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Abstract. We describe a setting of infinite-dimensional smooth (resp., analytic) Lie groups

modelled on arbitrary, not necessarily sequentially complete, locally convex spaces, generalizing

the framework of Lie theory formulated in [R. Hamilton, The inverse function theorem of Nash

and Moser , Bull. Amer. Math. Soc. 7 (1982), 65–222] for Fréchet modelling spaces and in [J.

Milnor, Remarks on infinite-dimensional Lie groups, in: B. DeWitt and R. Stora (eds.), Relativ-

ity, Groups and Topology II, North-Holland, 1983] for sequentially complete modelling spaces.

Our studies were dictated by the needs of infinite-dimensional Lie theory in the context of the

existence problem of universal complexifications. We explain why satisfactory results in this area

can only be obtained if the requirement of sequential completeness is abandoned.

Introduction. The Fundamental Theorem of Calculus, asserting that

γ(b)− γ(a) =

∫ b

a

γ′(t) dt (1)

for every C1-curve γ : [a, b] → E with values in a sequentially complete, locally convex

(s.c.l.c.) space E, plays a central role in the theory of smooth mappings between s.c.l.c.

spaces (as described in [15], for example). Since the Riemann integral
∫ b

a γ(t) dt exists for

every continuous curve γ : [a, b] → E with values in an s.c.l.c. space (whereas this is not

the case for general locally convex spaces E), the setting of s.c.l.c. spaces is certainly one

natural possible framework for differential calculus, and most treatments of differential

calculus impose sequential completeness or other completeness conditions on the locally

convex spaces considered (sequential completeness in [15]; quasi-completeness in [18];

convergence of Mackey-Cauchy sequences in [14]). We remark that the second half of the

ordinary Fundamental Theorem of Calculus generalizes to the setting of s.c.l.c. spaces

as well: for every continuous curve γ : I → E defined on an interval around t0 with
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values in E, we have γ(t) = d
dt

∫ t

t0
γ(s) ds. Also the existence of complex line integrals

of continuous functions with values in complex s.c.l.c. spaces is guaranteed, and these

integrals play an important role in the theory of complex analytic functions on infinite-

dimensional spaces (see [4], [12]).

However, in the context of the existence problem of universal complexifications for

infinite-dimensional Lie groups, as well as the existence problem of Lie group structures

on quotient groups of Lie groups, it turned out that the framework of Lie groups modelled

on sequentially complete spaces is too restrictive and prevents the formulation of results

in their natural generality and simplicity. For example, a recent result in the theory of

Banach-Lie groups says that the topological quotient groupG/N of a Banach-Lie groupG

by a closed normal subgroup N can be made a Banach-Lie group if and only if N is a

(not necessarily split) Lie subgroup of G ([10], Corollary II.4).1 For a well-behaved class

of infinite-dimensional analytic Lie groups whose group multiplication is given locally

by the Baker-Campbell-Hausdorff series, called “BCH-Lie groups,” an analogous char-

acterization of the existence of BCH-Lie group structures on G/N can be obtained ([8],

Corollary 2.21). In contrast, in the setting of those BCH-Lie groups modelled on s.c.l.c.

spaces, we are not allowed to consider G/N as a Lie group when N ≤ G is a closed nor-

mal Lie subgroup for which L(G)/L(N) fails to be sequentially complete, although the

multiplication on G/N is still given locally by the Campbell-Hausdorff series. This seems

utterly unnatural. Similar unnatural (and superfluous) restrictions occur in the study

of universal complexifications of those BCH-Lie groups which are modelled on s.c.l.c.

spaces. All of these problems disappear immediately once the hypothesis of sequential

completeness is abandoned. This experience finally convinced the author that Lie groups

modelled on arbitrary locally convex spaces are necessities, not pathologies.

In this article, we present the basic theory of such groups (both smooth and analytic

ones), and the underlying differential calculus. Here, the first essential observation is that

only one half of the Fundamental Theorem of Calculus (the one stated in Equation (1)

above) is actually needed to make differential calculus work. The second very simple, but

essential observation is that no appeal to sequential completeness needs to be made to

establish the existence of the relevant integrals: the integral in Equation (1) exists be-

cause the left hand side of Equation (1) is that integral (see also [13], Appendix). Having

observed this, all basic results of differential calculus as compiled in Milnor [15] in the

sequentially complete case carry over to the general case (Section 1). We remark that

the concept of differentiability used here goes back to Michal and Bastiani ([2], cf. also

[5]). For a comparative study of this and various other notions of differentiability, the

reader is referred to Keller [13] (where sequential completeness is not assumed either).

Equivalents of many of the results assembled in Section 1 can also be found in this more

specialized text. Still, readers mainly interested in Lie groups may find Section 1 useful

as it provides a brief, self-contained exposition of selected results particularly useful for

infinite-dimensional Lie theory.

In Section 2 we discuss real and complex analytic mappings between open subsets

of arbitrary locally convex spaces. We follow Bochnak and Siciak [3], [4] in the complex

1Note that L(N) need not be complemented in L(G) here.
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analytic case here but combine their ideas and Milnor’s in the real analytic case. Again,

it doesn’t cause any problems to sacrifice sequential completeness.

Having established the foundations of smooth and analytic differential calculus, we

can define smooth manifolds, analytic manifolds, and Lie groups modelled on arbitrary

locally convex spaces, in the usual way. All of the basic results of Lie theory (as formulated

by Milnor) carry over to the general case (Section 3).

We then turn to the class of BCH-Lie groups, which subsumes all Banach-Lie groups,

loop groups, and “linear” direct limit Lie groups (Section 4). We discuss the above prob-

lems whose solutions essentially depend on the availability of differential calculus for

arbitrary locally convex spaces, and which formed the stimulus for our investigations.

1. The differential calculus of smooth mappings. In this section, we describe

the differential calculus of smooth mappings between open subsets of arbitrary locally

convex spaces. Throughout the following, K ∈ {R,C}.

We begin with the definition of curves.

Definition 1.1. A C0-curve is a continuous mapping γ : I → E, where E is a locally

convex space and I ⊆ R an open interval. The C0-curve γ is called a C1-curve if γ′(t) :=

lims→0 s
−1(γ(t+ s)− γ(t)) exists for all t ∈ I and γ′ : I → E is continuous.

