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Abstract. Let H be a complex Hilbert space and D a hermitian operator on H with fi-

nite spectrum. Then the operators for which the commutator with D is of Schatten class p

form a Banach algebra Bp(H,D). In the present paper we study groups GLp(H,D) associa-

ted to this kind of Lie algebra, and also groups GLp(H, I,D) associated to the Lie subalgebras

Bp(H, I,D) := {x ∈ Bp(H,D): Ix
∗I−1 = −x}, where I is an antilinear isometry with I2 ∈ {±1}.

For p = 2 we determine the full second continuous cohomology for these Lie algebras, and for

the groups we compute all homotopy groups. These results then lead to a direct description

of universal central extensions of the groups GL2(H,D), GL2(H, I,D) and some of their real

forms. In particular we obtain the infinite-dimensional metaplectic and metagonal groups as

special examples. In a last section we discuss associated complex flag manifolds and show that

the unitary forms of the complex groups act transitively.

INTRODUCTION

An important feature of finite-dimensional reductive Lie algebras g is that they always

possess a positive definite bilinear form 〈·, ·〉 and a so-called Cartan involution θ such that
(0.1) 〈[x, y], z〉 = −〈y, [θ(x), z]〉 for x, y, z ∈ g.

Here the case θ = idg corresponds to the case of a compact Lie algebra.

An interesting class of infinite-dimensional Lie algebras generalizing finite-dimensional

real reductive Lie algebras, in the sense that they still have the structure provided by

(0.1), are the L∗-algebras. More precisely, these are Lie algebras g which are real Hilbert
spaces endowed with an isometric Lie algebra involution x 7→ x∗, i.e.,

x∗∗ = x and [x, y]∗ = [y∗, x∗] for x, y ∈ g,
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such that

(0.2) 〈[x, y], z〉 = 〈y, [x∗, z]〉 for x, y, z ∈ g.

Using the Closed Graph Theorem, one can derive the continuity of the Lie bracket on

g from (0.2), so that this requirement does not have to be put into the axioms of an

L∗-algebra. If g is finite-dimensional real reductive, we may define x∗ := −θ(x) for a
Cartan involution θ. A complex L∗-algebra is a real L∗-algebra which is a complex Lie
algebra for which the involution ∗ is antilinear. This easily implies that g can be turned
into a complex Hilbert space by

〈x, y〉C := 〈x, y〉 − i〈ix, y〉, x, y ∈ g,

such that (0.2) is satisfied for the hermitian scalar product 〈·, ·〉C . The structure theory
of real and complex L∗-algebras has mostly been developed by Schue, Balachandran, de
la Harpe and Unsain, where certain key references are [Sch60], [Sch61], [Ba69], [dlH72]

and [Un72]. One finds further references in de la Harpe’s book.

The L∗-algebras of compact type, where x∗ = −x for all x ∈ g, are natural generali-

zations of compact Lie algebras, so that the corresponding groups G are generalizations

of compact groups. This point of view suggests that their representation theory lies at

the heart of the representation theory of infinite-dimensional Lie groups. Although we

won’t deal with representations in the present paper, it has very much been motivated

by [Ne01a], where we approach the representation theory via coadjoint orbits of central

extensions, or equivalently affine coadjoint orbits of G. At many points it turns out to be

important to have specific geometric and topological information on groups correspon-

ding to simple L∗-algebras of compact type and their complexifications. It is the goal of
this paper to provide such information in the concrete setting of groups of operators on

Hilbert spaces, without using the structure theory of L∗-algebras.

The simple infinite-dimensional complex L∗-algebras arise in three series which can
be described as follows. If H is a complex Hilbert space, we write

gl2(H) := {x ∈ B(H): tr(xx∗) <∞}
for the Lie algebra of Hilbert-Schmidt operators on H (cf. Definition I.8). If I:H → H is

an antilinear isometry with I2 ∈ {±1}, we define
gl2(H, I) := gl(H, I) ∩ gl2(H) and gl(H, I) := {X ∈ gl(H):X + IX∗I−1 = 0}.

For I2 = −1 we also write sp2(H, I) := gl2(H, I) and for I
2 = 1 we write o2(H, I) :=

gl2(H, I). This notation is motivated by the observation that β(x, y) := 〈x, I.y〉 defines
a complex bilinear form on H which is symmetric for I2 = 1 and skew-symmetric for

I2 = −1 and which satisfies
gl2(H, I) = {x ∈ gl2(H): (∀v, w ∈ H)β(x.v, w) + β(v, x.w) = 0}.

Each simple infinite-dimensional L∗-algebra g is isomorphic to gl2(H), sp2(H, I) or

o2(H, I) for some infinite-dimensional Hilbert spaceH , and all these algebras are pairwise

non-isomorphic (see [Sch60] for the separable case and [CGM90], [Neh93] and [St99] for

different proofs for the general case). Since we want to treat sp2(H, I) and o2(H, I) in

a uniform way, this leaves us with the two types gl2(H) and gl2(H, I). Separable real
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simple L∗-algebras have been classified independently by Balachandran ([Ba69]), de la
Harpe ([dlH70, 71a]) and Unsain ([Un71, 72]).

Passing from finite-dimensional semisimple complex Lie algebras to infinite-dimensio-

nal L∗-algebras, an important new feature is that these algebras have many non-trivial
central extensions and outer derivations which lead to a large family of related Banach–Lie

algebras, where each one of them has its own specific merits.

It is a general phenomenon in infinite-dimensional Lie theory that non-trivial central

extensions play an important role because geometric actions of groups on certain ma-

nifolds M do not lift to actions on line bundles over M . One first has to enlarge the

group by a central extension. On the representation theoretic side this means that the

original symmetry groups only have projective representations in natural function spaces,

and that central extensions are required to obtain genuine representations. For a general

approach to central extensions of infinite-dimensional Lie groups and criteria for their

existence in terms of topological data we refer to [Ne00b].

It is related, but in general of a different nature, that infinite-dimensional Lie algebras

have many outer derivations, leading to a different kind of extension of the original Lie

algebra. For the classical L∗-algebras, this kind of extension process leads in particular to
the corresponding restricted Lie algebras and groups. For g = gl2(H), resp., gl2(H, I) we

put gb := gl(H): = B(H), resp., gl(H, I). Let D ∈ gb be a hermitian element with finite

spectrum. Then the Lie algebra g(D) := g + zgb(D) is called the restricted Lie algebra

associated to g and D. For g = gl2(H) the restricted Lie algebras gl2(H,D) := g(D) has

the form

gl2(H,D) = gl2(H) +

k∑

j=1

gl(Hj) = g+ zgb(D),

where H = H1 ⊕ · · · ⊕Hk is the orthogonal eigenspace decomposition for D, and zgb(D)
corresponds to the Lie algebra of all operators preserving all the spaces Hj . The termi-

nology “restricted” comes from the fact that operator x = (xij) ∈ gl(H), viewed as a

k × k-block matrix with entries xij ∈ B(Hj , Hi), is contained in gl(H,D) if and only if

all its off-diagonal blocks xij ∈ B(Hj , Hi), i 6= j, are Hilbert–Schmidt, which we view as
a restriction on x.

Now we describe the contents of this paper in some more detail. In Section I we

deal with the central extensions of the Lie algebras related to gl2(H) and gl2(H, I).

In particular we show that gl(H) and gl(H, I) have no non-trivial central extension if

H is infinite-dimensional. Using this information, we calculate the continuous second

Lie algebra cohomology group H2c (g(D),C ) for the restricted Lie algebras g(D) which

turns out to be finite-dimensional. This in turn implies the existence of a universal central

extension which we describe explicitly in Section IV. For universality of central extensions

we use results from [Ne01b], where universal central extensions of infinite-dimensional Lie

groups are studied in detail.

Sections II and III are devoted to the homotopy groups of the corresponding groups.

Here the groups πk, k = 0, 1, 2, are of particular importance. For k = 0 this is obvious,

the group π1(G) is an obstruction to integrate Lie algebra homomorphisms to group
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homomorphisms, and the groups π1(G) and π2(G) are closely related to obstructions for

the existence of central extensions ([Ne00b]).

For the full operator groups GL(H) and

GL(H, I) := {g ∈ GL(H): g−1 = Ig∗I−1}
one can use Kuiper’s Theorem saying that the group GL(H) is contractible for a separable

Hilbert space H over K ∈ {R,C ,H}. If H is inseparable, then there seems to be no
immediate reference for this result for real and quaternionic Hilbert spaces. As we will see

in Section II, the inseparable case has a quite elementary proof which does not depend

on K . In Section II we also compute the homotopy groups of the congruence groups

GLp(H) of the Schatten ideals Bp(H) ⊆ B(H), of GLp(H, I) := GL(H, I) ∩ GLp(H)
for 1 ≤ p ≤ ∞, and of the corresponding direct limit groups without the restriction
that H is separable. Since the homotopy groups of the restricted groups GLp(H,D) and

GLp(H, I,D) are somewhat more involved, we deal with them separately in Section III.

Throughout this paper we never have to assume that the Hilbert spaces H under

consideration are separable. All statements hold for general Hilbert spaces. To obtain

this generality, we frequently have to extend results on homotopy groups of groups of

operators which are known for the separable case.

Combining the information on central extensions from Section I and on the homotopy

groups from Section III, we show in Section IV that the identity components GL2(H,D)e
and GL2(H, I,D)e of the restricted groups have a universal central extension in the

category of complex Banach–Lie groups whose central fiber is of the type (C×)k. We
extend these results to certain real forms of these groups. If D has only two eigenva-

lues, this construction leads, for GL2(H,D), to the central extension of the restricted

general linear group of a polarized Hilbert space, which plays a crucial role in the the-

ory of loop groups (cf. [PS86]). For the real forms Spres(H,Ω) of Sp2(HC , I,D) and

Ores(H
R) of O2(HC , I,D) (see Section IV for the notation), we obtain as universal cen-

tral extensions the metagonal and the metaplectic groups discussed systematically by

Vershik in [Ve90]. The metaplectic group has been introduced by I. Segal and Shale

([Se59], [Sh62]) and the metagonal group by Shale/Stinespring in [ShSt65] (see also

[dlH71b] for a construction of the spin group as a twofold cover of O1(H
R)+, a real

form of the identity component O1(H, I)
+ of O1(H, I)). These two groups are relati-

ves of the finite-dimensional spin and metaplectic group, which are twofold covers of

SO(2n,R), resp., Sp(2n,R). The results of Section IV on the universality of certain

central extensions form the heart of the paper. It requires essentially all the informa-

tion on the homotopy groups collected in Sections II and III and also the information

on Lie algebra cohomology from Section I. Our structure theoretic approach to central

extensions, as opposed to the representation theoretic one, has the advantage that it

immediately provides a good deal of structural and topological information on the gro-

ups: their Banach–Lie group structure, their Lie algebra cocycles, and their topology.

The representation theoretic approach usually has to face the problem to deal with, a

priori, unbounded operators on Hilbert spaces. A general motivation is to understand

the full set of central extensions of groups like Ores(H
R) and Spres(H,Ω) which act na-

turally as symmetry groups of geometric objects (mostly symmetric spaces), so that
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the knowledge of their central extensions is important to understand the implemen-

tation of these symmetry groups in natural Hilbert spaces attached to the geometric

objects.

In Section V we finally discuss flag manifolds for the groups GL2(H) and GL2(H, I).

For GL2(H) we consider a flag F = (F0, F1, . . . , Fk), where
{0} = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fk = H

are closed subspaces of H . For GL2(H, I) we consider flags F of the type
{0} = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fk ⊆ F⊥βk ⊆ . . . ⊆ F

⊥β
1 ⊆ F

⊥β
0 = H,

which means that the spaces Fj , j = 1, . . . , k, are isotropic for the bilinear form β(x, y) =

〈x, I.y〉. Let P (F) ⊆ G denote the stabilizer of the flag F . Then the homogeneous space
G/P (F) has a natural manifold structure and its elements can be viewed as flags g.F of
closed subspaces of H . We will see that in all cases the action of G on G/P (F) extends
naturally to an action of the corresponding restricted group and that the unitary real

form U = G ∩ U(H) acts transitively on G/P (F). For G = GL2(H) and F2 = H this

construction leads to the restricted Graßmannians Grres(F1). For G = GL2(H, I) and

k = 2 we obtain for F1 ⊆ H maximal isotropic the restricted Graßmannian of maximal
isotropic subspaces and for dimF1 = 1 the space of isotropic lines in H . Both are hermi-

tian symmetric spaces modeled over Hilbert spaces. Using some structural results from

Section III, it is not hard to get basic information on the homotopy groups and the cor-

responding period maps for the flag manifolds. This kind of information is important for

the quantizability of symplectic structures on these manifolds, viewed as affine coadjoint

orbits of the unitary real forms U = G ∩ U(H). For more details on this interpretation
and on affine coadjoint actions of these groups we refer to [Ne01a].

Several special classes of these flag manifolds show up at various places in the litera-

ture. The flag manifolds for GL2(H,D) for separable H have been introduced by A. and

G. Helminck in [HH94a] and [HH94b]. They apply the representations of central exten-

sions of the complex group GL2(H,D) in Hilbert spaces of holomorphic sections of line

bundles on the flag manifolds to integrable systems. Moreover, they study cell decom-

positions of the flag manifolds and use them to obtain a Birkhoff decomposition of the

group GL2(H,D) ([HH94b, Prop. 2.4.16]).

The restricted Graßmannian Grres(F ) of a polarized Hilbert space plays a central

role for the structure of loop groups ([PS86]). The Graßmannians are particular cases

of hermitian symmetric spaces, which are dual to symmetric Hilbert domains. These

manifolds and their automorphism have been studied in [Ka75] and [DNS89], [DNS90].

A classification of hermitian symmetric Hilbert manifolds has been obtained by W. Kaup

in [Ka83].

For separable Hilbert spaces the groups GLp(H) and GLp(H, I), 1 ≤ p ≤ ∞, and
their real forms have been studied in detail by de la Harpe in [dlH72], where one finds

all kinds of information such as the cohomology, the automorphisms, and the derivations

of their Lie algebras, which we use in Section I. De la Harpe’s book also contains a

discussion of Riemannian symmetric spaces of the real forms of these groups, where the

aforementioned Graßmannians and several other related manifolds show up.
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In this paper we do not deal with representations of the groups under consideration,

although this paper was motivated by and provides important information useful for the

theory of unitary representations of real L∗-groups and their realization in Hilbert spa-
ces of holomorphic sections of holomorphic line bundles over coadjoint orbits which are

Kähler manifolds. The geometry of the “elliptic” coadjoint orbits and the corresponding

unitary representations will be studied in forthcoming papers (cf. [Ne01a]). This theory

includes in particular the spin representation of the metagonal group (fermionic second

quantization) and the metaplectic representation (Segal–Shale–Weil representation) of

the metaplectic group (bosonic second quantization). For a nice exposition of the con-

struction of these representations in an ad hoc fashion, we refer to Ottesen’s book [Ot95],

where it is also explained how embeddings of diffeomorphism groups and loop groups

into Spres(H,Ω) and U2(H,D) lead to interesting unitary representations of their central

extensions (see also [PS86], [CR87] and [Mi89]). The mixed cases correspond to the in-

finite wedge representations of the restricted unitary group Ures(H+, H−), which in our
terminology is U2(H,D) := U(H) ∩ GL2(H,D), where D has only two eigenvalues (cf.
[PS86] and also [Wu98] which contains a lot of information on the physical background).

The general L∗-approach to these representations provides in particular direct geometric
explanations for their intricate analytic properties such as boundedness properties of the

corresponding operators (cf. [Ot95]).

Throughout this paper I will always denote an antilinear isometry on a complex

Hilbert space H with I2 ∈ {±1}. We call I a conjugation if I2 = 1 and an anticonjugation
for I2 = −1.

I. THE SECOND COHOMOLOGY OF CLASSICAL LIE ALGEBRAS

In this first section we discuss the second continuous Lie algebra cohomology of the

Lie algebras gl(H) and gl(H, I) and also for the corresponding restricted Lie algebras

gl2(H,D) and gl2(H, I,D). In particular we will see that H
2
c (g(D),C ) is always finite-

dimensional and that it has a universal central extension ([Ne01b]).

I.1. The second cohomology groups of full classical Lie algebras. In this

subsection we will show that for every Banach space z, considered as a trivial module of

g ∈ {gl(H), gl(H, I)}, the second continuous cohomology group H2c (g, z) (cf. Definition
I.4) vanishes.

If J is a set we define the set J± as the disjoint union J∪̇ − J , where −J is a copy of
the set J whose elements are denoted −j with the convention that −(−j) = j.
Lemma I.1. Let H be a complex Hilbert space and I:H → H an antilinear isometry

with I2 = ±1. If H is infinite-dimensional or of finite even dimension, then there exists
an orthonormal basis (ej)j∈J± with

I.ej =

{
e−j for j ∈ J
±e−j for j ∈ −J .

Proof (cf. [dlH72, App. I]). First we consider the case I2 = −1. Since I and the
complex structure on H generate a finite group, H is an orthogonal direct sum of complex
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subspaces on which I acts irreducibly. Let E be one of these subspaces and v ∈ E a unit
vector. The complex bilinear form β(x, y) := 〈x, I.y〉 is skew-symmetric because

β(y, x) = 〈y, I.x〉 = 〈x, I−1.y〉 = −β(x, y).
Therefore {v, I.v} is an orthonormal basis of E with the required properties. Since H is
an orthogonal direct sum of copies of E, the assertion follows.

Next we consider the case I2 = 1. Then our assumptions imply that the real Hilbert

space HR := {v ∈ H : I.v = v} has an orthonormal basis of the form (fj)j∈J± . We define

e±j :=
1√
2
(fj ± if−j)

and obtain a basis with the required properties.

Remark I.2. (a) To obtain a more explicit description of the Lie algebra sp(H, I),

we use Lemma I.1 to obtain an orthonormal basis (ej)j∈J± of H with I.ej = e−j for
j ∈ J . Then the closed subspace H0 generated by the elements ej, j ∈ J , satisfies

H0 ∼= l2(J,C), and we obtain a conjugation σ0 on this space by σ0((xj)j∈J ) = (xj)j∈J .
If we identify H = H0 ⊕ I.H0 with the space H0 ⊕H0, the anticonjugation I is given by
I.(a, b) = (−σ0(b), σ0(a)).
For x ∈ B(H0) we define x⊤ = σ0x∗σ0. Then the Lie algebra sp(H, I) ⊆ B(H0 ⊕H0)

can be described in terms of (2 × 2)-block matrices as

sp(H, I) ∼=
{(

a b
c −a⊤

)
∈ gl(H): b = b⊤, c = c⊤

}
.

To get a similar description on the group level, we write I as a composition of (σ0, σ0)

and the operator with the matrix

Ĩ =

(
0 −1
1 0

)
.

Then we have for g =

(
a b
c d

)
the relation

Ig∗I−1 = Ĩg⊤Ĩ−1 =

(
0 −1
1 0

)(
a⊤ c⊤

b⊤ d⊤

)(
0 1

−1 0

)
=

(
d⊤ −b⊤
−c⊤ a⊤

)
,

which shows that

Sp(H, I) ∼=
{(

a b
c d

)
∈ GL(H): ad⊤ − bc⊤ = 1, ab⊤ = ba⊤, cd⊤ = dc⊤

}
.

In particular we see that

GL(H0) ∼=
{(

a 0

0 (a⊤)−1

)
: a ∈ GL(H0)

}
⊆ Sp(H, I).

(b) For o(H, I) and dimH =∞ or dimH even we write H ∼= H0⊕H0 with I.(a, b) =
(σ0(b), σ0(a)), and keep the other notations from above. Then the Lie algebra o(H, I) can

be described in terms of (2× 2)-block matrices as

o(H, I) ∼=
{(

a b
c −a⊤

)
∈ gl(H0 ⊕H0): b = −b⊤, c = −c⊤

}
.
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(c) If dimH = ∞ or dimH is odd, then we have an orthogonal decomposition H ∼=
H0 ⊕ C ⊕H0 with I.(a, z, b) = (σ0(b), z, σ0(a)) and obtain a similar explicit description
as above by (3 × 3)-block matrices.

Lemma I.3. Let H be a complex Hilbert space. The Lie algebra gl(H) is perfect if and

only if dimH =∞, and gl(H, I) is perfect if and only if not (dimH = 2 and I2 = 1).

Proof. If H is of finite dimension n, then gl(H) is not perfect because tr: gl(H)→ C is

a non-trivial Lie algebra homomorphism. If H is infinite-dimensional, then we use [Ha67,

Cor. 2 to Probl. 186] to see that every element in gl(H) is the sum of two commutators,

so that gl(H) is in particular perfect.

Now we consider g := gl(H, I). If H is finite-dimensional, then this Lie algebra is

perfect unless I2 = 1 and dimH = 2. Suppose that H is infinite-dimensional. Then there

exists a closed subspace H0 ⊆ H such that H = H0 ⊕ I.H0 is an orthogonal direct sum
(Lemma I.1). We consider the element

X :=

(
1 0

0 −1

)
∈ gl(H, I)

and define g0 := zg(X). Then g = g0 ⊕ [X, g], and g0 ∼= gl(H0) (Remark I.2). Since the

first part of the proof implies that g0 is perfect, we conclude that gl(H, I) is perfect.

Definition I.4. Let g a topological Lie algebra, i.e., a Lie algebra which is a topological

vector space with a continuous Lie bracket, and z be a topological vector space, considered

as a trivial g-module. A continuous z-valued 2-cocycle is a continuous skew-symmetric

function ω: g× g→ z with

ω([x, y], z) + ω([y, z], x) + ω([z, x], y) = 0.

It is called a coboundary if there exists a continuous linear map α: g → z with ω(x, y) =

α([x, y]) for all x, y ∈ g. We write Z2c (g, z) for the space of continuous z-valued 2-cocycles

andB2c (g, z) for the subspace of coboundaries.We define the second continuous Lie algebra

cohomology space

H2c (g, z) := Z
2
c (g, z)/B

2
c (g, z).

See [Ja62, Sect. III.10] for the basic concepts related to Lie algebra cohomology.

In [dlH79] it is shown that the second homology spaceH2(gl(H)) vanishes (on the alge-

braic level) and it is also shown that this implies that all Banach–Lie algebra extensions

of gl(H) with finite-dimensional centers are trivial (cf. [dlH79, Cor. 4]). The following

proposition sharpens this result.

Proposition I.5. If H is a complex Hilbert space, then

H2c (gl(H), z) = 0

holds for all trivial Banach g-modules z.

Proof. Let g := gl(H). If dimH = n is finite, then g ∼= gl(n,C ) and therefore

H2c (g, z) = H
2(g, z) = 0. In fact, in view of Levi’s Theorem, each element [ω] ∈ H2(g, z)
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can be represented by an sl(n,C )-invariant z-valued cocycle. Since there is no non-

zero skew-symmetric invariant bilinear form on sl(n,C), and z(gl(n,C)) ∼= C is one-

dimensional, it follows that H2(g, z) is trivial.

Now we assume that H is infinite-dimensional. We consider z as a trivial g-module.

Let ω ∈ Z2c (g, z) be a continuous z-valued cocycle. In view of H2(g, z) ∼= Lin(H2(g), z) = 0
([dlH79]), there exists a linear map λ: g → z with ω(x, y) = λ([x, y]) for all x, y ∈ g. It

remains to show that λ is continuous.

Let x ∈ g. According to [Ha67, Cor. 2 to Probl. 186], there exist operators a, b, c, d ∈ g

with x = [a, b] + [c, d], where ‖a‖, ‖c‖ ≤ 2‖x‖ and ‖b‖, ‖d‖ ≤ 1. We obtain
‖λ(x)‖ = ‖λ([a, b] + [c, d])‖ ≤ ‖ω(a, b)‖+ ‖ω(c, d)‖ ≤ ‖ω‖ ‖a‖ ‖b‖+ ‖ω‖ ‖c‖ ‖d‖

≤ 4‖ω‖ ‖x‖.
This proves that λ is continuous and therefore that H2c (g, z) = 0.

