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Abstract. Some recent progress in the geometric foundations of mechanics in Lie algebroids,

and in particular in Lagrangian mechanics, is reported. We also develop the variational approach

to classical mechanics in Lie algebroids.

1. Introduction. The concept of Lie algebroid is the infinitesimal version of that

of Lie groupoid structure, which has recently been shown to play a relevant role in the

quantization process [1]. It is in some sense a generalization of the concept of tangent

bundle, on the one hand, and of Lie algebra on the other. Both of these last concepts

have been playing an important role in the geometrical foundations of physics, a modern

approach to physics whose interest has been growing almost continuously along the last

years. Therefore, it suggests us to look for different fields or branches of physics where the

concept of Lie algebroid may be relevant (see e.g. [2]-[5]). There are many applications

in Quantum Field Theories, in particular in connection with Topological Field theories,

mainly due to the relationship established in a paper by Vaintrob (see e.g. [6], [7]) among

three different types of structures: Lie algebroid structures on a vector bundle τ : A → B,

homological vector fields on the supermanifold M = (B,
∧•

A∗) and odd linear Poisson

structures on M′ = (B,
∧•

A). Information on such applications can be found in [8].

In this paper we will restrict ourselves to the applications in the geometric approach

to classical mechanics. So, for the sake of completeness we will first present in Section 2
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a quick review of the framework of classical mechanics, before proceeding in Section 3 to

introduce the relevant definitions and properties of the Lie algebroid structures, and in

Section 4 we analyze the exterior algebra of a Lie algebroid and a particularly important

tool: the exterior differential associated in the space of sections of the dual of a Lie

algebroid. In Section 5 we report the approach to classical mechanics in Lie algebroids

proposed in [2] and [3]. After pointing out the deficiencies of such approach we explain

in Section 6 the prolongation of a Lie algebroid that is convenient for the generalization

in the case of Lie algebroids of the standard geometrical mechanics, which will be carried

out following the same pattern as the standard approach. Finally, in the last section

we analyze how to implement the variational approach to classical mechanics in Lie

algebroids.

2. The general framework of classical mechanics. The dynamical evolution is

described in Newtonian mechanics by a system of second order differential equations

involving n variables: f i = d2xi

dt2
, where i = 1, . . . , n, which can be rewritten as a first

order system in 2n variables:

dxi

dt
= vi,

dvi

dt
= f i. (1)

In geometric terms this amounts to consider a manifold whose elements have positions

and velocities as coordinates, and especial vector fields

Γ = vi
∂

∂xi
+ f i(x, v)

∂

∂vi
. (2)

On the other hand, the main assumption on which Lagrangian mechanics is based is a

variational principle for the action functional:

A(γ) =

∫ t2

t1

L(γ(t), γ̇(t), t) dt,

for fixed end–points curves. This leads to the Euler–Lagrange equations:

∂L

∂qi
=

d

dt

(
∂L

∂q̇i

)
,

that when the Lagrangian is regular, i.e. the matrix with elements

Wij =
∂2L

∂q̇i ∂q̇j
,

is regular, they provide a system of second order differential equations. On the other hand,

Hamiltonian mechanics is usually introduced by means of the Legendre transformation,

assumed to be invertible. Then the variables q̇ are substituted for p given by pj = ∂L/∂q̇j,

with inverse q̇j = φj(q, p). The Hamilton function in this phase space is defined as

H(q, p) =
∑n

i=1 pi φ
i(q, p)−L(q, φ(q, p)). The equations corresponding to those of Euler–

Lagrange are Hamilton equations, which provide the integral curves of the vector field in

phase space

XH =
∂H

∂pj

∂

∂qj
−
∂H

∂qj
∂

∂pj
.
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We can also consider such equations for any function H as a starting point. From the

geometric viewpoint the important fact is that there is a Poisson bracket in phase space:

{F,G}(q, p) =

n∑

i=1

(
∂F

∂qi
∂G

∂pi
−
∂G

∂qi
∂F

∂pi

)
. (3)

It provides a Lie algebra structure: it is a bilinear, skew-symmetric product satisfying

Jacobi identity,

{F1, {F2, F3}}+ {F2, {F3, F1}}+ {F3, {F1, F2}} = 0, (4)

plus the additional property:

{F,G1G2} = G1{F,G2}+G2{F,G1}, (5)

and the non-degeneracy condition

{F,G} = 0, ∀G =⇒ F = const. (6)

These properties characterize (non-degenerate) Poisson algebras. Poisson brackets allow

to describe dynamical evolution as follows:

dF

dt
= {F,H}.

