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Abstract. On the non-abelian, non-compact simple rank 1 Lie group G = SL(2,R), we
consider Hardy spaces HQ(GE) defined by L2—boundary values of holomorphic functions on the
complex subsemigroups Gg of G€ = SL(2,C). These Hardy spaces are associated to the two
parts of the discrete series of GG, and give rise to equivariant projections E+ and corresponding
Toeplitz operators T+ (f), f € C%(G). We show that a stratification of boundary faces for G
can be given, and, by a geometric construction, associate to these faces representations of the
C*-algebra generated by the Toeplitz operators for the respective domain, thus achieving a step
2 composition series for this C*-algebra.

1. Introduction. For a semi-simple Lie group G of Hermitian type, a major part of
harmonic analysis on G involves Hilbert spaces of holomorphic functions on the associated
Hermitian symmetric space G/K.

The basic example is the so-called holomorphic discrete series with can be realized
by (vector-valued) holomorphic functions on G/K admitting a reproducing kernel of
Bergman type.

This is the starting point of the Berezin quantization method, in which G/K is consid-
ered as a symplectic manifold (classical phase space), and to every C* function on G/K
one associates a Bergman type Toeplitz operator T on the corresponding Hilbert space.
The C*-algebraic properties of these Toeplitz operators have been extensively studied,
cf. [Upm96].

In order to develop the Berezin—Toeplitz quantization procedure in a wider setting,
it is important to study more general phase spaces which admit a G-action but without
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the quite restrictive requirement of transitivity. The framework of general symplectic (or
Poisson) G-spaces maintains the close relation to harmonic analysis on G, but adds more
flexibility in the geometric setting, allowing foliations by symplectic G-orbits.

An important class of Poisson G-spaces can be realized as domains of holomorphy
in the complexification of G/G, for a suitable closed subgroup G. More precisely, G/G is
required to be a semi-simple (non-Riemannian) symmetric space, and we consider suitable
non-homogeneous domains in G€/G€. The symmetric space G/G plays the role of ‘Shilov
boundary’ since, as in the classical setting, we will study holomorphic functions and their
boundary values on G/G. The associated Hilbert spaces are known in the literature as
‘non-commutative’ Hardy and Bergman spaces, cf. [Nee00], [HN93], [BH00], [HO®91],
[KO96], [KO97], and play a crucial role in the well-known ‘Gelfand-Gindikin program’,
cf. [GGTT7].

Every semi-simple Lie group G can be realized as a (non-Riemannian) symmetric
space for G = G x GG, endowed with the flip involution. In this case one studies domains
of holomorphy in G€ and the structure of the corresponding non-commutative Hardy
spaces is well-established, cf. [Nee00], [HN93], [HOQ91].

On the other hand, virtually nothing is known about the corresponding Toeplitz
operators and their C*-algebraic properties. The main difficulty lies in the fact that the
underlying group G is neither commutative nor compact. In addition, new features such
as the existence of non-conjugate Cartan subgroups lead to profound new properties of
the Toeplitz C*-algebras.

In this paper, the program outlined above is carried out in detail for the basic case
G = SL(2,R) which already exhibits the main features of non-Riemannian symmetric
spaces.

For SL(2,R), the (holomorphic) discrete series consists of the well-known Bergman
spaces on the upper half plane, which are the building blocks of the ‘non-commutative’
Hardy space over SL(2, R). Its reproducing kernel, leading to the definition of Toeplitz
operators, was already determined in [GGT77], but it is still quite difficult to construct
(irreducible) representations of the associated C*-algebra, since standard techniques, such
as groupoid realizations, are not available.

The main idea to overcome these problems is to realize the Toeplitz C*-algebra via a
C*-algebra ‘cocrossed product’ for a natural coaction of G = SL(2,R), an approach first
chosen by [Was84]. The fundamental facts concerning coactions and cocrossed products
are presented here in a general setting to allow for the generalizations mentioned above.

In the second part of the paper, we use the C*-algebraic framework and a detailed
geometric study of the underlying domain in SL(2, C) and its symplectic foliation to con-
struct the irreducible representations of the Toeplitz C*-algebra. The main new feature,
related to the existence of two non-conjugate Cartan subgroups, is a step 2 composition
series for the Toeplitz C*-algebra over the rank 1 group SL(2,R).

2. Preliminaries

2.1. Conventions. To denote function spaces, we use the Bourbaki notations. So
K(X,Y) denotes the space of continuous compactly supported functions X — Y, en-
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dowed with the final topology w.r.t. the compact-open topology on compact subsets of
X. In fact, generically, we use FE to denote compactly supported elements of E when-
ever this makes sense. C°(X) shall be the space of continuous functions X — C vanishing
at 0o, with ||-||cc. £(X) denotes the space of smooth functions X — C, endowed with
the topology of uniform convergence of all derivatives on compact subsets of X. D(X)
is the space of compactly supported smooth functions X — C, endowed with the final
locally convex topology w.r.t. uniform convergence of all derivatives on compact sub-
sets of X. D'(X), its dual, is the space of distributions on X, usually endowed with the
o(D'(X), D(X))-topology.

The space of linear maps E — F will be denoted L(E, F'). The algebra of bounded
operators on a Hilbert space H will be denoted L£(#). Here, we usually use the norm
topology. However, we also use the weak, ultraweak (i.e. o(L(H),L'(H))) and strong
topologies. We avoid using abbreviations for these topologies and always state their use
explicitly. The compact operators on a Hilbert space H will be denoted by LC(H).

We use C* < - -+ > to denote the C*-algebra generated by a specified sets of operators.
E.g.,

C*<aflac A feC’ (@)~ c LL*Q))

will denote the C*-subalgebra of £(L?(G)) generated by the set of products af where
a € Aand f € COG). If u is a linear functional on the vector space E, we shall write

(o : py =p(a) forall ae€FE.

XY will denote the set of maps Y — X. Finally, identity maps will always be written id,
and we use the symbol ¢ to denote placeholders (i.e. anonymous variables).

2.2. Group (co-) algebras. Let G be a locally compact group, and consider a left Haar
measure dmg(g) = dg on G. The left regular representation of G on L?(G) will be denoted
g — g7, so that we have px& = p#¢ for any bounded measure p on G and any ¢ € L2(G).
Similarly, we denote right convolution by g4 resp. px. Consequently, the reduced group
C*-algebra, which is the C*-algebra generated by L' (G) in the left regular representation,
will be denoted by C%(G). We have C% (G x G) = C%(G) ® C4(G) where the tensor
product is spatial. The reduced group von Neumann algebra of G, which is the ultraweak

~

closure of C%(G), will be denoted by W*(G). If G is commutative, W*(G) = L>(G).