Remark 1.2. Note that φ◦γ is a C1-curve, for every C1-curve γ : I → E and continu-

ous linear map φ : E → F from E into a locally convex space F . We have (φ◦γ)′ = φ◦γ′.

At the root of our studies is the observation that the essential portion of the Funda-

mental Theorem of Calculus for C1-curves with values in a locally convex space is valid

irrespective of sequential completeness of the space.

This becomes most obvious if we use the weak definition of integrals:

Definition 1.3. Let E be a locally convex space overK, let f : I → E be a continuous

function on an interval I ⊆ R, and a, b ∈ I. If there exists an element v0 ∈ E such that

(∀λ ∈ E′) λ(v0) =

∫ b

a

λ(f(s)) ds,

then we write
∫ b

a
f(s) ds := v0 and say that this integral exists.

Remark 1.4. Note that v0 as above is uniquely determined whenever it exists.

We can now prove without difficulty:

Theorem 1.5 (Fundamental Theorem of Calculus). Let E be a locally convex space,

I ⊆ R be an open interval containing 0, and γ : I → E be a C1-curve. Then the integral
∫ t

0
γ′(s) ds exists for all t ∈ I, and γ(t) = γ(0) +

∫ t

0
γ′(s) ds.

Proof. Let t ∈ I. For every λ ∈ E′, we have

λ(γ(t) − γ(0)) = λ(γ(t)) − λ(γ(0)) =

∫ t

0

(λ ◦ γ)′(s) ds =

∫ t

0

λ(γ′(s)) ds

in view of Remark 1.2, using the ordinary Fundamental Theorem of Calculus for functions

I → K. Hence γ(t)− γ(0) satisfies the defining property of the integral
∫ t

0 γ
′(s) ds, which

therefore exists. The desired formula is apparent.
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Remark 1.6. Clearly, the weak integral
∫ b

a f(t) dt in Definition 1.3 exists if and only

if the corresponding Riemann integral exists (using that the latter always exists in the

completion of E). For our purposes, the point of view of weak integrals is more convenient.

For later use, we recall a useful fact concerning weak integrals, which is an immediate

consequence of the Bipolar Lemma:

Lemma 1.7. Let E be a locally convex space over K and f : [a, b] → E be a continuous

function. Suppose that the weak integral
∫ b

a f(t) dt exists in E. Then

q

(
∫ b

a

f(t) dt

)

≤ (b− a) sup{q(f(t)) : t ∈ [a, b] },

for every continuous seminorm q on E.

Next, let us define and analyze smooth maps between general locally convex spaces.

Definition 1.8. Suppose that E and F are real locally convex spaces, U an open

subset of E, and f : U → F a continuous map. We say that f is of class C1 if the

(two-sided) directional derivative

df(x;h) := lim
t→0

t−1(f(x+ th)− f(x))

exists for all x ∈ U and h ∈ E (where t ∈ R\{0} with x+ th ∈ U), and if df : U ×E → F

is a continuous map. Recursively, we define higher derivatives via

dnf(x;h1, . . . , hn) := lim
t→0

1

t
(dn−1f(x+ thn;h1, . . . , hn−1)− dn−1f(x;h1, . . . , hn−1))

provided that all limits involved exist, and say that f is of class Cn if dkf : U ×Ek → F

exists for all k = 1, . . . , n and is continuous. The mapping f is called smooth (or of class

C∞) if it is of class Cn for all n ∈ N. Throughout the following, r ∈ N ∪ {∞}.

Lemma 1.9. Suppose that E and F are real locally convex spaces, U is an open subset

of E, f : U → F a mapping of class C1, and x0 ∈ U . Then

df(x0; •) : E → F, h 7→ df(x0;h)

is a continuous linear map.

Proof. Clearly df(x0; rv) = rdf(x0; v) for all v ∈ E and r ∈ R. Now suppose that

v, w ∈ E; then there is δ > 0 such that x0 + rv + sw ∈ U for all r, s ∈ R such that |r|,

|s| ≤ δ. Using Theorem 1.5 twice, we calculate for |t| ≤ δ:

f(x0 + t(v + w))

= f(x0 + tv) +

∫ 1

0

df(x0 + tv + stw; tw) ds

= f(x0) +

∫ 1

0

df(x0 + stv; tv) ds+

∫ 1

0

df(x0 + tv + stw; tw) ds

= f(x0) + t(df(x0; v) + df(x0;w))

+t

∫ 1

0

[df(x0 + stv; v)− df(x0; v) + df(x0 + tv + stw;w)− df(x0;w)] ds;
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note that the integral in the last line exists, as its integrand is a sum of integrands for

which the integrals exist.2 Now suppose that a continuous seminorm q on F and ε > 0 are

given. By continuity of df(•; v) and df(•;w), there exists a convex zero-neighbourhood W

in E such that x0 +W ⊆ U and q(df(x; v) − df(x0; v)) ≤
ε
2 , q(df(x;w) − df(x0;w)) ≤

ε
2

for all x ∈ x0 + W . There is 0 < δ0 ≤ δ such that rv + sw ∈ W for all s, t ∈ R with

|s|, |t| ≤ δ0. Then for any t ∈ R such that 0 < |t| < δ0, we deduce from the displayed

formulas and Lemma 1.7 that q(t−1[f(x+ t(v+w))−f(x0)]− [df(x0; v)+df(x0;w)]) ≤ ε.

We have proved that limt→0 t
−1(f(x+ t(v + w)) − f(x0)) = df(x0; v) + df(x0;w).

To ensure that a mapping on a product is of class C1, we only need to establish

existence and continuity of the partial derivatives.

Lemma 1.10. Let E, F , and G be real locally convex spaces, and let U ⊆ E and

V ⊆ F be open subsets. Suppose that f : U × V → G is a continuous map such that

df(x; v) exists for all x ∈ U ×V and v ∈ E×{0} ∪ {0}×F , and suppose that the mappings

(U × V )× E → G, (x, v) 7→ df(x; (v, 0))

and

(U × V )× F → G, (x,w) 7→ df(x; (0, w))

are continuous. Then f is of class C1.

Proof. The proof of Lemma 1.9 shows that df(x; (v, w)) exists for all (v, w) ∈ E × F

and x ∈ U×V , and that it is given by df(x; (v, w)) = df(x; (v, 0)+(0, w)) = df(x; (v, 0))+

df(x; (0, w)). In view of the continuity hypothesis made in the lemma, we deduce from

the preceding formula that df is continuous. Thus f is of class C1.

