of this cross-section by

the anchor is a smooth cross-section of the semibundle E. Then its horizontal lifting to

the smooth vector field (γ(ξ))H ∈ X(H) exists. Then X = (X − (γ(ξ))H) + (γ(ξ))H is a

smooth decomposition into the vertical part X−(γ(ξ))H and the horizontal part (γ(ξ))H .

So the mapping

ωα ◦X = ωα ◦ (X − (γ(ξ))H) + ((γ(ξ))H) = X − (γ(ξ))H

is smooth.

(2) Suppose that ωα : TαΦ → gα is a mapping fulfilling conditions (a), (b), (c). The

subspace kerωα ⊂ TαΦ is a regular distribution on Φ. It is sufficient to show that kerωα

fulfils conditions (1)-(3) from the definition of a connection 8.1. In fact, (1) follows from

the diffeomorphy of Dh, (2) is obvious and condition (3) follows from the condition (a)

of theorem 8.8.
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Proposition 8.13. Let the mappings k and ᾱ be defined as follows

k : α∗g → gα, (h, v) 7→ (Ah)∗uαh
(v), (8.1)

ᾱ : α∗g → gα, (h, v) 7→ v. (8.2)

where Ah : Gαh → Φαh, a 7→ h · a. Then:

1. the mapping k is an isomorphism on the fibres of vector semibundles over Φ,

2. the diagram below commutes

gpαg

Ad(h−1)

��

(α∗g)pg

��

ᾱpgoo kpg // gα
pg

(Dh)∗g

��
gpαh (α∗g)pgh

ᾱpghoo kpgh // gα
pgh

Let ωα : TαΦ → gα be an α-form of some connection H in the F-groupoid Φ. Then

the mapping ω̄α := ᾱ ◦ k−1 ◦ ωα : TαΦ → g is a smooth α-form of order 1 on Φ with

values in the semibundle g.

Proposition 8.14. The form ω̄α is Ad-equivariant.

Proof. Follows from the equality (Dh)∗g ◦ kpg ◦ (ᾱpg)
−1 = kpgh ◦ (ᾱpgh)

−1 ◦Ad(h−1).

Corollary 8.15. For any connection α-form ωα, we have ω̄α
ph = Ad(h−1) ◦ ωpβh ◦

(Dh−1)∗.

Definition 8.16. The form Ψ ∈ Ωα(Φ; f) will be called a horizontal form if for any

vertical vector field X (i.e. for any cross-section of gα), iα,fX Ψ = 0.

Definition 8.17. The form Ψ ∈ ΩA(M ; f) will be called a horizontal form if iA,f
ξ Ψ =

0 for any ξ ∈ Secg.

The horizontal forms form a vector space denoted by ΩA,i(M ; f). Moreover ΩA,i(M)

is an algebra and ΩA,i(M ; f) is a submodule of the ΩA,i(M)-module ΩA(M ; f).

Let T be a fixed representation of the F-groupoid Φ in the vector semibundle f.

Definition 8.18. A form Ψ ∈ Ωα(Φ; f) will be called a T -basic form (or, briefly,

basic) if it is horizontal and T -equivariant.

The space of T -basic α-forms will be denoted by Ωα
T,b(Φ; f) (or Ω

α
b (Φ) if T is trivial).

Theorem 8.19. The space Ωα
b (Φ) is an algebra. Moreover, the linear isomorphism

τT restricts to a linear isomorphism τT,i : Ωα
T,b(Φ; f) → ΩA,i(M ; f) and the mapping

τR,i : Ω
α
b (Φ) → ΩA,i(M) is an isomorphism of algebras.

Let ωα : TαΦ → gα be a connection α-form in the F-groupoid Φ. Define

1. the horizontal projection of vectors Hα : TαΦ → TαΦ by the formula Hα :=

id− jα ◦ ωα,

2. the horizontal projection of differential forms Hα,f
∗ : Ωα(Φ; f) → Ωα(Φ; f) by the

formula H
α,f
∗ Ψ(h, v1, ..., vq) = Ψ(h;Hαv1, ..., H

αvq),

3. the exterior covariant derivative in Φ with values in the semibundle f, associated

with the connection form ωα

▽
α,f : Hα,f

∗ ◦ dα,f.