If C*(G) is the universal group C*-algebra, that is the C*-algebra generated by L*(G)
in the universal representation, it is known that the Banach dual B(G) = C*(G)" may
be considered as a subalgebra of C*(G), and is a commutative unital Banach -algebra in
the dual norm, the so-called Fourier—Stieltjes algebra of G, cf. [Val85], [Eym64]. The dual
B4 (G) = C4(G)" is a closed *-subalgebra of B(G), the so-called reduced Fourier—Stieltjes
algebra (a.k.a. Eymard algebra), and carries the induced norm. It is unital if and only
if G is amenable. The predual A(G) = W*(G), is a closed *-ideal of B(G), the Fourier
algebra of G. Hence W*(G) is a B(G)-module in the natural way:

(a0 : Bray:=(a-p:2) foral aecA(G),BeB(G),xr € W (G).

A(QG) is precisely the closure of the elements of compact support in Bx(G) (or, equiva-
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lently, B(G)). Furthermore, it coincides with the set
{nx€"|&ne (@)}

If G is commutative, A(G) 2 L*(G). We shall denote the set of elements of A(G) with
compact support by KA(G). Note that by a theorem of Leptin, A(G) has a bounded
approximate unit if and only if G is amenable. This is the main source of technical
difficulties in dealing with A(G), since factorization results such as Cohen’s theorem are
in general not applicable to A(G)-modules. However, since A(G) is Shilov-regular, this
may often be circumvented by using compactly supported functions in A(G).

Besides the norm and weak topologies, we need to consider the strict topology on B(G)
which is the weakest locally convex topology that makes multiplication by elements of
A(G) norm-continuous. This topology is also called the multiplier topology.

If A is a C*-algebra, let M(A) denote its multiplier algebra.

Since the left regular representation g +— g% : G — M(C(G)) is bounded and strictly
continuous, it may be considered as an element

We € M(C*(G) ® C4(G)) = C*(G, M(CL(G))).
This is the so-called Kac—Takesaki fundamental unitary given by
Waé(s,t) = &(s,s7't) for all s,t€ G, &€ LG x Q).
It gives rise to an injective normal #-morphism
og : WH(G) > W (@)W*(G) =W"(GxG):z—~AdWg)(z®1)

satisfying the identity (¢ ®id)odg = (id ®0g)0dg. Here, @ denotes the W*-tensor prod-
uct. Thus, (W*(G),d¢) is a Hopf-von Neumann algebra with coproduct d¢, cf. [NT79),
[ES80]. d¢ is also the (normal extension of the) integrated version of the representation

9 (9,9)% = g% @ g7 : G = M(CL(G) ® CL(Q)).
Furthermore, the multiplication of A(G) is dual to d¢, i.e.
(a-a :z)=(a®@d : dg(x)) forall a,a € A(G),z € W*(G).
In particular, the action of A(G) on W*(G) is given by slice maps:
a-z = ([dea)(dg(x)) forall ae A(G),x € W*(G).

When there is no danger of confusion, we often omit the subscript and simply write §.

3. A convenient setting for Toeplitz C*-algebras. In this section, G will denote
a locally compact group.

3.1. Coactions and modules over various subalgebras of B(G). In this subsection, we
introduce a notion of support for elements of A(G)-modules which we will use as a tool
of local analysis in the C*-category.

NoOTATION 3.1.1. If - : E x B’ — E” is bilinear, we denote by E - E’ the linear span
of the set of the e-¢’, e € B, ¢’ € F', in E”.

DEFINITION 3.1.2. If A and B are C*-algebras and ¢ : A — M(B) is a #-morphism,
 is called strict if it has a unital strictly continuous extension @ : M(A) — M(B) (the



TOEPLITZ OPERATORS ON SL(2,R) 177

extension is unique since A is strictly dense in M(A)). Here, unital means that (1) = 1.
If o : A — M(B) is a *-morphism such that ¢(A)- B = B, then ¢ is said to be non-
degenerate. A non-degenerate ¢ is strict by [LPRS87, lemma 1.1]. Clearly, if ¢ is injective,
then so is @.

We introduce the following C*-subalgebra of M(A ® B):

M(A, B) := {m € M(A® B) |m(C® B)U (C® B)m C A® B}.

(We find this notation more suggestive than the usual M(A ® B).) If § is an injective,
non-degenerate x-morphism

§: A= M(A®CL(G)) such that §(A) C M(A4, Ci(G))

and 0 ® id o 6 =1d ®d¢ o d, then § or (A, 0, G) shall be called a (reduced) C*-coaction of

G on A. We usually omit the terms ‘reduced’ and ‘C*’. A coaction is said to be non-

degenerate (in the sense of Landstad) if for all w € A’ \ {0} there exists 8 € Bx(G) such

that w ® B o § # 0. Here, the overline denotes strict extension, cf. [Tay70, corollary 2.3].
Similarly, we define W*-coactions, cf. [Qui92], [NT79].

Closely related to the notions of coaction are normed modules over certain subalgebras

of B(G).

DEFINITION 3.1.3. Let E be a normed C-vector space which is a module over a normed
C-algebra J. Assume further that the map

IXE—=E:(a,pu)—a-p

has norm < 1. Then we shall call E a normed J-module. We call E non-degenerate if for
any p # 0 there exists o € J such that o - p # 0.

The following proposition is folklore. The (more important) C*-case follows from the
coaction identity, [LPRS87, 1.5 lemma] and the injectivity of ¢.

PROPOSITION 3.1.4.
(i) If (M, 0,G) is a W*-coaction, then
a-pi=(1dea)od(u) foral acA(G),peM

defines on M the structure of a non-degenerate normed A(G)-module.
(i) If (A,d,G) is a C*-coaction, then

B-a:=(1Ad®B)od(a) forall f€Bu(G),a € M(A)

defines on M(A) the structure of a non-degenerate normed B4 (G)-module for which
A is a submodule.

REMARK 3.1.5.
(i) The proposition has an obvious generalization to coactions of Hopf-von Neumann
resp. Hopf-C*-algebras.
(ii) There are topological obstructions preventing the existence of a general converse to
the proposition.
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DEFINITION 3.1.6. Let E be a normed A(G)-module. For any p € E, let
suppg p:={9 € G|a-p=0 = a(g) =0 for all a € A(G)}.

We omit the subscript whenever there is no danger of confusion. supp p is obviously a
closed subset of G. We denote by KFE resp. KE the set of all compactly supported pu € E
resp. the norm-closure of this set. We have KE = A(G) - E.