Proposition 1.11. Suppose that f : U → F is a mapping of class C1, where F is a

real locally convex space and U an open subset of a real locally convex space E. If df = 0

on U × E, then f is constant on each connected component of U .

Proof. Making use of the Hahn-Banach Theorem, we can reduce to the case where

F = R. Every point x0 ∈ U has an open star-shaped (or even convex) neighbourhood V

in U . We readily deduce from the well-known one-dimensional case that f is constant

on V . Hence f is locally constant and therefore constant on each connected component

of U .

Here is our first version of the Chain Rule.

Proposition 1.12. Suppose that E, F and G are real locally convex spaces, and

suppose that f : U → V and g : V → G are mappings of class C1, where U ⊆ E and

V ⊆ F are open subsets. Then g ◦ f : U → G is a mapping of class C1, and

(∀x ∈ U ; ∀v ∈ E) d(g ◦ f)(x; v) = dg(f(x); df(x; v)). (2)

Proof. Note first that the mapping g ◦ f is continuous as a composition of continuous

maps. If we can show that (2) holds, then clearly d(g ◦f) will be continuous. So, let x ∈ U

and v ∈ E. There is δ > 0 such that x+ [−δ, δ]v ⊆ U . As df(x; v) exists, we have

(g ◦ f)(x+ tv) = g( f(x) + t [df(x; v) + r(t)] )

2This argument will be used ever and ever again, without further mention.
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for all t ∈ [−δ, δ], where r : [−δ, δ] → F is a continuous function with r(0) = 0. We

abbreviate w(t) := df(x; v) + r(t). Shrinking δ if necessary, we may assume that f(x) +

stw(t) ∈ V for all t ∈ [−δ, δ] and all s in an open interval I containing [0, 1]. It is apparent

from the definition of mappings of class C1 that γ : I → G, γ(s) := g(f(x) + tsw(t)) is

a C1-curve; we have γ′(s) = dg(f(x) + tsw(t); tw(t)) = t dg(f(x) + tsw(t);w(t)). The

Fundamental Theorem of Calculus (Theorem 1.5) yields

(g ◦ f)(x+ tv) = γ(1) = γ(0) +

∫ 1

0

γ′(s) ds

= g(f(x)) + tdg(f(x); df(x; v))

+ t

∫ 1

0

[dg(f(x) + tsw(t), df(x; v) + r(t)) − dg(f(x); df(x; v))] ds

= g(f(x)) + tdg(f(x); df(x; v))

+ t

∫ 1

0

[dg(f(x) + tsw(t), df(x; v)) + dg(f(x) + tsw(t); r(t)) − dg(f(x); df(x; v))] ds.

Now suppose that q is any continuous seminorm on G, and ε > 0. In view of the

compactness of [0, 1] we deduce from the continuity of the mappings

Φ: [−δ, δ]× [0, 1] → G, Φ(t, s) = dg(f(x) + tsw(t); r(t))

and

Ψ: [−δ, δ]× [0, 1] → G, Ψ(t, s) = dg(f(x) + tsw(t), df(x; v)) − dg(f(x); df(x; v))

satisfying Φ(0, •) = 0 and Ψ(0, •) = 0, that there exists 0 < δ0 < δ such that q(Φ(t, s)) ≤ ε
2

and q(Ψ(t, s)) ≤ ε
2 for all t ∈ [−δ0, δ0] and s ∈ [0, 1]. We deduce from Lemma 1.7 and the

above longish formulas for (g ◦ f)(x+ tv) that

q

(

1

t
(g(f(x+ tv))− g(f(x))) − dg(f(x); df(x; v))

)

≤ ε

for all t ∈ R with 0 < |t| < δ0. We have proved that limt→0 t
−1(g(f(x+ tv))− g(f(x))) =

dg(f(x); df(x; v)).

Proposition 1.13. Suppose that f : U → F is a mapping of class Cr, where F is a

real locally convex space and U an open subset of a real locally convex space E. Then

dkf(x; •) : Ek → F, (v1, . . . , vk) 7→ df(x; v1, . . . , vk)

is a symmetric, continuous, k-linear mapping, for every x ∈ U and k ∈ N such that

k ≤ r.

Proof. We may assume that k = r. It is immediate from the definition of mappings of

class Ck that dkf(x; •) is continuous. In view of the Hahn-Banach Theorem, the remaining

assertions will follow if we can prove them in the case F = R. It is also clear that dkf(x; •)

will be a symmetric k-linear map if we can show that dk(f |E0∩U )(x; •) is a symmetric

k-linear map for all finite-dimensional subspaces E0 of E containing x. Thus dim(E) < ∞

without loss of generality. For Ck-mappings between open subsets of finite-dimensional

spaces however, the assertion is well-known.
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Our next goal is to show that compositions of Cr-maps are Cr-maps. We shall obtain

this important fact as an immediate consequence of the following technical lemma. Only

for internal use in this article, let us agree on the following terminology. Given a function

f : U → F , where U is an open subset of a locally convex space E and F is a locally

convex space, let us say that f is of class C̃1 if it is of class C1, and set Df := df .

Inductively, let us say that f is of class C̃k+1 if f is of class C̃k and Dkf is of class C1. We

set Dk+1f := D(Dkf) in this case. Thus Df : U ×E → F , D2f : (U ×E)× (E×E) → F ,

and in general Dkf : U × E2k−1 → F , noting that 1 + 2 + 22 + · · ·+ 2k−1 = 2k − 1.

Lemma 1.14. Let E and F be real locally convex spaces, f : U → F be a continuous

function defined on an open subset U of E, and k ∈ N. Then f is of class Ck if and only

if f is of class C̃k.

Proof. Given n ∈ N, we abbreviate |n] := {1, 2, . . . , n }.

Claim 1. If f is of class Ck, then f is of class C̃k. For i = 1, . . . , k, there are functions

ni
•
: |2k − 1]|i] → N0 such that, for all x ∈ U and v = (v1, . . . , v2k−1) ∈ E2k−1,

(Dkf)(x; v) =

k
∑

i=1

∑

α∈|2k−1]|i]

ni
αd

if(x; vα(1), . . . , vα(i)). (3)

We prove the claim by induction. By definition, f is of class C1 if and only if f is of

class C̃1, and Df = df . Thus the claim holds if k = 1.