Next we show that the second cohomology of the Lie algebras gl(H, I) vanishes. The

proof is based on a modification of the strategy used in [dlH79].

Proposition I.6. If H is a complex Hilbert space, then the Lie algebra sp(H, I) sa-

tisfies

H2c (sp(H, I), z) = 0

for every Banach space z, considered as a trivial module.

Proof. If H is finite-dimensional with dimH = 2n, then g := sp(H, I) ∼= sp(2n,C) is

a simple complex Lie algebra, and the Whitehead Lemmas ([Ja62, Lemma III.9.6]) imply

that H2c (g, z) = H
2(g, z) = 0 for every Banach space z.

Now we assume that H is infinite-dimensional. We consider the element

X :=

(
1 0

0 −1

)
∈ g

which defines the 3-grading

g = g− ⊕ g0 ⊕ g+,

where g0 = ker adX ∼= gl(H0) (Remark I.2) and g± = ker(adX ∓ 2). We know from
Proposition I.5 that H2c (g

0, z) = 0. This means that all the assumptions of Corollary

III.9 in [Ne01a] are satisfied with d = g0 and D0 = X , so that it suffices to consider a

g0-invariant cocycle ϕ ∈ Z2c (g, z) satisfying ϕ(g0, g) = 0. Therefore it suffices to show
that every g0-invariant bilinear form ϕ: g+ × g− → z vanishes.

For the sake of simpler notation, we identify g0 with gl(H0) by the map

gl(H0)→ g0, x 7→
(
x 0
0 −x⊤

)

(Remark I.2). We further identify g± in the canonical way with Sym(H0) := {a ∈
B(H0): a

⊤ = a} and consider the natural action of gl(H0) on Sym(H0) given by x.a :=
xa+ ax⊤. This corresponds to the action of g0 on g+, and on g− the action of g0 corre-
sponds to [x, d] = −x⊤.d = −x⊤d− dx. Therefore ϕ corresponds to a bilinear form

ϕ: Sym(H0)× Sym(H0)→ z



96 K.-H. NEEB

satisfying

ϕ(x.a, d)− ϕ(a, x⊤.d) = 0 for all x ∈ gl(H0), a, d ∈ Sym(H0).

For x = x⊤ ∈ gl(H0) we have x.1 = x1+ 1x
⊤ = 2x, and therefore

ϕ(a, d) =
1

2
ϕ(a.1, d) =

1

2
ϕ(1, a.d) =

1

2
ϕ(1, da+ ad).

It follows in particular that ϕ is symmetric and that it suffices to show that ϕ(1, ·) = 0.
The g0-invariance of ϕ leads for x = −x⊤ ∈ gl(H0) to

0 = ϕ(x.a,1)− ϕ(a, x⊤.1) = ϕ(xa+ ax⊤,1) + ϕ(a, x.1︸︷︷︸
=0

) = ϕ(xa− ax,1) = ϕ([x, a],1).

To see that ϕ vanishes, it therefore suffices to show that

[Skew(H0), Sym(H0)] = Sym(H0).

We know already that the Lie algebra gl(H0) = Skew(H0)⊕ Sym(H0) is perfect (Lemma
I.3), which implies that

gl(H0) = [gl(H0), gl(H0)]

=
(
[Skew(H0), Skew(H0)] + [Sym(H0), Sym(H0)]

)
+ [Skew(H0), Sym(H0)],

and this implies in particular that Sym(H0) = [Skew(H0), Sym(H0)].

Proposition I.7. If dimH > 2, then

H2c (o(H, I), z) = 0

for every Banach space z, considered as a trivial module.

Proof. Assume first that n := dimH is finite. Then n > 2 implies that o(H, I) ∼=
o(n,C) is a semisimple complex Lie algebra, and the assertion follows from the Whitehead

Lemmas.

Now we assume that H is infinite-dimensional. Let g := o(H, I). We consider the

element

X :=

(
1 0

0 −1

)
∈ g

which defines the 3-grading g = g− ⊕ g0 ⊕ g+, where gj = ker(adX − 2j).
With the same argument as in the proof of Proposition I.6, we see that we may w.l.o.g.

assume that ϕ is g0-invariant and satisfies ϕ(g0, g) = 0. As in Proposition I.6, this leads

to a bilinear form

ϕ: Skew(H0)× Skew(H0)→ z

satisfying

ϕ(x.a, d) − ϕ(a, x⊤.d) = 0 for all x ∈ gl(H0), a, d ∈ Skew(H0),
where x.a = xa + ax⊤ for x ∈ gl(H0) and a ∈ Skew(H0). We have to show that this
implies that ϕ = 0.

We write H0 as H1⊕H1, where H1 is endowed with an antilinear isometric involution
σ1 such that σ0(v, w) = (σ1.v, σ1.w) for v, w ∈ H1. From now on we write operators in
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gl(H0) as (2× 2)-block matrices according to the decomposition of H0 into H1⊕H1. Let

S :=

(
0 1

−1 0

)
∈ Skew(H0).

Then

x.S =

(
x⊤12 − x12 x11 + x

⊤
22

−x⊤11 − x22 x21 − x⊤21

)

shows that for each a ∈ Skew(H0) we have

a = ã.S for ã :=

(
a12 − 12a11
1
2a22 0

)
.

Therefore

ϕ(a, d) = ϕ(ã.S, d) = ϕ(S, ã⊤.d),

and it suffices to prove that ϕ(S, ·) = 0.
For x ∈ gl(H0) with x

⊤.S = 0 we have

0 = ϕ(S, x.a)− ϕ(x⊤.S, a) = ϕ(S, x.a).

For x =

(
1 0
0 −1

)
, which satisfies x⊤.S = x⊤S + Sx = 0, we obtain in particular

x.a = xa+ ax =

(
a11 −a12
−a21 a22

)
,

showing that x. Skew(H0) = Skew(H0). This implies that ϕ(S, ·) = 0, and hence that
ϕ = 0.

I.2. The second cohomology groups of restricted Lie algebras. In this subsec-

tion we will use the results of the preceding subsection and the general tools developed in

[Ne01a] to compute the second cohomology of the restricted versions of the Lie algebras

gl2(H) and gl2(H, I).

Definition I.8. (a) Let H be a Hilbert space. For 1 ≤ p <∞ we define
Bp(H) := {X ∈ B(H): tr

(
(XX∗)

p

2

)
<∞}.

For p =∞ we define B∞(H) := K(H) (cf. [RS78]) as the ideal of compact operators on
H . More generally we define for two Hilbert spaces H1, H2:

Bp(H1, H2) := {X ∈ B(H1, H2): tr
(
(XX∗)

p
2

)
<∞} and B∞(H1, H2) := K(H1, H2).

These sets are are invariant under left and right multiplication with bounded operators

and they are Banach spaces with respect to the norms

‖X‖p := tr
(
(XX∗)

p
2

) 1
p and ‖X‖∞ := ‖X‖,

satisfying

‖XY ‖p ≤ ‖X‖ · ‖Y ‖p and ‖XY ‖p ≤ ‖X‖p · ‖Y ‖.
The spaces Bp(H) are called the Schatten ideals of B(H).

The congruence subgroups

GLp(H) := GL(H) ∩ (1+Bp(H))
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with respect to the Schatten ideals are Banach–Lie groups with Lie algebra glp(H) :=

Bp(H) (cf. [Ne00a, Def. IV.20] and [Mi89]). The group GL∞(H) is called the Fredholm
group. It is contained in the monoid

Fred(H) := {A ∈ B(H): dim kerA, dim cokerA <∞}
of Fredholm operators on H . The group

Up(H) := U(H) ∩ (1+Bp(H))
is a Lie group with Lie algebra

up(H) := u(H) ∩Bp(H) = {X ∈ Bp(H):X∗ = −X}.
With Hermp(H) := Herm(H) ∩Bp(H) = iup(H) we then have

glp(H) = up(H)⊕Hermp(H) = up(H)⊕ iup(H)
and the polar map

Up(H)×Hermp(H)→ GLp(H), (u,X) 7→ ueX

is a diffeomorphism ([Ne00a, Prop. A.4]).

(b) The restricted classical Lie algebras are defined as follows. For g = gl2(H) we put

gb := gl(H), and for g = gl2(H, I) we put gb := gl(H, I). Let D ∈ gb be a hermitian

element with finite spectrum, g0b := zgb(D) and g
0 := zg(D). Then the Lie algebra

gr := g(D) := g+ g0b

is called the restricted Lie algebra associated to g and D. For g = gl2(H) we also write

gl2(H,D) := g(D) and for g = gl2(H, I) we likewise write gl2(H, I,D) := g(D).

Examples I.9. (a) Let g = gl2(H) for an infinite-dimensional complex Hilbert space

H and D = D∗ ∈ gl(H) diagonalizable with the eigenvalues d1, . . . , dk and the corre-

sponding eigenspaces Hj := ker(D − dj1). Then H = H1 ⊕ . . . ⊕ Hk is an orthogonal
decomposition, g0 consists of all elements in g preserving this decomposition, and there-

fore

g0 ∼=
k⊕

j=1

gl2(Hj) and g0b
∼=

k⊕

j=1

gl(Hj)

lead to

gl2(H,D) = {X = (xij)i,j=1,...,k: (∀i 6= j)xij ∈ B2(Hj , Hi)}.
(b) For g = gl2(H, I) and D = D∗ ∈ gl(H, I), we write d1, . . . , dk for the positive

eigenvalues of D, d−j := −dj , and d0 := 0. Then Spec(D) ∪ {0} = {dj: j = −k, . . . , k}
(cf. [Ne01a, Lemma III.12]) and for Hj := ker(D− dj1) we obtain an orthogonal decom-
position

H = Hk ⊕ . . .⊕H0 ⊕ . . .⊕H−k
with I.Hj = H−j , so that H0 = kerD is I-invariant, but this space might be trivial.
With I0 := I |H0 and Remark I.2 we now obtain

g0 ∼= gl2(H0, I0)⊕
k⊕

j=1

gl2(Hj) and g0b
∼= gl(H0, I0)⊕

k⊕

j=1

gl(Hj).
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In the following we will keep the notation of Examples I.9 whenever we discuss specific

properties of the Lie algebras g(D) and the corresponding groups.

Proposition I.10. (a) gl2(H,D) is perfect if and only if dimH =∞.
(b) gl2(H, I,D) is perfect if not (dimH = 2 and I

2 = 1).

Proof. (a) Let g := gl2(H). If If dimH < ∞, then g = gl(H) is not perfect, and

[g, g] = sl(H). Suppose that dimH =∞. Then there exists at least on j for which Hj is
infinite-dimensional. We consider the direct sum decomposition

g(D) = g0b ⊕
⊕

i6=j
B2(Hj , Hi).

Since g(D) = g0b + [D, g], it suffices to show that g
0
b ⊆ [g(D), g(D)]. We recall that

g0b
∼=
⊕k
j=1 gl(Hj) (Examples I.9) and view each gl(Hj) as a subalgebra of g

0
b .

The commutator algebra of g0b contains the full algebra gl(Hi) ⊆ g0b whenever Hi is

infinite-dimensional ([Ha67, Cor. 2 to Probl. 186]). If Hi is finite-dimensional, then we

choose j with Hj infinite-dimensional and consider elements of B(Hi⊕Hj) as (2×2)-block
matrices. For such matrices we have

[(
0 B
0 0

)
,

(
0 0
C 0

)]
=

(
BC 0
0 −CB

)
.

Then [g(D), g(D)] contains gl(Hj) and therefore also B2(Hi, Hj)B2(Hj , Hi) = gl(Hi).

Hence [g(D), g(D)] contains g0b , which shows that g(D) is perfect.

(b) Let g := gl2(H, I). If H is of finite dimension n, then g(D) = g ∼= sp(n,C ) or

o(n,C) is semisimple and therefore perfect unless n = 2 and I2 = 1 (Lemma I.3).

Suppose that H is infinite-dimensional. We have g(D) = g0b +[D, g], so that it suffices

to show that g0b ⊆ [g(D), g(D)]. Using the 3 × 3-block description of gl(H, I) according
to H = H+ ⊕ H0 ⊕ H− with H± :=

∑k
j=1H±j, we see that g(D) is adapted to this

decomposition, and we get with D+ := D |H+ :

g(D) ⊇ gl2(H+, D+)
∼=
{

a 0 0
0 0 0
0 0 −a⊤


 : a ∈ gl2(H+, D+)

}
⊇
k∑

j=1

gl(Hj).

If H+ is finite-dimensional, then the same holds for H− = I.H+, so that g(D) =

gl(H, I), and the perfectness of g(D) follows from Lemma I.3.

If H+ is infinite-dimensional, then gl2(H+, D+) is perfect by (a), and each gl(Hj), j =

1, . . . , k, is contained in this algebra, so that it remains to see that gl(H0, I0) ⊆
[g(D), g(D)]. If gl(H0, I0) itself is perfect, this is trivial. If this is not the case, then

dimH0 = 2 and I
2 = 1 (Lemma I.3). Then we extend H0 to a four-dimensional I-

invariant subspace H̃0 of H1 +H0 +H−1, set Ĩ0 := I |H̃0 , and obtain

[g(D), g(D)] ⊇ [o(H̃0, Ĩ0), o(H̃0, Ĩ0)] = o(H̃0, Ĩ0) ⊇ o(H0, I0) ∼= gl(H0, I0).

This implies that g(D) is perfect.

Proposition I.11. For k∞ := |{j ∈ {1, . . . , k}: dimHj =∞}| we have
H2c (gl2(H,D),C)

∼= C
k∞−1 and H2c (gl2(H, I,D),C )

∼= C
k∞ .
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Each cohomology class contains a cocycle of the form

ϕ(z)(x+ d, x′ + d′) := tr([z, x]x′) = tr(z[x, x′]) for d, d′ ∈ g(D)0, x, x′ ∈ g,

where z ∈ z(g(D)0).

Proof. In [Ne01a, Ex. III.13] we have seen how to describe the space H2c (g(D),C )

in all cases. Each continuous 2-cocycle on g(D) is equivalent to a cocycle ϕ(z) given as

follows. For z ∈ z(g0b) we define

ϕ(z)(x+ d, x′ + d′) := tr([z, x]x′) = tr(z[x, x′]), d, d′ ∈ g0b , x, x
′ ∈ g.

This cocycle is trivial if and only if z ∈ z(g0) +C1, which for g = gl2(H, I) is equivalent

to z ∈ z(g0). We always have z(gl(H0, I0)) = z(gl2(H0, I0)), and for j > 0 we have

z(gl(Hj , Ij)) = C idHj and z(gl2(Hj , Ij)) = 0 if Hj is infinite-dimensional. We conclude

that each cohomology class can be represented by ϕ(z) with z =
∑
dimHj=∞ zj idHj , and

that such a cocycle is trivial if and only if z = 0, for g = gl2(H, I), or z1 = . . . = zk, for

g = gl2(H). This implies the assertion.

I.3. Universal central extensions. In this subsection we explain the concept of

(weak) universality for a central extension of a topological Lie algebra. This will be

applied in Section IV to the restricted Lie algebras g(D) and their real forms.

Definition I.12. (a) Let g be a topological Lie algebra over K ∈ {R,C}, z a topolo-
gical vector space, and ω ∈ Z2c (g, z) a continuous z-valued 2-cocycle. Then we write g⊕ω z
for the topological Lie algebra whose underlying topological vector space is the product

space g× z and whose Lie bracket is defined by

[(x, z), (x′, z′)] =
(
[x, x′], ω(x, x′)

)
.

Then q: g ⊕ω z → g, (x, z) 7→ x is a central extension and σ: g → g ⊕ω z, x 7→ (x, 0) is a
continuous linear section of q.

(b) Let a be a topological vector space considered as a trivial g-module. We call a

central extension q: ĝ = g⊕ω z→ g with z = ker q weakly a-universal if the map

δa: Lin(z, a)→ H2c (g, a), γ 7→ [γ ◦ ω]
is bijective.

We call q: ĝ→ g universal for a if for each central a-extension q1: ĝ1 := g⊕f a→ g of

g there exists a unique continuous homomorphism ϕ: ĝ → ĝ1 with q1 ◦ ϕ = q. In view of
[Ne01b, Remark I.10(b)], the a-universality is equivalent to the weak a-universality plus

Hom(g, a) = 0.

For a 6= {0} this implies in particular that Hom(g,K ) = {0} which for a Banach–Lie
algebra g implies that g is topologically perfect.

Proposition I.13. Let g be a perfect K -Banach–Lie algebra for which H2c (g,K ) is

finite-dimensional. Then g has up to isomorphism a unique K -universal central extension

z →֒ ĝ := g⊕ω z→ g

which, in addition, is universal for all Fréchet spaces.
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Proof. The uniqueness follows from [Ne01b, Lemma I.13] and the existence from

[Ne01b, Cor. II.12].

Remark I.14. The background for Definition I.12(b) is that the central extension

q: ĝ = g⊕ω z→ g defines for each topological vector space a an exact sequence containing

δa. To describe this exact sequence, let Z
2
c (ĝ, z, a) denotes the set of all continuous a-

valued 2-cocycles ω ∈ Z2c (ĝ, a) with ω(z, ĝ) = {0}. Then B2c (ĝ, a) ⊆ Z2c (ĝ, z, a) because

β([ĝ, z]) = {0} for β ∈ Lin(ĝ, z), and we define
H2c (ĝ, z, a) := Z

2
c (ĝ, z, a)/B

2
c (ĝ, z).

According to [Ne01a, Th. I.4], we now have the exact sequence

(1.1) 0→ Hom(g, a) q
∗

−−→Hom(ĝ, a) res−−→Lin(z, a) δa−−→H2c (g, a)
q∗−−→H2c (ĝ, z, a)→ 0.

We will see in Section IV below how to realize the universal central extensions of the

restricted Lie algebras gl2(H,D) and gl2(H, I,D) explicitly.

II. HOMOTOPY GROUPS OF CLASSICAL GROUPS

In this section we first discuss a quite elementary proof of Kuiper’s Theorem for inse-

parable Hilbert spaces H over K ∈ {R,C ,H}, and then we use this result to prove that
various classical groups of operators on Hilbert spaces such as GL(H, I) are contractible.

Then we turn to the direct limit groups GL(J,K ) of those invertible J × J-matrices
g for which g − 1 has only finitely many non-zero entries. We will see that for an in-
finite set J this group is weakly homotopy equivalent to GL(N,K ), i.e., to the direct

limit of the groups GL(n,K ). Combining these insights with general results of Palais, we

compute the homotopy groups of the congruence groups GLp(H) of the Schatten ideals

Bp(H) ⊆ B(H) and GLp(H, I) := GL(H, I)∩GLp(H) for 1 ≤ p ≤ ∞. In the next section
we deal with groups corresponding to the restricted Lie algebras g(D).

II.1. Kuiper’s Theorem. In this subsection we explain how Kuiper’s Theorem that

the group GL(H,K ) of K -linear continuous operators on an infinite-dimensional sepa-

rable K -Hilbert space H is contractible ([Ku65]) can be obtained in a quite elementary

way for inseparable Hilbert spaces.1

The observation is based on the following lemma, which is a refinement of [vNeu50,

Th. 14.10].

Lemma II.1. Let H be a Hilbert space over K = R,C or H and M ⊆ B(H,K ) a

separable set of operators. Then there exists an orthogonal decomposition H ∼=
⊕̂
j∈JHj

intoM-invariant subspaces such that each Hj is separable.
If, in addition, H is infinite-dimensional, then the spaces Hj can be chosen in such a

way that they are all infinite-dimensional, hence isomorphic to l2(N,K ).

1The proof is based on a hint in a footnote in Kuiper’s paper but we don’t know of any direct
reference in the literature which provides the result also for real and quaternionic inseparable
Hilbert spaces. For complex Hilbert spaces it follows from results of Brüning and Willgerodt on
the contractibility of unit groups of von Neumann algebras of infinite type ([BW76]).
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Proof. Since the closed ∗-subalgebra of B(H) generated by M is separable, we may
assume that M is ∗-invariant with 1 ∈ M, otherwise we replace it by M∪M∗ ∪ {1}.
Now the assertion follows by a standard application of Zorn’s Lemma. Let Hj , j ∈ J ,
be a maximal set of non-zero closedM-invariant separable subspaces of H such that the
sum
∑
j∈J Hj is orthogonal. Set H0 :=

∑
j∈J Hj . Then H

⊥
0 is M-invariant because M

is ∗-invariant. Assume that H0 6= H . For 0 6= v ∈ H⊥0 the subspace Hv := spanM.v

is a cyclic hence separable subspace orthogonal to all the spaces Hj , contradicting the

maximality of the family (Hj)j∈J . This proves the first assertion.

To prove the second part, let us assume that H is infinite-dimensional and consider a

decomposition H ∼=
⊕̂
j∈JHj as above. Let

I := {j ∈ J : dimHj <∞}.

Case 1: If I is finite, then there exists a j0 ∈ J \ I. Replacing Hj0 by Hj0 +
∑
i∈I Hi,

we obtain the desired decomposition.

Case 2: If I is infinite, then |I × N| = |I| ([La93, App. 2]) implies that I can be par-
titioned into infinite countable subsets Ii, i ∈ I. Then all the subspaces Ki :=

∑
j∈Ii Hj

are infinite-dimensional and separable, and we have the desired orthogonal decomposition

of H :

H =
⊕̂

j∈J\I
Hj ⊕

⊕̂

i∈I
Ki.

Theorem II.2 (Palais). For a metrizable topological manifold modeled over a sequen-

tially complete locally convex space the following are equivalent:

(1) πn(X) = 0 for all n ∈ N0.

(2) X is contractible.

Proof. [Pa66, Cor. to Th. 15]

The proof of the following proposition is inspired by the setting in Mityagin’s paper

[Mit70].

Proposition II.3. Let Y be a separable topological space and H an inseparable Hilbert

space over K = R,C or H . Then each continuous map f :Y → GL(H,K ) is homotopic
to a constant map.

Proof. Since f(Y ) is a separable set of operators, Lemma II.1 implies that there exists

a set J and an isomorphism H → l2(J,Hs) with Hs := l
2(N,K ) such that the operators

in f(Y ) are diagonal operators on l2(J,Hs).

Step 1: Since H is not separable, the set J is (uncountably) infinite. First we consider

a decomposition J = J1∪̇J2 with |J1| = |J2| = |J |. This leads to an orthogonal decompo-
sition H ∼= H ⊕H , and we consider operators on H accordingly as block 2× 2-matrices.
Let f :Y → GL(H,K ) be as above. Then

f(y) =

(
g1(y) 0
0 g2(y)

)
,
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where gj :Y → GL(H,K ) are continuous maps. We claim that f is homotopic to the map

(2.1) f1(y) =

(
g1(y)g2(y) 0
0 1

)
.

It suffices to show that

f(y)−1f1(y) =

(
g2(y) 0
0 g2(y)

−1

)

is homotopic to a constant map. This is implemented by the homotopy

H(t, a) :=

(
1 0

t(a−1 − 1) 1

)(
1 t
0 1

)(
1 0

t(a− 1) 1

)(
1 −ta−1
0 1

)

which satisfies

H(1, a) =

(
a 0
0 a−1

)
and H(0, a) =

(
1 0
0 1

)
.

Step 2: In view of Step 1, we may assume that f1:Y → GL(H,K ) has the form (2.1).
Next we observe that H ∼= l2(N, H) because |J | = |N× J | ([La93, App. 2]). Therefore

H ∼= H ⊕ l2(N, H),
and we may assume that

f1(y) = diag(g(y),1,1, . . .).

Partitioning N into odd numbers Nodd and even numbers Neven, and writing accordingly

l2(N, H) ∼= l2(Nodd, H)⊕ l2(Neven, H),
it follows from Step 1 that the constant map Y → GL(l2(N, H),K ), Y 7→ 1 is equivalent
to the map

y 7→ diag(g(y)−1, g(y), g(y)−1, g(y), . . .).
Therefore f1 is homotopic to

f2(y) = diag(g(y), g(y)
−1, g(y), g(y)−1, . . .).