REMARK 3.1.7.

(i) Clearly,
supp p = hull(u™) = Sp A(G)/p™,
where pt = {a € A(G) |a - pu = 0}.

(ii) From [Eym64, (4.4) proposition], it is clear that for the usual A(G)-module structure
on W*(G), the notion of support set forth in that article is the same as the one
introduced above. However, unlike Eymard, we need to consider degenerate module
structures.

(iii) In [Nak77a] and [Nak77b], cf. also [NT79], one finds a notion of support called the
local essential spectrum sps(z) of § near x for a coaction § of G on a W*-algebra
M. sps(x) depends only on the A(G)-module structure induced by ¢, and hence
coincides precisely with our supp,, .
This concept was extended to a coaction § on a C*-algebra A by Katayama [Kat81].
His definition of sps(x) uses the Bx(G)-module structure induced by J instead of
its restriction to A(G). However, this is irrelevant: indeed, let g € supp 4 «. Further,
let 5 € By(G) such that -2 = 0. Choose x € A(G) such that x(g) = 1. Clearly,
x-B-x=0,s0 B(g9) = x(g9)-B(g) = 0. In particular, Katayama’s definition of sps(z)
coincides with the one given in [Fan94].

The following proposition is mostly an adaptation of [Eym64, (4.8) proposition] to
our situation.

PROPOSITION 3.1.8. Let A(G) C J C B(G) be a closed x-ideal and E be a normed
J-module. Let u € E.

(i) supppu = 0 implies that o - u = 0 for all @ € A(G), in particular, if E is non-
degenerate as an A(G)-module, that = 0.

(ii) For any o € J, we have supp « - ;1 C supp a N Supp f.

(iii) For any a € KA(G) vanishing on a neighbourhood of supp p, we have - = 0. In
fact, supp u is the smallest closed subset of G with this property.

(iv) If there exists a closed J-invariant subspace F C W*(G) such that E = W*(G)/F
and suppyy (¢ fb i compact for some representative [ € W*(G) of u, then for any
a € J wvanishing in a neighbourhood of suppg p, we have o - p = 0.

Proof. (i) It is easy to see that
pt={a e AG)[a-p=0}

is a closed ideal in A(G). We have () = supp u = hull(u); hence for all g € G, there
is @« € A(G), so that a(g) # 0 and a - u = 0. By the Tauberian theorem [Eym64,
(3.38) corollaire], this implies u+ = A(G), i.e. a- p =0 for all « € A(G).



TOEPLITZ OPERATORS ON SL(2,R) 179

(ii) If s & supp a, there exists a neighbourhood s € U C G such that a|y = 0. Let
B € A(G), supp 8 C U, such that 8(s) # 0. Then «- 8 =0, so
Bela-p)=(a-B) - p=0;
but 8(s) # 0, so s & supp« - u. Now let s € supp« - u. Further, let 8 € A(G), so that
B+ 1= 0. In particular,
Blap)=a- (8w =0,
so we deduce (s) = 0. Thus s € supp p, and the assertion follows.

(iii) Let x € KA(G) such that X|suppa = 1 and suppx C G \ suppg p. Obviously,

a-p=(a-x)- p Since
() = supp x N supp it O supp x - i,

we deduce ¢ - x - =0 for all ¢ € A(G) by (i), in particular o - p = 0.

Now let C' C G be a closed set satisfying the hypotheses. Let g € G\ C, and choose
a € KA(G), suppa C G\ C, such that a(g) # 0. Now « - = 0, and hence g ¢ supp p.

(iv) Let x € KA(G) such that x|c = 1 for some compact neighbourhood C' C G of
supp fi. We have x - & = i, and since F' is J-invariant, we deduce x - ¢ = p. Because
supp a Nsuppg p = (), we deduce by (i) and (ii): 0 =x-a-p=a-pu. =

PROPOSITION 3.1.9. Let 6 be a coaction of G on the C*-algebra A. Then & is non-

degenerate if and only if A = A(G) - A, i.e., if and only if A is generated as a Banach
module by its compactly supported elements.

Proof. This is merely another way of stating [Kat85, theorem 5 (i),(iv)]. m

3.2. Generated submodule C*-algebras. In this subsection, we collect some basic prop-
erties of submodule C*-algebras. These C*-algebras give rise to Toeplitz C*-algebras if
they are generated by a single projection, as we shall see in the next subsection.

DEFINITION 3.2.1. Let (A, J,G) be a non-degenerate coaction which is a submodule
of a normed A(G)-module E. If £ C E is such that A(G) - £ C A, define
C:(0) =C"<a-a|laeA(G),a e &~ C A,
the submodule C*-algebra generated by . For the special case § = d0gla, we write
Cz(G) == C;(9). In particular, Ci, 5)(G) = C4(G) and Ciy. ) (G) = KW*(G).

PROPOSITION 3.2.2. Let (A, 0, G) be a non-degenerate coaction and & such that A(G)-
& C A. Then (C£(9),6 02(5),6') is a non-degenerate coaction in each of the following
cases:

(i) C%(9) acts non-degenerately on the same Hilbert space H as A does.
(i) § is the restriction of a W*-coaction.

Proof. Let p,9 € KA(G), a € £, b € CL(G). By [Kat85, lemma 3], we have

6<¢-a><1®wv#b>=/G<g*w>-go-a@g#bdgecz(&)@c;(ax

since the integrand is contained in K(G, C%(G) ® C4(G)). (We may assume a € A since ¢
has compact support.) In particular, §(Cz(d)) is contained in the closure of C¢ (6) @ CZ(G)
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in the ultraweak topology. If condition (i) is satisfied, M(C (0) ® C}(G)) is the idealizer of
C:(6)®C%(G) in its ultraweak closure as operators on H®L?*(G) by [Bus68, 3.9 theorem]
and the von Neumann density theorem, so in this case

3(C5(8)) © M(CE(8), C3(G)).

If condition (ii) is satisfied, this statement follows as in [Qui92, proof of lemma 2.2, (1)].
So C%(0) is a closed B4 (G)-submodule of A by proposition 3.1.4 (ii). Moreover,
C:(0) = A(G) - C5(0) since a € CE(G) can be approximated by elements of KC%(G).
So § is non-degenerate if it is a coaction.
If p,9 € KA(G), a € C£(9) and b € C%(G), we see (cf. [Qui92, lemma 2.3] or [Quid4,
lemma 1.3]) that

(0 a) ® $#b= /G 5((9 * 9) - a)(1 ® g#b) dg € HCON(C & THG)),

so that

5(Cz(0))(C @ CL(G)) = Ce(0) ® CL(G).
Hence § defines an injective non-degenerate *-morphism
§:C(6) = M(Cz(0) ® Cu(G)).