Induction Step. Suppose that k ≥ 1 and suppose that f is of class Ck+1. Then f

is of class Ck as well; by induction hypothesis, f is of class C̃k, with Dkf of the form

described in Equation (3). Now, since f is of class Ck+1, it is apparent from Equation (3)

that d(Dkf)((x, v); (w, 0)) exists for all (x, v) ∈ U × E2k−1 and w ∈ E; it is given by

d(Dkf)((x, v), (w, 0)) =

k
∑

i=1

∑

α∈|2k−1]|i]

ni
αd

i+1f(x; vα(1), . . . , vα(i), w), (4)

which is a continuous function of (x, v, w) ∈ U × E2k . On the other hand, it follows

from the i-linearity of the mappings dif(x; •) and Equation (3) that d(Dkf)((x, v), (0, z))

exists, for all (x, v) ∈ U × E2k−1 and z = (z1, . . . , z2k−1) ∈ E2k−1; it is a sum of the

directional derivatives of mappings of the form E2k−1 → F , u 7→ dif(x;uα(1), . . . , uα(i)),

in the direction z at v. A function of the latter form being a composition of an i-linear

map and a linear map (namely, u 7→ (uα(1), . . . , uα(i))), the required directional derivative

has the form dif(x; zα(1), vα(2), . . . , vα(i))+ · · ·+dif(x; vα(1), . . . , vα(i−1), zα(i)); note that

this is a continuous function of (x, v, z). In view of Lemma 1.10, we deduce from (4) and

the preceding consideration that d(Dkf) =: Dk+1f exists, is continuous, and is given by

Dk+1f((x, v); (w, z)) =

k
∑

i=1

∑

α∈|2k−1]|i]

ni
αd

i+1f(x; vα(1), . . . , vα(i), w)

+
k

∑

i=1

∑

α∈|2k−1]|i]

ni
α

i
∑

j=1

dif(x; vα(1), . . . , vα(j−1), zα(j), vα(j+1), . . . , vα(i)),

which can easily be brought to the form (3) (with k replaced by k + 1).
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Claim 2. If f is of class C̃k, then f is of class Ck. Furthermore, there is an injective

function γ : |k] → |2k − 1] such that

(∀x ∈ U, ∀v = (v1, . . . , vk) ∈ Ek) dkf(x; v) = (Dkf)(x;φ(v)), (5)

where φ : Ek → E2k−1 is the mapping determined by

(∀j = 1, . . . , 2k − 1) prj(φ(v1, . . . , vk)) =

{

vi if γ(i) = j

0 else.

Again, the proof is by induction. If k = 1, we have df(x; v) = Df(x; v) = Df(x;φ(v))

with γ := id : |1] → |1] and φ = idE .

Induction Step. Suppose that f is of class C̃k+1, where k ≥ 1. Then f is of class C̃k

and therefore of class Ck by induction hypothesis; furthermore, we have dkf(x; v) =

(Dkf)(x, φ(v)) for all (x, v) ∈ U × Ek for a certain φ (and γ) as above. Thus, given

(x, v) ∈ U × Ek and vk+1 ∈ E, clearly

t−1(dkf(x+ tvk+1; v)− dkf(x; v)) = t−1(Dkf(x+ tvk+1;φ(v)) −Dkf(x;φ(v)))

→ Dk+1f((x, φ(v)), (vk+1 , 0))

as t → 0. We deduce that dk+1f(x; (v, vk+1)) exists: it is given by

dk+1f(x; (v, vk+1)) = Dk+1f((x, φ(v)); (vk+1 , 0)) = Dk+1f(x, φ̌), (6)

where φ̌ : Ek+1 → E2k+1−1 arises from some injection γ̌ : |k + 1] → |2k+1 − 1] in the

desired way. It only remains to note that Equation (6) entails that dk+1f is continuous.

We immediately deduce:

Proposition 1.15. Let E, F , and G be real locally convex spaces, U and V be open

subsets of E and F , respectively, and suppose that f : U → V and g : V → G are mappings

of class Cr. Then the composition g ◦ f : U → G is of class Cr as well.

Proof. We may assume that r ∈ N without loss of generality. The proof is by induction.

The case r = 1 having been settled in Proposition 1.12 above, let us assume now that r ≥ 2

and that compositions of Cr−1-maps are mappings of class Cr−1. Let f, g be mappings

of class Cr as described in the lemma. Then g ◦ f is of class C1 by Proposition 1.12, and

d(g ◦ f)(x; v) = dg(f(x); df(x; v)) for x ∈ U and v ∈ E. Note that dg : V × F → G and

df : U × E → F are mappings of class Cr−1 here, by Lemma 1.14. Both f and df being

Cr−1-maps, it is easy to see that so is h : U×E → V ×F , h(x, v) := (f(x); df(x; v)). Using

the induction hypothesis, we see that d(g ◦ f) = (dg) ◦ h is of class Cr−1 and therefore

of class C̃r−1, whence g ◦ f is of class C̃r. Making use of Lemma 1.14 again, we find that

g ◦ f is of class Cr indeed.

It is convenient to introduce more terminology:

Definition 1.16. Suppose that E and F are real locally convex spaces, U ⊆ E an

open subset, and f : U → F a mapping of class Cr; let x ∈ U . We define δ0xf(v) := f(x)

and δkxf(v) := dkf(x; v, . . . , v) for all v ∈ E and natural numbers k ≤ r. The mapping

δkxf : E → F is called the kth Gateaux differential of f at x.

We can now formulate Taylor’s Theorem as follows:
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Proposition 1.17. Suppose that f : U → F is a mapping of class Cr, where U is an

open subset of a real locally convex space E and F is a locally convex space. Then, for

every k ∈ N0 such that k < r, we have

f(x+ h) = f(x) + δ1xf(h) + δ2xf(h)/2 + · · ·+ δkxf(h)/k! +R

for all (x, h) ∈ U ×E such that x+ [0, 1]h ⊆ U , where the remainder term R is given by

R =
1

k!

∫ 1

0

(1− t)kδk+1
x+thf(h) dt. (7)

Proof. The assertion can be reduced to the case where E has finite dimension. Ap-

plying continuous linear functionals, we readily deduce from the classical multi-variable

Taylor Theorem that the remainder term f(x+ h)− f(x)− · · · − δkxf(h)/k! satisfies the

defining property of the weak integral (7).