So, a constant of the motion is a function F such that {F,H} = 0 and canonical trans-

formations are characterized by {F̄ , Ḡ} = {F,G}.

The geometric framework for the description of classical (and even quantum) systems

is the theory of Hamiltonian dynamical systems [9], [10]. They are triplets (M,ω,H),

where M is a differentiable manifold, ω ∈ Z2(M) is a regular closed 2-form in M , and

H ∈ C∞(M) is a function called Hamiltonian. The non-degeneracy of the symplectic

form ω means that the C∞(M)-linear map ω̂ : X(M) →
∧1

(M) defined by contraction,

i.e. ω̂(X) = i(X)ω, is invertible. The dynamics is then given by the vector field XH such

that i(XH)ω = dH .

We recall that an infinitesimal symmetry of a Hamiltonian dynamical systems

(M,ω,H) is given by a Hamiltonian vector field X ∈ X(M) (i.e., i(X)ω ∈ B1(M)) such

that XH = 0. The important point is that Noether’s theorem establishes a one-to-one

correspondence between infinitesimal symmetries and constants of motion, i.e. : XH = 0

and i(X)ω = df if and only if f is a constant of motion.

IfQ is a differentiable manifold, the cotangent bundle T ∗Q is endowed with a canonical

exact symplectic structure as follows: ω0 = −dθ0 where θ0 is defined by:

If α ∈ TqQ and U ∈ Tα(T
∗Q), θ0α(U) = αq(π∗α(U)).

In local coordinates, θ0 = pi dq
i and ω0 = dqi ∧ dpi.

The 2-form ω of a symplectic manifold (M,ω) being non-degenerate, the map ω̂ :

TM → T ∗M is an isomorphism and every object in TM has a corresponding one

in T ∗M . The object associated to the 2-form ω is a skew–symmetric bivector field Λ

defined by Λ(α, β) = ω̂(ω̂−1(α), ω̂−1(β)). Closedness of ω translates into [Λ,Λ]S = 0,

where [·, ·]S means Schouten bracket. The Poisson bracket of two functions is defined

by {F,G} = Λ(dF, dG). We find in this way a skew-symmetric bilinear map {·, ·} :

C∞(M)× C∞(M) → C∞(M) satisfying (4), (5) and the non–degeneracy condition (6).
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As a generalization, a Poisson bracket is a skew–symmetric bilinear map {·, ·} :

C∞(M) × C∞(M) → C∞(M) in a manifold M satisfying (4) and (5), and when (6)

holds the Poisson bracket is said to be non-degenerate. We can define a bivector field Λ

in M by Λ(dF, dG) = {F,G}, and as a consequence of the assumption (4) such bivector

field satisfies [Λ,Λ]S = 0.

Given L ∈ C∞(TQ), if q ∈ Q and v, w ∈ TqQ, we define a map FL : TQ→ T ∗Q by

FL(v) =
d

dt
L(q, v + t w)∣∣t=0

.

In local coordinates, (qi, vi) 7→ (qi, ∂L/∂vi). The map FL can be used to pull–back

the canonical 2-form in T ∗Q and then we define θL = FL∗θ0 and ωL = FL∗ω0. The

Lagrangian L is said to be regular if FL is a local diffeomorphism, or in an equivalent

way, if ωL is symplectic.

A tangent bundle τQ : TQ → Q is characterized (see e.g. [11] and [12]) by the

existence of: the Liouville vector field ∆∈X(TQ) generating dilations along the fibres and

a (1, 1)-tensor field S, called vertical endomorphism, given respectively by:

(∆f)(q, v) =
d

dt
f(q, etv) | t=0,

where f ∈ C∞(TQ) and

S(q,v)U = ξ(q,v)(τ∗(q,v)U), ∀U ∈ T(q,v)(TQ), v ∈ TqQ,

where ξ(q,v):TqQ→ T(q,v)(TQ) denotes the vertical lift defined as follows:

ξ(q,v)(w)f =
d

dt
f(v + tw) | t=0.

In a natural coordinate system for TQ, induced from a chart in Q,

∆ = vi
∂

∂vi
, S =

∂

∂vi
⊗ dqi.

The image under S of a section for τTQ : T (TQ)→TQ, a vector field in TQ, is a new

vector field in TQ, again. This correspondence will also be denoted S. This tensor can

be used to construct a 1-form dL ◦S which turns out to be the 1-form θL associated to a

Lagrangian L ∈ C∞(TQ), i.e. θL = dL ◦ S. In this way the regular Lagrangians provide

very interesting examples of HDS, (TQ, ωL, EL) with EL = ∆L − L. The dynamics is

given by the vector field XL such that i(XL)ωL = dEL.