Finally, ¢ satisfies the coaction identity by [LPRS87, lemma 4.4], so (C%(6), 0, G) is indeed
a non-degenerate coaction. m

COROLLARY 3.2.3. Let £ C W*(G). Then (C{(da),dc
coaction.

Cz(66)> G) is a non-degenerate

Proof. By [Kat85, lemma 3 and remark], we may choose A = KW*(G) in proposi-
tion 3.2.2. Obviously, condition (ii) is satisfied, so the assertion follows. m

The following proposition gives rise to a useful criterion for the irreducibility of
Toeplitz C*-algebras, as we shall see in the next subsection.

PROPOSITION 3.2.4. Let £ C W*(G).

(i) The C*-algebra C(G) is an ideal of KW*(Q), i.e. Cy(G) - KW*(G) c Cy(G).
That is, we have the inclusion KW*(G) C M(CL(G)).

(i) If there is u € &€ such that suppp = G and the set M of points where p is not
locally contained in A(G) is a zero set, then C(G) C Cg(G) so that CL(G) is a
closed x-ideal of C£(G).

Here, by ‘u is locally contained in A(G) at g’ we mean that for some neighbourhood U of
g, and any o € KA(G) such that supp o C U, there exists ¢ € KA(G) such that

(o +a-p)= /Go/(g)go(g) dg for all o € A(G).

Proof. (i) Clearly KW*(G) is dense in KW*(G) and KA(G) is dense in A(G). So,
consider p € W*(G) with supp p compact and « € LA(G). By [Eym64, (3.17) proposi-
tion 3°],

p#a® = (uxa)? s convolution by p* a € A(G).
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Since  * o has compact support, it is contained in A(G) C L'(G), so we have u#a €
CL(G).

As to the second statement, C%(G) acts faithfully and non-degenerately on L*(G),
so M(C%(G)) is faithfully represented as the idealizer of C} (G) in its ultraweak closure
W*(G) (von Neumann density theorem and [Bus68, 3.9 theorem]). What is more, we
clearly have KW*(G) C W*(G). Hence the assertion.

(ii) Let @ € KA(G), suppa C G\ M. Let K C G\ M be a compact neighbourhood
of supp a, and x € KA(G), x|k =1, supp x C G\ M. Then

f=x-neKA(G), and inf|f(K)|>0,
so, since A(G) is a Shilov-regular Banach algebra, there exists ¢ € KA(G) such that
(¢ )lx =1 (cf. [Eym64, proof of (4.4) proposition]). Then

app=a-pox-p=a-p-f=a
i.e. « € CE(G). Since M is a zero set, {o € KA(G) | suppa C G\ M} is dense in L'(G)
and hence in C%(G). The assertion follows. m

The above considerations allow us to define the following refinement of the notion of
singular support of a distribution. This is a local object better adapted to the C*-context
than the former one, defined in the smooth category.

DEFINITION 3.2.5. For u € W*(@), let the singular set of u be

sing p := suppw*(G)/C;(G)[u] ={geCGla-pe CL(G) = a(g) =0 for all o € A(G)}.
Its applications will become clear in the following sections.
3.3. Cocrossed products and Toeplitz C*-algebras

DEFINITION 3.3.1. Let p € W*(G) be an orthogonal projection. Define the Toeplitz

operator of symbol f,
T,(f) :=pfp: L*(G) = L*(G) for all f € C’Q).
We denote by
Tp(G) == C* < Tp(f) | f € C°(G) >~

the Toeplitz C*-algebra defined by p. We fix p for this subsection.

Typically, Toeplitz operators are hard to describe since they mix convolution and mul-
tiplication. However, convolution and multiplication can be separated via the description

of Toeplitz C*-algebras as corners of cocrossed product C*-algebras which we achieve in
the sequel.

DEFINITION 3.3.2. Given a coaction (A,d,G), a covariant pair of representations
(m,p) in B is given by non-degenerate *-morphisms
m:A—M(B) and p:C%G)— M(B)
such that 7 ® id o §(a) = Ad(u)(n(a) ® 1) for all a € A. Here u = p ® id(Wg) denotes
the corepresentation u of G associated with p, cf. [LPRS87, section 3], [Dei00, section 1].

The closed linear subspace

C*(m, p) := m(A)p(CO(G)) C M(B)
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is a C*-algebra. A covariant pair of representations in B clearly induces a covariant pair
of representations in C*(7, ), since due to the non-degeneracy of m and u, the inclusion
of C*(m, ) C B C M(B) is non-degenerate.

In particular, since (6,1 ® M) is covariant by the coaction identity, the cocrossed
product

A®5C4(G) == (A(C B @) C M(A® LC(LA(G)))

is a C*-subalgebra. Here M is the action of C°(G) on L?(G) by multiplication operators.
The cocrossed product satisfies the following universal property (op. cit.): whenever (m, u)
is a covariant pair of representations in B, there exists a non-degenerate x-morphism
¢ A®; C(G) — M(B) (unique by construction of A ®; C}(G)) such that

(od,po(1®@M))=(mp).
We write m ®5 11 = .
Similarly, we define W*-cocrossed products, cf. [NT79].

REMARK 3.3.3. Let £ C W*(G). The non-degenerate *-morphism
id®@s M : CE(G) ®5 CYG) — LILA(G)) : 6c(a)(1 @ f) — af

given by the universal property of the cocrossed product is injective since it is the re-
striction of the *-isomorphism

W*(G)@;L>(G) = L(L*(G))

given by the Takesaki duality theorem (cf. [NT79]) applied to the trivial action of G on
the von Neumann algebra C. (It easy to check that the dual coaction of this action is
d¢.) In other words, C*(id, M) is a cocrossed product for the coaction (C%(G),dq, G).

We can now state our main result for this subsection.
THEOREM 3.3.4. Considering C}(G) ®s C*(G) C L(L*(G)), we have
Tp(G) = p(C}(G) @5 C°(G))p.
The proof of this theorem requires several lemmata.
LEMMA 3.3.5. The coproduct A defined by AB(s,t) := B(st) is a norm 1 linear map
A :By(G) = Bx(G x Q) satisfying (A®id) o A= (Id®A)o A.