The following simple fact will be useful later:

Lemma 1.18. Let E and F be real locally convex spaces, U ⊆ E be an open subset,

and f : U → F be a mapping of class Cr. Then spanR δkxf(E) = spanR dkf ({x}×Ek) for

all x ∈ U and k ∈ N, k ≤ r.

Proof. This is an immediate consequence of [3], Theorem A.

2. Analytic mappings. Real and complex analytic mappings between open subsets

of arbitrary locally convex spaces have already been defined by Bochnak and Siciak [4],

who however formulated all of their results only in the case of sequentially complete

target spaces. We shall use the concept of complex analytic mappings developed in [4],

but a different notion of real analytic mappings, based on Milnor’s ideas.

Definition 2.1. Suppose that E and F are complex locally convex spaces, and U

is an open subset of E. We say that a function f : U → F is complex analytic if it

is continuous and for every x ∈ U , there exists a 0-neighbourhood V in E such that

x+ V ⊆ U and

f(x+ h) =
∞
∑

n=0

βn(h) for all h ∈ V (8)

as a pointwise limit, where βn : E → F is a continuous homogeneous polynomial over C

of degree n, for each n ∈ N0 ([4], Definition 5.6).

Remark 2.2. Provided F is sequentially complete in the preceding situation, it is

well-known that the mapping f is complex analytic if and only if it is complex differen-

tiable on each affine line and continuous ([4], Theorems 6.2 and 3.1).

Definition 2.3. Let E and F be real locally convex spaces, U be an open subset

of E, and f : U → F be a mapping. Copying Milnor’s definition in the sequentially

complete case [15], we say that f is real analytic if it extends to a complex analytic

mapping V → FC on some open neighbourhood V of U in EC.

Real analyticity of a mapping f : U → F is a local property in the sense that real

analyticity of f |Uj
for an open cover (Uj)j∈J of U entails real analyticity of f . In fact,

if f is locally real analytic, then for any x ∈ U we find open, convex neighbourhoods Vx
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of x in U and Wx of 0 in E such that f |Vx
= gx|Vx

for some complex analytic mapping

gx : Nx := Vx + iWx → FC. Given x, y ∈ U , the mappings gx and gy coincide on Vx ∩ Vy

and hence on all of Nx ∩ Ny by the Identity Theorem ([4], Proposition 6.6 II). Thus

g :=
⋃

x∈U gx :
⋃

x∈U Nx → FC is a well-defined complex analytic mapping extending f .

Proposition 2.4. Every real or complex analytic mapping f : U → F as above is

smooth.

Proof. For the proof, we may assume that F is a complex locally convex space and

that f is complex analytic. Making use of Lemma 1.14, we deduce inductively from

[4], Proposition 6.4 that f is smooth as a mapping into the completion F of F ; thus

dkf : U ×Ek → F is defined for each k ∈ N. Let x ∈ U and suppose that f has the local

expansion (8) around x. Then βk = 1
k! δ

k
xf for each k ∈ N0 (see [4]). Lemma 1.18 yields

F ⊃ span(βk(E)) = span(δkxf(E)) = span(dkf (x;Ek)) for each k ∈ N. Thus dkf maps

into F for each k ∈ N, which readily entails that f is smooth as a mapping into F .

Lemma 2.5. Suppose that E and F are complex locally convex spaces, and f : U → F

is a mapping defined on an open subset of E. Then f is complex analytic if and only if

f is smooth and the mapping df(x; •) = δ1x : E → F is complex linear for each x ∈ U .

Proof. If f is complex analytic, with local expansion f(x+h) =
∑∞

k=0 βk(h) around x,

then δ1x = β1 is complex linear; furthermore, f is smooth by Proposition 2.4. Conversely,

suppose that f is smooth and δ1x is complex linear for all x ∈ U . By [4], Theorem 3.1,

Implication (A1) ⇒ (A5) and loc. cit. Theorem 6.2, Implication (iii)⇒(i), the function f

is complex analytic as a mapping into the completion F of F . Given x ∈ U , we then

have f(x+ h) =
∑∞

k=0
1
k! δ

k
x(h) for h in some suitable zero-neighbourhood in E (loc. cit.,

Proposition 5.5). Now f being smooth as a mapping into F , we have δkx(E) ⊆ F for each

k ∈ N0. Therefore f is complex analytic as a mapping into F .

Lemma 2.6. Suppose that f : U → F is a complex analytic mapping, where F is a

complex locally convex space and U an open subset of a complex locally convex space E.

Then df : U × E → F is complex analytic as well.

Proof. In fact, df is smooth since f is so (Lemma 2.5, Lemma 1.14). Furthermore,

δ1x(df) is complex linear for all x ∈ U ×E, since df is complex analytic as a mapping into

the completion of F , by [4], Proposition 6.4. Now apply Lemma 2.5.

Proposition 2.7. Let U and V be open subsets of the complex locally convex spaces E

and F , respectively, and let f : U → V and g : V → G be complex analytic mappings,

where G is a complex locally convex space. Then the composition g◦f is complex analytic.

Proof. The mapping g ◦ f is smooth by Proposition 1.15 and Proposition 2.4. By

Proposition 1.12, we have δ1x(g ◦ f) = (δ1f(x)g) ◦ (δ
1
xf), which is a complex linear mapping

as δ1f(x)g and δ1xf are complex linear by Lemma 2.5. Using the converse direction of

Lemma 2.5, we deduce that g ◦ f is complex analytic.

Proposition 2.8. Compositions of real analytic mappings are real analytic.

Proof. This readily follows from Proposition 2.7 and the definition of real analyticity.
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2.9. We remark that if E and F are Fréchet spaces, then a mapping f as in Defi-

nition 2.3 is real analytic in our sense (i.e., in Milnor’s sense) if and only if it is real

analytic in the sense of [4], Definition 5.6, i.e., if and only if it is continuous and admits

local expansions into continuous homogeneous polynomials over R, as in Equation (8)

(cf. [4], Theorem 7.1). We favour Milnor’s stronger definition of real analytic mappings

here since their compositions are real analytic, whereas the corresponding assertion does

not seem to be clear for real analytic mappings f , g in the sense of Bochnak and Siciak,

unless the spaces E and F containing the domains of f and g are Baire spaces (cf. [4],

Theorem 7.3).