CONNECTIONS IN F-GROUPOIDS 191

Theorem 8.20. 1. The forms Ψ ∈ ImH
α,f
∗ are horizontal.

2. The subspace Ωα
T (Φ; f) of equivariant α-forms with respect to a given representation

T is stable with respect to Hα,f
∗ .

3. The operator ▽
α,f carries equivariant forms over to T -basic forms.

4. ∇α,f ◦ ∇α,f = 0.

Definition 8.21. By the curvature α-form of the connection α-form ωα in the group-

oid Φ we mean the α-form Ωα := ∇α,gωα with values in g.

Theorem 8.22. Ωα is a T -basic form.

Fix a connection λ : E → A(Φ) in the F-algebroid A(Φ) = (A(Φ), [[·, ·]], γ) whose

connection form is ω and take some vector semibundle f over the manifold M and a

representation T of the F-groupoid Φ in f.

Definition 8.23. Let ω : A(Φ) → g be a connection form in the F-algebroid A(Φ).

By the horizontal projection of vectors corresponding to the connection form ω we mean

the mapping H : A(Φ) → A(Φ) defined by the formula H := id− j ◦ ω.

Definition 8.24. By the horizontal projection of forms in the F-algebroid A(Φ) we

mean the linear mapping HA,f
∗ : ΩA(M ; f) → ΩA(M ; f) defined by the formula

(HA,f
∗ Ψ)(x; v1, ..., vq) = Ψ(x;Hv1, ..., Hvq),

where H : A(Φ) → A(Φ) is a horizontal projection in the F-algebroid A(Φ) corresponding

to the connection form ω. If f =M × R, then the letter f will be omitted.

Theorem 8.25. The operator HA,f
∗ has the following properties:

1. HA,f
∗ | ΩA,i(M ; f) = id,

2. ImHA,f
∗ = ΩA,i(M ; f),

3. HA,f
∗ (ψ ∧Ψ) = H

A,f
∗ ψ ∧HA,f

∗ Ψ, for ψ ∈ ΩA(M) and Ψ ∈ ΩA(M ; f),

4. the diagram below commutes

Ωα
T (Φ; f)

Hα,f
∗ //

τT

��

Ωα
T (Φ; f)

τT

��
ΩA(M ; f)

HA,f
∗ // ΩA(M ; f)

Definition 8.26. By the exterior covariant derivative in the F-algebroid A(Φ) with

values in the semibundle f, associated with the connection λ we shall mean the linear

endomorphism ∇A,f := H
A,f
∗ ◦ dA,f. If f =M × R, then the letter f will be omitted.

Theorem 8.27. The exterior covariant derivative ∇A,f has the following properties:

1. Im∇A,f ⊂ ΩA,i(M ; f),

2. ∇A,f(ψ ∧ Ψ) = ∇Aψ ∧ H
A,f
∗ Ψ + (−1)qHA

∗ ψ ∧ ∇A,fΨ, for ψ ∈ Ωq
A(M) and Ψ ∈

ΩA,i(M ; f),

3. ∇A,f ◦ τAd = τAd ◦ ∇A,f.

Our next step will be to define some endomorphism of the vector space ΩE(M ; f) of

tangential forms with the help of an exterior covariant derivative in the algebroid A(Φ)
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with values in the semibundle f. For this purpose, define the mappings γ∗f : ΩE(M ; f) →

ΩA(M ; f) and λ∗f : ΩA(M ; f) → ΩE(M ; f) by the formulae:

γ∗f (Θ)(x; v1, ..., vq) = Θ(x; γ(v1), ..., γ(vq)),

λ∗f (Ψ)(x;w1, ..., wq) = Ψ(x;λ(w1), ..., λ(wq))

for Θ ∈ Ωq
E(M ; f), Ψ ∈ Ωq

A(M ; f), x ∈M, vi ∈ Apx, wi ∈ Epx, i = 1, ..., q.