Proof. Consider multiplication m : CL(G x G) = C4(G) ® CL(G) — C%(G) which

has norm 1. (Recall that ® is the spatial tensor product!) Define A = m/. Then, obviously,
A :Bx(G) - Bx(G x G) has norm 1

and satisfies coassociativity. Clearly, for any 3 € Bx(G), f,g € L(G),
(AB: fF@g®) = B(st) f(s)g(t)dsdt,
GxG
so AB(s,t) = B(st) for a.e. (s,t), and, by continuity, everywhere. m
REMARK 3.3.6. Note that the same procedure applied to the wuniversal group C*-
algebra C*(G) gives an extension of A to B(G) = C*(G)" whose image, however, will in
general not be contained in B(G x G) for non-amenable G.
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COROLLARY 3.3.7. For any n € L?(G), £ € KA(G), ¢ € B(G) and a,b € W*(G),

(0 aeb) = [ TE(t1,t2) > o(t7 H0)€(05 "4 0) 5 b
G
if either ¢ or a has compact support.

Proof. Note that the action of W*(G) leaves A(G) N L%(G) invariant by [Eym64,
(3.17) proposition 3°]. We may assume hat ¢ has compact support (otherwise chose
X € KA(G) with x - a = a). By lemma 3.3.5, the function

(t1,t2) = (ty Ho)E (5 t7 o)
lies in By (G x G) for any ty. Since it has compact support, it lies in LA(G x G) (cf.

[Eym64]). So we may apply [Eym64, (3.17) proposition 2°] to prove the equation along
the lines of the usual Fubini theorem for distributions. m

The following lemma is a sharpened version of [HU98, lemma 5.1], valid for any locally
compact group.

LEMMA 3.3.8. Let n € N and ay,...,a, € W*(G). Further, choose sequences F,F’
of finite subsets of B(G)" "' resp. B(G)*". Assume further that

(1) The aj have compact supports or

(i) forallk € N, (¢g,...,0n) € F(k) and (aq,...,an,P1,..., ) € F'(k), ©1,..,¢n
have compact support, and for all 1 < j < n —1, either a; or ¢; have compact
support.

If f, ' are such that

(to, . tn) = flto, 7t oottt )
lies in A(G"*1), further

[ = limy, Z o R pp
(P05 pn) EF (k)
in the norm topology on B(G"*1) and
J = limy Z R Qo @Y1 Q- DYy
(0117---70‘nvw17~~~7"/"n)6-7:/(k)

in the norm topology on B(G?"), such that
ftos .ottty o) = f/(try ooy tns by oy oottt M)

for all (to,...,tn) € G, then we have the existence in norm and equality of the limits
limy, > Poar -+ Pn—1anpyp = limy > (a1 - a1)gr - (o - an) .
(¢05--,on)EF (k) (a1,eePn)EF (k)

Proof. Because of the compactness assumptions, we may assume w.l.o.g. that the func-
tions ¢j, a4, ; all have compact support, in particular, that the sequences above converge
in the Fourier algebra (which carries the induced norm). Applying corollary 3.3.7, it is
easy to see that

(0 [ poarepr -+ - anpnf) =/GW<(t1,--~,tn) = @olto) - (pa)(t, 11 o) = ®a)dty
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for all n € L?(G), £ € KA(G), o, ..., pn € KA(G), where we use the shorthand
Ka=a1 Q& anp.

From the two convergence assumptions and the continuity of the B(G)-module structure
on W*(G), the action of B(G) by multiplication operators and multiplication in £(L?(G)),
the limits (LHS) and (RHS) exist.

The indicated transformations on the variables tg,...,t, define continuous maps on
the level of the reduced Fourier—Stieltjes algebras. Again applying compactness and the
assumption on f, the sequences and their limits live in the Fourier algebra.

So we have

(LHS) = /Gn(to)«tl,...,tn) = f(toy ooty ot T 0)E(E, - 1 o) ¢ @a)dio

:/W«tl,...,tn)Hf’(tl,...,t,;l.-.t;lto)g(t,;l~-t;1t0) : ®a)dto
-~ (nm),
proving the assertion. m
LEMMA 3.3.9.

(i) Letn >1 and (aj)i<j<n, (Vj)1<j<n C KA(G). Set f' = a1 ®@---®@1y,. There exists
a sequence F of finite subsets of KA(G)" "1 such that

f =limy Z ©o® - @pn exists in A(G™T)
(00, on ) EF (k)
and
Fltos sttt o) = F/(try ooy tns by Moyttt M)

for all (to,...,t,) € G™ L. Furthermore,

7 (toy e ostn) = fto, .ty 17 )
lies in A(G"T1).

(11) Letn >1 and ©0, Pn s (@;)1§j§n—1,i=1,2 C ’CA(G) Set

f=00®el 1@ @0, 1 0r_1 ®pn.

There exists a sequence F' of finite subsets of KA(G)?*™ such that

' =limy, > W@ @ @Y1 @ @y exists in A(G™")
(a1seees 1,000 ) EF ()

and
flto, .ottt o) = f(try oo s tns by Moy ooyt e -t M)
for all (tg,...,t,) € G L. Furthermore,
7 (toy - tn) = ftoy ..ottty Ho)
lies in A(G"F1).
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Proof. (i) By lemma 3.3.5, the function f defined by
n
f(th"'a H j 1t_1 w]( )

lies in By (G™T1). Since it has compact support, it lies in A(G™T1). So there exists a
sequence F of finite subsets of KA(G)"*! such that

f = limy, Z Vo®- - @, exists in A(G"TL).
(#0,--ron)EF (k)
Clearly, f satisfies the second equation. Since f’ has compact support, so does f”. Hence
1" € A(G™™1) by lemma 3.3.5.
(ii) Again applying lemma 3.3.5, the function f’ defined by

n—1

f(s1,- -5 tn) i= po(s1t1) [H@ )¢5 (sj+1ti41) | @nltn)

lies in KCA(G?"), so there exists F’ as required. For the remaining assertion, we proceed
asin (i). m
Proof of theorem 3.3.4. Since KA(G) C C°(G) is dense and A-A = A for any C*-algebra
A, the set of products
PLOPLIPT P 1 Ph aPenD  With > 2,00, 00, (¢)) C KA(G)
is total in 7,(G). By lemma 3.3.9 and lemma 3.3.8, @opp1¢7 - - - onp € Ci(G) @5 CO(G).
Hence, we have the first inclusion. Also, the set of products
(a1 p)or-+ (am - plpn  Withn > 1,(a5), () C KA(G)
is total in C5(G) ®;5 C°(G), since products
(a1-p)-+(an - p) with () € KAG)
can be approximated in this way by lemma 3.3.9 and lemma 3.3.8. These two lemmata
also show that p(ay - p)p1 - (an - D)enp € Tp(G), so we are done. m
REMARK 3.3.10. In the proof of theorem 3.3.4, we have also shown that
C,(G) ®s CoUG)=C*<d(a-p)1® f)|ac A(G), f €CYG) ~
From the theorem, we deduce the following criterion for the irreducibility of 7,(G).
PROPOSITION 3.3.11. Let p be such that C(G) C C,(G). Then
(i) LC(L*(G)) C C5(G) ®@s CUG), in particular, the latter acts irreducibly on L*(G).
(ii) LC(pL*(Q)) C To(G), so the latter acts irreducibly on pL*(G). In particular, the

multiplier algebra M(T,(G)) is the idealizer in pL(L%(G))p of T,(G) acting on
L2(G), that is, the largest C*-subalgebra containing T,(G) as a closed ideal.