Applying the same argument again to the decomposition

H ∼= H ⊕ l2(N, H) ∼= l2({0} ∪ Neven, H)⊕ l2(Nodd, H),
we see that f2 is homotopic to a constant map.

Theorem II.4. (Kuiper’s Theorem for general Hilbert spaces) If H is an infinite-

dimensional Hilbert space over K = R,C or H , then the group GL(H,K ) is contractible.

Proof. In view of Theorem II.2, it suffices to show that all homotopy groups of

GL(H,K ) vanish. In [Ku65], this is proved for infinite-dimensional separable Hilbert

spaces, and for inseparable Hilbert spaces, this follows from Proposition II.3 because the

spheres Sk, k ∈ N0, are separable.

II.2. Consequences of Kuiper’s Theorem

Definition II.5. (a) If H is a Hilbert space over K ∈ {R,C ,H}, then we define
U(H,K ) := {g ∈ GL(H,K ): g∗g = gg∗ = 1}
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as the unitary part of this group. We also write

O(H) := U(H,R), U(H) := U(H,C) and Sp(H) := U(H,H).

(b) LetH be a complex Hilbert space and I be an antilinear isometry with I2 ∈ {±1}.
For I2 = 1 we then have

U(H, I) := U(H) ∩GL(H, I) ∼= O(HR) with HR := {x ∈ H : I.x = x},
and for I2 = −1 we have

U(H, I) ∼= U(H,H) ∼= Sp(H),
where the quaternionic structure on H is given by the subalgebra C1 + CI ∼= H of

B(H,R), the real linear endomorphisms of H .

(c) (Hermitian groups) Let H be a complex Hilbert space and H = H+ ⊕H− be an
orthogonal decomposition. Further let T = T ∗ ∈ B(H) with H± = ker(T ∓1). We define
the corresponding pseudo-unitary group

U(H+, H−) := {g ∈ GL(H):Tg∗T−1 = g−1}.
We define Ω(x, y) := Im〈x, y〉 and write HR for the real Hilbert space underlying H .

Then

Sp(H,Ω) := {g ∈ GL(HR,R): (∀v, w ∈ HR)Ω(g.v, g.w) = Ω(v, w)}
is called the symplectic group of H . If we start with the real Hilbert spaceHR and consider

an isometric complex structure I on HR, then we can define

Ω(x, y) := −〈I.x, y〉 = 〈x, I.y〉
and put

Sp(HR, I) := {g ∈ GL(HR,R): (∀v, w ∈ HR)Ω(g.v, g.w) = Ω(v, w)}.
It is easy to see that both constructions lead to isomorphic groups Sp(HR, I) ∼= Sp(H,Ω).
Now let I be a conjugation on the complex Hilbert space H and H+ ⊆ H a subspace

for which we get an orthogonal decomposition H = H+ ⊕H− with H− := I.H+. Then

we define

O∗(H, I) := U(H, I) ∩U(H+, H−).
Theorem II.6. If H is an infinite-dimensional Hilbert space over K ∈ {R,C ,H},

then the following groups are contractible:

(i) the group of K -linear automorphisms GL(H,K ).

(ii) the group of isometric K -linear automorphisms U(H,K ), and in particular the

groups O(H) = U(H,R), U(H) = U(H,C) and Sp(H) = U(H,H).

(iii) the group GL(H, I) if H is complex and I an antilinear isometry with I2 ∈ {±1}.
Moreover, GL(H, I) has a smooth polar decomposition.

(iv) the hermitian groups U(H+, H−), H = H+ ⊕H− an orthogonal decomposition with
two infinite-dimensional summands, Sp(H,Ω), and O∗(H, I).

Proof. (i) is Theorem II.4.

(ii) follows from (i) and the polar decomposition GL(H,K ) ∼= U(H,K )×Herm(H,K )
of the group GL(H,K ) with the unitary part U(H,K ).
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(iii) In view of Definition II.5(b), the group U(H, I) is contractible, because it is one of

the groups in (ii). Hence the assertion follows from the polar decomposition of GL(H, I)

which can be obtained as follows. We consider the automorphism τ(g) := I(g∗)−1I−1 of
GL(H) and write τg(x) := −Ix∗I−1 for the corresponding antilinear automorphism of
its Lie algebra gl(H). Then

GL(H, I) = GL(H)τ := {g ∈ GL(H): τ(g) = g}.
Let g = uex be the polar decomposition of g ∈ GL(H). Then τ(g) = τ(u)eτg(x) is the

polar decomposition of τ(g), so that the uniqueness of this decomposition implies that

τ(g) = g is equivalent to τ(u) = u and τg(x) = x, i.e., u ∈ U(H, I) and x ∈ Herm(H, I).
(iv) For the hermitian groups we will see below that they have polar decompositions

with

U(H+, H−) ∩U(H) ∼= U(H+)×U(H−), Sp(H,Ω) ∩O(HR) ∼= U(H)
and

O∗(H, I) ∩U(H) ∼= U(H+),
where H ∼= H+⊕I.H+ as in Definition II.5(c). Therefore (ii) implies that all these groups
are contractible.

To prove the polar decomposition of U(H+, H−), let g ∈ GL(H) with polar decom-
position g = uex, u ∈ U(H) and x = x∗. For T as in Definition II.5(c) we consider
the automorphism τ(g) := T (g∗)−1T−1 of GL(H) and write τg(x) := −Tx∗T−1 for the
corresponding antilinear automorphism of its Lie algebra gl(H). Then τ(g) = τ(u)eτg(x)

is the polar decomposition of τ(g), so that the uniqueness of this decomposition implies

that τ(g) = g is equivalent to τ(u) = u and τg(x) = x. Therefore g ∈ U(H+, H−) if and
only if

u ∈ U(H+, H−) ∩U(H) ∼= U(H+)×U(H−) and x ∈ u(H+, H−).

To see that Sp(H,Ω) is adapted to the polar decomposition, we observe that

Ω(x, y) = Im〈x, y〉 = Re〈x, iy〉 = (x, Jy),
where (·, ·) := Re〈·, ·〉 denotes the real scalar product on HR. Therefore g ∈ Sp(H,Ω) is
equivalent to g⊤Jg = J , i.e., g = τ(g) := J(g⊤)−1J−1. Then τ is an involutive automor-
phism of GL(HR) and τg(x) := −Jx⊤J−1 is the corresponding Lie algebra automorphism.
Let g = uex be the polar decomposition of g ∈ GL(HR), where u ∈ O(HR) and x⊤ = x.
Then τ(g) = τ(u)eτg(x) is the polar decomposition of τ(g) because ue−x is the polar
decomposition of g−⊤. Therefore g ∈ Sp(H,Ω) is equivalent to τ(u) = u, i.e., u ∈ U(H),
and to Jx = −xJ , i.e., x is antilinear.
The argument for the group O∗(H, I) is similar.

II.3. Homotopy groups of direct limit groups

Definition II.7. Let (X,x0) and (Y, y0) be pointed topological spaces. A map f ∈
C∗(X,Y ) := {h ∈ C(X,Y ):h(x0) = y0} is called a weak homotopy equivalence if all
induced maps πk(f):πk(X,x0)→ πk(Y, y0) are bijections.

A map f ∈ C∗(X,Y ) is called a homotopy equivalence if there exists g ∈ C∗(Y,X)
such that fg, resp., gf are homotopic to idY , resp., idX in C∗(Y, Y ), resp., C∗(X,X).
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Theorem II.8. (a) Let X be a locally convex topological vector space and E ⊆ X

a dense subspace. We endow E with the direct limit topology with respect to the finite-

dimensional subspaces. For each open subset U ⊆ X the continuous map U ∩ E → U is

a weak homotopy equivalence if U ∩ E is considered as a topological subspace of E.
(b) Let X and Y be metrizable locally convex topological vector spaces and f :X → Y

a continuous linear map with dense range. For each open subset U ⊆ Y let V := f−1(U)
and fV := f |V :V → U . Then fV is a homotopy equivalence.

Proof. These are Theorems 12 and 16 in [Pa66].

Lemma II.9. Let E be a real vector space endowed with the direct limit topology with

respect to its finite-dimensional subspaces. Then the following assertions hold:

(i) Each linearly independent subset of E is closed and discrete.

(ii) Each compact subset of E is contained a finite-dimensional subspace.

(iii) For each subset U ⊆ E and u0 ∈ U we have

πk(U, u0) ∼= lim
F∈F

πk(U ∩ F, u0),

where F denotes the directed set of all finite-dimensional subspaces F ⊆ E containing
u0.

(iv) If U ⊆ E is a subset for which the intersection with all finite-dimensional subspaces
are open, then the subspace topology on U coincides with the direct limit topology

with respect to the sets U ∩ F , F ⊆ E a finite-dimensional subspace.

Proof. (i) (cf. [Pa66, Lemma 5.2]) Let S ⊆ E be a linearly independent subset. Then
for each finite-dimensional subspace F ⊆ E the intersection S∩F is closed, and therefore
S is closed in E. The same argument implies that each subset of S is also closed in E. It

follows in particular that S is a discrete topological space.

(ii) (cf. [Pa66, Lemma 5.3]) Let K ⊆ E be a compact subset and S ⊆ K a maximal
linearly independent subset. Then K ⊆ spanS. In view of (i), S is closed, hence compact.
On the other hand, S is discrete and therefore finite.

(iii) Let Y be a compact space with base point y0 and f :Y → U a continuous map with

f(y0) = u0. Then f(Y ) is a compact subset of E, hence contained in a finite-dimensional

subspace F , and we clearly have u0 = f(y0) ∈ F .
For Y = Sk, it follows that the natural homomorphism

η: lim
F∈F

πk(U ∩ F, u0)→ πk(U, u0)

is surjective. To see that it is also injective, suppose that f : Sk → U ∩ F is a continuous
map which in U is homotopic to the constant map Sk → {u0}. Let H : [0, 1] × Sk → U

be a homotopy with H(0, x) = f(x) and H(1, x) = u0. Then im(H) is contained in a

finite-dimensional subspace F ⊆ E, and therefore the homotopy class of f in πk(U∩F, u0)
is trivial. This implies that η is injective.

(iv) This follows from the observation that a subset V ⊆ U is open in the subspace

topology if and only if all intersections V ∩ F , F ⊆ E a finite-dimensional subspace, are
open, because this already implies that V is open in E.
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Definition II.10. Let J be an infinite set. We view a function m: J × J → K as

a matrix with entries m(i, j). In this sense we write M(J,K ) for the set of all J × J-
matrices with at most finitely many non-zero entries in K . ThenM(J,K ) is a real algebra

with respect to matrix multiplication. It has a unit if and only if J is finite. We write

1 = (δij)i,j∈J for the identity matrix. Then 1+M(J,K ) is a multiplicative monoid, and

we define GL(J,K ) to be its group of units. We endow GL(J,K ) with the direct limit

topology with respect to the subgroups GL(F,K ) := GL(J,K ) ∩ (1 +M(F,K )), where

F ⊆ J is a finite subset. It follows directly from the constructions that the left and right
multiplications in the group GL(J,K ) are continuous, but if J is uncountable, then the

multiplication is not jointly continuous ([Gl99, Th. 7.1]). Here we identify M(F,K ) in a

natural way with a subset ofM(J,K ) and likewise GL(F,K ) with a subset of GL(J,K ).

Proposition II.11. Let J be an infinite set. Then for each injective map N →֒ J the

corresponding map GL(N,K )→ GL(J,K ) is a weak homotopy equivalence.
Proof. We may w.l.o.g. assume that N ⊆ J . Let η: GL(N,K ) →֒ GL(J,K ) be the

corresponding embedding of groups.

Let Y be a compact space and f :Y → GL(J,K ) be a continuous map. Then there
exists a finite subset F ⊆ J with f(Y ) ⊆ GL(F,K ) (Lemma II.9(ii)). If F ′ ⊆ J is finite
with F ∩F ′ = Ø and |F | = |F ′| = n, then GL(F ∪F ′,K ) ∼= GL(2n,K ), where we identify
F with {1, . . . , n} and F ′ with {n+ 1, . . . , 2n}. Then f is a map of the form

f(y) =

(
g(y) 0
0 1

)
,

where we write the elements of GL(2n,K ) as block 2×2-matrices with entries inM(n,K ),
and g:Y → GL(n,K ) is a continuous map.
We consider the map H : [0, 1]×GL(n,K )→ GL(2n,K ) given by

H(t, a) :=

(
1 0

t(a−1 − 1) 1

)(
1 t
0 1

)(
1 0

t(a− 1) 1

)(
1 −ta−1
0 1

)

which satisfies

H(1, a) =

(
a 0
0 a−1

)
and H(0, a) =

(
1 0
0 1

)
.

Then

H̃ : [0, 1]× Y → GL(2n,K ), (t, y) 7→ f(y)H(t, g(y))−1

is continuous with H̃(0, y) = f(y) and

H̃(1, y) =

(
1 0

0 g(y)−1

)
.

This construction shows that every continuous map f :Y → GL(F,K ) is homotopic in
GL(J,K ) to a continuous map f ′:Y → GL(F ′,K ).
In particular we see that for each continuous map f :Y → GL(J,K ) there exists a

finite subset E ⊆ N such that f is homotopic to a continuous map f̃ :Y → GL(E,K ). In
fact, with F as above, we simply choose E ⊆ N such that |E| = |F | and E ∩F = Ø. This
argument shows that the natural homomorphism πk(η):πk(GL(N,K )) → πk(GL(J,K ))

is surjective.
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To see that πk(η) is injective, suppose that f :Y → GL(n,K ) ⊆ GL(N,K ) is in
GL(J,K ) homotopic to a constant map. Let H : [0, 1] × Y → GL(J,K ) be a homotopy
with H(0, y) = 1 and H(1, y) = f(y) for all y ∈ Y . Then there exists a finite subset
F ⊆ J with im(H) ⊆ GL(F,K ). Then we may assume that F ⊇ {1, . . . , n}, and since
GL(|F |,K ) ∼= GL(F,K ), we see that the homotopy class of f vanishes in GL(|F |,K ) ⊆
GL(N,K ). In particular f is homotopic to a constant map in GL(N,K ).

The homotopy groups for GL(N,K ) and hence for all groups GL(J,K ), where J is

an infinite set, are given by the following theorem.

Theorem II.12 (Bott Periodicity Theorem). Let K ∈ {R,C ,H} and d := dimR K .

Then for k ≤ d(n+ 1)− 3 and q ∈ N the maps

πk(GL(n,K ))→ πk(GL(n+ q,K ))

are isomorphisms, so that

πk(GL(N,K )) ∼= πk(GL(n,K )).
Moreover, we have the periodicity relations

πn+2(GL(N,C)) ∼= πn(GL(N,C)), πn+4(GL(N,R)) ∼= πn(GL(N,H)),
πn+4(GL(N,H)) ∼= πn(GL(N,R)), πn(GL(N,H)/GL(N,C )) ∼= πn+1(GL(N,H)),
πn(GL(N,C )/GL(N,R)) := lim

m→∞
πn(GL(m,C)/GL(m,R)) ∼= πn+2(GL(N,H)),

πn(GL(N,R)/GL(N,C )) := lim
m→∞

πn(GL(2m,R)/GL(m,C)) ∼= πn+1(GL(N,R)),

πn(GL(N,C)/GL(N,H)) := lim
m→∞

πn(GL(2m,C)/GL(m,H)) ∼= πn+2(GL(N,R)).

In particular the homotopy groups of GL(N,K ) are determined by the following table:

GL(N,R) GL(N,C) GL(N,H)

π0 Z2 0 0

π1 Z2 Z 0

π2 0 0 0

π3 Z Z Z

Proof. The first easy part is [Hu94, Th. 8.4.1] and the remaining assertions can be

found in [Bo59, pp.314ff] (cf. also [Hu94, Cor. 9.5.2]).

For the sake of completeness, we include a proof of the first part. Using the polar

decomposition, we may consider the corresponding maps of the unitary groups U(n,K ).

To understand the effect of the inclusion maps U(n,K )→ U(n+1,K ) for the homotopy
groups, we consider the transitive action of U(n + 1,K ) on the sphere Sd(n+1)−1 which
leads to a locally trivial principal bundle

U(n,K ) →֒ U(n+ 1,K )→ S
d(n+1)−1.

The exact homotopy sequence of this bundles contains the piece

. . .→ πk+1(S
d(n+1)−1)→ πk(U(n,K ))

πk(ηn)−−−−−−→πk(U(n+ 1,K ))→ πk(S
d(n+1)−1)→ . . . .
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For k < d(n + 1) − 1, i.e., k ≤ d(n + 1) − 2 the group πk(Sd(n+1)−1) vanishes (this
follows by smoothing and Sard’s Theorem), so that πk(ηn) is surjective. If, in addition,

k ≤ d(n+ 1)− 3, then k + 1 < d(n + 1) − 1 implies that also πk+1(Sd(n+1)−1) vanishes,
so that the injectivity of πk(ηn) follows.

II.4. Homotopy groups of congruence subgroups for Schatten ideals. Let H

be a Hilbert space over K ∈ {R,C ,H}. For x, y ∈ H we define Px,y(v) := 〈v, y〉x and
put Px := Px,x. Note that Px,y ∈ B1(H).

Lemma II.13. Let H be a K -Hilbert space and (ej)j∈J an orthonormal basis. Then
B0(H) := span{Pej ,ek : j, k ∈ J} is dense in each of the spaces Bp(H), 1 ≤ p ≤ ∞.

Proof. For each p ∈ [1,∞] we have ‖x‖∞ ≤ ‖x‖p ≤ ‖x‖1 and accordingly B1(H) ⊆
Bp(H) ⊆ K(H) = B∞(H).
Since B0(H) and Bp(H) are ∗-invariant, it suffices to see that each hermitian operator

in Bp(H) is contained in the closure of B0(H). The Spectral Theorem for Compact

Hermitian Operators directly implies that the ideal Bfin(H) of continuous maps with

finite-dimensional image is dense in Bp(H), and hence that B1(H) is dense in Bp(H).

Therefore it suffices to see that B0(H) is dense in B1(H) because ‖x‖p ≤ ‖x‖1.
In view of the Hahn–Banach Theorem, we have to show that each continuous linear

functional f ∈ B1(H)′ vanishing on B0(H) is zero. As B1(H)′ ∼= B(H) ([Ne99, Prop.

A.I.10(vi)]), the functional f can be written as f(X) = tr(AX) for some A ∈ B(H).

Hence

f(Pej ,ek) = tr(APej ,ek) = tr(PA.ej ,ek) = 〈A.ej , ek〉.
If f vanishes on B0(H), then the matrix of A with respect to the orthonormal basis

(ej)j∈J vanishes, and this means that A = 0.

The following theorem is well known for the case of separable Hilbert spaces (cf.

[Pa65] and [dlH72, p.II.29]). The results on direct limit groups obtained in the preceding

subsection easily permit us to extend it to general Hilbert spaces.

Theorem II.14. Let H be an infinite-dimensional Hilbert space over K ∈ {R,C ,H}
and p ∈ [1,∞]. Then the following assertions hold:
(i) For every k ∈ N0 we have πk(GLp(H)) ∼= πk(GL(N,K )) ∼= lim−→ πk(GL(n,K )

)
.

(ii) If Hs ⊆ H is an infinite-dimensional separable subspace, then the inclusion map

GLp(Hs) →֒ GLp(H) is a weak homotopy equivalence.
(iii) For 1 ≤ p ≤ q ≤ ∞ the inclusion map GLp(H) →֒ GLq(H) is a homotopy equiva-
lence.

Proof. (i) Let ej, j ∈ J , be an orthonormal basis of H . Then Lemma II.13 above

shows that B0(H) = span{Pej ,ek : j, k ∈ J} is dense Bp(H). We endow B0(H) with the
direct limit topology with respect to the directed set of finite-dimensional subspaces of

B0(H).

For the open subset U := GLp(H)− 1 ⊆ Bp(H) we have
U ∩B0(H) = GL(J,K )− 1,
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where GL(J,K ) is the set of those elements g ∈ GL(H) for which the matrix of g−1 with
respect to (ej)j∈J has only finitely many entries, i.e., g and g∗ fix all but finitely many
ej . It easily follows from (g

∗)−1 = (g−1)∗ that g−1 has the same property. Therefore the
natural identification of B0(H) with the matrix algebraM(J,K ) leads to an identification

of the group 1+ (U ∩B0(H)) with GL(J,K ) as in Definition II.10.
Theorem II.8 implies that if we endow GL(J,K ) with the final topology with respect to

the subgroups GL(F,K ), F ⊆ J a finite subset, the inclusion map GL(J,K )→ GLp(H)
is a weak homotopy equivalence. Further Proposition II.11 shows that we have a weak

homotopy equivalence GL(N,K ) →֒ GL(J,K ). Composition of these two weak homotopy
equivalences yields a weak homotopy equivalence, and, in view of Lemma II.9(iii), this

proves (i).

(ii) We first choose an orthonormal basis (en)n∈N of Hs and then complete it to an
orthonormal basis (ej)j∈J of H . We consider the corresponding maps

ϕ1: GL(N,K )→ GLp(Hs), ϕ2: GL(J,K )→ GLp(H), ϕ3: GL(N,K )→ GL(J,K )

and

ϕ4: GLp(Hs)→ GLp(H)

with ϕ4 ◦ϕ1 = ϕ2 ◦ϕ3. Since ϕ1 and ϕ2 are weak homotopy equivalences by the first part
of the proof, and ϕ3 is a weak homotopy equivalence by Proposition II.11, it follows that

ϕ4 also is a weak homotopy equivalence.

(iii) From the elementary inclusion lp(N,R) ⊆ lq(N,R) we derive that Bp(H) ⊆
Bq(H), and Lemma II.13 implies that Bp(H) is a dense subspace. Therefore (iii) fol-

lows by applying Theorem II.8(b) to the open subset U := GLq(H)− 1 ⊆ Bq(H) which
satisfies U ∩Bp(H) = GLp(H)− 1.

Corollary II.15. If H is an infinite-dimensional complex Hilbert space, 1 ≤ p ≤ ∞,
and

GLp(H, I) := GL(H, I) ∩GLp(H),

then the following assertions hold:

(i) πk(GLp(H, I)) ∼=
{
πk(GL(N,R)) for I

2 = 1
πk(GL(N,H)) for I

2 = −1.
(ii) If Hs ⊆ H is an infinite-dimensional separable I-invariant subspace, then the inclu-
sion map GLp(Hs, I |Hs) →֒ GLp(H, I) is a weak homotopy equivalence.

(iii) For 1 ≤ p ≤ q ≤ ∞ the inclusion map GLp(H, I) →֒ GLq(H, I) is a homotopy
equivalence.

Proof. We first observe that the polar decomposition of GLp(H) ([Ne00a, Prop. A.4])

implies that its intersection with GLp(H, I) also has a polar decomposition (see the proof

of Theorem II.6), hence is homotopy equivalent to Up(H, I) := Up(H) ∩ GL(H, I). For
I2 = −1 we have Up(H, I) ∼= Up(H,H ), and for I2 = 1 we get Up(H, I) ∼= Up(HR,R),

where HR = {x ∈ H : I.x = x}. Since the group Up(H,K ) is homotopy equivalent to
GLp(H,K ) (Theorem II.6), the assertions on the groups GLp(H, I) follow from Theorem

II.14 and the existence of polar decompositions.
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III. HOMOTOPY GROUPS OF RESTRICTED GROUPS

In this section we turn to the homotopy groups of the restricted groups GLp(H,D)

and GLp(H, I,D) defined below for a complex Hilbert space H , an antilinear isometry I

with I2 = ±1, and a hermitian operator D with finite spectrum.
The main motivation for the study of the restricted groups defined by a hermitian

element D = D∗ ∈ gl(H) comes from the results in [Ne01a]. There it is shown that

each continuous Lie algebra cocycle on g ∈ {gl2(H), gl2(H, I)} can be written in the
form ωD(x, y) := tr([D,x]y) for an element D ∈ gb ∈ {gl(H), gl(H, I)}. If one considers
the unitary real form gR := {x ∈ g:x∗ = −x}, then the corresponding real cocycles
are of the form ωD for D

∗ = −D. Each of these cocycles determines an affine action of
GR := G ∩U(H) on gR ∼= g′

R
(a twisted coadjoint action) given by

g.x = gxg−1 +D − gDg−1 = g(x−D)g−1 +D

whose orbits carry natural weak symplectic structures generalizing the Kirillov–Kostant–

Souriau structure on coadjoint orbits of compact groups. The orbit OD of 0 ∈ gR is most

naturally attached to D, and we show in [Ne01a] that it is a submanifold of gR if and

only if its symplectic structure is strongly symplectic if and only if D has finite spectrum,

which of course is equivalent to the hermitian operator iD having finite spectrum. In this

sense the condition of having finite spectrum shows up as a natural condition in regard of

the geometry of coadjoint orbits. Now the restricted real groupGR(D) = GRZGR,b
(D) acts

naturally on these orbits and one obtains unitary representations of a central T-extension

on Hilbert spaces of holomorphic sections of holomorphic line bundles on the orbits. For

more details we refer to [Ne01a] and [Ne00a].