Proposition 8.28. The mappings γ∗f and λ∗f are linear homomorphisms fulfilling the

equalities: γ∗f (θ ∧ Θ) = γ∗f θ ∧ γ∗f Θ for θ ∈ ΩE(M), Θ ∈ ΩE(M ; f), and λ∗f (ψ ∧ Ψ) =

λ∗fψ ∧ λ∗fΨ for ψ ∈ ΩA(M), Ψ ∈ ΩA(M ; f).

Corollary 8.29. If f is a trivial bundle, the mappings γ∗ : ΩE(M) → ΩA(M) and

λ∗ : ΩA(M) → ΩE(M) are algebra homomorphisms.

Proposition 8.30. 1. λ∗fΘ ∈ ΩA,i(M ; f) for Θ ∈ ΩE(M ; f),

2. the mappings γ∗f,i : ΩE(M ; f) → ΩA,i(M ; f), Θ 7→ γ∗f Θ and λ∗f,i : ΩA,i(M ; f) →

ΩE(M ; f), Ψ 7→ λ∗fΨ are linear isomorphisms. Moreover, the mappings γ∗i : ΩE(M)

→ ΩA(M) and λ∗i : ΩA(M) → ΩE(M) are the isomorphisms of algebras.

Definition 8.31. The only endomorphism∇f of the vector space ΩE(M ; f) for which

the diagram below commutes

ΩE(M ; f)
∇f

//

γ∗
f

��

ΩE(M ; f)

∼= γ∗
f,i

��
ΩA(M ; f)

∇
A,f

// ΩA(M ; f)

will be called the partial exterior covariant derivative in the semibundle f, associated with

the connection λ.

Proposition 8.32. The endomorphism ∇f has the following properties:

1. ∇f = λ∗f,i ◦ ∇
A,f ◦ γ∗f = λ∗f ◦ ∇

A,f ◦ γ∗f ,

2. ∇f = λ∗f ◦ d
A,f ◦ γ∗f ,

3. if f =M × R is a trivial bundle, then ∇f = dE , so dE = λ∗ ◦ dA ◦ γ∗,

4. ∇f(θ ∧Θ) = dEθ ∧Θ+ (−1)qθ ∧ ∇fΘ, for θ ∈ Ωq
E(M), Θ ∈ ΩE(M ; f),

5. (∇fΘ)(X0, ..., Xq) =
∑q

j=1(−1)q∇f
Xj

(Θ(X0, ..., X̂j,...,Xq))

+
∑

i<j(−1)i+jΘ([Xi, Xj ], ..., X̂i, ..., X̂j , ..., Xq)

for X0, ..., Xq ∈ SecE, Θ ∈ Ωq
E(M ; f).

Corollary 8.33. The endomorphism ∇f restricted to Secf , i.e. ∇f : Secf →

Ω1
E(M ; f), is defined by the formula ∇f

X(σ) = (T ′ ◦ λ ◦X)(σ̃) for σ ∈ Secf , X ∈ SecE,

and fulfils the conditions: (a) ∇f is linear, (b) ∇f
fXσ = f · ∇f

Xσ, (c) ∇f
Xσ(f · σ) =

X(f) · σ + f · ∇f
Xσ for f ∈ C∞(M), σ ∈ Secf.

Corollary 8.34. The endomorphism ∇f restricted to any leaf L of the foliation E,

i.e. the mapping ∇f
pL :Sec(fpL) → Ω1(L; fpL), is the usual covariant derivative on the

manifold L.
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Definition 8.35. The curvature form of the connection λ is the form Ω := ∇A,gω ∈

Ω2
A(M ; g), where ω is the connection form of λ.

Proposition 8.36. The connection form Ω has the following properties:

1. Ω ∈ Ω2
A,i(M ; g), which implies, in particular, HA,g

∗ Ω = Ω,

2. τAd(Ω
α) = Ω, where Ωα is the curvature α-form of the connection form ωα in the

F-groupoid Φ.

Proof. (1) According to theorem 8.27, Im∇A,f ⊂ ΩA,i(M ; f) for any semibundle f.