The condition is satisfied if p has full support and is a.e. locally contained in A(G), in
particular if p has full support, G is a Lie group and singsuppp has zero measure.

Proof. (i) LC(L2(Q)) = CL(G) ®s C%(G) by Takesaki’s duality theorem. So the asser-
tion follows from Schur’s lemma.
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(ii) We have LC(pL%(GQ)) = pLC(L%(G))p, so we may apply theorem 3.3.4. The state-
ment about the multiplier algebra follows from [Bus68, 3.9 theorem)].

That the condition is satisfied under the given assumption follows from proposi-
tion 3.2.4, (ii). For the special case of a Lie group G, D(G) C A(G) is dense and the
induced topology is weaker than the Schwartz topology by [Eym64, (3.26) proposition],
so W*(G) C D'(G). That singsupp p has zero measure means that p is a.e. locally con-
tained in D(G) C A(G), whence the assertion. m

We also note the following proposition which will prove useful later on.
PROPOSITION 3.3.12. If a,b € C5(G) ®s C°(G), then apb € C3(G) @5 C*(G).
Proof. It suffices to prove that

(a1 - p)hrp(as - p)ipa € Ch(G) @5 CO(G) for o, iz, 1,12 € KA(G).

So, by lemmata 3.3.9 and 3.3.8, it suffices to prove that popp1pp2pes lies in the cocrossed
product for any o, ..., ps € KLA(G). But this follows from the same lemmata. m

4. Behaviour of W*(G) at oo and representations of Toeplitz C*-algebras.
In this section, let G' be any locally compact group and let G C G be a closed subgroup.

4.1. Restriction to subgroups. Although the wniversal group von Neumann algebra
of a locally compact group manifestly behaves cofunctorially under continuous group
homomorphisms, the behaviour of the reduced group von Neumann algebra W*(G) is far
from clear, since the corresponding L? spaces are not easily related. Also, it is known
that positive definite functions living on subgroups G usually do not extend as positive
definite functions, cf. [Eym64].

At the other extreme, for G a Lie group, smooth functions of compact support on G
are easily seen to extend smoothly, with compact support contained in any tubular neigh-
bourhood of the subgroup. Hence distributions whose (locally finite) order in directions
transversal to G vanishes have preimages on G (in fact, these properties are equivalent).
Since it is known that the finitely supported elements of W*(G) have order 0 ([Eym64,
(4.9) théoreme]), it is therefore reasonable to suspect that a similar statement holds for
W*(G) in place of the space of distributions of transversal order zero.

Indeed, this fact is recorded in the literature. We state it as the following theorem,
which is a combination of [Her73, theorem A and theorem 1] and [TT72, theorem 3].

THEOREM 4.1.1.

(i) The restriction map resg : A(G) = A(G) : a — alg is an extremal epimorphism
of Banach spaces, i.e.
A(G) = A(G)/ ker ress

as Banach spaces.

(ii) The dual map of resa coincides with the extension by zero on the set of bounded
measures on G. It is an isometry W*(G) — W*(Q), whose image is precisely the
set

WE(G) == {n € W*(G) | suppp C G} ;
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in particular, this set is an ultraweakly closed unital x-subalgebra of W*(G) isomet-

rically isomorphic to W*(G).
In particular, for all p € Wg(G), there exists a unique pg € W*(G) such that

(4.1.1) (alg @ pe) = {a : p) foral ac A(G),

and the x-algebra isomorphism W*(G) = WX (G) is a homeomorphism for the respective
ultraweak topologies.

REMARK 4.1.2. The maps in the above theorem are both module maps and algebra
morphisms. Indeed, ress is obviously multiplicative. From this we deduce (« - p)a =
ala - K- On the other hand, for h € G, we have by [Eym64, (3.17) proposition 2°]

(a¥)(h) = (a(h™o) : p) = (a(h™0)|g : ng) = nga’la(h),
ie. (pa)lg = pgalg since oV is an automorphism of the Fourier algebras.
By [Eym64, (3.16)], ¢V on W*(G) is the dual map of ¥ on A(G), so, since the
latter commutes with ress, the former commutes with u — pa. Hence, by [Eym64,
(3.16) définition], we see that

(alg : (m)g) = (a = pp')y = (W'a : )
v
= (' )lg : pg) = (ngale = pg) = (alg : g bg),
thus (up')g = pe i since resg is surjective.

4.2. Passage to subsequential limits. It is a well-known fact that a sequence in a
compact metric space converges if and only if all its convergent subsequences possess the
same limit. In probability theory, this fact is exploited to prove convergence assertions,
cf. Prohorov’s lemma on the convergence of tight sequences of random variables. We shall
proceed in the same fashion. For the convenience of the reader, we include the necessary
propositions.

NOTATION 4.2.1. For a normed vector space E, let B(E) denote the closed unit ball.
If A is a directed set, we write v < A if v is a cofinal subset.

The following proposition is contained in [Mia99, proof of theorem 3.7].

PROPOSITION 4.2.2. If G is countable at infinity, then B(W*(Q)) is a compact metriz-
able space in the o(W*(G), A(GQ))-topology. In particular, it is sequentially compact.

Proof. The unit ball B(W*(Q)) is a o(W*(G), A(G))-compact subset of W*(G) by
the Alaoglu theorem. Since G is countable at infinity, L?(G) contains a dense countably-
dimensional subspace and is hence ||-||2-separable. By [Eym64, (3.25) théoréme] A(G)
consists of the elements & * nV with &, € L?(G), and we have

1€ 0" lae) < lI€ll2 - lInll2
by [Eym64, (3.1) lemme]. We conclude that A(G) is ||-||a()-separable. Now, on norm
bounded subsets of W*(G), o(W*(G), A(G)) coincides with the o-topology induced by
taking any ||-||a(q)-dense subset of A(G) in place of all of A(G); hence B(W*(G)) has
countable neighbourhood bases and is thereby metrizable. This means that all accumu-
lation points are limits of convergent subsequences. m
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COROLLARY 4.2.3. Let G be countable at infinity, and let p, (pe) C B(W*(G)). For
(1) to converge to p in o(W*(G), A(Q)), it is necessary and sufficient that p be the limit
of all c(W*(G), A(G))-convergent subsequences.