The following two propositions are very useful. First, we show that when an analytic

map factors over a linear quotient map, then the induced map will be analytic as well.

Proposition 2.10. Let E and F be locally convex spaces over K, N be a closed vector

subspace of E, and q : E → E/N =: E1 be the quotient map. Suppose that f : U → F

is a K-analytic (resp., smooth) function, defined on an open subset U of E, such that

f = f1 ◦ q|
U1

U for some function f1 : U1 → F on U1 := q(U). Then f1 is K-analytic (resp.,

smooth).

Proof. We note first that

df1(q(x); q(v)) = lim
t→0

t−1[f1(q(x+ tv)) − f1(q(x))]

= lim
t→0

t−1[f(x+ tv)− f(x)] = df(x; v) = Df(x; v)

for all (x, v) ∈ U × E, whence Df1 = df1 is defined on U1 × E1 and is continuous since

Df1 ◦ (q |U1

U × q) = Df (9)

is continuous, where q |U1

U ×q is an open surjection and therefore a quotient map. Note that

the smooth mapping Df factors to the mapping Df1 on (q× q) (U ×E) by Equation (9).

The apparent induction shows that f1 is of class C̃k for each k, with Dkf = Dkf1 ◦

(q |U1

U × q2
k−1). We deduce from Lemma 1.14 that f1 is smooth. If K = C and f is

complex analytic, then the Gateaux differential δ1zf1 is complex linear for all z ∈ U1, as

δ1q(x)f1 ◦ q = δ1xf for each x ∈ U by Equation (9); Lemma 2.5 shows that f1 is complex

analytic.

Now suppose that K = R and f is real analytic. Then there exists a complex analytic

mapping g : V → FC extending f , where V is an open neighbourhood of U in EC, and

V ∩ E = U . Given x ∈ U , there is a balanced 0-neighbourhood W in EC such that

x + W + W + W + W ⊆ V . Given w1, w2 ∈ W and n1, n2 ∈ W ∩ N , we consider the

mappings h1, h2 : D×D → FC, defined via h1(z1, z2) := g(x+w1+z1w2+n1+z2n2) and

h2(z1, z2) := g(x + w1 + z1w2); here D ⊆ C is the closed unit disk. Then h1 and h2 are

continuous, holomorphic on D×D, and coincide on [−1, 1]2. Hence h1 = h2 in view of [4],

Proposition 6.6 II (Identity Theorem). Thus g(x+w1+ iw2+n1+ in2) = g(x+w1+ iw2)

in particular. There is an open 0-neighbourhood A in E such that A − A ⊆ W . Then

g(x+b) = g(x+b′) whenever b, b′ ∈ B := A+iA such that b−b′ ∈ NC. Hence g|x+B factors

to a mapping g1 : qC(x+B) → FC. As g1 is complex analytic by the above, we deduce that

f1|q(x+A) = g1|q(x+A) is real analytic. Being locally real analytic, f1 is real analytic.
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Proposition 2.11. Suppose that E, F are locally convex K-vector spaces, U an open

subset of E, and f : U → F a K-analytic mapping. If F0 is a sequentially closed vector

subspace of F containing the image of f , then f is also K-analytic as a mapping into F0.

Proof. As F0 is sequentially closed and directional derivatives can be calculated as

limits of sequences of difference quotients, we find inductively that im dnf ⊆ F0 for all

n ∈ N0. If K = C, given x ∈ U we have f(x+ h) =
∑∞

n=0
1
n! δ

n
xf(h) for h ∈ E sufficiently

small, where δnxf : E → F is a continuous complex homogeneous polynomial whose image

is contained in F0 by preceding. Thus f |F0 is complex analytic. In the real case, given

x ∈ U there exists an open 0-neighbourhood W in EC such that x + (W ∩ E) ⊆ U and

g(y) :=
∑∞

n=0
1
n! (δ

n
xf)C(y − x) defines a complex analytic function x + W → FC such

that f(y) = g(y) for all y ∈ x + (W ∩ E) (cf. [4]). Then im g ⊆ (F0)C, so that g|(F0)C is

complex analytic by the above. We deduce that f |F0

x+(W∩E) : x + (W ∩ E) → F0 is real

analytic. Being a locally real analytic mapping, f |F0 is real analytic.

Remark 2.12. It does not seem to be clear whether every complex analytic mapping

f : U → F as in Definition 2.1 is also real analytic in the sense of Definition 2.3 when E

and F are considered as real locally convex spaces (unless E and F are Fréchet spaces).

However, the author doesn’t know of any counterexample.

Remark 2.13. Suppose that a continuous mapping f : U → F from an open zero-

neighbourhood U in a complex locally convex space E to another complex locally convex

space F has the form f(x) =
∑∞

n=0 βn(x) for certain continuous homogeneous polynomi-

als βn over C of degree n. Then f is complex analytic as a mapping into the completion F

of F by [4], Theorem 5.1. The author believes that, unless F is sequentially complete (in

which case the cited theorem applies), one should not expect that f is complex analytic

as a mapping into F . However, explicit counterexamples do not seem to be known.

3. Infinite-dimensional Lie groups and manifolds. Having generalized all basic

results of differential calculus from the sequentially complete case to the general case, we

can proceed line by line as Milnor [15] to define and study smooth (resp., real analytic,

resp., complex analytic) manifolds modelled on arbitrary locally convex spaces (instead

of s.c.l.c. spaces); their tangent manifolds; vector fields on manifolds; and smooth (resp.,

real analytic, resp., complex analytic) Lie groups modelled on arbitrary locally convex

spaces.

We shall not give any proofs, since all arguments would be identical with Milnor’s.

Definition 3.1. A smooth (resp., real analytic, complex analytic, Cr)manifold , mod-

elled on a locally convex space V , is a Hausdorff topological space M , together with a

(maximal) atlas of local charts κ : Mκ → Vκ taking an open subset Mκ ⊆ M homeomor-

phically to an open subset Vκ ⊆ V , such that all transition maps are smooth mappings

(resp., real analytic, complex analytic, of class Cr).3

3The reader may wish to follow Milnor and require in addition thatM be a regular topological
space.
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Only smooth manifolds, real analytic manifolds, and complex analytic manifolds shall

be considered in the following.