Additionally, Ω is a 2-form with values in g, so Ω ∈ ΩA,i(M ; g).

(2) The equalities τT ◦ dA,f = dα,f ◦ τT , τT ◦Hα,f
∗ = H

A,f
∗ ◦ τT and the definitions of

the forms Ω and Ωα give: τAd(Ω
α) = τAd(∇α,gωα) = ∇A,g ◦ τAdω

α = ∇A,gω = Ω.

Corollary 8.37. Ω(ξ0, ξ1) = −ω([[H ◦ ξ0, H ◦ ξ1]]) for ξ0, ξ1 ∈ SecA.

Definition 8.38. The tangential curvature tensor of the connection λ is the 2-form

Ωb := λ∗gΩ ∈ Ω2
E(M ; g)

where Ω ∈ Ω2
A(M ; g) is the curvature form of the connection λ.

Proposition 8.39. The tangential curvature tensor Ωb has the following properties:

1. Ωb(X1, X2) = −ω([[λ ◦X1, λ ◦X2]]),

2. [[λ ◦X1, λ ◦X2]] = λ ◦ [X1, X2]− Ωb(X1, X2),

3. Ω = 0 ⇐⇒ Ωb = 0,

4. Ωb = 0 ⇐⇒ the Lie product of two horizontal vector fields is horizontal.

Theorem 8.40. ∇gΩb = 0.

Proof. Follows from proposition 8.32, definition 8.38, the equality λ ◦ γ = H , propo-

sition 8.36(1) and theorem 8.27(3) and theorem 8.39(4).

9. The Chern-Weil homomorphism Let f1, ..., fk, f be vector semibundles over

the same differential manifold M and let Γ : f1 × ... × fk → f be a smooth k-linear

homomorphism of semibundles.

1. For forms Ψi ∈ Ωα,qi(Φ, fi), i = 1, ..., k, define the form Γα
∗ (Ψ1, ...,Ψk) ∈ Ωα,q(Φ, f),

q =
∑k

i=1 qi, by the formula:

Γα
∗ (Ψ1, ...,Ψk)(h; v1, ..., vq)=

1

q1! · ...qk!

∑

σ

sgnσ ·Γpαh(Ψ1(h; vσ(1), ...), ...,Ψk(h; ..., vσ(q))),

for vi ∈ (TαΦ)ph. Note that Γα
∗ (Ψ1, ...,Ψk)px = (Γpx)∗(Ψ1px, ...,Ψkpx), where (Γpx)∗

is a standard operation on vector valued differential forms.

2. Similarly for forms Ψi ∈ Ωqi
A (M ; fi), i = 1, ..., k, we define the form ΓA

∗ (Ψ1, ...,Ψk)

by the formula

ΓA
∗ (Ψ1, ...,Ψk)(x; v1, ..., vq) =

1

q1! · ...qk!

∑

σ

sgnσ ·Γpx(Ψ1(x; vσ(1), ...), ...,Ψk(x; ..., vσ(q))),

for x ∈M , vi ∈ Apx.
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In particular the form ΓE
∗ (Θ1, ...,Θk) ∈ Ωq

E(M ; f) is defined for Θi ∈ Ωqi
E (M ; f).

Let τf : Ωα(Φ; f) → ΩA(M ; f) be the mapping given by τf(Ψ)(x) = Ψ(ux), x ∈ M.

Note that τf | Ωα
T (Φ; f) = τT for any representation T of the F-groupoid Φ in the

semibundle f. If f =M × R then the letter f will be omitted.