Proof. Necessity is obvious. For the proof of sufficiency, let all convergent subsequences
of (ue) have p as limit. Assume that (ug) does not converge to p. Then there exist
a € A(G), e > 0 and a subsequence v < N such that

[{c = pyey —p)] > >0 forall £€N,

i.e., no subsequence of (i (¢)) converges to p. But by proposition 4.2.2, B(W*(G)) is se-
quentially compact in o(W*(G), A(G)), so there exist convergent subsequences of (11, (r))-
By assumption, they must converge to i, a contradiction. m

4.3. Changing the order of limits. We shall have to exchange limit order several times
in the sequel. Grothendieck’s remarkable Double Limit Criterion gives fairly general con-
ditions under which such operations are possible. We develop an exchange theorem well-
adapted to our purposes.

NoTAaTION 4.3.1. If F is a normed vector space, let S(E) denote its unit sphere. If
E is the dual of some normed *-algebra, let S(E); denote the positive part of the unit
sphere.

REMARK 4.3.2. Recall that the ultraweak topology on a von Neumann algebra M on
some Hilbert space coincides with the o(M, M,)-topology.

PROPOSITION 4.3.3. Let K C G be compact and denote
Ak(G) :={a € A(G)| suppa C K}.
If (1) € B(W*(G)) and (oy) C S(Ak(G))+ are sequences, then
lim; lim;{e; : pj) = lim; lim; (o © py)
whenever the double limits exist.

Proof. The set E := B(W*(G)), endowed with the o(W*(G), A(G))-topology, is a
compact Hausdorff space. So, by [Gro52, corollaire 2 de théoréme 2], it suffices to prove
that A := S(Ag(G))+ is a relatively compact subset of C(E), endowed with the topology
of simple convergence.

To this end, first note that since the elements of A are linear, simple convergence on
points of F is equivalent to point-wise convergence on all of W*(G). Furthermore, since
the set L(W*(G), C) of linear forms is closed in CWV (%) limits of nets in A will always
be linear. Note also that due to Tychonov’s theorem, B(C)¥ is compact, so that A is
relatively compact in CF.

So it remains to be shown that the closure of A in CF lies in C(E). So let (u,) C A
be a net converging point-wise on E to u € B(C)¥ N L(W*(G), C). Since (u,) is norm
bounded in A(G), and the ||-||s(g)-norm coincides on A(G) with the dual norm of W*(G)
because ||-||w-(q) is the dual norm of A(G) by [Eym64, (3.10) théoreme], we may apply the
Banach—Steinhaus theorem [Tre67, corollary to theorem 33.1] to conclude that « is norm-
continuous on W*(G). In particular, u Cz,() Is norm-continuous, so u € B4 (G) C B(G).
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Now, G C E (i.e. the ball contains the point evaluations), so for any choice of finite
sequences (z;) C C and (g;) C G, we have

n n
Z Zizju(g; tg;) = limg Z Zizjua(g; tg;) > 0.
i,j=0 4,5=0
Thus u is of positive type. Also, ||ug(e) = u(e) = limy ua(e) = 1, hence u € S(B(G)) .
Since, on bounded subsets, the o(B(G), C*(G))-topology is weaker than the topology of
point-wise convergence, and Ag(G) is o(B(G), C*(G))-closed by [GL81, proof of theo-
rem Bq], we conclude u € A = S(Ag(G))4. This proves the assertion. m

REMARK 4.3.4. Note that although for G countable at infinity, B(W*(G)) is metriz-
able by proposition 4.2.2, even in this case the proof of relative compactness in the above
lemma cannot rely on the Arzela—Ascoli theorem, since this gives relative compactness in
the compact-open topology (topology of uniform convergence), and relative compactness
is not in general hereditary to weaker topologies, although this is the case for compactness.

LEMMA 4.3.5. The set of compactly supported functions of positive type KA(G)+ is
|- aga)-total in A(G).

Proof. In fact, for ¢, € K(G), we have the following polarisation:

-0+ = (p+ ) x (0 +9)" = (0 —¥) * (¢ —¥)"
+ilo — i) * (o — i) —i(p + i) = (¢ +iph)”
where all summands are of positive type and have compact supports. Since, by [Eym64,
(3.4) proposition], the set of the @ * ¥V, ¢, € K(G), is total in A(G), the assertion
follows. m

COROLLARY 4.3.6. Let p € W*(G) and (vr), (v1) C A(G) such that the following
conditions are satisfied:

(i) There exists i € W (G) such that limy, i - p = fi in o(W*(G), A(G)).
(ii) There exist ¢,v € B(G) such that limy prla = @ and lim; ¢|q = ¢ in the strict
topology.
(i) Fither (vr) C S(A(G))+ and (¢y) is bounded in A(G) or vice versa.

Then, for any ultraweak limit 0 € W5(G) of a subsequence of (Y1 - p), we have
v fig = ¢ 0
Proof. W.1.o.g. we may assume ¢; # 0 for some [. Let v < N such that g = lim; ¢, (- p.
For all & € A(G) we have by assumption

(alg = ¢-0q) =limp{o- oy © @) = limp limy(a = oy - Py) - 1)
On the other hand, for all a € A(G),
(ala ¥+ 0a) = lima-,q) : p) = limglimg(a 0 oym) Yy - 1)-
Now, let o € KA(G)4, a # 0. Then
o = |l 7t oy € S(AsuppalG))4 for all k
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since
okl - lall = ar(e) = ale) - wyw(e) = llall,
and
p = ([lpll - supg [9al) - p € BWH(G)) - for all 1.
So, by proposition 4.3.3,
(ala : ¥ fig) = (ala + ¢ 06)-
By lemma 4.3.5, this equality holds for any a € A(G), and since ress is surjective by
theorem 4.1.1, the assertion follows. m

REMARK 4.3.7. Note that corollary 4.3.6 requires the existence of a convergent sub-
sequence of (¢ - u), so that its applications will be primarily in the case that the unit
ball of W*(@G) is metrizable in the ultraweak operator topology, e.g. when G is countable
at infinity.