III.1. Restricted classical groups. In this subsection we introduce the class of

restricted classical groups which are extensions of the groups GL2(H) and GL2(H, I) by

certain groups of “block diagonal operators.”

Definition III.1. (a) Let H be a K -Hilbert space with K ∈ {R,C ,H}. If H =
H1 ⊕ . . . ⊕ Hk is the eigenspace decomposition of D = D∗ ∈ B(H), then we write

operators on H accordingly as (k × k)-block matrices and consider for 1 ≤ p ≤ ∞ the
space

Bp(H,D) := {A ∈ B(H): ‖[D,A]‖p <∞}
= {A = (aij) ∈ B(H): (∀i 6= j)aij ∈ Bp(Hj , Hi)}.

This space carries the structure of a Banach algebra given by the natural composition of

operators and the norm

‖X‖ := max{‖ajj‖, j = 1, . . . , k; ‖ajl‖p, j 6= l}.

It is clear that A is complete with respect to this norm. That the norm on A satisfies

‖XY ‖ ≤ k‖X‖ ‖Y ‖ can be seen as follows. We have

‖(XY )jj‖ = ‖
∑

l

XjlYlj‖ ≤ ‖Xjj‖ ‖Yjj‖+
∑

l 6=j
‖Xjl‖p‖Ylj‖p ≤ k‖X‖ ‖Y ‖
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because ‖A‖ ≤ ‖A‖p. We likewise obtain for j 6= l the estimate

‖(XY )jl‖p ≤ ‖XjjYjl‖p + ‖XjlYll‖p +
∑

i6=j,l
‖XjiYil‖p

≤ ‖Xjj‖ ‖Yjl‖p + ‖Xjl‖p‖Yll‖+
∑

i6=j,l
‖Xji‖p ‖Yil‖p ≤ k‖X‖ ‖Y ‖.

Since Bp(Hi, Hj) = B(Hi, Hj) if and only if one of the spaces Hi and Hj is finite-

dimensional, the algebra Bp(H,D) coincides with B(H) if and only if at most one of the

spaces Hj is infinite-dimensional.

(b) Next we modify the construction in (a) slightly. The space

B1,2(H,D) := {A = (aij) ∈ B2(H,D): (∀j) ajj ∈ B1(Hj)}
is a Banach algebra with respect to operator composition and the norm

‖X‖ := max{‖ajj‖1; ‖ajl‖2, j 6= l}.
It is clear that A is complete with respect to this norm. We recall that

‖XY ‖1 ≤ ‖X‖2‖Y ‖2 ≤ ‖X‖1‖Y ‖1 for X,Y ∈ B2(H).
In view of this fact, we can show that the norm on B1,2(H) satisfies ‖XY ‖ ≤ k‖X‖ ‖Y ‖:
For each j we have

‖(XY )jj‖1 = ‖
∑

l

XjlYlj‖1 ≤ ‖Xjj‖1 ‖Yjj‖1 +
∑

l 6=j
‖Xjl‖2‖Ylj‖2 ≤ k‖X‖ ‖Y ‖.

We likewise obtain for j 6= l the estimate
‖(XY )jl‖2 = ‖XjjYjl‖2 + ‖XjlYll‖2 +

∑

i6=j,l
‖XjiYil‖2

≤ ‖Xjj‖ ‖Yjl‖2 + ‖Xjl‖2‖Yll‖+
∑

i6=j,l
‖Xji‖2 ‖Yil‖2 ≤ k‖X‖ ‖Y ‖

because ‖A‖ ≤ ‖A‖2 ≤ ‖A‖1.
Proposition III.2. In the setting of Definition III.1 we have:

(a) For each p ∈ [1,∞] the set GLp(H,D) := GL(H) ∩Bp(H,D) is a group.
(b) GL1,2(H,D) := GL(H) ∩

(
1+B1,2(H,D)) is a group.

(c) The inclusion maps GL1(H) →֒ GL1,2(H,D) →֒ GL2(H) are homotopy equivalences.
(d) For each p ∈ [1,∞] the inclusion GLp(H,D) →֒ GL∞(H,D) is a homotopy equiva-
lence.

(e) For each p ∈ [1,∞] the the polar map
Up(H,D)×Hermp(H,D)→ GLp(H,D), (u, x) 7→ uex

is a diffeomorphism and the inclusion Up(H,D) →֒ GLp(H,D) is a homotopy equivalence.
Proof. (a) Let g ∈ GLp(H,D). We only have to show that (g−1)il ∈ Bp(Hl, Hi) holds

for i 6= l. First we observe that
1 = (g−1)iigii +

∑

j 6=i
(g−1)ijgji ∈ (g−1)iigii +Bp(Hi).
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We also have

gii(g
−1)il = −

∑

j 6=i
gij(g

−1)jl ∈ Bp(Hl, Hi).

Multiplying this equation with (g−1)ii, we obtain

(g−1)iigii(g
−1)il ∈ Bp(Hl, Hi) ∩

(
(g−1)il +Bp(Hl, Hi)

)
.

The fact that the intersection of these two sets is not empty shows that (g−1)il ∈
Bp(Hl, Hi).

(b) Let g ∈ GL(H) ∩
(
1+ B1,2(H,D)

)
⊆ B2(H,D). Then (a) implies that for j 6= l

we have (g−1)jl ∈ B2(Hl, Hj). We further have for i = 1, . . . , k:
1 = gii(g

−1)ii +
∑

j 6=i
gij(g

−1)ji ∈ (1+B1(Hi))(g−1)ii +B1(Hi) ⊆ (g−1)ii +B1(Hi),

so that g−1 ∈ 1+B1,2(H,D).
(c) First we observe that the space B1(H) is dense in B1,2(H,D), so that

GL1(H) = GL(H) ∩ (1+B1(H))
further yields

GL1(H) = GL1,2(H,D) ∩ (1+B1(H)),
and now Theorem II.8(b) applies.

Next we note that B1,2(H,D) ⊆ B2(H) is a dense subspace and that (b) implies that
GL1,2(H,D) = GL2(H)∩

(
1+B1,2(H,D)). Therefore Theorem II.8(b) applies again and

shows that the inclusion GL1,2(H,D)→ GL2(H) is a homotopy equivalence.
(d) follows as in (c) from Theorem II.8(b) because Bp(H,D) is dense in B∞(H,D)

with
GLp(H,D) = GL(H) ∩Bp(H,D) = GL(H) ∩B∞(H,D) ∩Bp(H,D)

= GL∞(H,D) ∩Bp(H,D).
(e) (See also [HH94b, Prop. 2.1.14] for the existence of a polar decomposition). In

view of (a), GLp(H,D) = GL(H) ∩ Bp(H,D) is the unit group of the Banach algebra
Bp(H,D). Hence the spectrum of an element of the Banach algebra Bp(H,D) is the same

as the spectrum as an element of B(H).

Let g ∈ GLp(H,D). Then g∗g ∈ Bp(H,D), and SpecBp(H,D)(g
∗g) = Spec(g∗g) is

contained in ]0,∞[. Therefore [Ne00a, Lemma A.1] implies that log(g∗g) ∈ Bp(H,D)

and that the map GLp(H,D) → Bp(H,D), g 7→ log(g∗g), is smooth. If g = uex is the

polar decomposition of g, then we conclude that x = log(g∗g) ∈ Bp(H,D), hence that
ex ∈ GLp(H,D) and therefore u = ge−x ∈ Up(H,D). Moreover, the polar map

Up(H,D) ×Hermp(H,D)→ GLp(H,D), (u, x) 7→ uex

is a diffeomorphism since its inverse is also smooth. This means that GLp(H,D) has a

smooth polar decomposition, and (e) follows.

Definition III.3 (Restricted groups). Let g ∈ {gl2(H), gl2(H, I)} and accordingly
gb ∈ {gl(H), gl(H, I)}. We fix a hermitian element D ∈ gb with finite spectrum.

For g = gl2(H) we define

Gb := GL(H) and G := GL2(H).
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For g = gl2(H, I) we likewise put Gb := GL(H, I) and G := GL2(H, I).

In both cases we define the restricted groups associated to g and D = D∗ ∈ gb by

GLp(H,D) (cf. Proposition III.2) for g = gl2(H) and

GLp(H, I,D) := GL(H, I) ∩GLp(H,D), 1 ≤ p ≤ ∞,
for g = gl2(H, I). We likewise define

GL1,2(H, I,D) := GL(H, I) ∩GL1,2(H,D).
We also put

GL(H)0 := GL(H,D)0 := ZGL(H)(D) ∼=
k∏

j=1

GL(Hj)

and

GL(H, I)0 := GL(H, I,D)0 := ZGL(H,I)(D) ∼= GL(H0, I0)×
k∏

j=1

GL(Hj),

where the last isomorphism follows easily from Remark I.2.

Remark III.4. Suppose that H is infinite-dimensional. The following remark shows

that we may often reduce considerations about the groups GLp(H,D) or GLp(H, I,D)

to the case where all spaces Hj are infinite-dimensional.

Let gb ∈ {gl(H), gl(H, I)} for g ∈ {gl2(H), gl2(H, I)}. LetD,D′ be hermitian elements
of gb with finite spectrum for which D − D′ has finite rank. Then for x ∈ B(H) the

conditions [D,x] ∈ Bp(H) and [D′, x] ∈ Bp(H) are equivalent because their difference
has finite rank, whence Bp(H,D) = Bp(H,D

′) and therefore Bp(H, I,D) = Bp(H, I,D′).
We explain the construction for glp(H, I,D), the other case is even simpler. If D

is given, then we construct D′ as follows. If Hj is infinite-dimensional, then we define
D′ |Hj as D |Hj . If H0 is finite-dimensional, then it is even-dimensional and there exists
a subspace H+0 for which H0 = H+0 ⊕ I.H+0 is an orthogonal direct sum (cf. Remark
I.2). Pick j0 > 0 such that Hj0 is infinite-dimensional. Then we define D

′ on all finite-
dimensional spaces Hj , j > 0, and H

+
0 in such a way that it has the same eigenvalue

dj0 as D on Hj0 . Likewise we define it by −dj0 on H−0 and the finite-dimensional spaces
H−j . Then D′ ∈ gb and D−D′ has finite rank, so that GLp(H, I,D) = GLp(H, I,D′).
In the remainder of this section we discuss the homotopy groups of the two types

of restricted groups GLp(H,D) and GLp(H, I,D), where D = D∗ ∈ gb is a hermitian

element with finite spectrum.

III.2. The homotopy groups of GLp(H,D). In Proposition III.2(d) we have seen

that for p ∈ [1,∞] the natural inclusion maps GLp(H,D) →֒ GL∞(H,D) are homotopy
equivalences. Therefore it suffices to determine the homotopy groups of GL2(H,D) to

know them for all the groups GLp(H,D).

In the following we keep the setting of Definition III.1, resp., Examples I.9 and set

k∞ := |{j ∈ {1, . . . , k}: dimHj =∞}|.
The determination of the connected components of GL2(H,D) described in the follo-

wing proposition can be found in [HH94b, Prop. 2.3.1].



CLASSICAL HILBERT–LIE GROUPS 115

Proposition III.5. For each g = (gij) ∈ GL2(H,D) the diagonal operators gjj are
Fredholm operators, and the connected components of the group GL2(H,D) coincide with

the fibers of the continuous homomorphism

Ind:GL2(H,D)→ Z
k∞ , g 7→ (ind(gjj))dimHj=∞

whose image is the set of those tuples (nj) ∈ Zk∞ with
∑
j nj = 0. Moreover, the identity

component GL2(H,D)e of GL2(H,D) is given by

ker(Ind) = GL2(H,D)e = GL2(H)GL(H,D)
0 = GL1,2(H,D)GL(H,D)

0
∞,

where GL(H,D)0∞ ⊆ GL(H,D)0 is the subgroup corresponding to the infinite-dimensional
ones among the spaces Hj, j = 1, . . . , k, and

π0(GL2(H,D)) ∼=
{
Zk∞−1 for k∞ ≥ 1
0 for k∞ = 0.

Proof. For each p ∈ [1,∞] we have GLp(H,D) ⊆ GL∞(H,D), and each element
g = (gij) of this group, written as a k × k-matrix with gij ∈ B(Hj , Hi), is a diagonal
matrix modulo compact operators and invertible as such. Therefore all diagonal entries

gjj are invertible modulo compact operators, hence contained in the monoid Fred(Hj) of

Fredholm operators on Hj . This means that ind(gjj) := dimker gjj−dim coker gjj is well
defined. That Ind is a group homomorphism follows from the observation that modulo

compact operators we can view elements of GL2(H,D) as diagonal operators, so that the

assertion follows from ind(ab) = ind(a) + ind(b) for Fredholm operators on each space

Hj .

The inclusions

(3.1) GL1,2(H,D)GL(H,D)
0
∞ ⊆ GL2(H)GL(H,D)0 ⊆ GL2(H,D)e ⊆ ker(Ind)

follow from the connectedness of the groups GL1,2(H) and GL2(H) (Theorem II.14,

Proposition III.2(c)) and GL(Hj) and the continuity of the index function.

For the converse, let g ∈ ker(Ind). Since each gjj is a Fredholm operator of index 0,
we conclude that whenever dimHj = ∞, there exists a finite rank operator bj ∈ B(Hj)
with ker bj = (ker gjj)

⊥ mapping ker(gjj) bijectively onto im(gjj)⊥. Then dj := gjj+bj ∈
GL(Hj) satisfies

gjj = gjj + bj − bj ∈ (gjj + bj)(1+B1(Hj)).
For dimHj < ∞ we put dj := 1. Then d := diag(d1, . . . , dk) ∈ GL(H,D)0∞ satisfies
d−1g ∈ GL1,2(H,D). We thus obtain ker(Ind) ⊆ GL1,2(H,D)GL(H,D)0∞ and hence
equality in (3.1).

Since the off-diagonal entries of g are compact, the invertibility of g implies that

0 = ind(g) =
∑
j ind(gjj), hence the corresponding restriction on the image of Ind. If,

conversely, (nj) ∈ Zk∞ satisfies
∑
j nj = 0, then we can write Hj as l

2(Jj ,C) and

accordingly H as l2(J,C) with J = ∪̇jJj . Now there exists a permutation σ of J for
which

nj = |Jj ∩ σ−1(J \ Jj)| − |(Jj ∩ σ(J \ Jj))|.
We leave the easy proof to the reader. Then the isometry σ̃ of H defined by σ is contained

in GL2(H,D) and satisfies Ind(σ̃) = (nj)dimHj=∞.
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Definition III.6. Let G be a Banach–Lie group with Lie algebra g = L(G) and h ⊆ g

a closed subalgebra. We call the subgroup H := 〈exp h〉 generated by the exponential
image of h the corresponding analytic subgroup of G. According to [Ma62], this group has

a natural Lie group structure such that the map H →֒ G is a morphism of Lie groups.

For a closed subgroup H ⊆ G we consider the closed Lie subalgebra
h := L(H) := {X ∈ g: exp(RX) ⊆ H}

of g ([Ne00a, Cor. IV.3]) and say that H is a Lie subgroup if there exists an open 0-

neighborhood V ⊆ g such that exp |V is a diffeomorphism onto an open subset exp(V )
and exp(V ∩ h) = (expV ) ∩H . Then H carries a natural Lie group structure such that
the map H →֒ G is a homomorphism of Lie groups which is a homeomorphism onto its

image (cf. [Ne00a, Prop. IV.5]).

We call a Lie subgroup H ⊆ G complemented or split if g contains a closed subspace
E complementing the closed subalgebra h. If this condition is satisfied, then H is a

submanifold in the sense of Bourbaki, and in particular the homogeneous space G/H

carries a natural manifold structure such that the canonical map π:G → G/H is a

submersion (cf. [Ne00a, Prop. IV.5]; see also [Bou90, Ch. 3, §1.6, Prop. 11]).
The next step is the determination of all homotopy groups of the restricted group

GLp(H,D).

Theorem III.7. If H is infinite-dimensional, then

πm(GL2(H,D)) ∼= πm−1(GL(N,C))k∞−1 ∼=
{
Zk∞−1 for m even
0 for m odd.

Proof. We consider the short exact sequence of groups

(3.2) A := GL2(H)∩GL(H,D)0∞ →֒ B := GL2(H)⋊GL(H,D)
0
∞ →→ C := GL2(H,D)e,

where the surjectivity of the multiplication map B → C follows from Proposition III.5.

Moreover, the assumptions of Proposition A.6 in the appendix are satisfied because

GL2(H) is connected and a normal subgroup of GL2(H,D), since B2(H) is an algebra

ideal of B(H). Furthermore, it is clear that

A ∼=
∏

dimHj=∞
GL2(Hj)

is a complemented Lie subgroup of GL2(H). It follows that B has a natural Banach–Lie

group structure and that the map B → C is a locally trivial A-principal bundle.

The homotopy groups of A are given by

πm(A) ∼= πm(GL2(H)k∞) ∼= πm(GL2(H))k∞

(Theorem II.14). Since the group

GL(H,D)0∞ ∼=
∏

dimHj=∞
GL(Hj)

is contractible (Theorem II.4), the homomorphisms

χm:πm(A) ∼= πm(GL2(H))k∞ → πm(GL2(H)) ∼= πm(B)
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can be viewed as the k∞-fold summation maps in the abelian group πm(GL2(H)). This
map is surjective with

kerχm ∼= πm(GL2(H))k∞−1.

Therefore the exact homotopy sequence of (3.2) yields for each m ∈ N0 a short exact

sequence

· · · 0−−→πm+1(C) →֒ πm(A)
χm−−→πm(B) 0−−→πm(C) · · · ,

whence

πm+1(C) ∼= kerχm ∼= πm(GL2(H))k∞−1.

The remaining assertions follow from Theorem II.12 and II.14.

III.3. The groups GLp(H, I,D). Our next step it to determine the homotopy groups

of the groups GLp(H, I,D). For that we need some preparation because the case H0 6= 0
is more complicated than the case of GLp(H,D) discussed above.

Up to a discussion of the connected components, Propositions III.9 below reduces the

general case p ∈ [1,∞] to the special case p = ∞, which for GLp(H, I,D) seems to be
better accessible than the case p = 2 to determine the connected components.

Proposition III.8. For each 1 ≤ p ≤ ∞ the groups GLp(H,D) and GLp(H, I,D)
have smooth polar decompositions. In particular, the inclusion maps

Up(H, I,D)→ GLp(H, I,D)

are homotopy equivalences.

Proof. In Proposition II.2(e) we have seen that GLp(H,D) has a smooth polar de-

composition. If g = uex is the polar decomposition of g ∈ GLp(H, I,D), then it fol-
lows from the polar decompositions of GL(H, I) (Theorem II.6) and of GLp(H,D) that

u ∈ Up(H,D) and x ∈ Bp(H,D). That the polar map of GLp(H, I,D) is a diffeomorphism
follows by restriction from the corresponding result for GLp(H,D).

Proposition III.9. For 1 ≤ p ≤ q ≤ ∞ the inclusion map of the identity components

GLp(H, I,D)e → GLq(H, I,D)e
is a weak homotopy equivalence.

Proof. In view of Remark III.4, we may assume that all spaces Hj are infinite-

dimensional. Then the group

GL(H, I,D)0 ∼= GL(H0, I0)×
k∏

j=1

GL(Hj)

is contractible (Theorem II.6). Since GL(H) acts smoothly by conjugation on the nor-

mal subgroup GLp(H), the group GL(H, I,D)
0 acts smoothly on GLp(H, I), so that

we can form the connected Banach–Lie group Gp := GLp(H, I)e ⋊ GL(H, I,D)
0. From

glp(H, I,D) = glp(H, I) + gl(H, I,D)0 and Lemma A.5 we derive that the multiplication
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map m:Gp →Mp := GLp(H, I,D)e is surjective with kernel

Hp := GLp(H, I,D)
0 ∼= GLp(H0, I0)×

k∏

j=1

GLp(Hj).

The assumptions of Proposition A.6 are satisfied, so that the map Gp → Mp defines a

locally trivial Hp-bundle. Since all the groups GL(Hj) and GL(H0, I0) are contractible,

Corollary II.15(iii) implies that the inclusion mapsHp →֒ Hq and Gp →֒ Gq are homotopy

equivalences. Now Proposition A.8 implies that the inclusion map Mp → Mq is a weak

homotopy equivalence.

Now we prepare the discussion of the case p =∞.
Lemma III.10. Let A be a unital C∗-algebra and τ a linear antiautomorphism of A

commuting with the ∗-map. Then
G := {g ∈ GL(A): τ(g) = g−1}

is adapted to the polar decomposition G(A) = U(A) exp(Herm(A)) of G(A).

Proof. First we note that G is an algebraic subgroup of G(A), hence a Lie group with

Lie algebra g = {x ∈ A: τ(x) = −x} ([Ne00a, Prop. IV.14]). Since τ commutes with ∗,
the group G is ∗-invariant.
Now we consider the automorphism of G(A) given by σ(g) := τ(g)−1. The fact that τ

commutes with ∗ implies that this automorphism preserves the subgroup U(A) of unitary
elements and the subset exp(Herm(A)). Let g ∈ G(A), and let g = uex denote its polar
decomposition. Then

σ(g) = σ(u)σ(ex) = τ(u)−1e−τ(x)

is the polar decomposition of σ(g). Therefore g is fixed by σ if and only if σ fixes u and

ex separately. This means that u ∈ G and τ(x) = −x, i.e., x ∈ g∩Herm(A). We conclude
that G = (G ∩U(A)) exp(g ∩Herm(A)).
Proposition III.11. Let I:H → H be an antilinear isometry with I2 ∈ {±1}. We

define

Fred(H, I) := {g ∈ Fred(H): gIg∗I−1 ∈ 1+K(H)}.
Then

{g ∈ Fred(H, I): ind(g) = 0} = GL(H, I)(1+K(H)) = GL(H, I) +K(H).
Proof. It is obvious that GL(H, I) +K(H) ⊆ {g ∈ Fred(H, I): ind(g) = 0}. The proof

of the converse is more involved.

Let A := Cal(H) := B(H)/K(H), write q:B(H) → A for the quotient map, and

observe that the antiautomorphism a 7→ Ia∗I−1 of B(H) preserves K(H), hence induces
an antiautomorphism τ on A with

τ(q(a)) := q(Ia∗I−1).

We consider the group

G(A)τ := {g ∈ G(A): τ(g) = g−1}.
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Since Fred(H) = q−1(G(A)), G(A)e = {q(g): ind(g) = 0}, and q(g) ∈ G(A)τ is equivalent
to q(g) ∈ G(A) and q(gIg∗I−1) = q(g)τ(q(g)) = 1, we see that

Fred(H, I) = q−1(G(A)τ ) and q(Fred(H, I)) = G(A)τ .

The assertion of the theorem means that G(A)τ ∩G(A)e = q(GL(H, I)).
Since G(A)τ is adapted to the polar decomposition of G(A) (Lemma III.10), we have

G(A)τ = (G(A)τ ∩U(A)) exp(L(G(A)τ ) ∩Herm(A)) with
exp(L(G(A)τ ) ∩Herm(A)) = q(exp(gl(H, I) ∩Herm(H))) ⊆ q(GL(H, I)).