Theorem 9.1. The homomorphisms ΓA
∗ and ΓE

∗ have the following properties:

1. ΓA
∗ ◦ (τf1 × ...× τfk)(Ψ1, ...,Ψk) = τf(Γ

α
∗ (Ψ1, ...,Ψk)),

2. ΓE
∗ ◦ (λf1 × ...× λfk)(Ψ1, ...,Ψk) = λf(Γ

A
∗ (Ψ1, ...,Ψk)),

3. iα,fX (Γα
∗ (Ψ1, ...,Ψk)) =

∑k
i=1(−1)q1+...+qi−1Γα

∗ (Ψ1, ..., i
α,fi
X Ψi, ...,Ψk) for any α-field

X and forms Ψi ∈ Ωα(Φ; fi),

4. iα,fξ (Γα
∗ (Ψ1, ...,Ψk)) =

∑
i(−1)q1+...+qi−1Γα

∗ (Ψ1, ..., i
α,fi
ξ Ψi, ...,Ψk) for any cross-

section ξ and forms Ψi ∈ ΩA(M ; fi),

5. dα,f(Γα
∗ (Ψ1, ...,Ψk)) =

∑
i(−1)q1+...+qi−1Γα

∗ (Ψ1, ..., d
α,fiΨi, ...,Ψk).

Definition 9.2. The k-linear homomorphism Γ : f1× ...× fk → f is called (T1, ..., Tk)-

invariant ((T1, ..., Tk)-invariant, if T is the trivial representation), if, for any h ∈ Φ, the

diagram below commutes (x = αh, y = βh):

f1px × ...× fkpx
Γpx //

T1(h)×...×Tk(h)

��

fpx

T (h)

��
f1py × ...× fkpy

Γpy // fpy

Theorem 9.3. Let Γ : f1 × ... × fk → f be a (T1, ..., Tk;T )-invariant homomorphism.

Then

(a) Γα
∗ (Ψ1, ...,Ψk) ∈ Ωα

T (Φ; f) for Ψi ∈ Ωα
T (Φ; fi), i = 1, ..., k,

(b) dA,fΓA
∗ (Ψ1, ...,Ψk) =

∑k
i=1(−1)q1+...+qi−1ΓA

∗ (Ψ1, ..., d
A,fΨi, ...,Ψk),

(c) HA,f
∗ ΓA

∗ (Ψ1, ...,Ψk) = ΓA
∗ (H

A,f1
∗ Ψ1, ..., H

A,fk
∗ Ψk) for Ψi ∈ Ωqi

A (M ; fi),

(d) ∇f(ΓE
∗ (Θ1, ...,Θk)) =

∑k
i=1(−1)q1+...+qi−1ΓE

∗ (Θ1, ...,∇fiΘi, ...,Θk),

for Θi ∈ Ωqi
E (M ; fi).

In particular, for the trivial bundle f = V × R we have:

(e) dE(ΓE
∗ (Θ1, ...,Θk)) =

∑k
i=1(−1)q1+...+qi−1ΓE

∗ (Θ1, ...,∇fiΘi, ...,Θk).

Let Φ be a fixed F-groupoid over the foliation E and let 5.1 be its algebroid with the

adjoint vector semibundle g. Let Γ : g× ...× g → R be a k-linear homomorphism. Put

1. βαΓ := Γα
∗ (Ω

α, ...,Ωα) ∈ Ωα,2k(Φ),

2. βAΓ := ΓA
∗ (Ω, ...,Ω) ∈ Ω2k

A (M),

3. βEΓ := ΓE
∗ (Ωb, ...,Ωb) ∈ Ωα,2k

E (M)

where Ωb, Ω, Ω
α are the curvature tensor of a given connection λ in the algebroid A,

the curvature form and the connection α-form associated with the connection in the

F-groupoid Φ, respectively.

By theorem 9.1(3), theorem 9.3(a), theorem 8.25, theorem 9.1(4) and proposition 8.36

we have
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Proposition 9.4. If the homomorphism Γ is (Ad, ..., Ad)-invariant, then

1. βαΓ ∈ Ωα,2k
B (Φ),

2. βAΓ ∈ Ω2k
A,i(M).

The space
⊕kSec(Lk(g;R)) of all cross-sections of the set Lk(g;R) is supplied with

the canonical structure (Γ1,Γ2) 7→ Γ1 ⊗ Γ2 given by

(Γ1 ⊗ Γ2)px = Γ1px ⊗ Γ2px, (9.1)

i.e. (Γ1 ⊗ Γ2)px(v1, ..., vk) = Γ1px(v1, ..., vk) ⊗ Γ2px(v1, ..., vk) for Γ1 ∈ Lk(g;R), Γ2 ∈

Ll(g;R), x ∈M , vi ∈ gpx.