There is another vector bundle structure on T (TQ) given by TτQ : T (TQ)→TQ.

Vector fields on TQ that are also sections for TτQ are called second order differential

equations (SODE). They are characterized by S(X) = ∆ and in tangent bundle coordi-

nates look like in (2). Moreover, if L is regular, XL is a SODE.

3. Lie algebroids

Definition 1. A Lie algebroid with base B is a vector bundle A with base B together

with a Lie algebra structure in the space of its sections given by a Lie product [·, ·]A and

a bundle map, called anchor , ρ : A → TB, inducing a map between the corresponding



LIE ALGEBROID GENERALIZATION OF GEOMETRIC MECHANICS 205

spaces of sections, to be denoted with the same name and symbol, such that

ρ([X,Y ]A) = [ρ(X), ρ(Y )], [X,ϕY ]A = ϕ [X,Y ]A + (ρ(X)ϕ)Y,

for any pair of sections of A, X,Y , and each continuous function ϕ defined in B.

When we consider adapted coordinates in A, (x1, . . . , xn, λ1, . . . , λr), where

(x1, . . . , xn) are coordinates in the base manifold and (λ1, . . . , λr) coordinates in the

fibres associated with the choice of a basis of local sections of the Lie algebroid, {ξα | α =

1, . . . , r}, then

[ξα, ξβ ]A =

r∑

γ=1

cαβ
γ ξγ , α, β = 1, . . . , r,

and the coordinate expression of the anchor map is

ρ(ξα) =

n∑

i=1

ai α
∂

∂xi
, α = 1, . . . , r,

with cαβ
γ and ai α being the so called structure functions of the Lie algebroid.

The simplest example is that of a Lie algebra g considered as a vector bundle over a

single point.

Another simple example is the tangent bundle TB, when choosing the identity as

anchor map ρ and the commutator of vector fields as [·, ·]A. With the usual coordinates

(qi, vi) in TB induced from coordinates (qi) in the base B, the structure functions are

cij
k = 0, aij = δij . However, in arbitrary coordinates in TB the structure functions do

not vanish. Moreover, an integrable subbundle of TB with the inclusion as anchor map

and the Lie product on the space of sections induced from that of TB is also a simple

example of Lie algebroid.

There exist alternative Lie algebroid structures on the tangent bundle TB. We recall

that given a Lie algebra g we can consider it as a g-module by means of the adjoint action.

The linear mappings A : g → g are 1-cochains and the coboundary of such 1-cochain (see

e.g. [13, 14, 15]) is

(δA)(a1, a2) = [a1, A(a2)]− [a2, A(a1)]−A([a1, a2]).

What is very relevant is that for any linear map A, δA defines a skew-symmetric

bilinear map, which can be denoted [·, ·]A:

[a1, a2]A = [A(a1), a2] + [a1, A(a2)]−A([a1, a2]).

The Nijenhuis torsion of A is defined by

T (A)(a1, a2) = A([a1, a2]A)− [A(a1), A(a2)],

i.e.

T (A)(a1, a2) = A([a1, A(a2)]− [a2, A(a1)]−A([a1, a2]))− [A(a1), A(a2)],

and A is said to be a Nijenhuis tensor if its torsion vanishes: T (A) = 0.

The main theorem (see [16]) is that if A is a Nijenhuis tensor, then δA defines a new

Lie bracket which is compatible with the original Lie algebra structure, and A is a Lie

algebra homomorphism of (g, [·, ·]A) into (g, [·, ·]).
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We can now consider the case of g being the Lie algebra of vector fields on a manifold

B. A Nijenhuis structure on B is a (1, 1)-tensor field N with vanishing Nijenhuis torsion,

where the Nijenhuis torsion is defined by

T (N)(X,Y ) = − [NX,NY ] +N ([NX,Y ] + [X,NY ])−N2 [X,Y ] , (7)

where X,Y ∈ X(M), so (B,N) is a manifold with Nijenhuis structure if

T (N)(X,Y ) = 0. (8)

A Nijenhuis structure on a manifold B defines an alternative Lie algebroid structure

on TB with bracket

[X,Y ]N = [NX,Y ] + [X,NY ]−N [X,Y ] , (9)

and anchor map given by ρ = N : TB → TB, because, as indicated above, the bracket

[·, ·]N satisfies Jacobi identity (N is a assumed to be a Nijenhuis tensor) and for any

function f ∈ C∞(B),

[X, fY ]N = f [X,Y ]N + ((NX)f)Y.