Therefore it suffices to show that G(A)τ ∩U(A)e ⊆ q(GL(H, I)) which in turn will follow
from

Fred(H, I) ∩U(H) ⊆ GL(H, I) +K(H)
because q(U(H)) = U(A)e follows from the connectedness of U(H) (Theorem II.4) and

q(u(H)) = {a ∈ A: a∗ = −a} = u(A).

First we consider an element u ∈ U∞(H) = U(H) ∩GL∞(H) with Iu−1I−1 = u and
the eigenspaces Hµ = ker(u− µ1). Then we have for v ∈ Hµ the relation

uI.v = Iu−1.v = I.µv = µI.v,

showing that I.Hµ = Hµ. This implies u = expx for some x ∈ u∞(H) = u(H) ∩B∞(H)
and IxI−1 = −x because we can choose x in such a way that on Hµ it is given by
iλ idHµ , where e

iλ = µ for some λ ∈ [−π, π], and u ∈ U∞(H) implies x ∈ u∞(H). Let
u∞(H)− := {x ∈ u∞(H): IxI−1 = −x}. Then

{u ∈ U∞(H): Iu−1I−1 = u} = exp(u∞(H)−).
Now let g ∈ Fred(H, I) ∩U(H) and define u := gIg−1I−1. Then

Iu−1I−1 = I2gI−1g−1I−1 = gI2I−1g−1I−1 = gIg−1I−1 = u,

so that the preceding paragraph shows that u = expx with x ∈ u∞(H)−. We put

g̃ := exp(− 12x)g
and obtain

g̃Ig̃−1I−1 = exp(− 12x)gIg
−1 exp(12x)I

−1

= exp(− 12x)uI exp(12x)I
−1 = exp(12x) exp(− 12x) = 1.

This means that g̃ ∈ U(H, I). We conclude that
g = exp

(
1
2x
)
g̃ ∈ g̃ +K(H) ⊆ GL(H, I) +K(H).

This completes the proof.

Lemma III.12. For g ∈ GL∞(H, I,D) and dimH =∞ the following assertions hold:
(i) For each j we have gjj ∈ Fred(Hj) with ind(gjj) = ind(g−j,−j).
(ii) We consider the map

Ind:GL∞(H, I,D)→ Z× Z
k∞ , Ind(g) =

(
ind(g00), ind(gjj)1≤j≤k,dimHj=∞

)
.

Then Ind is a continuous group homomorphism,

GL∞(H, I,D)Ind := ker(Ind) = GL∞(H, I)GL(H, I,D)
0

= GL∞(H, I)GL(H, I,D)
0
∞,
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where GL(H, I,D)0∞ ⊆ GL(H, I,D)0 is the subgroup corresponding to the infinite-di-
mensional ones among the spaces Hj, j = 0, . . . , k. Moreover

im(Ind) =

{
{(nj):n0 + 2

∑
0<j nj = 0} ∼= Zk∞ for dimH0 =∞

{(nj):n0 = 0 =
∑
0<j nj} ∼= Zk∞−1 for dimH0 <∞.

Proof. (i) The operator g has an inverse g−1 in B∞(H, I,D), which means that all
off-diagonal blocks of g−1 are compact. Therefore the diagonal block gjj ∈ B(Hj) is

invertible modulo K(Hj), and this means that gjj ∈ Fred(Hj).
In view of Ig∗I−1 = g−1 and I.Hj = H−j , we have (g−1)jj = Ig∗−j,−jI

−1, and
therefore

− ind(gjj) = ind(g∗−j,−j) = − ind(g−j,−j).

(ii) That Ind is a group homomorphism follows from Proposition III.5. We may w.l.o.g.

assume that the spaces Hj are infinite-dimensional for 1 ≤ j ≤ k∞ and finite-dimensional
for j > k∞.

In view of (i), for each g ∈ GL∞(H, I,D) we have

0 = ind g = ind(g00) + 2

k∑

j=1

ind(gjj).

Therefore a necessary condition for n = (nj) ∈ im(Ind) is n0 + 2
∑k∞
j=1 nj = 0.

For tuples with n0 = 0 this leads to the requirement
∑
j nj = 0, and Proposition III.5

shows that all these tuples can be obtained from the subgroup

GL∞(H+ ⊕ I.H+, I,D) ∼= GL∞(H+, D+),
where H+ =

∑k
j=1Hj (Remark I.2). Therefore we may assume that n2 = . . . = nk∞ = 0.

Considering only those operators which act non-trivially on the subspaces H±1 and H0,
we may even assume that k = k∞ = 1, and that H1 and H0 are infinite-dimensional and
separable. Then we identify H with l2(Z±,C) (in the notation of Lemma I.1), where

H±1 = l
2(±Z>0,C) and H0 = l

2(±Z≤0,C )
and I.ej = e−j for j ∈ Z. We consider the operator S ∈ U(H) given by S.e±j :=
e±(j+1). Since this is a unitary operator commuting with I, it is an element of U(H, I).
Moreover, its off-diagonal terms in the (3 × 3)-block decomposition are of finite rank.
This implies that S ∈ GLp(H, I,D) for p ∈ [1,∞]. The operator S11 is a unilateral
right shift operator, so that ind(S11) = −1, and S00 is a (2× 2)-block diagonal operator,
where both components are unilateral left shift operators, so that ind(S00) = 2. Therefore

(2,−1) ∈ im(Ind), and from that the description of im(Ind) follows.
It is clear that GL∞(H, I)GL(H, I,D)0 ⊆ ker(Ind). For the converse, assume that

Ind(g) = 0. Then each gjj is a Fredholm operator of index 0, so that we find dj ∈ GL(Hj),
j = 1, . . . , k, such that d−1j gjj ∈ 1 + B1(Hj) ⊆ 1 + K(Hj). For j = 0 the relation
gIg∗I−1 = 1 implies that g00 ∈ Fred(H0, I0), so that Proposition III.11 yields an element
d0 ∈ GL(H0, I0) with d−10 g00 ∈ 1+K(H0). Then

diag(d−1k , . . . , d−11 , d0, Id
∗
1I
−1, . . . , Id∗kI

−1) ∈ GL(H, I,D)0,
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so that we may w.l.o.g. assume that gjj ∈ 1 + B1(Hj) holds for j = 1, . . . , k and g00 ∈
1+K(H0). Then for j > 0 the relation

(g−1)jjgjj ∈ 1+B1(Hj)

implies that (g−1)jj ∈ 1 + B1(Hj), and therefore g
−1 = Ig∗I−1 leads to g−j,−j ∈

1+B1(H−j). Therefore g ∈ GL∞(H, I).
If dimHj <∞, we may put dj = 1, so that we get the sharper assertion that

ker(Ind) = GL∞(H, I)GL(H, I,D)
0
∞.

We will see below that the group GL∞(H, I,D)Ind is not always connected.

Corollary III.13. For 1 ≤ p ≤ q ≤ ∞ the inclusion map GLp(H, I,D) →
GLq(H, I,D) is a weak homotopy equivalence.

Proof. In view of Proposition III.9, it remains to show that the induced homomorphism

αp,q:π0
(
GLp(H, I,D)

)
→ π0

(
GLq(H, I,D)

)

is bijective. For this we may assume that q =∞ because if we can show the assertion in
this case, the corollary follows from αp,∞ = αq,∞αp,q.

The proof of Lemma III.12 shows in particular that Ind |GLp(H,I,D) has the same range
for each p ∈ [1,∞]. Moreover, GL(H, I,D)0 ⊆ GLp(H, I,D) implies that

GLp(H, I,D)Ind := ker Ind∩GLp(H, I,D)
= GLp(H, I)GL(H, I,D)

0
∞.

Modulo connected components, the inclusion

GLp(H, I,D)Ind →֒ GL∞(H, I,D)Ind

therefore corresponds to the inclusion map GLp(H, I) →֒ GL∞(H, I) which is a homotopy
equivalence (Corollary II.15). This completes the proof.

Theorem III.14 (Homotopy groups of GLp(H, I,D)). If H is an infinite-dimensional

complex Hilbert space and k∞ := |{j ∈ {1, . . . , k} : dimHj =∞}|, then

π0(GLp(H, I,D)Ind) ∼=
{
Z2 for dimH0 <∞ and I2 = 1
0 otherwise,

π0(GLp(H, I,D)) ∼=





Z2 × Zk∞−1 for dimH0 <∞ and I2 = 1
Zk∞−1 for dimH0 <∞ and I2 = −1
Zk∞ for dimH0 =∞,

π1(GLp(H, I,D)) = 0, and π2(GLp(H, I,D)) ∼= Z
k∞ .

In view of πn+8(GLp(H, I,D)) ∼= πn(GLp(H, I,D)), n ∈ N0, the higher homotopy groups

are determined by the following table.
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dimH0 =∞ dimH0 <∞, I2 = 1 dimH0 <∞, I2 = −1
π1 0 0 0

π2 Zk∞ Zk∞ Zk∞

π3 0 0 Z2

π4 Zk∞ Zk∞−1 Z2 ⊕ Zk∞

π5 0 0 0

π6 Zk∞ Zk∞ Zk∞

π7 0 Z2 0

π8 Zk∞ Z2 ⊕ Zk∞−1 Zk∞−1

Proof. First we use Remark III.4 to see that we may assume that all spaces Hj are

infinite-dimensional and Corollary III.13 to see that we may assume that p =∞.
In view of Lemma III.12(b), we have a surjective homomorphism

ϕ: GL∞(H, I)⋊GL(H, I,D)
0 → GL∞(H, I,D)Ind

whose kernel is isomorphic to

A := GL∞(H, I) ∩GL(H, I,D)0 ∼=
{∏k

j=1GL∞(Hj) for H0 = 0

GL∞(H0, I0)×
∏k
j=1GL∞(Hj) for H0 6= 0.

Let B := GL∞(H, I) ⋊ GL(H, I,D)0 and C := GL∞(H, I,D)Ind. To see that the map
B →→ C defines a locally trivial A-principal bundle, we first observe that, although the

group GL∞(H, I) need not be connected, the group GL(H, I,D)0 acts smoothly on it
since it acts smoothly on the Banach algebra K(H), hence on GL∞(H), and GL∞(H, I)
is a complemented Lie subgroup invariant under this action. In view of Remark A.7,

and since all assumptions of Proposition A.6 are easily verified, the multiplication map

B → C is a locally trivial A-principal bundle.

The exact homotopy sequence of the principal bundle A →֒ B →→ C yields a long

exact sequence of homotopy groups

(3.3) · · · → πk+1(C)→ πk(A)→ πk(B)→ πk(C)→ πk−1(A)→ . . .

ending as an exact sequence in

· · · → π1(C)→ π0(A)→ π0(B)→ π0(C)→ 0.
Since the groups GL∞(Hj) are all connected, we have

π0(A) ∼=
{
π0(GL∞(H0, I0)) ∼= Z2 for H0 6= 0 and I2 = 1
0 otherwise

(Theorem II.14). The contractibility of the group GL(H, I,D)0 (Theorem II.6) further

leads to

π0(B) ∼= π0(GL∞(H, I)) ∼=
{
Z2 for I

2 = 1
0 for I2 = −1.

Here the homomorphism π0(A) → π0(B) is the identity if π0(A) is non-trivial because

the inclusions

O(N,C) →֒ GL∞(H0, I0) →֒ GL∞(H, I)
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are weak homotopy equivalences (cf. Corollary II.15). This leads directly to

π0(C) ∼=
{
Z2 for H0 = 0 and I

2 = 1
0 otherwise.

Now we turn to the higher homotopy groups πm, m ≥ 1. We observe that in all cases
the contractibility of GL(H, I,D)0 shows that B is homotopy equivalent to GL∞(H, I).
First we deal with the simpler case H0 6= 0. Then the inclusion map GL∞(H0, I0) →
GL∞(H, I) is a weak homotopy equivalence (cf. Corollary II.15). Hence for each m ∈ N0

the homomorphism χm:πm(A) → πm(B) is surjective. Therefore the exact homotopy

sequence of A →֒ B →→ C leads to for each m ∈ N to

πm(C) ∼= kerχm−1 ∼=
k∏

j=1

πm−1(GL∞(Hj))

∼= πm−1(GL(N,C ))k∞ ∼=
{
Z
k∞ for m even
0 for m odd.

Now we turn to the case where H0 = 0. Here we will need results from Bott’s paper

[Bo59]. Since the first two homotopy groups will be particularly important in the follo-

wing, it is instructive to determine them directly. For that we note that in all cases the

homomorphism π0(A) → π0(B) is injective, so that the homomorphism π1(B) → π1(C)

is surjective by the exactness of (3.3). Furthermore π2(A) = 0 and π2(B) = 0 (Theorems

II.6, II.14, Corollary II.15), so that π2(C) = kerχ1 and π1(C) ∼= cokerχ1. To determine
these groups, we observe that

π1(A) ∼=
{
Z2 × Zk for dimH0 =∞ and I2 = 1
Zk∞ otherwise

and

π1(B) ∼= π1
(
GL∞(H, I)

) ∼=
{
Z2 for I

2 = 1
0 for I2 = −1

}
.

For I2 = −1 the homomorphism χ1 is trivial, so that π2(C) ∼= π1(A) ∼= Zk and

π1(C) ∼= π1(B) = 0.
For the case I2 = 1 we first observe that the block diagonal map

GL(n,C)→ O(2n,C), g 7→
(
g 0
0 (g⊤)−1

)

induces a surjective map

π1(GL(n,C)) ∼= Z→ π1(O(2n,C)) ∼=
{
Z for n = 1
Z2 for n > 1,

because the generator of π1(O(2n,C)) can be obtained with the natural embedding of

SO(2,R) ∼= T. The homomorphism χ1 is therefore given by

χ1:π1(A) ∼= Z
k → π1(B) ∼= Z2, χ1((nj)) =

∑

j

[nj ],

where [n] ∈ Z2
∼= Z/2Z denotes the congruence class modulo 2 of n ∈ Z. Since H is

infinite-dimensional, we have k > 0, showing that χ1 is surjective, so that π1(C) = 0.

Since kerχ1 is a subgroup of Z
k of index 2, we obtain π2(C) ∼= kerχ1 ∼= Zk.
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We finally turn to the higher homotopy groups. The group A ∼=
∏k
j=1GL∞(Hj) is

homotopy equivalent to GL(N,C )k. In particular we have π2n−1(A) ∼= Zk and π2n(A) = 0

for all n ∈ N (Theorem II.12). Therefore the exact homotopy sequence of A →֒ B →→ C

contains the exact pieces

π2n(B) →֒ π2n(C)→ π2n−1(A)
χ2n−1−−−−−−→π2n−1(B)→→ π2n−1(C).

Since every subgroup of π2n−1(A) ∼= Zk is free, hence projective, we can apply this to

kerχ2n−1 ⊆ π2n−1(A) to obtain
(3.4) π2n(C) ∼= π2n(B) ⊕ kerχ2n−1 and π2n−1(C) ∼= cokerχ2n−1.
We are thus left with the determination of kernel and cokernel of χ2n−1. Let

ηm: GL(C
m)→ GL(C2m, I), g 7→

(
g 0
0 (g⊤)−1

)

and η: GL(N,C) → GL(2N,C , I) := lim
−→
GL(C 2m, I) be the corresponding limit map.

Then the homomorphism χ2n−1 is equivalent to

(3.5)

π2n−1(A) ∼= π2n−1(GL(N,C ))k → π2n−1(B) ∼= π2n−1(GL(2N,C , I)),

(x1, . . . , xk) 7→
k∑

j=1

π2n−1(η)(xj).

We conclude in particular that

cokerχ2n−1 = cokerπ2n−1(η).

Next we use polar decompositions to see that for I2 = 1 we have a homotopy equiva-

lence
GL(2N,C , I) ∼ lim

−→
O(2m,C) ∼ lim

−→
O(2m,R) ∼ GL(N,R)

and for I2 = −1 we get
GL(2N,C , I) ∼ lim

−→
Sp(2m,C) ∼ lim

−→
U(Hm,H) ∼ GL(N,H).

The natural embeddings GL(N,C) →֒ GL(2N,C , I) correspond then to the natural inc-
lusions

GL(N,C ) →֒ GL(2N,R) ∼= GL(N,R) and GL(N,C ) →֒ GL(N,H).
For I2 = 1 this can be seen as follows. Using polar decompositions, we have to see that

the inclusion U(m,C) →֒ O(2m,R) ⊆ O(2m,C) corresponds to the inclusion U(m,C) →֒
O(2m,R) ⊆ GL(2m,R). For this we realize O(2m,C) as {g ∈ GL(2m,C): Ig∗I−1 = g−1}
for I(z, w) = (w, z) on C2m. Then O(2m,R) ∼= O(2m,C) ∩ U(2m,C) preserves the real
form F := {(z, z): z ∈ C

m} of C2m and the action of O(2m,R) on this space is obtained
by identifying F with R2m. Then the subgroup U(m,C) corresponds to those elements

of O(2m,R) commuting with the complex structure on F given by I.(z, z) = (iz,−iz).
For I2 = −1 the assertion is verified easily.
Information on the effect of these maps on the level of the homotopy groups comes

from Theorem II.12, where we find

πn(GL(N,R)/GL(N,C)) ∼= πn+1(GL(N,R)),
πn(GL(N,H)/GL(N,C)) ∼= πn+1(GL(N,H)).(3.6)
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We first consider the case I2 = 1 in detail. For each m ∈ N we obtain with (3.6) an

exact sequence

π2m(GL(N,C)) = 0→ π2m(GL(N,R)) →֒ π2m+1(GL(N,R))

→ π2m−1(GL(N,C))
π2m−1(η)−−−−−−→π2n−1(GL(N,R))→→ π2m(GL(N,R))

→ π2m−2(GL(N,C)) = 0.

In view of the Bott periodicity, it suffices to consider m = 1, 2, 3, 4, which lead to

m = 1 : 0 →֒ Z→ Z
π1(η)−−−−−−→Z2 →→ 0

m = 2 : 0 →֒ 0→ Z
π3(η)−−−−−−→Z→→ 0

m = 3 : 0 →֒ Z→ Z
π5(η)−−−−−−→0→→ 0

m = 4 : Z2 →֒ Z2 → Z
π7(η)−−−−−−→Z→→ Z2.

Using (3.4) and (3.5), this information leads to the following table:

m πn(B) kerχn−1 cokerχn πn(C)

1 Z2 — 0 0

2 0 Zk — Zk

3 Z — 0 0

4 0 Zk−1 — Zk−1

5 0 — 0 0

6 0 Zk — Zk

7 Z — Z2 Z2

8 Z2 Zk−1 — Z2 ⊕ Zk−1

From (3.4) and Bott periodicity we further derive that the homotopy groups of C are

8-periodic, so that the table above contains all the information.

For I2 = −1, Bott periodicity implies that we obtain a similar picture shifted by 4,
therefore the entries for I2 = −1 in the table can simply be obtained from those for
I2 = 1 by a 4-shift.

Proposition III.15. The inclusion maps

GL1(H, I) →֒ GL1,2(H, I,D) →֒ GL2(H, I)
are weak homotopy equivalences.

Proof. Since the subgroup G0 := GL2(H, I,D)
0 ⊆ G := GL2(H, I) acts smoothly

on G1,2 := GL1,2(H, I,D) by conjugation, the semidirect product group B := G1,2 ⋊G0

has a natural Banach–Lie group structure. Moreover, the fact that gl2(H, I,D) =

gl1,2(H, I,D) + gl2(H, I)
0 implies that the multiplication map m:B → G has an open

image which therefore is a union of connected components. Since the inclusion map

G1 := GL1(H, I) →֒ G is a weak homotopy equivalence (Corollary III.13), the map m is

surjective.

Using Proposition A.6, we see that G ∼= B/A, where

A ∼= G1,2 ∩G0 = G01 ∼= GL1(H0, I0)×
k∏

j=1

GL1(Hj).
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We consider the exact homotopy sequence of the A-principal bundle B:

. . .→ πk(A)→ πk(B) ∼= πk(G1,2)× πk(G02)→ πk(G)→ πk−1(A)→ . . .

Since the inclusion map A ∼= G01 →֒ G02 is a weak homotopy equivalence, the homomor-

phism πk(A) → πk(G1,2) × πk(G02) corresponds to the inclusion of the second factor. In
particular, it is injective, so that the exactness of the sequence implies that the maps

πk(G1,2)→ πk(G), k ∈ N,

are isomorphisms.

Problems III. It is natural to ask for the range of the index map ind on the monoid

Fred(H, I). If I2 = 1, then Fred(H, I) contains in particular all operators g on the real

space HR := {x ∈ H : I.x = x} for which gg∗−1 is compact. Since this includes unilateral
shift operators on separable subspaces, it follows that im(ind) = Z in this case.

For I2 = −1, we may consider H as a quaternionic Hilbert space and obtain, with
similar arguments as above, that im(ind) contains all even numbers, because an unilateral

shift operator on l2(N,H) has index 2. It is an interesting question if for I2 = −1 there
exists an element g ∈ Fred(H, I) with ind(g) = 1. It is clear that this cannot be realized
as an H -linear operator, because all these operator have even index.

In both cases we see that im(ind) ∼= Z, so that we get π0(G(A)τ ) ∼= Z with the

notation from the proof of Proposition III.11.

IV. UNIVERSAL CENTRAL EXTENSIONS OF RESTRICTED GROUPS

In this section we will draw the results from the preceding sections together to describe

universal central extensions Ĝr of the identity components Gr of the restricted groups

GL2(H,D) and GL2(H, I,D) in the category of complex Banach–Lie groups. Extending

the results to real forms of these groups leads in particular to the metagonal and the me-

taplectic groups, of which we show that they are universal central extensions of restricted

versions of the real groups O(HR) and Sp(H,Ω) in the category of real Banach–Lie gro-

ups. This section is the heart of the paper because the proof of the universality of the

central extensions requires the results on Lie algebra cohomology from Section I and also

the detailed knowledge on the homotopy groups from Section III, which in turn uses

Section II. All statements concerning the universality of the considered group extensions

are new.

Throughout this section H is assumed to be an infinite-dimensional complex Hilbert

space.

IV.1. Central extensions of complex restricted groups. First we deal with the

groups Gr := GL2(H,D)e. We start with a few preparations.

Lemma IV.1. For z ∈ z(gl(H,D)0) the functional x 7→ tr(zx) on g1,2 := gl1,2(H,D)

vanishes on the commutator algebra if and only if all zj are equal.

Proof. We have [g1,2, g1,2] ⊆ [gl2(H), gl2(H)] = sl(H) = {x ∈ B1(H): tr x = 0}, so
that the condition that all zj are equal is sufficient.
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On the other hand we have for i 6= j and A ∈ B2(Hi, Hj), B ∈ B2(Hj , Hi):
[A,B] = ABEii −BAEjj

in terms of (k × k)-block matrices. Therefore
tr(z[A,B]) = zi tr(AB)− zj tr(BA) = (zi − zj) tr(AB).

Now B2(Hi, Hj)B2(Hj , Hi) = B1(Hi) implies that zi = zj is also necessary for

tr(z[g1,2, g1,2]) to vanish.

Lemma IV.2. The Lie algebra homomorphism tr: gl1,2(H,D)→ C integrates to a Lie

group homomorphism det:GL1,2(H,D)→ C
×.

Proof (cf. [HH94b] for a similar construction). Since the inclusion map

GL1(H)→ GL1,2(H,D)
is a homotopy equivalence (cf. Proposition III.2(c)), we obtain a homomorphism

ι: G̃L1(H)→ G̃L1,2(D) which induces a surjective homomorphism
π1(GL1(H)) ∼= Z→ π1(GL1,2(H,D)) ∼= Z.

If we compose the unique homomorphism d̃et: G̃L1,2(D) → C
× satisfying L(d̃et) = tr

with ι, then we obtain a lift of the determinant map det:GL1(H) → C
×. We conclude

that

π1(GL1,2(H,D)) ⊆ ker d̃et,
and this implies the assertion.