Lemma 9.5. The set
⊕k

Sec(Lk(g;R)) with the structure defined above forms an as-

sociative algebra with unity.

Proposition 9.6. The subspace
⊕kSec(Lk(g;R))I(Φ) of all (Ad, ..., Ad)-invariant

cross-sections is a subalgebra of the algebra
⊕kSec(Lk(g;R)).

Theorem 9.7. The mapping βα :
⊕k

Sec(Lk(g;R)) → Ωα(Φ), Γ 7→ βαΓ, is an alge-

bra homomorphism.

Corollary 9.8. The mappings βA, βE , βA
I , β

E
I are homomorphisms of algebras.

Denote by Lk
s (g;R) the subspace of all symmetric k-linear homomorphisms and let

S : Lk(g;R) → Lk
s (g;R) be the symmetrization operator given by: Spx(Γ)(v1, ..., vk) =

1
k!

∑
σ Γ(vσ(1), ..., vσ(k)) for x ∈M , vi ∈ gpx, Γ ∈ Lk(g;R)px.

The homomorphism S ◦ Γ is called a symmetric part of the homomorphism Γ for

Γ ∈ Sec(Lk(g;R)).

Note that any k-linear homomorphism Γ at any point x ∈M is a linear combination

of homomorphisms of the form Γpx = Γ1px ⊗ ...⊗ Γkpx for Γi ∈Sec(L1(g;R)), i = 1, ..., k.

Proposition 9.9. The symmetric part of a homomorphism (Γ1 ⊗ ...⊗ Γk)px equals

S ◦ (Γ1 ⊗ ...⊗ Γk)px =
1

k!

∑

σ

(Γσ(1)px ⊗ ...⊗ Γσ(k)px)

for x ∈M, Γi ∈Sec(L1(g;R)), i = 1, ..., k.

Proposition 9.10. The value of βα(Γ) depends only on the symmetric part of the

homomorphism Γ.

Proposition 9.11. The symmetric part of the (Ad, ..., Ad)-invariant k-linear homo-

morphism is (Ad, ..., Ad)-invariant.

Proposition 9.11 implies that S ◦ Γ belongs to the domain of the homomorphism βα
I ,

if Γ is an (Ad, ..., Ad)-invariant homomorphism. Then βα
I (S ◦ Γ) = βα

I (Γ). The space⊕k
(Sec(Lk

s (g;R))) of symmetric homomorphisms possesses its own structure of an alge-

bra with respect to the canonical symmetric product (Γ1,Γ2) 7→ Γ1 ∨ Γ2 given by

(Γ1 ∨ Γ2)px(v1, ..., vk+l) =
1

(k + l)!

∑

σ

Γ1px(vσ(1), ..., vσ(k))Γ2px(vσ(k+1), ..., vσ(k+l))

for Γ1 ∈Sec(Lk
s (g;R)), Γ2 ∈Sec(Ll

s(g;R)), x ∈ M and vi ∈ gpx. Otherwise, Γ1 ∨ Γ2 =

S ◦ (Γ1 ⊗ Γ2).
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Lemma 9.12. The set
⊕k

(Sec(Lk
s (g;R))) with the above structure forms an associa-

tive algebra with unity.

Moreover, by propositions 9.9 and 9.11, the subspace
⊕k

(Sec(Lk
s (g;R)))I(Φ) of sym-

metric invariant homomorphisms is a subalgebra of the algebra
⊕k

(Sec(Lk
s (g;R))).

Now, define the mappings γα, γA, γE as restrictions of the mappings βα, βA, βE

to the algebra
⊕k(Sec(Lk

s (g;R))) and the mappings γαI , γ
A
I , γ

E
I as restrictions of the

mappings βα, βA, βE to the algebra
⊕k(Sec(Lk

s (g;R)))I(Φ), respectively.

Proposition 9.13. The mapping γα is a homomorphism of algebras.