As an interesting example, the vertical endomorphism in a tangent bundle is a Nijen-

huis tensor in TB and it may be used to endow the tangent bundle τTB : T (TB) → TB

with an alternative algebroid structure, for which

[X,Y ]S = [SX, Y ] + [X,SY ]− S[X,Y ].

Another very interesting example of Lie algebroid is that of the cotangent bundle of

a Poisson manifold (P,Λ). It is a Lie algebroid when we define [17]

{α, β} = LΛ̂(α)β − LΛ̂(β)α− d[Λ(α, β)],

and the anchor ρ is given by ρ(α)f = Λ(α, df). Here Λ̂(α) is defined by 〈β, Λ̂(α)〉 =

Λ(α, β). This Lie bracket in the space of 1-forms satisfies {df, dg} = d{f, g}, for any pair

of functions in P . Notice that a function H ∈ C∞(P ) defines a dynamical vector field

XH = {·, H} and that if two 1-forms are invariant underXH , then {α, β} is also invariant.

In other words, the Lie bracket so defined in the space of 1-forms in a Poisson manifold,

furnishes a method for associating an invariant 1-form with a couple of invariant 1-forms

much in the same way as the commutator of two symmetry vector fields for XH is again

a symmetry.

A remarkable property is that if A → B is a vector bundle with a structure of Lie

algebroid, then the dual bundle A∗ → B is endowed with a homogeneous (of degree minus

one) Poisson structure Λ, LZΛ = −Λ, with Z being the vector field generating dilations

along the fibres of A∗, and the converse property is also true:

Theorem 1. The vector bundle π : A → B is an algebroid with base B and anchor

ρ : A → TB if and only if the dual bundle A∗ → B is a Poisson manifold whose linear

functions form a Lie subalgebra.

In particular, if B reduces to a point and A = g is a Lie algebra, we find the well-known

case of the canonical Poisson structure on the dual of the Lie algebra, g∗. As another

example, when A = TB, then A∗ = T ∗B and the Poisson structure in T ∗B is the

canonical symplectic structure on the cotangent bundle.
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In order to describe the Poisson structure of A∗ it suffices to give the Poisson brackets

of a class of functions such that their differentials span the cotangent space at each point

of A∗. Such a class of functions is given by functions which are affine in the fibres. Those

functions which are constant on the fibres, basic functions, correspond to pull-back of

functions on B. On the other hand, functions that are linear in the fibres can be identified

with sections of A. If f and g are functions on B and ξ and η are sections in A, their

bracket relations as functions on A∗ are

{f, g} = 0, {f, ξ} = ρ(ξ)f, {ξ, η} = [ξ, η].

Given adapted coordinates in A, (q1, . . . , qn, λ1, . . . , λr), and with the corresponding dual

coordinates, (q1, . . . , qn, µ1, . . . , µr), the defining relations of the Poisson structure are

{qi, qj} = 0, {µα, µβ} =
∑

γ∈Λ

cαβ
γµγ , {qi, µα} = ai α.

4. Exterior algebra of a Lie algebroid. Let (A, ρ, [·, ·]A) be a Lie algebroid, and

consider the exterior algebra of such a Lie algebroid via the exterior algebra
∧•

A∗ of

the dual of A. The sections of
∧•

A∗ are called A-forms. Their set is a C∞(B)-module,

(Γ(
∧• A∗)). An A-(k)-form is a form such that θ ∈ Γ(

∧k A∗).

We can define an “A-exterior” differential operator which takes an A-(k)-form into

an A-(k + 1)-form as follows:

If f ∈ C∞(B), then 〈df, v〉 = ρ(v)f , while if θ is a A-(k)-form, k ≥ 1, dA is given by

dAθ(v1, . . . , vk+1) =
∑

i

(−1)i+1ρ(vi)θ(v1, . . . , v̂i, . . . , vk+1) +

+
∑

i<j

(−1)i+jθ([vi, vj ]A, v1, . . . , v̂i, . . . , v̂j , . . . vk+1),

for v1, . . . , vk+1 ∈ Γ(A).

The Lie algebroid axioms imply that dA is a C∞(B)-multilinear map such that d2A = 0

and is a super–derivation of degree 1, i.e.

dA(θ ∧ ω) = dAθ ∧ ω + (−1)|θ|θ ∧ dAω.

Observe that an exterior derivation dA satisfying d2A = 0 on Γ(
∧•

A∗) is equivalent

to the Lie algebroid structure on A; furthermore, one can see Γ(
∧•

A∗) as the algebra

of functions on the superspace ΠA (where Π denotes parity reversion), so the differential

dA can be interpreted as an odd vector field of degree 1.