Definition IV.3. We define the group

SL(H,D) := ker(det:GL1,2(H,D)→ C
×).

Let v ∈ Hj for some infinite-dimensional space Hj be a unit vector and define the

holomorphic homomorphism γ:C× → GL1(H1) ⊆ GL1,2(H,D) by γ(z).v = zv and

γ(z).w = w for w⊥v. Then det ◦γ = idC× , and we conclude that the map
GL1,2(H,D) 7→ SL(H,D)⋊C

×, g 7→ (gγ(det g)−1, det(g))
is a diffeomorphism. On the Lie algebra level we have a corresponding semidirect decom-

position

gl1,2(H,D)
∼= sl(H,D)⋊C .

The idea for the direct construction of the central extension in Definition IV.4 below

is a slight modification of the construction used in [HH94a,b]. Different constructions for

the special case k = 2 can be found in [PS86] and [Mi89]. These central extensions could

also be obtained more indirectly with the general methods described in [Ne00b], which

requires to calculate the corresponding period maps (cf. Proposition IV.9), but in any

case it is more convenient to have a concrete realization of the central extension.

Definition IV.4. Let G = GL2(H) and Gr := GL2(H,D)e. Since the group G
0
b,∞ :=

GL(H,D)0∞ (cf. Lemma III.1) acts smoothly on the Banach algebra B1,2(H,D), it acts
smoothly by conjugation on G1,2 := GL1,2(H,D), so that we can form the semidirect
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product Banach–Lie group G1,2 ⋊G0b,∞, and the multiplication map G1,2 ⋊G0b,∞ →→ Gr
induces an isomorphism

(G1,2⋊G
0
b,∞)/N → Gr, (a, d)N 7→ ad, where N ∼= G1,2∩G0b,∞ ∼=

∏

dimHj=∞
GL1(Hj)

(cf. Proposition A.6 and Remark A.7). Here we use that G1,2 and G
0
b,∞ are connected

(Proposition III.2(c) and Theorem III.6).

In view of Definition IV.3, S := SL(H,D) ⊆ G1,2 is a Lie subgroup which also satisfies
Gr = SG

0
b,∞, so that

Gr ∼= (S ⋊G0b,∞)/NS with NS := N ∩ (S ⋊G0b,∞).

The group NS has a natural holomorphic homomorphism

∆:NS → (C×)k∞ , (g, g−1) 7→ (det(gj))dimHj=∞.

With

Z := ∆(NS) =
{
(zj) ∈ (C×)k∞ :

∏

j

zj = 1
}

we then have NS ∼= ker∆ ⋊ Z. Since ∆ is invariant under conjugation with elements of

G0b,∞, the subgroup ker∆ is a normal Lie subgroup in S ⋊G0b,∞, and it is complemented
because NS is complemented in S. Therefore we can form the quotient group

Ĝr := (S ⋊G0b,∞)/ ker∆

whose elements we write as [(a, d)] := (a, d) ker∆ (cf. Definition III.6). This group has a

natural homomorphism

q: Ĝr → Gr, q([(a, d)]) := ad with ker q ∼= NS/ ker∆ ∼= Z.

We thus obtain a central extension Z →֒ Ĝr
q−−→Gr. On the subgroup G1,2 = Sγ(C×) ⊆

Gr (in the notation of Definition IV.3), this central extension has a natural splitting given

by the homomorphism

σ1:G1,2 = Sγ(C
×)→ G♯r, σ1(gγ(z)) := [(g, γ(z))].

Remark IV.5. On the Lie algebra level the construction in Definition IV.4 leads,

for g = gl2(H) and gr := gl2(H,D), to a surjective homomorphism

s⋊ g0b,∞ := sl(H,D)⋊ gl(H,D)0∞ →→ gr := gl2(H,D), (x, y) 7→ x+ y,

(cf. Definition III.1(b)), and g0b,∞ = gl(H,D)0∞ is a closed Lie subalgebra of gr. We have
the central extension

z ∼= C
k∞−1 →֒ ĝr →→ gr.

To describe this central extension by a continuous cocycle, we need a continuous splitting

map σ: gr → ĝr. This can be obtained by from the decomposition gr = g0r⊕ [D, g], where
[D, g] ⊆ s denotes the closed subspace corresponding to the off-diagonal blocks. Writing

elements x ∈ gr as x = x0 + x1 according to this decomposition, we define

σ(x0 + x1) := [(x1, x0, 0)].
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It is clear that this is a continuous linear splitting map. The corresponding cocycle is

given by

ω(x0 + x1, y0 + y1) = [σ(x0 + x1), σ(y0 + y1)]− σ([x0 + x1, y0 + y1])
= [([x0, y1] + [x1, y0] + [x1, y1], [x0, y0], 0)]

− σ([x0, y0] + [x1, y1]0, [x1, y1]1 + [x0, y1] + [x1, y0])
= [([x0, y1] + [x1, y0] + [x1, y1], [x0, y0], 0)]

− [([x1, y1]1 + [x0, y1] + [x1, y0], [x0, y0] + [x1, y1]0, 0)]
= [([x1, y1]0,−[x1, y1]0, 0)]
= [
(
0, 0, d∆([x1, y1]0)

)
] ∼= d∆([x1, y1]0).

If E := [x1, y1]0 denotes the block diagonal part of [x1, y1], then E is of trace class with

trace 0 because [B2(H), B2(H)] ⊆ B1(H) consists of matrices with vanishing trace. Now

d∆(E) = (tr(Ej))dimHj=∞ ∈ z =
{
(zj) ∈ C

k∞ :
∑

j

zj = 0
}
.

Remark IV.6. It is interesting to compare the group Ĝr with the group constructed

in [HH94b]. As in Definition IV.4, we writeGr as a quotient (G1,2⋊G
0
b,∞)/N , and consider

the homomorphism ∆N :N → (C×)k∞ given by the same formula as in Definition IV.4.
We now obtain a central extension

G♯r := (G1,2 ⋊G0b,∞)/ ker∆N

by the same arguments. It is clear that we may view Ĝr as a subgroup of G
♯
r which we

now describe as a kernel of a homomorphism to C×.

Since the homomorphism det:G1,2 := GL1,2(H,D) → C
× is invariant under the

action of the group G0b,∞ = GL(H,D)
0
∞, it extends to a holomorphic homomorphism

G1,2 ⋊G0b,∞ → C
×

which obviously vanishes on the normal subgroup ker∆N , so that we obtain a holomorphic

homomorphism

d:G♯r = (G1,2 ⋊G0b,∞)/ ker∆N → C
×

which on Z♯ := N/ ker∆N ∼= (C×)k∞ restricts to the multiplication map (zj) 7→
∏
j zj .

From that we conclude that

ker d = Ĝr and G♯r
∼= Ĝr × C

×,

where the complementary factor can be chosen as the first factor in Z ∼= (C×)k∞ . Our
construction further implies that the section σ:G1,2 → G♯r, g 7→ [(g,1)] satisfies d ◦ σ =
det.

Definition IV.7. For g = gl2(H, I) and gr = gl2(H, I,D) we have a surjective homo-

morphism

gl1,2(H, I,D)⋊ gl(H, I,D)0∞ →→ gr := gl2(H, I,D),

where gl1,2(H, I,D) := gl2(H, I)∩B1,2(H,D) (cf. Definition III.1(b)). On the group level,
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we obtain for G = GL2(H, I) as in Definition IV.4 an isomorphism

(G1,2 ⋊G0b,∞)/N → Gr, (a, d)N 7→ ad,

where Gr := GL2(H, I,D)e, G
0
b,∞ := GL(H, I,D)

0
∞, G1,2 := GL1,2(H, I,D)e, and

N ∼=
∏

dimHj=∞,j>0
GL1(Hj)×

{
GL1(H0, I0) for dimH0 =∞
0 for dimH0 <∞

}

(cf. Definition III.3). The group N has a natural holomorphic homomorphism

∆:N → Z♯ := (C×)k∞ , g 7→ (det(gj))dimHj=∞,j>0
with N ∼= ker∆⋊ Z♯. As in Definition IV.4, we now obtain a central extension

Z♯ →֒ G♯r := (G1,2 ⋊G0b,∞)/ ker∆→→ Gr.

which splits on the subgroup G1,2 (cf. Remark IV.6). If ĝr denotes the Lie algebra of G
♯
r

and z the Lie algebra of Z♯, then we obtain a central Lie algebra extension z →֒ ĝr →→ gr.

Proposition IV.8. For gr = gl2(H,D) let ĝr be as in Definition IV.4 and for gr =

gl2(H, I,D) as in Definition IV.7. Then the following assertions hold:

(i) The central extension z →֒ ĝr →→ gr is Banach universal over C .

(ii) Every real form zR →֒ (ĝr)R →→ gr,R of this central extension is a Banach universal

central extension of the real form gr,R of gr.

Proof. (i) First we assume that gr = gl2(H,D). Let ωj, dimHj = ∞, denote the
components of the cocycle ω from Remark IV.5. Then

∑
j ωj = 0, and Proposition I.11

shows that this is the only non-trivial relation between the cohomology classes [ωj ] ∈
H2c (gr,C). Hence we obtain an isomorphism

δC : z
′ = Lin(z,C )→ H2c (gr,C), α 7→ [α ◦ ω]

so that the central extension ĝr → gr with kernel z is C -universal by Proposition I.13

because gr is perfect (Proposition I.10). Moreover, Proposition I.13 implies that ĝr is a

Banach universal central extension of gr.

For gr=gl2(H, I,D) Proposition I.11 shows that the components ωj with dimHj=∞
of the corresponding Lie algebra cocycle ω (Remark IV.5) yield a basis [ωj] of H

2
c (gr,C),

so that ĝr is a universal central extension of gr by Proposition I.13.

(ii) is an immediate consequence of (i) and Remark I.10(c) in [Ne01b].

Before we can turn to the universality assertions on the group level, we have to

compute some homotopy groups of Ĝr and G
♯
r. For any central extension Z →֒ Ĝ →→ G

of a connected Banach–Lie group G with an abelian Banach–Lie group Z, which is a

locally trivial Z-bundle, the vanishing of πm(Z), m ≥ 2, in view of the exact homotopy
sequence of the Z-bundle Ĝ implies that the maps πm(Ĝ) → πm(G) are isomorphisms

for m ≥ 3, and we have an exact sequence
0→ π2(Ĝ) →֒ π2(G)

δ−−→π1(Z)→ π1(Ĝ)→ π1(G)→ π0(Z)→ 0
which describes the relations between π1 and π2 of G and Ĝ. Here the period map

δ:π2(G) → π1(Z) plays a key role because it determines π2(Ĝ) ∼= ker δ and coker δ is
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the kernel of the map π1(Ĝ)→ π1(G). If G is simply connected, we obtain in particular

π1(Ĝ) ∼= coker δ.
Next we will analyze the period map for the central extensions Ĝr → Gr and G

♯
r → Gr

explicitly in terms of the description of the group π2(Gr) given in Theorems III.6 and

III.14. We will see that in both cases δ is injective, but that it is not surjective for G♯r.

Since Gr is simply connected, this leads to

π1(G
♯
r)
∼= coker δ.

Proposition IV.9.

(i) For Gr = GL2(H,D)e the period map δ:π2(Gr) → π1(Z) is an isomorphism. The

group Ĝr is simply connected, and π2(Ĝr) = 0.

(ii) For Gr = GL2(H, I,D)e the period map δ is always injective. If I
2 = −1, then

it is also surjective, and for I2 = 1 we have coker δ ∼= Z2. The group G
♯
r satisfies

π1(G
♯
r)
∼= Z2 and π2(G

♯
r) = 0.

Proof. (i) In our direct construction of Ĝr in Definition IV.4, we used the description

of Gr as (S ⋊G0b,∞)/NS and a homomorphism ∆:NS → Z with

Ĝr ∼= (S ⋊G0b,∞)/ ker∆ and NS ∼= ker∆⋊ Z.

The exact homotopy sequence of the NS-principal bundle S ⋊G0b,∞ contains a piece

· · ·π2(G1,2 ⋊G0b,∞)→ π2(Gr)
δr−−→π1(NS)→ π1(G1,2 ⋊G0b,∞)→ · · · ,

and since π2(G1,2 ⋊ G0b,∞) = 0 (Theorems II.6, II.14, and Proposition III.2(c)), the

connecting map δr:π2(Gr) → π1(NS) is injective. The Z-bundle Ĝr → Gr is associated

to the NS-bundle G1,2 ⋊ G0b,∞ → Gr via the homomorphism ∆:NS → Z, so that the

corresponding connecting map δ satisfies δ = π1(∆) ◦ δr. Therefore we simply have to
identify the image of δr in π1(NS) and the homomorphism π1(∆):π1(NS) → π1(Z),

restricted to this subgroup.

We have

NS =
{
d = diag(dj) ∈

∏

dimHj=∞
GL1(Hj): det d =

∏

j

det(dj) = 1
}
,

ker∆ ∼=
∏
dimHj=∞ SL(Hj), and Z

∼= (C×)k∞−1. From the proof of Theorem III.7 we
derive that

im(δr) ∼=
{
(nj) ∈ Z

k∞ :
∑

nj = 0
}
= π1(N) ∼= Z

k∞−1,

and that the map π1(∆):π1(N)→ π1(Z) ∼= Zk∞−1 is an isomorphism. Therefore

δ:π2(Gr)→ π1(Z)

is an isomorphism. The remaining assertions follow from the exact homotopy sequence

of the Z-principal bundle Z →֒ Ĝr →→ Gr because π1(Gr) = 0 (Theorem III.7) implies

that π1(Ĝr) ∼= coker δ = 0 and π2(Ĝr) ∼= ker δ = 0.
(ii) For q:G♯r → Gr = GL2(H, I,D)e the situation is slightly different. Here we have

N ∼=
∏
dimHj=∞GL1(Hj) with N

∼= ker∆ ⋊ Z, where ker∆ ∼=
∏
dimHj=∞ SL(Hj) is

simply connected. Therefore the map π1(∆):π1(N) → π1(Z) is an isomorphism, and

again we have a factorization δ = π1(∆)◦δr with δr:π2(Gr)→ π1(N). Here the vanishing
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of π2(G1,2 ⋊G0b,∞) follows from the contractibility of G
0
b,∞ (Theorem II.6), Proposition

III.15, and Corollary II.15. We conclude that δr is injective.

In view of π1(Gr) = 0 (Theorem II.14), the exactness of

· · ·π2(Gr) δr−−→π1(N)→ π1(G1,2 ⋊G0b,∞)→ π1(Gr) = 0

implies that

coker δr ∼= π1(G1,2 ⋊G0b,∞) ∼= π1(G1,2).
Using again Proposition III.15 and Corollary II.15, we obtain

π1(G1,2) ∼=
{
Z2 for I

2 = 1
0 for I2 = −1.

As in (i), we now obtain π2(G
♯
r) = 0 and π1(G

♯
r)
∼= coker δ ∼= coker δr.

From the topological information contained in Proposition IV.9 and the universality

of the Lie algebra extensions ĝr → gr, we will now derive the description of a universal

central group extension Ĝr → Gr in the category of complex Banach–Lie groups. For

I2 = 1 we will have to pass to a twofold covering group Ĝr of G
♯
r, which corresponds to

the usual passage from orthogonal groups to spin groups.

Theorem IV.10. If H is infinite-dimensional, then for Gr = GL2(H,D)e the central

extension

Z ∼= (C×)k∞−1 →֒ Ĝr
q−−→Gr

and for Gr = GL2(H, I,D)e the universal covering group

Z →֒ Ĝr := G̃
♯
r

q−−→Gr
is universal for all abelian complex Banach–Lie groups in the following sense: For each

central extension qH :H → Gr which is a locally trivial A-principal bundle for an abelian

Banach–Lie group A, there exists a unique morphism ϕ: Ĝr → H with qH ◦ ϕ = q.
Proof. We have seen in Proposition IV.9 that for Gr = GL2(H, I,D)e the period

map is not always surjective onto π1(Z). Let q: Ĝr → G♯r denote the universal covering

map for Gr = O2(HC , I,D)
+ := GL2(HC , I,D)e. For Z := q

−1(Z♯) ⊆ Ĝr we then have
Gr ∼= Ĝr/Z, and since Gr is simply connected, the group Z is connected; otherwise Ĝr/Ze
would be a non-trivial connected covering group of Gr. Therefore Z = expĜr

z is central

in Ĝr, and we see that q: Ĝr → Gr is in fact a central extension of Gr. Furthermore,

Proposition IV.9 implies that π2(Ĝr) ∼= π2(G♯r) = 0.
For Gr=GL2(H,D)e we directly get from Proposition IV.9 that π2(Ĝr)=π1(Ĝr)=0.

Therefore in both cases Gr is simply connected (Theorem III.7, Theorem III.14), Ĝr
is simply connected, and ĝr is Banach universal (Proposition IV.8). Now the assertion

follows from [Ne01a, Th. IV.14].

Remark IV.11. If ω ∈ Z2c (gr,C ) is represented by diag(λj) ∈
⊕
dimHj=∞C idHj

(Proposition I.11), then Proposition IV.9 implies that the corresponding period map

perω:π2(Gr)→ C factors through

π2(Gr)→ π1(Z) →֒ z
α−−→C ,
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where the linear functional α: z→ C is given by α((zj)) =
∑
j λjzj. Then

perω((nj)) =
∑

j

λjnj .

For g = gl2(H, I) this leads to

im(perω) =
∑

j

Zλj ⊆ C

and for g = gl2(H) to

im(perω) =
{∑

j

njλj :
∑

j

nj = 0
}
=
∑

j 6=k
Z(λj − λk) ⊆ C .

IV.2. The metaplectic and the metagonal group. In this subsection H denotes

a complex infinite-dimensional Hilbert space and J its complex structure given by J.v =

iv, v ∈ H . We write HR for the underlying real Hilbert space. The complexification

HC := (H
R)C decomposes into the ±i-eigenspaces H±C for the complex extension of J

which we also denote by J . In the following we will consider HC as a space with this

decomposition, so that J.(x, y) = (ix,−iy) in these “coordinates.” We write I for the
complex conjugation on HC with H

R = {x ∈ HC : I.x = x} and note that IJ = JI on

HC because J preserves the subspaceH
R. The ±i-eigenvectors of J can be written v∓iJv,

v ∈ HR, and the antilinearity of I implies that I(v∓iJv) = v±iJv. To obtain a convenient
setting, we identify the i-eigenspace H+

C
of J with H via the mapping v 7→ 1√

2
(v − iJv)

which is a complex linear isometry. From IJ = IJ and the antilinearity of I, we get

I.H+
C
= H−

C
. Since each orthonormal basis of H+

C
is mapped by I into an orthonormal

basis of H−
C
, we see that we may identify H−

C
with H in such a way that there exists an

antilinear involution σ of H (fixing the elements of a given orthonormal basis) such that

I is given in product coordinates on HC
∼= H ⊕H by the formula I.(x, y) = (σ(y), σ(x))

(cf. Remark I.2).

Definition IV.12. (a) We define the restricted real linear group of H by

GLres(H
R) := {g ∈ GL(HR): gJg−1 − J ∈ B2(HR)}.

The condition gJg−1−J ∈ B2(HR) is equivalent to [g, J ] ∈ B2(HR). The elements of the

group GLres(H
R) are called almost linear automorphisms of the complex Hilbert space H .

(b) It is clear that GL(H) is a subgroup of GLres(H
R). We also define the correspon-

ding restricted orthogonal and symplectic group

Ores(H
R) := O(HR) ∩GLres(HR) and Spres(H,Ω) := Sp(H,Ω) ∩GLres(HR).

Lemma IV.13. The operator D := −iJ is a hermitian involution on HC , and the

following assertions hold:

(i) GLres(H
R) = {g ∈ GL2(HC , D): Ig = gI} = GL2(HC , D) ∩ GL(HR) and the group

GLres(H
R) has a smooth polar decomposition with GLres(H

R)∩U(HC ) = Ores(H
R).

(ii) O(HC , I) ∩ U(HC ) = O(HC , I) ∩ GL(HR) = O(HR) and O(HC , I) ∩ U2(HC , D) =

Ores(H
R).
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(iii) The operator Ĩ := iJI is an antilinear isometry with Ĩ2 = −1 and
Sp(H,Ω) = {g ∈ Sp(HC , Ĩ): Ig = gI}

and

Spres(H,Ω) = {g ∈ Sp2(HC , Ĩ, D): Ig = gI}.
In particular Sp(H,Ω) is a real form of Sp2(HC , I) and Spres(H,Ω) is a real form

of Sp(HC , I,D). The group Spres(H,Ω) has a polar decomposition with Spres(H
R) ∩

U(HR) = U(H), and it is contractible.

Proof. First we note that D is a hermitian operator on HC with spectrum {±1},
because in product coordinates on HC it is given by D(x, y) = (−x, y).
(i) The condition g ∈ GLres(HR) means that if we write its complex linear extension,

also denoted g, to HC according to the decomposition of HC as a matrix

g =

(
a b
c d

)
,

then

[J, g] =
[(

i 0
0 −i

)
,

(
a b
c d

)]
= i

(
0 2b
−2c 0

)
,

so that g ∈ GLres(HR) is equivalent to g ∈ GL2(HC , D) and gI = Ig.

That the group GL2(HC , D) has a polar decomposition has been shown in Proposi-

tion III.7. Let g ∈ GL2(HC , D) and g = ue
x be its polar decomposition, where u ∈ U(HC )

and x = x∗ ∈ Herm(HC ). We then have IgI
−1 = IuI−1eIxI

−1

, which is the polar decom-

position of IgI−1. Therefore the uniqueness of the polar decomposition and the first part
of the proof imply that g ∈ GLres(HR) if and only if u ∈ GLres(HR)∩U(HC ) ∼= Ores(HR)

and IxI−1 = x, i.e., x ∈ Herm(HC ) ∩ glres(HR).

(ii) It is clear that the group O(HR) acts unitarily on HC . For g ∈ O(HR) we therefore

have Ig∗I−1 = g∗II−1 = g∗ = g−1 which implies that g ∈ O(HC , I). If, conversely,

g ∈ O(HC , I), then gIg
∗ = I, so that g ∈ O(HR) holds if and only if g commutes with I

if and only if g is unitary. This is the first assertion. With (i) and the first part we get

O(HC , I) ∩U2(HC , D) = O(HC , I) ∩U(HC ) ∩GL2(HC , D) = O(H
R) ∩GL2(HC , D)

= O(HR) ∩GL(HR) ∩GL2(HC , D) = O(H
R) ∩GLres(HR) = Ores(H

R).

(iii) Its definition implies that Ĩ = iJI is isometric and antilinear. Further Ĩ2 =

iJIiJI = −i2JIJI = J2I2 = −1. For g ∈ Sp(H,Ω) ⊆ GL(HR) we have Ĩg∗Ĩ−1 =
Jg∗J−1 = g−1, showing that g ∈ Sp(HC , Ĩ). If, conversely, g ∈ Sp(HC , Ĩ), then IgI

−1 =
J(g∗)−1J−1, so that Ig = gI is equivalent to g = J(g∗)−1J−1. We further get with (i):

Spres(H,Ω) = Sp(H,Ω) ∩GLres(HR) = Sp(H,Ω) ∩GL2(HC , D)

= GL(HR) ∩ Sp2(HC , Ĩ, D) = {g ∈ Sp2(HC , Ĩ, D): Ig = gI}.
To obtain the polar decomposition of Spres(H,Ω), we can argue as in (i), and we get

Spres(H,Ω) ∩O(HR) = {g ∈ O(HR): Jg−1J = Jg∗J−1 = g−1} = U(H).
The contractibility of U(H) (Theorem II.6) implies that Spres(H,Ω) is contractible.
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Remark IV.14. From Lemma IV.13(ii) we get O(HR) = O(HC , I) ∩ GL(HR) and

therefore

Ores(H
R) = O(HC , I) ∩GLres(HR) = O2(HC , I,D) ∩GL(HR),

showing that Ores(H
R) is a real form of O2(HC , I,D). Moreover

Ores(H
R) = O2(HC , I,D) ∩U(HC )

by Lemma IV.13(ii), so that the polar decomposition of O2(HC , I,D) implies that the

inclusion map

Ores(H
R) →֒ O2(HC , I,D)

is a homotopy equivalence. Therefore Theorem III.14 leads to

πk(Ores(H
R)) ∼=

{
Z2 for k = 0
0 for k = 1
Z for k = 2.