3.2. We refer to ([15], notably Section 4) for the definition of the (geometric) tangent

space TxM ∼= V to the manifold M at x ∈ M , the tangent manifold TM , the definition

of smooth, real analytic, and complex analytic mappings φ : M1 → M2 between the

corresponding types of manifolds, and the tangent maps Txφ : TxM1 → Tφ(x)M2. Also

Milnor’s definition and discussions of vector fields carry over word by word to the setting

of manifolds modelled on general locally convex spaces, and we shall not repeat them here.

Definition 3.3. A smooth (resp., real analytic, resp., complex (analytic)) Lie group

is a group G, equipped with a smooth (resp., real analytic, resp., complex analytic)

manifold structure modelled on a locally convex space V such that the inversion map

G → G and group multiplication G × G → G are smooth (resp., real analytic, resp.,

complex analytic) mappings (with the apparent manifold structure on the product). The

Lie algebra of G is the tangent space L(G) := T1(G) ∼= V at the identity element,

equipped with the real (resp., complex) topological Lie algebra structure described in [15],

Section 5.

Remark 3.4. Due to the possible pathologies described in Remark 2.12 above, it

might happen that a complex analytic Lie group G cannot be turned into a real analytic

Lie group by forgetting the complex structure. In particular, it wouldn’t make sense to

speak of real analytic mappings or homomorphisms into G in such a case. However, any

real or complex analytic Lie group G has an underlying smooth Lie group structure (cf.

Proposition 2.4). In particular, we may speak of smooth homomorphism into G.

Remark 3.5. Occasionally, we shall find it convenient to refer to “K-analytic”-Lie

groups, manifolds or mappings instead of real, resp., complex analytic ones, where K ∈

{R,C}. If we speak of “real Lie groups,” it will be clear from the context whether we

refer to smooth Lie groups, real analytic Lie groups, or both.

Let us adapt further standard notations and facts from [15] to our more general

setting.

Definition 3.6. If f : G → H is a smooth homomorphism between smooth Lie

groups, we define L(f) := T1(f) : L(G) → L(H). Then L(f) is a continuous real Lie

algebra homomorphism, and a complex Lie algebra homomorphism if G and H are com-

plex Lie groups and f is complex analytic (cf. [15], Section 7). We write Adg := L(Ig) ∈

Aut(L(G)) for g ∈ G, where Ig : G → G, x 7→ gxg−1. A one-parameter subgroup of a Lie

group G is a smooth homomorphism γ : R → G. For every X ∈ L(G), there is at most

one one-parameter subgroup γX such that γ′
X(0) = X (cf. [15], Section 7). If γX exists

for each X ∈ L(G), we define the exponential function of G as the mapping

expG : L(G) → G, X 7→ γX(1).

Note that we only speak of an exponential function if the latter is defined on all of L(G).

Remark 3.7. If G has an exponential function, then γX = expG(•X) for all X ∈

L(G). Since f ◦γX is a one-parameter subgroup ofH such that (f ◦γX)′(0) = T1f.γ
′
X(0) =
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L(f).X for each X ∈ L(G) if f : G → H is a smooth homomorphism between Lie groups

possessing exponential functions, we have expH ◦L(f) = f ◦ expG in this case (“naturality

of exp”).

Remark 3.8. A Lie group modelled on a non-sequentially complete space need not

have an exponential function (see [9]). If it exists, the exponential function might fail

to be smooth (resp., K-analytic) in pathological cases. It is known that, in general, the

exponential function need not induce a local diffeomorphism at 0: it may fail to be locally

injective at 0, and the exponential image may fail to be an identity neighbourhood. Direct

limits of suitable ascending sequences of finite-dimensional Lie groups provide simple

examples for such behaviour ([7], Example 5.5).

Remark 3.9. Although, as we have seen, sequential completeness of the modelling

spaces doesn’t play a role for most of the basic constructions of Lie theory, of course

there are specific questions where sequential completeness cannot be dispensed with. For

example, the central extension theory for infinite-dimensional Lie groups (see, e.g., [17])

depends vitally on Poincaré’s Lemma, whose proof makes use of sequential completeness.

4. BCH-Lie groups, their Lie quotients and universal complexifications. In

this section, we define a class of well-behaved Lie groups, the Baker-Campbell-Hausdorff

(BCH-) Lie groups, which share important properties of Banach-Lie groups. A convincing

solution to the existence problem of Lie group structures on quotients of BCH-Lie groups,

as well as a convincing solution to the existence problem of universal complexifications of

BCH-Lie groups, depend essentially on the availability of Lie groups modelled on arbitrary

locally convex spaces, not only on sequentially complete ones. We present the solutions

to these problems, and explain why Lie groups modelled on sequentially complete spaces

would not be sufficient.

Definition 4.1. A real or complex analytic Lie group Gmodelled on a locally convex

space is called a Baker-Campbell-Hausdorff (BCH-)Lie group if it has the following

properties:

(a) G has an exponential function expG : L(G) → G (defined on all of L(G)), and there

is an open zero-neighbourhood U in L(G) such that V := expG(U) is open in G

and φ := expG |VU : U → V is a diffeomorphism of real (resp., complex) analytic

manifolds.

(b) There is an open zero-neighbourhoodW ⊆ U in L(G) such that expG(W ) expG(W )

⊆ expG(U) and φ−1(φ(X)φ(Y )) =
∑∞

n=1 βn(X,Y ) =: X ∗ Y is given by the

Campbell-Hausdorff series for X,Y ∈ W (with pointwise convergence).

Thus β1(X,Y ) = X+Y , β2(X,Y ) = 1
2 [X,Y ], β3(X,Y ) = 1

12 ([X, [X,Y ]]+[Y, [Y,X ]]),

etc. Note that every βn is a continuous homogeneous polynomial, the Lie bracket being

continuous (cf. [15], p. 1037).

Example 4.2. Every Banach-Lie group is a BCH-Lie group.

Example 4.3. Let M be a σ-compact, finite-dimensional smooth manifold, 0 ≤ r ≤

∞, and G be a K-analytic BCH-Lie group. Then the mapping group C r
K(M,G) := {γ ∈
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Cr(M,G) : γ|M\K = 1 } can be made a K-analytic BCH-Lie group with Lie algebra

C r
K(M,L(G)), for every compact subset K of M ([8]; cf. [15] when M = K and G is

finite-dimensional). Also the test function groups Dr(M,G) =
⋃

K C r
K(M,G) (as defined

in [1] when G is finite-dimensional) admit natural K-analytic BCH-Lie group structures,

modelled on the locally convex direct limit Dr(M,L(G)) = lim
−→

C r
K(M,L(G)) (see [8],

Section 4).