In the example of A = g, where ρ = 0 and [ξα, ξβ ]A = cαβ
γ ξγ , then the differential

operator is defined by:

dAθ(v1,. . ., vk+1)=
∑

i<j

(−1)i+jθ([vi, vj ]A,v1,. . .,v̂i,. . .,v̂j ,. . .,vk+1),

where vi ∈ g, i.e., this is the Chevalley operator (Chevalley–Eilenberg), and generate the

Lie algebra cohomology of g.

When we choose A = TB, the anchor is the identity and the commutator of vector

fields the product [·, ·]A, the exterior operator reduces to
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dAθ(X1, . . . , Xi, . . . , Xk+1) =
∑

i

(−1)i+1Xiθ(X1, . . . , X̂i, . . . , Xk+1)

+
∑

i<j

(−1)i+jθ([Xi, Xj]A, X1, . . . , X̂i, . . . , X̂j , . . .Xk+1),

where Xi ∈ X(B), which is the de Rham operator, and its associated cohomology is de

Rham cohomology.

We can also consider the Lie algebroid structure defined in τTB : T (TB) → TB by

the vertical endomorphism S, and then

dSθ(X1, . . . , Xi, . . . , Xk+1) =
∑

i

(−1)i+1S(Xi)θ(X1, . . . , X̂i, . . . , Xk+1)

+
∑

i<j

(−1)i+jθ([Xi, Xj ]S , X1, . . . , X̂i, . . . , X̂j , . . . Xk+1),

which is nothing but the expression (2.4.23) for dS used in [18], but remark that it appears

here in a natural way as the exterior differential operator associated to this alternative

algebroid structure.

5. Applications in geometrical mechanics. The geometric approach to classical

mechanics considers that the configuration space is a differentiable manifold Q and the

tangent bundle τQ : TQ→ Q is the velocity-phase space.

The vector bundle τTQ : T (TQ)→TQ is endowed with another vector bundle structure

given by TτQ : T (TQ)→TQ. Vector fields on TQ that are also sections for TτQ are called

second order differential equations (SODE). The set of such SODE vector fields will be

denoted Xs(TQ). Note that X ∈ Xs(TQ) if and only if S(X) = ∆.

As indicated before, we can see a Lie algebroid over B as a new “tangent bundle” for

B. As TQ plays a relevant role in the geometrical approach to the Lagrangian formalism

of classical mechanics, we can try to extend the formalism to this new framework of Lie

algebroids. Now B will play the role of configuration space Q and A will take the place

of velocity phase space TQ.

The first method of generalizing the theory is the one proposed in [2, 3] and is based

on the generalized Legendre transformation. So, if L is a real-valued function on the Lie

algebroid A over M , the Legendre mapping FL : A → A∗ of L is defined as the fibre

derivative of L, i.e., if b ∈ B and Lb : A → R is given by the restriction to π−1(b),

FL(v)(w) = Lb∗v(w) =
d

dt
Lb(v + tw)

∣∣∣
t=0

.

The action A is defined by A (v) = 〈FL (v) , v〉, and the energy E is given by A− L.

When FL is a local diffeomorphism we will say that L is a regular Lagrangian. In this

case FL can be used to pull back the Poisson structure from A∗ to a Poisson structure

on A which we will call the Lagrange Poisson structure. {·, E}, is called the Lagrangian

vector field associated with the regular Lagrangian L.

In standard coordinates, if L(q, λ), then FL is defined by µα = ∂L/∂λα, so that

{qi, qj} = 0,

{
∂L

∂λα
,
∂L

∂λβ

}
=

r∑

γ=1

cαβ
γ ∂L

∂λγ
, and

{
qi,

∂L

∂λβ

}
=ai β .
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The action and the energy functions are, respectively,

A =

r∑

α=1

λα
∂L

∂λα
and E =

r∑

α=1

λα
∂L

∂λα
− L.

Lagrange’s equations in Poisson bracket form are

dqi

dt
= {qi, E} and

dλα

dt
= {λα, E}.

Using the bracket relation

{qi, L} =

r∑

β=1

{qi, λβ}
∂L

∂λβ
,

we can rewrite the first Lagrange equation as follows:

dqi

dt
= {qi, E} = {qi,

r∑

β=1

λβ
∂L

∂λβ
− L}

=
r∑

β=1

{qi,
∂L

∂λβ
}λβ +

r∑

β=1

{qi, λβ}
∂L

∂λβ
− {qi, L}

=

r∑

β=1

{qi,
∂L

∂λβ
}λβ =

r∑

β=1

ai β λ
β

=

r∑

β=1

(
ρ (ξβ) · q

i
)
λβ = ρ

( r∑

β=1

λβ ξβ

)
· qi .