To see elements of Ores(H
R) \Ores(HR)+, we recall from Lemma III.12 that

O∞(HC , I,D) = O∞(HC , I)O(HC , I,D)
0
∞,

where the group O(HC , I,D)
0
∞ ∼= O(H) is contractible. Moreover, the inclusion map

O1(HC , I) →֒ O∞(HC , I) is a homotopy equivalence by Corollary III.9. Therefore

O1(HC , I)
− := {g ∈ O1(HC , I): det g = −1}

is not contained in the identity component of O∞(HC , I,D), and hence

Ores(H
R)− ⊇ O1(HC , I)

−.

The terminology for the groups defined below is taken from Vershik [Ve90], where

these groups are also discussed. Here the main new point is that we can show their

universality as central extensions of the corresponding restricted groups.

Definition IV.15 (Metaplectic and metagonal group). (a) Let D := −iJ as above.
Then ω(x + d, x′ + d′) := tr(D[x, x′]) is the universal cocycle for gr := sp2(HC , Ĩ, D)

(Proposition I.11, Remark IV.5). For the antilinear involution θ(x) = IxI−1 we have
θ(D) = −IiJI = iIJI = iJ = −D. Therefore

(θ.ω)(x + d, x′ + d′) = tr(D[θ.x, θ.x′]) = tr(Dθ.[x, x′])

= tr((θ.D)[x, x′]) = − tr(D[x, x′]) = −ω(x+ d, x′ + d′).
We conclude that

θ̂(x, z) := (θ(x),−z)
defines a complex conjugation of ŝp2(HC , Ĩ, D) := ĝr whose real form is the metaplectic

Lie algebra

mp(H,Ω) := {(x, z) ∈ ŝp2(HC , Ĩ, D):x ∈ spres(H,Ω), z ∈ iR}.
It is a universal central extension of the real Banach–Lie algebra spres(H,Ω) (Proposi-

tion IV.3(iii)).

The involution θ̂ integrates to an antiholomorphic involution θ̂G of the simply connec-

ted complex group Ŝp2(HC , Ĩ, D) := Ĝr (Proposition IV.9), and we define the metaplectic
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group

Mp(H,Ω) := {g ∈ Ŝp2(HC , Ĩ, D): θ̂G(g) = g}.

Then Mp(H,Ω) is a real Lie subgroup of Ŝp2(HC , Ĩ, D) with Lie algebra mp(H,Ω). This

group is a central extension of Spres(H,Ω) by T = {z ∈ C
×: z = z−1}.

(b) The universal cocycle ω(x+d, x′+d′) := tr(D[x, x′]) of gr := o2(HC , I,D) satisfies

θ.ω = −ω for θ(x) = σxσ−1. Therefore

θ̂(x, z) := (θ(x),−z)

defines a complex conjugation of ô2(HC , D) := ĝr whose real form is the metagonal Lie

algebra

mo(HR) := {(x, z) ∈ ô2(HC , D):x ∈ ores(H
R), z ∈ iR}

which is a universal central extension of the real Banach–Lie algebra ores(H
R) (Proposi-

tion IV.8(iii)).

The involution θ̂ integrates to an antiholomorphic involution θ̂G of the simply connec-

ted complex group Ô2(HC , I,D)
+ := Ĝr (Theorem IV.10), and we define the connected

metagonal group

MO(HR)+ := {g ∈ Ô2(HC , I,D)
+: θ̂G(g) = g}.

Then MO(HR)+ is a real Lie subgroup of Ô2(HC , I,D)
+ with Lie algebra mo(HR) which

is a central extension of the identity component Ores(H
R)+ by ZR

∼= T. Its connectedness

now follows from the connectedness of ZR and of Ores(H
R)+.

Let r ∈ O(HR)− be a simple reflection, i.e., r − 1 has one-dimensional range, which
is J-antilinear (cf. Remark IV.14). Then

Ores(H
R) ∼= Ores(HR)+ ⋊ {1, r}.

The relation rDr−1 = −D implies that ω(rxr−1, ryr−1) = −ω(x, y), so that r acts as an
involutive automorphism on the Lie algebra mo(HR) by τg.(x, z) := (rxr

−1,−z).
Anticipating the result that MO(HR)+ is simply connected (Theorem IV.18), it follows

that τg integrates to an involution τG on this group. We let the group Z4 := Z/4Z act on

MO(HR)+ in such a way that [n] := n+4Z acts as τnG. Then we define the full metagonal

group

MO(HR) := (MO(HR)+ ⋊ Z4)/{1, (−1, [2])},

where −1 denotes the unique non-trivial involution in the central circle ZR ⊆ MO(HR)+.

Using reflections s in HR with dim(im(s−1)) = 2, we obtain, as in the finite-dimensional
case, elements s̃ ∈ MO(HR)+ with s̃2 = −1, and we may even assume that r and s
commute. Then (s̃, [1])2 = (−1, [2]) implies that the group MO(HR) can also be written

as a semidirect product MO(HR)+⋊Z2. The full metagonal group is a natural analog of

the groups Pin(2n,R).

Theorem IV.16. The metaplectic group Mp(H,Ω) satisfies

πm(Mp(H,Ω)) ∼= πm(T) ∼=
{
0 for m 6= 1
Z for m = 1.
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Its universal covering group M̃p(H,Ω) is contractible, the identity component of its center

is isomorphic to R, and it is a universal central extension of the real Banach–Lie group

Spres(H,Ω).

Proof. Since Mp(H,Ω) is a central T-extension of the contractible group Spres(H,Ω),

it is connected, and the exact homotopy sequence of the locally trivial principal bundle

T →֒ Mp(H,Ω)→→ Spres(H,Ω)
yields the assertion on the homotopy groups of Mp(H,Ω). Therefore all homotopy groups

of the universal covering group M̃p(H,Ω) are trivial, which implies that it is contractible

(Theorem II.2). It is easy to see that the center of Spres(H,Ω) consists of {±1}, so that
the identity component of the center of M̃p(H,Ω) is the universal covering group of

T = Z(Mp(H,Ω))e, hence isomorphic to R. Finally the fact that mp(H,Ω) is a universal

central extension of the Banach–Lie algebra spres(H,Ω) (Proposition IV.8(ii)), and the

simple connectedness of M̃p(H,Ω) and Spres(H,Ω), imply the universality of M̃p(H,Ω)

as a central extension of Spres(H,Ω) ([Ne01a, Th. IV.14]).

Remark IV.17. (a) Since the group Spres(H,Ω) is contractible, the central extension

Mp(H,Ω) is a trivial principal bundle, hence has a continuous global section. There is

no general reason for this to imply that there is a smooth global section because we do

not know whether there exists a contraction which is a smooth map. For a discussion

of the existence of smooth global sections of central extensions we refer to Section VIII

in [Ne00b]. The polar decomposition of Spres(H,Ω) implies that it is diffeomorphic to a

product of U(H) and a Hilbert space. Since the space C([0, 1],R) embeds isometrically

into u(H) and has no smooth functions with arbitrarily small support (cf. [KM97]), the

same holds for U(H), showing that U(H) and therefore also Spres(H,Ω) is not smoothly

paracompact.

Nevertheless, one can also show directly as follows that Mp(H,Ω) has a smooth global

section. First we observe that the the invariance of spres(H,Ω) under the involution

x 7→ x∗ leads to the decomposition

g := spres(H,Ω) = k⊕ p with k = u(H) = {x ∈ g:x∗ = −x}, p = {x ∈ g:x∗ = x}.
Writing elements x ∈ g accordingly as x = xk + xp, the universal cocycle satisfies

ω(x, x′) = tr(D[x, x′]) = tr(D[xp, x
′
p])

because [D,xk] = 0. Therefore the inverse image

k̂ = k⊕ iR ⊆ ĝ = g⊕ω iR
of k is a direct Lie algebra sum k ⊕ iR. Moreover, ĝ = k̂ ⊕ p has the structure of a

symmetric Lie algebra because [̂k, p] ⊆ p and [p, p] ⊆ k̂. Now we use the methods from

[Ne00c] to see that Mp(H,Ω) has a polar decomposition K̂ exp(p). That the assumptions

of [Ne00c, Th. IV.1] are satisfied follows from the fact that for each x ∈ p the operator

(adx)2 |p: p→ p is positive hermitian ([Ne00c, Prop. III.16]). We then conclude that that

simply connected covering group M̃p(H,Ω) has a polar decomposition
(
U(H)× iR

)
exp p

because U(H)× iR is the simply connected group with Lie algebra k̂. From that it follows
directly that Mp(H,Ω) has a polar decomposition K̂ exp p with K̂ ∼= U(H)×T. Now we
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get a smooth section

σ: Spres(H,Ω) = U(H) exp p→ Mp(H,Ω) = (U(H)× T) exp p, u expx 7→ (u,1) expx
for u ∈ U(H) and x ∈ p.

(b) In the finite-dimensional case H ∼= C
n we have π1(Sp(H,Ω)) ∼= π1(Sp(2n,R)) ∼=

Z, and the Lie algebra sp(H,Ω) is centrally closed. Hence the central T-extensions of

Sp(H,Ω) are classified by

Hom(π1(Sp(Ω, H)),T) ∼= Hom(Z,T) ∼= T,

and the metaplectic group (which in this case is also called Mpc(H,Ω)) is defined by the

homomorphism Z → T mapping 1 to −1. The corresponding Lie algebra extension is
trivial, but the commutator group of Mpc(H,Ω) is a twofold covering of Sp(H,Ω) (which

is frequently called metaplectic group).

Theorem IV.18. The inclusion map

MO(HR)+ →֒ Ô2(HC , I,D)
+

is a weak homotopy equivalence. In particular the group MO(HR)+ is simply connected.

Moreover, it is a universal central extension of the real Banach–Lie group Ores(H
R)+.

Proof. Since O2(HC , I,D)
+ has a polar decomposition with unitary part Ores(HR)

+

(Remark IV.14), the inclusion map Ores(HR)
+ → O2(HC , I,D)

+ is a homotopy equ-

ivalence. Further the inclusion map ZR
∼= T →֒ Z ∼= C

× is a homotopy equivalence.
Therefore Proposition A.8 implies that the inclusion

MO(HR)+ →֒ Ô2(HC , I,D)
+

is a weak homotopy equivalence. We conclude in particular that MO(HR)+ is simply

connected. Therefore the fact that mo(HR) is a universal central extension of the real

Banach–Lie algebra ores(H
R) implies the universality of MO(HR)+ as a central extension

of the simply connected group Ores(H
R)+ ([Ne01a, Th. IV.14]).

Remark IV.19. If H ∼= C
n is finite-dimensional and n > 1, then π1(O(2n,R)) ∼= Z2,

and there exists a natural T-extension of O(2n,R)+ = SO(2n,R) corresponding to the

inclusion homomorphism π1(O(2n,R)) ∼= Z2 →֒ T. This central extension would be a

natural analog of MO(HR). Its commutator subgroup is the universal covering group

Spin(2n,R) of SO(2n,R).

V. INFINITE-DIMENSIONAL FLAG MANIFOLDS

In this section we discuss analogs of complex flag manifolds for the groups

G ∈ {GL2(H),GL2(H, I)}.
We define these manifolds as the orbits of certain flags F = (F0, F1, . . . , Fk) in H under
G. Let P (F) ⊆ G denote the stabilizer of such a flag. Then the homogeneous space

G/P (F) is a complex manifold, called a flag manifold. We also show that the unitary
real form U := G ∩ U(H) acts transitively on G/P (F). Similar results hold for the
restricted groups Gr.
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V.1. Complex flag manifolds. In this subsection we introduce the flag manifolds

associated to the complex groups GL2(H) and GL2(H, I).

Definition V.1. (a) We consider a flag F = (F0, F1, . . . , Fk), where
{0} = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fk = H

are closed subspaces of H . Let

Pb(F) := {g ∈ GL(H): (∀j)g.Fj = Fj}
denote the stabilizer of this flag. To get a better description of this group, we define closed

subspaces Hj := Fj ∩F⊥j−1 for j = 1, . . . , k and thus obtain an orthogonal decomposition
H = H1 ⊕ . . .⊕Hk. Accordingly we view operators on H as matrices (xij)i,j=1,...,k with
xij ∈ B(Hj , Hi). Then

Pb(F) = {g ∈ GL(H): (∀i > j) gij = 0} ∼= N(F)⋊M(F),
where

M(F) = {g ∈ GL(H): (∀j)g.Hj = Hj} = {g ∈ GL(H): (∀i 6= j)gij = 0} ∼=
k∏

j=1

GL(Hj)

and

N(F) = {g ∈ GL(H): (∀j)(g − 1).Hj ⊆ Hj−1} = {g ∈ Pb(F): (∀j) gjj = 1}.

(b) For G = GL2(H) we now define P := P (F) := Pb(F) ∩ G. In this case the
description in (a) implies immediately that P (F) is a complemented Lie subgroup of G,
so that the homogeneous space G/P (F) has a natural structure of a complex Banach
manifold (cf. Definition III.6) which we call a flag manifold associated to G.

(c) For G = GL2(H, I) we now consider a chain of closed subspaces

{0} = F0 ⊆ F1 ⊆ . . . ⊆ Fk
which are isotropic, i.e., that all spaces Fj are isotropic for the bilinear form β(x, y) =

〈x, I.y〉, which in turn is equivalent to I.Fj⊥Fj . We extend this chain of subspaces to the
flag F defined by

{0} = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fk ⊆ F⊥βk ⊆ . . . ⊆ F
⊥β
1 ⊆ F

⊥β
0 = H.

For g ∈ GL(H) and τ(g) := I(g∗)−1I−1 the condition g ∈ GL(H, I) is equivalent to
g = τ(g). Moreover, the condition g.E = E for a closed subspace E ⊆ H is equivalent to
g∗.E⊥ = E⊥, hence to τ(g).E⊥β = E⊥β because E⊥β = I.E⊥. Therefore the subgroup
Pb(F) ⊆ GL(H) is invariant under the involution τ , and its intersection with GL(H, I)
coincides with the set of all elements preserving the subspaces F1, . . . , Fk.

To fix the notation in such a way that it is compatible with Examples I.9, we define

for the flag F the spaces H1, . . . , Hk as above, H0 := F⊥k ∩ F
⊥β
k , and H−j := I.Hj for

j = 1, . . . , k. Then

F
⊥β
j = H1 ⊕ . . .⊕Hk ⊕H0 ⊕H−k ⊕ . . .⊕H−j−1.

Note that H0 is zero if and only if Fk is maximal isotropic for β.
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It is clear that the group M(F) is invariant under τ . For g ∈ Pb(F) we have τ(g)jj =
I(g∗−j,−j)

−1I−1, showing that also N(F) is τ -invariant. Therefore the semidirect decom-
position of Pb(F) leads with

Mb :=M(F)τ ∼= GL(H0, I0)×
k∏

j=1

GL(Hj)

(cf. Remark I.2) and Nb := N(F)τ to the semidirect decomposition Pb = Nb ⋊Mb. On

the Lie algebra level the strictly lower triangular matrices in gl(H) provide a complement

invariant under τg(x) := −Ix∗I−1, so that passing to τg-fixed points yields a closed
complement to the Lie algebra L(Pb) of Pb in gl(H, I). Therefore Pb is a complemented

Lie subgroup of Gb = GL(H, I).

Similar results hold for the group P := Pb ∩GL2(H, I), so that we obtain a complex
manifold structure on the homogeneous spaces G/P and Gb/Pb (cf. Definition III.6).

Remark V.2. (a) The equation

N(F)− 1 = {x ∈ B(H): (∀i ≤ j) xij = 0}
shows that this is a closed subspace of B(H), hence that N(F) is contractible. Similar
assertions hold for the intersection with GL2(H).

(b) To obtain the corresponding result for N(F) ∩GL(H, I), we note that the expo-
nential function exp:N(F)− 1→ N(F) is a polynomial diffeomorphism inverted by the
logarithm function given by

log(1+ x) =

∞∑

j=1

(−1)n+1
n

xn.

This property is inherited by the subgroupN(F)∩GL(H, I), so that it is also contractible,
and the same holds for N(F) ∩GL2(H, I).

Now we turn to the homotopy groups of the flag manifolds G/P (F).

Proposition V.3. (a) For G = GL2(H) and P = Pb(F) ∩ G the manifold G/P
satisfies

π0(G/P ) = 0, π1(G/P ) = 0 and π2(G/P ) ∼= Z
k−1.

(b) For G = GL2(H, I) and P = Pb(F) ∩G the flag manifold G/P satisfies

π0(G/P ) ∼=
{
0 for I2 = −1
Z2 for I

2 = 1 and H0 6= 0

}
, π1(G/P ) = 0 and π2(G/P ) ∼= Z

k.

Proof. (a) We have P ∼= N⋊M , whereN is diffeomorphic to a Banach space. Therefore

P is homotopy equivalent to M . We conclude that

π0(P ) = π0(G) = 0, π1(P ) ∼= Z
k, π1(G) ∼= Z and π2(P ) ∼= π2(G) = 0.

Hence G/P is connected, and if χ:π1(P )→ π1(G) is the homomorphism induced by the

inclusion map, the exact homotopy sequence of the principal P -bundle G→ G/P implies

that

π1(G/P ) ∼= cokerχ and π2(G/P ) ∼= kerχ.
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In view of χ(n1, . . . , nk) =
∑
j nj, we get

π1(G/P ) ∼= 0 and π2(G/P ) ∼= Z
k−1.

(b) For G = GL2(H, I) we also have P ∼= N ⋊M , which is homotopy equivalent to

M (Remark V.2(b)). For H0 = 0 we have

π0(P ) = 0, π1(P ) ∼= Z
k and π2(P ) = 0,

and

π0(G) ∼= π1(G) ∼=
{
0 for I2 = −1
Z2 for I

2 = 1

}
and π2(G) = 0.

Therefore the exact homotopy sequence of the bundle P →֒ G→ G/P yields

π0(G/P ) ∼=
{
0 for I2 = −1
Z2 for I

2 = 1

}
, π1(G/P ) = 0 and π2(G/P ) ∼= Z

k

because for I2 = 1 the homomorphism π1(P )→ π1(G) is given by

Z
k → Z2 = Z/2Z, (nj) 7→

∑

j

[nj ].

For H0 6= 0 we have

π0(P ) ∼=
{
0 for I2 = −1
Z2 for I

2 = 1

}
, π1(P ) ∼=

{
Zk for I2 = −1
Z2 × Zk for I2 = 1

}
,

and π2(P ) = 0, and further

π0(G) ∼= π1(G) ∼=
{
0 for I2 = −1
Z2 for I

2 = 1

}
and π2(G) = 0.

Therefore the exact homotopy sequence yields

π0(G/P ) = 0, π1(G/P ) = 0 and π2(G/P ) ∼= Z
k

because for I2 = 1 the homomorphism π0(P )→ π0(G) is surjective.

Remark V.4. (a) In Proposition III.5 we have seen that for G = GL2(H) we have

Gr = GG
0
b which implies that with Pr := Gr∩P (F) we have Gr = GPr with Pr∩G = P ,

so that G acts transitively on Gr/Pr, and we obtain G/P ∼= Gr/Pr.
For G = GL2(H, I) we have on the Lie algebra level gr = g + g0b , which implies

that Gr = Ge(G
0
b)e (Lemma A.5), and hence that the identity component Ge of G acts

transitively on the connected manifold Gr/Pr for Pr := Gr ∩ P (F). From Pr ∩ G = P

we derive that Gr/Pr ∼= Ge/(Ge ∩P ) is the connected component of G/P containing the
base point 1P .

(b) Suppose that all spaces Hj in Definition V.1 are infinite-dimensional and that

Gr = GL(H, I,D)e, where D is compatible with the flag F in the sense of Examples I.9.
Then the group Pr ∼= Nr⋊Mr is contractible because Nr is contractible and all factors in
Mr are contractible (Theorem II.6, Remark V.2). Therefore the exact homotopy sequence

of the Pr-principal bundle Gr → Gr/Pr ∼= Ge/(P ∩Ge) implies that the quotient map is
a weak homotopy equivalence. In particular we obtain for each m ∈ N0 the relation

πm(G/P ) ∼= πm(Gr).
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V.2. Transitivity of the action of the unitary real form on the flag mani-

folds. In this subsection we show that the unitary real forms of the restricted groups Gr
also act transitively on the corresponding flag manifolds Gr/Pr.

Lemma V.5. If ϕ:H1 → H2 is a topological isomorphism of Hilbert spaces, then there

exists a unitary isomorphism ψ:H1 → H2.

Proof. The map ϕ∗ϕ ∈ GL(H1) is an invertible positive operator, so that γ :=
√
ϕ∗ϕ ∈

GL(H1) is uniquely defined. Now ψ := ϕ◦γ−1:H1 → H2 is unitary because it is invertible

and

ψ∗ψ = γ−1ϕ∗ϕγ−1 = γ−1γ2γ−1 = 1.

Lemma V.6. Let H1 and H2 be complex Hilbert spaces and Ij :Hj → Hj antilinear iso-

metries with I2j = ±1 (same signs). If ϕ: (H1, I1)→ (H2, I2) is a topological isomorphism
with ϕI1ϕ

∗ = I2, then there exists a unitary isomorphism ψ:H1 → H2 with ψI1ψ
∗ = I2.

Proof. First we observe that the condition ϕI1ϕ
∗ = I2 means that ϕ is an isome-

try between the spaces (Hj , βj), where βj(x, y) = 〈x, Ij .y〉 is a non-degenerate complex
bilinear form. Indeed,

β2(ϕ(x), ϕ(y)) := 〈ϕ(x), I2.ϕ(y)〉 = 〈x, I1.y〉 =: β1(x, y), x, y ∈ H1,

is equivalent to ϕ∗I2ϕ = I1, i.e., to ϕ
−1I2(ϕ∗)−1 = I1 which in turn means that ϕI1ϕ

∗

= I2.

We define ψ as in the proof of Lemma V.5. The remark above implies that ϕ∗ϕ is
a β1-isometry, hence in GL(H1, I1). The polar decomposition of this group (Theorem

II.6(iii)) implies that γ ∈ GL(H1, I1), so that ψ = ϕγ−1:H1 → H2 satisfies

ψI1ψ
∗ = ϕγ−1I1(γ

∗)−1ϕ∗ = ϕI1ϕ
∗ = I2.

Proposition V.7. Let H = H1⊕ . . .⊕Hk be the orthogonal eigenspace decomposition
of D = D∗ ∈ B(H), Fj := H1 + . . . + Hj, Pb := Pb(F), Pr := Pb ∩ GL2(H,D) and
P := Pb ∩GL2(H). Then

GL(H) = U(H)Pb, GL2(H,D) = U2(H,D)Pr = U2(H)Pr , and GL2(H) = U2(H)P,

i.e., U(H) acts transitively on GL(H)/Pb and U2(H) acts transitively on GL2(H,D)/Pr
and GL2(H)/P . Moreover, if u ∈ U(H) and g ∈ GL2(H,D) satisfy u−1g ∈ Pb, then

u ∈ U2(H,D).

Proof (see [PS86, Prop. 7.13] for the case k = 2). Let F ′j := g.Fj . Then g maps F1
isomorphically onto the Hilbert space F ′1. Hence Lemma V.5 implies that there exists a
unitary isomorphism u1:F1 → F ′1. Moreover, g induces a topological isomorphism

H2 ∼= F2/F1 → F ′2/F
′
1
∼= H ′2 := (F ′1)⊥ ∩ F ′2.

Applying Lemma V.5 again, we find a unitary isomorphism u2:H2 → H ′2. Continuing
this way, we obtain unitary isomorphisms

uj :Hj → H ′j := (F
′
j−1)

⊥ ∩ F ′j , j = 1, . . . , k.
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Putting these maps together, we obtain a unitary map u ∈ U(H) with u(Hj) = H ′j for
all j and therefore in particular with

u(Fj) =

j∑

m=1

H ′m = F
′
j .