Example 4.4. Prominent examples of direct limits of finite-dimensional Lie groups,

as GL∞(R) or SL∞(R) (see [16], [7]) are real BCH-Lie groups modelled on non-metrizable

spaces (see [8]). More generally, all analytic subgroups of GL∞(R) (called “linear direct

limit Lie groups” in [8]) are real BCH-Lie groups ([8]; cf. [14], Theorem 47.9). However,

pathological examples of direct limit Lie groups (as [7], Example 5.5) fail to be BCH.

Example 4.5. The diffeomorphism group Diff(M) of any connected, non-singleton,

compact smooth manifold M is not a BCH-Lie group, as it cannot be given a real analytic

structure ([15], Corollary 9.2).

Remark 4.6. The theory of BCH-Lie groups is elaborated in [8], on the foundation

of the differential calculus developed in the present article. In particular, as in the Banach

case it can be shown that every continuous homomorphism between real BCH-Lie groups

is real analytic (and every continuous homomorphism between complex BCH-Lie groups

is smooth). As a consequence, real BCH-Lie groups can be identified with the underlying

smooth Lie groups (or even the underlying topological groups).

We recall the definition of Lie subgroups:

Definition 4.7. A K-analytic BCH-Lie group H is called a K-Lie subgroup of a

K-analytic BCH-Lie group G if the topological group underlying H is a subgroup of G,

equipped with the induced topology, and L(ε) is K-linear, where ε : H →֒ G is the

inclusion map.

Remark 4.8. Note that ε is K-analytic in the preceding situation, and L(ε) is a

topological embedding. We use the latter embedding to identify L(H) with its image

in L(G), which is {X ∈ L(G) : expG(RX) ⊆ H } =: h. Using this identification, the

exponential function of H is expG |h.

Definition 4.9. If G is a K-analytic BCH-Lie group and H a sequentially closed

subgroup of G, we set L(H) := {X ∈ L(G) : expG(RX) ⊆ H }.

Remark 4.10. It can be shown that L(H) is a real Lie subalgebra of L(G), and a

real Lie algebra ideal if H is a sequentially closed normal subgroup of G ([8], Section 2).

Universal complexifications are defined as follows:

Definition 4.11. Let A be a full subcategory of the category of complex Lie groups

and complex analytic homomorphisms. Given a smooth real Lie group G, we say that a

complex Lie group GC ∈ obA, together with a smooth homomorphism γG : G → GC,

is a universal complexification of G in A if for every smooth homomorphism φ : G →

H from G to a complex Lie group H ∈ obA, there exists a unique complex analytic

homomorphism φ̃ : GC → H such that φ̃ ◦ γG = φ.
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We recall the concept of enlargibility:

Definition 4.12. A locally convex topological K-Lie algebra is called enlargible if it

is isomorphic to the Lie algebra of some K-analytic BCH-Lie group.

The following two theorems initiated the studies presented here. The first of these is

[8], Theorem 2.20, which generalizes the Banach case treated before in [10], Theorem II.2.

Theorem 4.13 (Quotient Theorem). Let G be a K-analytic BCH-Lie group with Lie

algebra g, N be a closed normal subgroup of G, and n := {X ∈ g : expG(RX) ⊆ N }. If

K = C, we assume furthermore that n is a complex subalgebra of L(G). Let q : G → G/N ,

Q : g → g/n be the canonical quotient maps. Then the following conditions are equivalent:

(a) There exists a smooth (resp., complex analytic) homomorphism φ : G → H into a

K-Lie group4 H whose exponential function is locally injective at zero, such that

ker(φ) = N .

(b) G/N can be made a K-analytic BCH-Lie group with Lie algebra g/n, such that

q ◦ expG = expG/N ◦Q.

(c) N is a K-Lie subgroup of G.

The second result essentially depending on the availability of Lie groups modelled

on non-sequentially complete spaces is the following characterization of BCH-Lie groups

admitting universal complexifications:

Theorem 4.14 (Complexification Theorem). Given a real BCH-Lie group G, let N

be the intersection of all kernels of smooth homomorphisms from G into complex BCH-Lie

groups. Then the following conditions are equivalent:

(a) G has a universal complexification GC in the category of complex BCH-Lie groups.

(b) N is a Lie subgroup of G, and L(G/N)C ∼= (L(G)/L(N))C is enlargible.

If these conditions are satisfied, then L(GC) = (L(G)/L(N))C. In particular, GC is a

Banach-Lie group (resp., BCH-Fréchet-Lie group) if G is so.

Proof. This is a special case of [8], Theorem 7.2.

Remark 4.15. An analogous characterization of Banach-Lie groups with universal

complexifications in the category of complex Banach-Lie groups was obtained earlier

in [10].

Remark 4.16. Suppose that, on the basis of Milnor’s concept of Lie groups modelled

on s.c.l.c. spaces, we had made sequential completeness of the modelling locally convex

spaces part of the definition of BCH-Lie groups. In this case, whenever L(G)/L(N) fails to

be sequentially complete for a closed normal Lie subgroup N of G, the topological group

G/N could not be made a BCH-Lie group in the situation of Theorem 4.13 (although

the Campbell-Hausdorff series still describes the group multiplication locally). Further-

more, whenever the corresponding topological Lie algebra L(G)/L(N) in the situation

of Theorem 4.14 fails to be sequentially complete, nothing much can be said about the

existence of universal complexifications. Both theorems would have to be reformulated

4Smooth or real analytic in the real case.
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along the lines: “If L(G)/L(N) is sequentially complete, then the following conditions are

equivalent”. The author considers these restrictions as unnatural, depriving the theorems

of their natural simplicity, and it was the desire to remove these unnecessary restrictions

which inspired the studies performed in the present paper.

We conclude the article with another selected result from [8]:

Theorem 4.17. If N = {1} and L(G)C is enlargible in the situation of Theorem 4.14,

then GC is the universal complexification of G in the category of all complex Lie groups

with complex analytic exponential functions.

Proof. This is a special case of [8], Corollary 7.6.

References

[1] S. Albeverio, R. J. Høegh-Krohn, J. A. Marion, D. H. Testard, and B. S. Torrésani,

Noncommutative Distributions, Marcel Dekker, 1993.
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