A tangent vector v to a Lie algebroid A at a point λ is called admissible when

TprA(v) = ρ(v), where TprA : TA → TM is the derivative of the vector bundle projec-

tion prA : A →M . A curve in A is called admissible if its tangent vectors are admissible.

A vector field X on A is a second order differential equation (SODE) if its values are

all admissible vectors. Thus, a vector field on A is a second order differential equation

iff all its integral curves are admissible. The equation dqi

dt
= ρ(

∑
β∈Λ λ

βξβ) · q
i shows

that the Lagrangian vector field associated with any regular Lagrangian is a second order

differential equation in the preceding sense.

The main difficulty of this approach is that it is only possible for regular Lagrangians,

otherwise FL is not invertible and the pull-back of the Poisson structure in A∗ is not

well defined. Moreover, it is quite difficult the analysis of questions such as the study of

equivalence of Lagrangians. So we will present next the alternative approach developed

in [4], still valid for singular Lagrangians and allowing us a new perspective.

6. The prolongation of a Lie algebroid. In the generalization of the Lagrangian

formalism, when the Lie algebroid A is playing the role of TQ there is no possibility

of defining an object corresponding to the vertical endomorphism: the dimension of the

fibres does not coincide with the dimension of the tangent space at a point in the base. The

tangent bundle TA will be a 2(n+m)-dimensional space with coordinates (xi, yα, ẋi, ẏα)

and the two sets of coordinates ẋi and yα cannot be interchanged.
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We need to look for a new bundle LA playing a role similar to the one played by

T (TQ). Let us consider the total space of the induced bundle ρ∗(Tτ), namely

LA = {(b, v) ∈ A× TA | ρ(b) = Tτ(v)}.

and consider it as a vector bundle over A w.r.t. τ1(b, v) = τ(v) = a.

We will use the redundant notation (a, b, v) to denote the element (b, v) ∈ LA such

that v ∈ TaA. Then, τ1(a, b, v) = a and

LA = {(a, b, v) | v ∈ TaA, τ(a) = τ(b), ρ(b) = Tτ(v)}.

We recall that ρ∗(Tτ) is defined by the commutative diagram

LA = ρ∗(TA)
i

−−−−−→ TA

τ2

y

y
Tτ

A
ρ

−−−−−→ TM

.

The remarkable point is that LA can be considered as a vector bundle over A in two

inequivalent ways, either by means of the projection τ1 : LA → A given by τ1(a, b, v) = a

or by the projection τ2 : LA → A is given by τ2(a, b, v) = b. The projection τ2 : LA → A

plays the role of TτQ : T (TQ) → TQ.

Even more, we can define the projection ρ1 : LA → TA on the third argument,

ρ1(a, b, v) = v. It will be the anchor of the prolonged algebroid.

Vertical elements of LA are those of ker τ2: (a, 0, v) ∈ LA such that v ∈ ker τ∗a. The

set of vertical elements of LA is the subbundle denoted Ver(LA).

If z is vertical, then ρ1(z) is vertical, but the converse is not true, but only when ρ is

injective

In the coordinates we mentioned before, if the coordinates of a are (xi, yα), those of

b are (xi, zα), and v is given by

v = v̄i
∂

∂ẋi
+ vα

∂

∂zα
,

then the condition ρ(b) = Tτ(v) is written

v̄i = ρi αz
α,

in such a way that the coordinates of (a, b, v) are (xi, yα, zα, vα).

As A is a vector bundle the fibres can be identified with the vertical tangent spaces

via the vertical lift

bVa F =
d

dt
F (a+ t b)|t=0.

We can define the vertical lift ξV : A×M A → LA by

ξV (a, b) = (a, 0, bVa ).

This is a vector bundle isomorphism from pr1 : A×M A → A to τ1 : Ver(LA) → A.

Each σ ∈ Sec(τ) defines a section σV ∈ Sec(τ1), called vertical lift of σ, by

σV (a) = ξV (a, σ(τ(a))).
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A section η of LA is said to be projectable if there exists a section σ for τ such that

τ2 ◦ η = σ ◦ τ . Then the vector field ρ1(η) is projectable to M .

Let us remark that z = (a, b, v) ∈ LA is not determined by giving the action of v on

functions. Instead, z can be given by the element (a, b) of A ×M A and the action of v

on linear functions.

If σ ∈ Sec(τ), the complete lift σc ∈ Sec(τ1) is the section projecting onto σ and

satisfying

ρ1(σc)(θ̂) = d̂σθ.

Here dσ means

dσ = iσ ◦ d+ d ◦ iσ.