Corollary 9.14. The mappings γA, γE and γαI , γ
A
I , γ

E
I are homomorphisms of

algebras.

Theorem 9.15. dE ◦ γEI = 0.

Theorem 9.15 implies that Im γEI ⊂ Z(E) ⊂ ΩE(M).

Definition 9.16. The Chern-Weil homomorphism of the F-groupoid Φ is the super-

position

hΦ :
⊕k

(Sec(Lk
s (g;R)))I(Φ) → Z(E) → HE(M), Γ 7→ [γEI (Γ)].

The image of the mapping hα is a graded subalgebra of the tangential cohomology

algebra HE(M) called the Pontryagin algebra [K3] of the F-groupoid Φ and denoted by

PontΦ. The main property of the mapping hΦ is described by the following

Theorem 9.17. The Chern-Weil homomorphism hΦ is independent of the choice of

a connection.

Let us make a few assumptions common to the three lemmas below. Let Φ and

Φ′ be any two F-groupoids over the foliations E and E′ of the manifolds M and M ′,

respectively. Let (A, [[·, ·]], γ) and (A′, [[·, ·]]′, γ′) be their F-algebroids. Let F : Φ → Φ′ be a

smooth homomorphism of F-groupoids over the mapping f : M →M ′, and let ω : A→ g

and ω′ : A′ → g′ be any connection forms of A and A′, respectively, such that the diagram

below commutes

g

(dF )+

��

A
ωoo

dF

��
g′ A′ω′

oo

The mappings dF and (dF )+ are the appropriate restrictions of the mapping F∗ : TΦ →

TΦ′.

Lemma 9.18. For any x ∈M the diagram

gpx

(dF )+
px

��

Apx × Apx

Ωpxoo

(dF )px×(dF )px

��
g′
pf(x) A′

pf(x) × A′
pf(x)

Ω′
pf(x)oo

commutes.
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Lemma 9.19. If Ωb and Ω′
b are the curvature tensors of the curvature forms Ω and

Ω′, then the diagram

gpx

(dF )+
px

��

Epx × Epx

Ωbpxoo

f∗px×f∗px

��
g′
pf(x) E′

pf(x) × E′
pf(x)

Ω′
bpf(x)oo

commutes (E = TE, E′ = TE′).

Lemma 9.20. The Chern-Weil homomorphisms hΦ and hΦ′ built with the use of the

forms ω and ω′ give a commutative diagram
⊕k

(Sec(Lk
s (g

′;R)))I(Φ′)

hΦ′ //

(dF )+

��

HE′(M ′)

f♯

��⊕k(Sec(Lk
s (g;R)))I(Φ)

hΦ // HE(M)

where E = TE, E′ = TE′ and, for Γ′ ∈ Sec(Lk
s (g

′;R)), the mapping (dF )+∗(Γ′) is the

k-linear homomorphism g× ...× g → R given by

(dF )+∗(Γ′)(x; v1, ..., vk) = Γ′(f(x); (dF )+
px(v1), ..., (dF )

+
px(vk)).

Proof of theorem 17. Consider the Cartesian product Φ×R
2 of the F-groupoid Φ and

the trivial groupoid R
2. Theorem 5.5 implies that it is an F-groupoid over the foliation

E × R = {L× R;L ∈ E} of the manifold M × R. In this groupoid the source and target

mappings α̃ and β̃ are defined by α̃(h, x, y) = (αh, y) and β̃(h, x, y) = (βh, y). The leaf

of the F-groupoid Φ×R
2 over the point (x, t) ∈M ×R is Φx × ({t} ×R). The algebroid

of the F-groupoid Φ× R
2 is the Cartesian product A× TR defined in theorem 6.1. The

Atiyah sequence of this algebroid has the form 0 → g× 0 →֒ A × TR
γ×id
−→ E × TR → 0.

Consider the projection Φ×R
2 → Φ. It is a homomorphism of F-groupoids which defines

a homomorphism of vector semibundles, j = 0, 1,

0 //

��

g× 0 //

��

A× TR
γ×id //

d(pr1)

��

E × TR

��

// 0

��
0 // g // A

γ // E // 0

Now, let ω0 : A → g and ω1 : A → g be any two connection forms in the algebroid A.