This means that u−1g preserves all spaces Fj . We conclude that GL(H) = U(H)Pb.

Suppose that g ∈ GL2(H,D). Then for each j the orthogonal projection pj :F ′j → F⊥j
is Hilbert–Schmidt because its composition with g is Hilbert–Schmidt as an operator

Fj → F⊥j . We conclude that pj ◦ u:Fj → F⊥j is Hilbert–Schmidt, which implies that
for i > j the operator uij ∈ B(Hj , Hi) is Hilbert–Schmidt. Moreover, for j > 1 the

orthogonal projection

qj :H
′
j → Fj−1

is Hilbert–Schmidt because its composition with g corresponds to the operators g1j, . . . ,

gj−1,j , hence is Hilbert–Schmidt. Therefore qj ◦ u |Hj :Hj → Fj−1 is Hilbert–Schmidt,
which means that u1j , . . . , uj−1,j are Hilbert–Schmidt. We conclude that also for i < j we

have uij ∈ B2(Hj , Hi), and hence that u ∈ U2(H,D). Thus u−1g ∈ Pb∩GL2(H,D) = Pr,
and this proves that GL2(H,D) = U2(H,D)Pr . From the connectedness of the gro-

ups U2(H,D) we derive U2(H,D) = U2(H)U(H)
0 ⊆ U2(H)Pr (Lemma A.5), whence

GL2(H,D) = U2(H)Pr .

Finally GL2(H) ⊆ GL2(H,D) = U2(H)Pr leads to GL2(H) = U2(H)(Pr∩GL2(H)) =
U2(H)P .

Proposition V.8. Let H = H−k⊕. . .⊕Hk be the orthogonal eigenspace decomposition
of D = D∗ ∈ B(H, I) with IHj = H−j, Fj := H1 + . . .+Hj for j = 1, . . . , k, and define
Pb := Pb(F) and Pe := Pb ∩GL2(H, I)e. Then

GL(H, I) = U(H, I)Pb and GL2(H, I,D) ⊆ U2(H, I,D)Pb.

Moreover, with Gr := GL2(H, I,D)e, Ur := Gr ∩U(H) and Pr := Pb ∩Gr we get

Gr = UrPr = U2(H, I)Pr and GL2(H, I)e = U2(H, I)ePe.

In particular U(H, I) acts transitively on GL(H, I)/Pb and U2(H, I) acts transitively on

Gr/Pr.

Proof. Let g ∈ GL(H, I). As in the proof of Proposition V.7, we put F ′j := g.Fj and
obtain unitary operators

uj :Hj → H ′j := (F
′
j−1)

⊥ ∩ F ′j , j = 1, . . . , k.

Putting these maps together, we obtain a unitary map u+:H+ := Fk → H ′+ := F ′k
mapping each Hj , j = 1, . . . , k, unitarily onto H

′
j . From g ∈ GL(H, I) we derive that F ′k

is isotropic for the bilinear form β(x, y) := 〈x, I.y〉, which means thatH ′− := I.H ′+ ⊆ H⊥+ .
Therefore H ′+ + I.H

′
+ ⊆ H is an orthogonal direct sum, hence a closed subspace of H .

We define a unitary map

u−:H− := I.H+ → H ′−, v 7→ I(u∗+)
−1I−1.v.
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Let H ′0 := g.(H0 +H+) ∩ (H ′+)⊥. Then

(H ′0 +H
′
+)
⊥ =
(
g.(H0 +H+)

)⊥
= (g∗)−1.

(
(H0 +H+)

⊥)

= I−1gI.H− = I.(g.H+) = I.H
′
+ = H

′
−

implies that H = H ′+ ⊕H ′0 ⊕H ′− is an orthogonal direct sum.
Since (H0, β |H0×H0) is, as a space with bilinear form, isomorphic to

(H+ +H0)/(H+ +H0)
⊥β = (H+ +H0)/H+ ∼= H0,

the map g ∈ GL(H, I) induces an isomorphism

H0 → g(H0 +H+)/
(
g(H0 +H+)

)⊥β ∼= (H ′0 +H ′+)/H ′+ ∼= H ′0
with respect to the restriction of β to both spaces. Therefore we obtain with Lemma V.6

a unitary β-isometric map u0:H0 → H ′0.

Combining u0 with u±, we now obtain with H = H+ ⊕ H0 ⊕ H− a unitary map
u:H → H . To see that u ∈ U(H, I), we first recall that u0 is β-isometric. Moreover, u
maps (H0)

⊥β = H+ +H− to the closed subspace H ′+ +H
′
− = H

′
+ + I.H

′
+ with

(H ′++H
′
−)
⊥β = (H ′+)

⊥β ∩ (H ′−)⊥β = (H ′++H ′0)∩ (I.H ′−)⊥ = (H ′++H ′0)∩ (H ′+)⊥ = H ′0.
Therefore it remains to show that u |H++H− is β-isometric. The subspaces H± and H ′±
are β-isotropic, so that the assertion follows from

β(u.v+, u.v−) = β(u+.v+, I(u
∗
+)
−1I−1.v−) = −〈u+.v+, (u∗+)−1I−1.v−〉

= 〈v+, I.v−〉 = β(v+, v−)
for v± ∈ H±. We conclude that u ∈ U(H, I), and that u−1g preserves the spaces
F1, . . . , Fk, hence is contained in Pb.

Suppose that g ∈ GL2(H, I,D). Then g maps the flag
F1 ⊆ F2 ⊆ . . . ⊆ Fk ⊆ F⊥βk ⊆ . . . ⊆ F

⊥β
1

to

F ′1 ⊆ F ′2 ⊆ . . . ⊆ F ′k ⊆ (F ′k)⊥β ⊆ . . . ⊆ (F ′1)⊥β

and u does the same. Therefore the last assertion in Proposition V.7 entails that u ∈
U2(H,D) and hence that u ∈ U2(H, I,D). Finally u−1g ∈ Pb implies that GL2(H, I,D) ⊆
U2(H, I,D)Pb.

We conclude in particular that the group Ur = U2(H, I,D)e ⊆ Gr acts on Gr/Pr
with open orbits, and therefore transitively because Gr/Pr is connected, whence Gr =

UrPr . With Lemma A.5 we now obtain from ur = u2(H, I) + u(H, I,D)0 that Ur =

U2(H, I)eU(H, I,D)
0 ⊆ U2(H, I)ePr, so that Gr = U2(H, I)ePr, and therefore

GL2(H, I)e ⊆ Gr = U2(H, I)ePr
yields GL2(H, I)e = U2(H, I)ePe.

Remark V.9. (a) The decompositions of type G = UP obtained in Propositions

V.7/8 are analogs of the Iwasawa decomposition of finite-dimensional complex reductive

Lie groups. It is an interesting question whether such decompositions could be obtained

for infinite flags.



CLASSICAL HILBERT–LIE GROUPS 145

(b) It follows from the proof of Theorem II.14 that the manifolds G/P contain a dense

subset which is the directed union of orbits of finite-dimensional groups GF which are

compact complex flag manifolds. Since the orbits GFP/P ⊆ G/P have the property that
all holomorphic functions on them are constant, it follows easily that all holomorphic

functions on G/P are constant (cf. [HH94b, Cor. 3.2.2] for the case G = GL2(H)).

For refined information on holomorphic sections of complex line bundles on the ma-

nifolds G/P we refer to [HH94a,b], [Ne00a] and [Ne01a]. For an extension of the Bott–

Borel–Weil Theorem to direct limit groups, which is closely related to our setting, we

refer to [NRW00].

Remark V.10. (a) First let G = GL2(H). For k = 2 and n := dimF1 < ∞ the
orbit G.F1 consists of all n-dimensional subspaces of H . Therefore Grn(H) := G/P is

the Graßmannian of all n-dimensional subspaces of H . For n = 1 we obtain in particular

the projective space P(H) = Gr1(H).

For k = 2, H separable, and F := F1 of infinite dimension and codimension, the

manifold Grres(F ) := G/P is the restricted Graßmannian of the separable Hilbert space

H based in F . This manifold plays a crucial role in the structure theory of loop groups

and in theoretical physics (cf. [PS86], [Wu01]).

(b) The manifolds G/P for arbitrary finite length of the flag and G = GL2(H) have

been introduced in two papers of A. and G. Helminck (cf. [HH94a] and [HH94b]).

(c) For G = GL2(H) and k = 2 the manifolds G/P ∼= U/(U ∩ P ) (Proposition V.7)
are symmetric spaces because the group U ∩ P can be written as the fixed point set of
an involution on U defined as τ(u) = pup−1, where p2 = 1 and ker(p− 1) = F1.
Other symmetric spaces are obtained for G = GL2(H, I) and k = 1 and either

dimF1 = 1 or F1 ⊆ H maximal isotropic. In the first case we obtain the space of all

isotropic lines in P(H) for the bilinear form β(x, y) = 〈x, I.y〉, and in the second case we
obtain a subset of the restricted Graßmannian associated to F1, consisting of all those

subspaces which are isotropic for β. In the first case the involution on U2(H, I) can be

obtained from p2 = p with ker(p + 1) = H0 and ker(p − 1) = F1 + I.F1. Then each

element in U2(H, I) commuting with p either preserves F1 or maps it to I.F1, showing

that U2(H, I)∩P has index 2 in the fixed point group of τ(u) = pup−1, hence is an open
subgroup. In the second case, where F1 is maximal isotropic, we define p ∈ GL(H, I) by
i on F1 and −i on F⊥1 . Then τ(u) := pup−1 defines an involution on U2(H, I) with the
required properties.

The important role of the flag manifolds G/P ∼= U/(U ∩ P ) stems from the fact
that these are precisely those coadjoint orbits of central extensions of the real group U

which are strong Kähler manifolds, hence have the “best” geometric structure. We refer

to [Ne01a] for this characterization which was one of the main motivations for writing

the present paper.

APPENDIX

Lemma A.1. Let X and Y be Banach spaces and A:X → Y a continuous linear map.

Suppose that X1, Y1 are Banach spaces with continuous injective linear maps ηX :X1 → X
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and ηY :Y1 → Y . If A(ηX(X1)) ⊆ ηY (Y1), then the induced map
A1:X1 → Y1 with ηY ◦A1 = A ◦ ηX

is continuous.

Proof.We argue with the Closed Graph Theorem. Assume that (xn, A1.xn)→ (x, y) ∈
X1 × Y1. Then ηY (A1.xn) = A.ηX(xn) → A.ηX(x) implies that ηY (y) = A.ηX(x) =

ηY (A1.x), and therefore A1.x = y. Therefore A1 is continuous.

Lemma A.2. Let X,Y, Z be Banach spaces and A:X × Y → Z a continuous bilinear

map. Suppose that X1, Y1, Z1 are Banach spaces with continuous injective linear maps

ηX :X1 → X, ηY :Y1 → Y and ηZ :Z1 → Z. If A(ηX(X1) × ηY (Y1)) ⊆ ηZ(Z1), then the

induced bilinear map

A1:X1 × Y1 → Z1 with ηZ ◦A1 = A ◦ (ηX × ηY )
is continuous.

Proof. In view of [Ru73, Th. 2.17], it suffices to show that A1 is separately continuous.

Fix y1 ∈ Y1. Then the map A(·, ηY (y1)) maps ηX(X1) to ηZ(Z1), so that the continuity of
the map A1(·, y1):X1 → Z1 follows from Lemma A.1. We likewise obtain the continuity

of the maps A1(x1, ·). Therefore A1 is separately continuous and hence continuous.

Lemma A.3. If g is a Banach–Lie algebra and a, b are Banach–Lie algebras with

continuous injective homomorphisms ηa: a→ g and ηb: b→ g such that ηb(b) normalizes

ηa(a), then the induced action of b on a is continuous.

Proof. We apply Lemma A.2 with the continuous bilinear map [·, ·]: g× g→ g which

maps ηa(a)× ηb(b) to ηa(a).

Lemma A.4. If M and N are Banach manifolds, M1 ⊆ M is a submanifold, and

f :M1 → N is a smooth map, then the graph Γ(f) := {(x, f(x)):x ∈M1} is a submani-
fold of M ×N .

Proof. Passing to local charts, we may assume that M =M0×M1 holds for a Banach
manifold M0. Let x = (x0, x1) ∈ M . Then we may further assume that N is an open
subset of a Banach space X and that f(x1) = 0. We then consider the smooth function

F :M0 ×M1 ×N →M0 ×M1 ×X, F (y0, y1, y2) := (y0, y1, y2 − f(y1))
which is a local diffeomorphism around (x0, x1, 0) ∈ Γ(f) with

F−1(M × {0}) =M0 × Γ(f).
This implies that Γ(f) is a submanifold of M ×N .

Lemma A.5. Let A,B,C be Banach–Lie groups with morphisms ηA:A → C and

ηB:B → C. Assume that

(1) C is connected,

(2) imL(ηA) + imL(ηB) = L(C), and

(3) ηB(B) normalizes ηA(A).

Then C = ηA(A)ηB(B).
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Proof. The multiplication map m:A × B → C, (a, b) 7→ ηA(a)ηB(b) is a smooth map

whose differential in (e, e) is given by (x, y) 7→ L(ηA)(x) + L(ηB)(y), and hence is sur-
jective. Therefore the Implicit Function Theorem implies that im(m) has inner points.

Further (3) implies that im(m) is a subgroup of C and therefore an open subgroup. Now

(1) shows that m is surjective.

Proposition A.6. Let A,B,C be Banach–Lie groups and assume that A is connected

and that there exist injective morphisms ηA:A → C and ηB:B → C. Let a, b and c

denote the corresponding Lie algebras and identify a and b with their image under L(ηA),

resp., L(ηB). We assume that

(1) b is a closed subalgebra of c,

(2) c = a+ b,

(3) B normalizes A, and

(4) a ∩ b is complemented in a.

Then the conjugation action of B on A is smooth, AB is an open subgroup of C, and

the multiplication map m:A⋊B → AB ⊆ C is a locally trivial A ∩B-principal bundle.

Proof. Since b normalizes a, Lemma A.3 implies that the bracket map a×b→ a is con-

tinuous with respect to the Banach space structure on a which might be finer than that

inherited from c. Therefore a ⋊ b carries the structure of a Banach–Lie algebra. Lemma

A.1 also implies that for each b ∈ B the map Ada(b) := Ad(b) |a: a→ a is a continuous au-

tomorphism. The action of B on a is obtained by integrating a continuous representation

of its Lie algebra b, hence is a continuous homomorphism Ada:B → Aut(a).
For each b ∈ B the conjugation map cA(b):A → A, a 7→ bab−1 is a group automor-

phism with cA(b)(expA(x)) = expA(Ada(x)) for x ∈ a, because both sides have the same

image in C. Therefore each cA(b) is smooth in an identity neighborhood, thus a smooth

automorphism of A. Moreover, the smoothness of the action of B on a implies that the

B-orbit maps of elements of A are smooth for regular values of the exponential map

expA: a → A, hence for all points in an identity neighborhood of A. Since B acts by

automorphisms of A, the set of all points with smooth orbit map is a subgroup, so that

the connectedness of A entails that all orbit maps of elements in A are smooth. Now let

b0 ∈ B and a0 ∈ Ae. For b ∈ B and a ∈ A we then have

b0baa0(b0b)
−1 = cA(b0)(bab

−1cA(b)(a0)).

Since B acts by smooth automorphisms and with smooth orbit maps, the smoothness

of the action of B on A follows from the smoothness close to the identity which in turn

follows from the fact that the exponential function is a local diffeomorphism and the

action of B on a is smooth. Hence the group A ⋊ B carries a natural structure of a

Banach–Lie group.

As in the proof of Lemma A.5, we see that the multiplication map m:A ⋊ B → C,

(a, b) 7→ ab is an open map. Therefore AB is an open subgroup of C. The kernel of m is

the Lie subgroup

N = {(a, a−1) ∈ A⋊ B: a ∈ A ∩B}
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([Ne00a, Lemma IV.11]). The Lie algebra ofN is the subalgebra {(x,−x) ∈ a⋊b:x ∈ a∩b}
which is complemented in a⋊b because, in view of (4), a∩b is complemented as a subspace
of a. Therefore we see with Definition III.6 that the quotient group (A ⋊ B)/N is a Lie

group, which then is isomorphic to AB. Moreover, the quotient map A⋊B → (A⋊B)/N

is a submersion, hence defines a locally trivial A ∩B-principal bundle.

Remark A.7. If, under the assumption of Proposition A.6, A is not connected, then

we first obtain with Proposition A.6 that Ae ⋊B → AeB is an Ae ∩B-principal bundle
over the open subgroup AeB ⊆ C. Moreover, AeBe is an open connected subgroup of C,
hence the identity component Ce of C.

Assume that AB = C. Then the multiplication map A ⋊ B → C → C/Ce = π0(C)

factors through a surjective homomorphism

(A/A ∩ Ce)⋊ (B/B ∩ Ce)→ π0(C).

If we know, in addition, that B acts continuously on A, then A⋊ B is a topological

group and the open subgroup Ae ⋊ B is a Banach–Lie group. This implies that A ⋊ B

is a Banach–Lie group because conjugating by elements of A induces continuous, hence

smooth, isomorphisms of Ae ⋊B.

Proposition A.8. For j = 1, 2 let Gj be a topological group and Hj ⊆ Gj a closed

subgroup. We further assume that qj :Gj →Mj := Gj/Hj defines a locally trivial principal

bundle and that we have a continuous homomorphism ϕ:G1 → G2 with ϕ(H1) ⊆ H2. Let
ϕM :M1 → M2, g1H1 7→ g2H2 denote the map induced by ϕ. If two of the three maps ϕ,

ϕM and ϕH := ϕ |H1 :H1 → H2 are weak homotopy equivalences, then the same holds for

the third one.

Proof. Since the map ϕ is compatible with the subgroups Hj ⊆ Gj , it induces maps
between the exact homotopy sequences

· · · → πk(Hj)→ πk(Gj)→ πk(Mj)→ πk−1(Hj)→ πk−1(Gj)→ πk−1(Mj)→ · · ·
of Gj →→Mj :

· · · → πk(H1) → πk(G1) → πk(M1) → πk−1(H1) → πk−1(G1) →yπk(ϕH)
yπk(ϕ)

yπk(ϕM)
yπk−1(ϕH)

yπk−1(ϕ)
· · · → πk(H2) → πk(G2) → πk(M2) → πk−1(H2) → πk−1(G2) → .

We assume that ϕ and ϕH are weak homotopy equivalences; the other cases are similar.

Then the maps πk(ϕ) and ϕk(ϕH) are isomorphisms, and the rows in the above diagram

are exact, so that the 5-Lemma ([CE56, Prop. I.1.1]) implies that all homomorphisms

πk(ϕM ), k ∈ N, are isomorphisms. To obtain this also for k = 0 we may extend the exact

homotopy sequence by zeros on the right hand side because the maps π0(Gj)→ π0(Mj)

are trivially surjective.

Thanks. It is a pleasure to thank H. Biller for critically reading the article which

led to a clarification of several arguments. Moreover, I am indebted to L. Kramer for

mentioning that the information in Bott’s paper can be used to obtain Theorem III.14

in its present generality.
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[Gl99] H. Glöckner, Direct limit Lie groups and manifolds, Kyoto J. Math., to appear.

[Ha67] P. R. Halmos, A Hilbert Space Problem Book, Graduate Texts in Math. 19, Springer-

Verlag, 1967.

[dlH70] P. de la Harpe, Classification of simple real L∗-algebras, Univ. of Warwick, July
1990.

[dlH71a] P. de la Harpe, Classification des L∗-algèbres semi-simples réelles séparables, C. R.
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(1962), 229–269.

[Mi89] J. Mickelsson, Current Algebras and Groups, Plenum Press, New York, 1989.

[Mit70] B. S. Mityagin, The homotopy structure of the linear group of a Banach space,

Russian Math. Surveys 25 (1970), 59–103.

[NRW00] L. Natarajan, E. Rodriguez-Carrington, and J. A. Wolf, The Bott Borel Weil The-

orem for direct limit groups, Trans. Amer. Math. Soc., to appear.

[Ne99] K.-H. Neeb, Holomorphy and Convexity in Lie Theory, Expositions in Mathematics

28, de Gruyter Verlag, Berlin, 1999.

[Ne00a] K.-H. Neeb, Infinite-dimensional Lie groups and their representations, Lectures at

the European School in Group Theory, SDU-Odense Univ., August 2000 (available
as preprint).

[Ne00b] K.-H. Neeb, Central extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier

(Grenoble), to appear.

[Ne00c] K.-H. Neeb, A Cartan–Hadamard Theorem for Banach–Finsler manifolds, Geome-

triae Dedicata, to appear.

[Ne01a] K.-H. Neeb, Geometry and structure of L∗-groups, in preparation.
[Ne01b] K.-H. Neeb, Universal central extensions of Lie groups, Acta Appl. Math., to appear.

[NØ98] K.–H. Neeb and B. Ørsted, Unitary highest weight representations in Hilbert spa-

ces of holomorphic functions on infinite dimensional domains, J. Funct. Anal. 156

(1998), 263–300.

[Neh92] E. Neher, Lie groups, hermitian symmetric spaces and Jordan pairs, in: Hadronic
Mechanics and Nonpotential Interactions, Part 1 (Cedar Falls, IA, 1990), Nova Sci.

Publ., Commack, NY, 1992, 243–258.

[Neh93] E. Neher, Generators and relations for 3-graded Lie algebras, J. Algebra 155 (1993),

1–35.

[Ot95] J. T. Ottesen, Infinite Dimensional Groups and Algebras in Quantum Physics, Sprin-

ger-Verlag, Lecture Notes in Physics 27, 1995.

[Pa65] R. S. Palais, On the homotopy type of certain groups of operators, Topology 3 (1965),

271–279.

[Pa66] R. S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966),
1–16.

[PS86] A. Pressley and G. Segal, Loop Groups, Oxford University Press, Oxford, 1986.

[RS78,] S. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of

Operators, Academic Press, New York, 1978.

[Ru73] W. Rudin, Functional Analysis, McGraw Hill, 1973.

[Sch60] J. R. Schue, Hilbert space methods in the theory of Lie algebras, Trans. Amer. Math.

Soc. 95 (1960), 69–80.

[Sch61] J. R. Schue, Cartan decompositions for L∗-algebras, Trans. Amer. Math. Soc. 98
(1961), 334–349.

[Se59] I. E. Segal, Foundations of the theory of dynamical systems of infinitely many degrees

of freedom. I, Mat. Fys. Medd. Danske Vid. Selsk. 31:12 (1959), 1–39.

[Sh62] D. Shale, Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962),
146–169.



CLASSICAL HILBERT–LIE GROUPS 151

[ShSt65] D. Shale and W. F. Stinespring, Spinor representations of the infinite orthogonal

groups, J. Math. Mech. 14 (1965), 315–322.

[St99] N. Stumme, The structure of locally finite split Lie algebras, Ph.D. thesis, Darmstadt
University of Technology, 1999.

[Un71] I. Unsain, Classification of the simple real separable L∗-algebras, Bull. Amer. Math.
Soc. 72 (1971), 462–466.

[Un72] I. Unsain, Classification of the simple real separable L∗-algebras, J. Diff. Geom. 7
(1972), 423–451.

[Up85] H. Upmeier, Symmetric Banach Manifolds and Jordan C∗-algebras, North-Holland
Mathematics Studies, 1985.

[Ve90] A. M. Vershik,Metagonal groups of finite and infinite dimension, in: Representations

of Lie Groups and Related Topics, A. M. Vershik and D. P. Zhelobenko (eds.),

Gordon and Breach, 1990, 1–37.

[Wu01] T. Wurzbacher, Fermionic second quantization and the geometry of the restric-
ted Grassmannian, in: Infinite Dimensional Kähler Manifolds, A. Huckleberry and

T. Wurzbacher (eds.), DMV-Seminar 31, Birkhäuser, 2001.