Coordinate expressions: If a = (mi, aα), b = (mi, bα), then

v = ρi α b
α ∂

∂xi

∣∣∣∣
a

+ vα
∂

∂yα

∣∣∣∣
a

,

and denote the coordinates of (a, b, v) by (mi, aα, bα, vα),

ρ1(x, y, z, v) = ρi α z
α ∂

∂xi

∣∣∣∣
(x,y)

+ vα
∂

∂yα

∣∣∣∣
(x,y)

.

A local basis of sections of LA is given by:

Xα(a) =

(
a, eα(τ(a)), ρ

i
α

∂

∂xi

∣∣∣∣
a

)
,

Vα(a) =

(
a, 0,

∂

∂yα

∣∣∣∣
a

)
.

If V is the section of LA, V (x, y) = (xi, yα, Zα(x, y), V α(x, y)),

V = Zα Xα + V α Vα,

ρ1(V ) = ρi α Z
α(x, y)

∂

∂xi

∣∣∣∣
(x,y)

+ V α(x, y)
∂

∂yα

∣∣∣∣
(x,y)

.

The vertical and complete lifts of σ = σα eα are:

σV = σα Vα, and ρ1(σV ) = σα ∂

∂yα
.

σc = σαXα + (σ̇α − Cα
βγσ

βyγ)Vα,

ρ1(σc) = ρi ασ
α ∂

∂xi
+ (σ̇α − Cα

βγσ
βyγ)

∂

∂yα
.

Theorem 2. There exists a Lie algebroid structure on τ1 : LA → A such that the

anchor is ρ1 and the bracket satisfies

[σV , ηV ] = 0, [σV , ηc] = [σ, η]V , [σc, ηc] = [σ, η]c,

for any couple of sections σ, η ∈ Sec(A).

The structure functions of LA are given by

ρ1(Xα) = ρi α
∂

∂xi
, ρ1(Vα) =

∂

∂yα
,

[Xα,Xβ ] = cγαβXγ , [Xα,Vβ] = 0, [Vα,Vβ] = 0.
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If {Xα,Vα} denotes the dual basis, then

dF = ρiα
∂F

∂xi
Xα +

∂F

∂yα
Vα,

and in particular,

dxi = ρiα Xα, dyα = Vα,

and the differential of sections of (LA)∗ is determined by

dXα = −
1

2
cαβγ X

β ∧ X γ , dVα = 0.

Related constructions to those given here has been considered in [19].

Liouville section and vertical endomorphism. The Liouville section ∆ is the section of

τ1 given by

∆(a) = ξV (a, a) = (a, 0, aVa )

The vertical endomorphism is an endomorphism of τ1 : LA → A defined by

S(a, b, v) = (a, 0, bVa ),

and therefore

S(σV ) = 0, and S(σc) = σV , ∀σ ∈ Sec(A).

As two important properties, ImS = kerS = Ver(LA) and then S2 = 0, and the

Nijenhuis tensor of S vanishes NS = 0. The coordinate expressions of ∆, ρ1(∆) and S

are

∆ = yα Vα, ρ1(∆) = yα
∂

∂yα
, S = Vα ⊗Xα.

A tangent vector v ∈ TaA is called admissible if Tτa(v) = ρ(a). A curve in A is

admissible if its tangent vectors are admissible. Then v ∈ TaA is admissible if and only

if (a, a, v) ∈ LA, i.e.,

Adm = {z ∈ LA | τ1(z) = τ2(z)}.

The important result is that Γ ∈ Sec(LA) takes admissible values iff τ2 ◦ Γ = idA, or

equivalently, iff S(Γ) = ∆. Such a section is said to be a SODE on A. In local coordinates,

Γ(x, y) = yαXα + fα(x, y)Vα,

ρ1(Γ)(x, y) = ρi αy
α ∂

∂xi

∣∣∣∣
(x,y)

+ fα(x, y)
∂

∂yα

∣∣∣∣
(x,y)

.

The integral curves of the SODE Γ, i.e., the integral curves of ρ1(Γ), are to be deter-

mined by the system of differential equations

dxi

dt
= ρi α(x) y

α,
dyα

dt
= fα(x, y).