Put ω̃p(x,t)(v, w) := (ω0px(v) · (1− t)+ω1px(v) ·y, 0). This formula defines some connection

form ω̃ : A× TR → g× {0} in the algebroid A× TR.

Consider the following homomorphisms of F-groupoids F1 : Φ → Φ×R
2, h 7→ (h, 0, 0),

F2 : Φ → Φ × R
2, h 7→ (h, 1, 1) over the mappings i0 : M → M × R, x 7→ (x, 0),

i1 :M →M × R, x 7→ (x, 1), respectively. Then we have the commutative diagrams

0 //

��

g
ω0 //

(dFj)
+

��

A
γ //

dFj

��

E //

��

0

��
0 // g× 0

ω̃ // A× TR
γ×id // E × TR // 0
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They allow one to use the previous lemma to get the commutativity of the diagrams,

j = 0, 1,

⊕k(Sec(Lk
s (g× 0;R)))I(Φ×R2)

(dFj)
+∗

��

hΦ×R2 // HE×TR(M × R)

ij
♯

��⊕k
(Sec(Lk

s (g;R)))I(Φ)
hΦ // HE(M)

In the next step we shall prove the equality i♯0 = i
♯
1. It follows from

Lemma 9.21. Let M and N be two manifolds over the foliations with singularities E

and E′, respectively. If f, g : M → N are smooth mappings and H : M × R → N is a

homotopy between them such that, for any leaf L ∈ E the image H(L × R) is contained

in some leaf of the foliation E′, then

f ♯ = g♯ : HE(M) → HE′(N),

where E = TE, E′ = TE′.

Coming back to the proof of the theorem, take the homotopy H : idM×R :M × R →

M × R joining the mappings i0 and i1. According to lemma 9.21 we have i♯0 = i
♯
1. Now,

consider the homomorphism p1 : g × {0} → g, (v, 0) 7→ v. Then p1 ◦ (dF0)
+ = idg and

p1 ◦ (dF1)
+ = idg. So

id : Sec(Lk
s (g;R)) → Sec(Lk

s (g× 0;R)) → Sec(Lk
s (g;R)).

Now, we can consider the commutative diagram

⊕k
(Sec(Lk

s (g× 0;R)))I(Φ×R2)

(dF0)
+∗

=(dF1)
+∗

��

hΦ×R2 // HE×TR(M × R)

i0
♯=i1

♯V

��⊕k(Sec(Lk
s (g;R)))I(Φ)

hΦ // HE(M)

which implies

hΦ = hΦ ◦ (dF0)
+∗ ◦ p∗1 = i

♯
0 ◦ hΦ×R2 ◦ p∗1

and

hΦ = hΦ ◦ (dF1)
+∗ ◦ p∗1 = i

♯
1 ◦ hΦ×R2 ◦ p∗1.

Then the Chern-Weil homomorphism hΦ is independent of the choice of a connection.

Example 2. If Φ is a Pradines type groupoid over the foliation without singularities

the Chern-Weil homomorphism is the same as the one defined in [K5].

Example 3. Let Ψ = (Ψ, α, β,M, ·) be a Lie groupoid and let Φ = (α, β)−1[R] be a

groupoid of the equivalence relation R determined by the Stefan foliation with singulari-

ties of the manifold M . Then the elements of the form
∑

i fiΓi, where fi are the foliated

functions and Γi are Ad-invariant cross-sections of the groupoid Ψ, are contained in the

domain of the homomorphism hΦ (see also [K7]).



CONNECTIONS IN F-GROUPOIDS 199

References

[H] J. Huebschmann, Extension of Lie-Rinehart algebras and the Chern-Weil construction,

Contemp. Math. 227, 1999.

[K1] J. Kubarski, Smooth groupoids over foliations and their algebroids. Part I , Preprint No

1, Instytut Matematyki Politechniki Łódzkiej, 1986.
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