Using the object S and ∆ so defined we can define a Lagrangian formalism in Lie

algebroids as follows. Let θL be the section of (LA)∗ given by θL = S(dL) which in

coordinates looks θL = ∂L
∂yαX

α. The Cartan 2-form is defined by ωL = −dθL, with

coordinate expression

ωL =
∂2L

∂yα∂yβ
Xα ∧ X β +

1

2

(
∂2L

∂xi∂yα
ρi β −

∂2L

∂xi∂yβ
ρi α +

∂L

∂yγ
Cγ

αβ

)
Xα ∧ Vβ . (10)
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The energy function EL and the dynamical equation are given, respectively by

EL = d∆L− L =
∂L

∂yα
yα − L, (11)

iΓωL = dEL. (12)

For regular Lagrangians this equation can be rewritten as:

dΓ

(
∂L

∂yα

)
= ρi α

∂L

∂xi
− cγαβy

β ∂L

∂yγ
, α = 1, . . . , r,

and it is easy to prove that Γ is a second order differential equation field on the Lie

algebroid A. In this case, the dynamical equations can be rewritten as

dΓθL − dL = 0.

7. Variational principle. The Lie algebra structure in the prolongation of a Lie

algebroid has been defined in terms of brackets of complete and vertical lifts. While there

are other ways to define that structure, one reason for doing so is to follow as close as

possible the results in the case of the canonical Lie algebroid. In that case, the relations

between complete and vertical lifts are fundamental in the development of the variational

calculus, which after all is a basic ingredient of Lagrangian mechanics. In this section we

will consider the variational problem and we will show that the variational equations

defined by a regular Lagrangian L are exactly the equations given in the last section.

Letm0 andm1 be two points of the base manifold B. We consider the set of admissible

curves η: [t0, t1] → A such that γ(t0) = m0 and γ(t1) = m1 for some fixed real numbers

t0 and t1, and where γ = π ◦ η. Given a Lagrangian L ∈ C∞(A) we look for the critical

points of the functional

J(η) =

∫ b

a

L(η(t)) dt

on that set. This is a constrained problem, since the curves we consider are restricted to

be admissible, i.e. they satisfy the constraints

ẋi = ρiα y
α.

A first attempt to solve our variational problem is to use Lagrange multipliers method,

as it is usually done in physics. Nevertheless, the method fails: while the final equations are

the right ones, the method predicts some intermediate equations which are not generally

satisfied, as can be readily seen in particular examples. Other methods, such as the

method of the adjoint equations, also fail.

Therefore, one should be careful in using variational calculus. Instead of considering

all the admissible variations we will find a certain class of variations, which are admissible

and they are determined by complete lifts of sections.

Let σ be a section of A such that σ(m0) = σ(m1) = 0. We consider the vector

fields X = ρ(σ) and Y = ρ1(σc), and we denote by ψs and Ψs their respective flows.

It follows that ψs(m0) = m0 and ψs(m1) = m1. The family of curves η(s, t) = Ψs(η(t))

is a 1-parameter family of admissible variations of η0. Indeed, it is clear that the family

η(s, t) projects onto γ(s, t) = ψs(γ0(t)), and for every fixed s we have that η(s, t) is an
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admissible curve: on the one hand,

∂γ

∂t
(s, t) = Tψs(γ̇0),

and on the other hand,

ρ(η(s, t)) = ρ(Ψs(η0(t))) = Tψs(ρ(η0(t))) = Tψs(γ̇0(t),

where we have taken into account that ρ ◦ Ψs = Tψs ◦ ρ. At the endpoints t = t0 and

t = t1 we have

γ(s, t0) = ψs(γ0(t0)) = ψs(m0) = m0,

γ(s, t1) = ψs(γ0(t1)) = ψs(m1) = m1.

The infinitesimal variation vector field Z is Z = Y ◦η0, and its projection isW = X◦γ0.

Therefore, the variation of L along η(s, t) at s = 0 is

∂(L ◦ η)

∂s
(0, t) = Z(t)L = (Y L)(η0(t)) = (ρ1(σc)L)(η0(t)) = dσcL(η0(t)),

from where
d

ds
J(ηs)

∣∣∣
s=0

=

∫

η0

dσcL.

If σ is a section satisfying the conditions given above, then so is fσ for every function f

on M . Taking into account that (fσ)c = fσc + ḟσV , we have that

0 =

∫

γ0

d(fσ)cL

=

∫

γ0

f̃dσcL+ ḟdσV L

= f̃〈θL, σ
c〉
∣∣∣
η0(t1)

η0(t0)
+

∫

η0

f̃{dσcL− dΓ〈θL, σ
c〉}

=

∫

η0

f̃ iσc{dL− dΓθL},

where we have taken into account that θL is semi-basic and σ vanishes at m0 and m1.

Since f is arbitrary, we have that the vanishing of the variation of J is equivalent to

iσc(dL − dΓθL) = 0,

for every section σ vanishing at m0 and m1. Since δL = dΓθL − dL is semi-basic and σ is

arbitrary we get the dynamical equations δL = 0.
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