4.4. Information at co and the singular set. The following propositions give some
indication that all relevant information ‘at oo’ concerning 7,(G) should be contained in
sing p. In the second part of the paper, there is even more evidence for this intuition in
the special case of T1(SL(2,R)).

PROPOSITION 4.4.1. Let G be countable at infinity, and let (5;) C Bx(G) be bounded
such that lim; B; = 0 a.e. on G. Then, for any p € W*(G) and any o(W*(G), A(G))-
accumulation point i of (B; - 1), we have that

supp i¢ C sing p.

Proof. First, note that by the Lebesgue dominated convergence theorem, for any

[ e LYG),
timy (3 < ) = lm, [ 5,(0)(a) da = 0.
Since (f;) is bounded in Bx(G) and L'(G) is dense in C%(G), we find that B; 50

in 0(Bx(G),CL(G)). So, if i = lim; B,(;) - ¢ (sufficient to consider subsequences by
proposition 4.2.2), then for any ¢ € KA(G) such that ¢ - u € C(G), we have

W o By =lmy(By) s -9 ) =0 forall ¥ e A(G).
Thus ¢ - i = 0, and hence ¢|supp z = 0, whence the conclusion. m

PROPOSITION 4.4.2. Let (B;) C B(G), and define
supp™(B;) := ﬂ{E C G closed |Va € KA(GQ) : suppa C G\ E = lim; ||a- 3| = 0}.
If p € W*(G), then for any oc(W*(G), A(G))-limit i of a subsequence of (B - 1),

supp 1 C supp™(3;)-
Proof. Let o € A(G) such that lim; ||a - 3;|| = 0. Then
[l o] = Timy fla - By gy - pll < [l - limy [la - By 5[] = 0,

so a - i = 0. The assertion follows from proposition 3.1.8 (iii). m
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4.5. Representations of Toeplitz C*-algebras via convergence of Fourier coefficients.
In this subsection, we show how natural representations of Toeplitz C*-algebras can be
constructed from limits of Fourier coefficients and the formalism of cocrossed products.
To this end, we fix some notation.

NOTATION 4.5.1. Let G C G be a closed subgroup. We assume that G and G are sep-
arable and of type I, so that their L? spaces have a Plancherel decomposition by [DM76].

Let p € W*(G) and p € W*((G) be orthogonal projections. For a unitary representation
7w weakly contained in the left regular representation #, and for a € W*(G), we define
a? = m(a*), so, in particular, a* = aﬁ. We call a# the wth Fourier coefficient of a.
Note [laZ|| < ||a||. Also, we write { G ). for the space of the representation 7, so that a#
is a bounded operator on (G ),. Finally, for all ©# weakly contained in #¢, we choose
sequences (my (7)) of unitary representations weakly contained in #¢ and isometries

§e(@) Gz = (G )y

We assume that for all 7, the sequence (m¢(7)) is eventually contained in the complement
of every quasi-compact subset of G, so that ((j¢(7) & | me(7) je(T)n)) is a zero sequence

in the o(Bx(G), C(G))-topology for any choice of £, € (G )z by [Dix69, 18.2.4].
We shall consider the following condition for a € A(G):

(451)  (alg-p)E = lme AdGe())l(a - p)F )] strongly in £((G)z).
We will write m; = m¢(7) and j; = je(7) whenever 7 is fixed.
LEMMA 4.5.2. If (4.5.1) s satisfied for all o € A(G), then
limyg [[(1 — jp47) (e -p)ﬁmg” =0 foral&e(G)z,acAG).

Proof. pﬁi@)# is an orthogonal projection on (G ), ® L?(G) and j, j; is an orthogonal
projection on (G ) ,. Set

A= AdGG; @ DIpf o] and Cp o= (1 - joji) © Dpf 4, (e ©1).
Thus we have the relation
A+ CrCr = (j; @ V)pZ o w (e di @ DpE o4 (e ® 1)
+ (7 @ V)pE, 0w (1= 550) @ Dpl 0w (e ® 1)

= (i ® VDl g @ 1) = Ap.

Further, for all £, € (G )z and x, ¢ € L2(G)
limg (€ @ x | Aen ® ) = limg(je€ @ X | P, o4 en @ €) = limg(je& | (C# x¥ - p)¥, Gom)

= E1C*x g -DEN = (E@X|PLgpn® ),

so (Ay) converges strongly, and its limit is a projection. Since multiplication of operators

is strongly continuous, C;Cy = Ay — A? 0 strongly. Since, for all a = ¢ * x¥ € A(G)
and 5777 € <G>7_r7

(€1 (1= jeid)e-p)Edem = €@ x | CeC@m] < &l x|l - 1Ce¢ @l

o . ¢
we have [|(1—j, j;) (- p)#, jonll < x|l - [Ce¢ @ nl| —0. m
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LEMMA 4.5.3. If (4.5.1) is satisfied for all « € A(G), then for all finite sequences
(ar) C A(G), we have

tim, Ad(j7) [[T(ex - »)%,| = [T(crle - p)E  strongly in £((G)z).
k k
Proof. For all k, the sequences (j; (o - p)fg Jjo) are bounded and strongly convergent.
In particular, their product converges. By lemma 4.5.2,
limg 57 (o - p)%, (1 = o 37) (02 - ), =0,
so we deduce

timg [ [ 7 (- p)E, 30 =limy 5 (1 - p)Z, g g7 + (1= Gedi ez - p)Ede [] 42 (e - 0)E G
k k>2

=(onlg - p)Z lime 57 (o2 - )2y [] i (- 0) 2
k>2

Inductively, the assertion follows. m

LEMMA 4.5.4. Let H, G be Hilbert spaces, T : H — G isometries, let E C L(G), and
let FF'C E be |||-dense. If ¢ : E — L(H) is a contractive linear map and

¢(a) = lim; T;aT;  strongly for all a € F,
then
p(a) =lim; T} aT;  strongly for all a € E.

Proof. Take a € E and (ay) C F such that a = limy ay. Let £ € H \ {0} and € > 0.
Choose k € N such that

€
lo—aull € ==
3¢l
Then, if n € N is such that

lo(ar)é — TjarT; €|l < - forall j>n,

Wl M

we have

lp(a)§ —T7aT; &l < [lp(a) — @lax)l - €]l
+lle(ar)é = TarTy €| + T3 - llax — all - IEl < e
forallj>n. m

PROPOSITION 4.5.5. Let M be a co-zero set in supp #¢a, such that for oll 7 € M and
a € A(G), the condition (4.5.1) is satisfied. Then

ra(a)? = lim, Ad(jg(ﬁ)*)[af[(ﬁ)] strongly in L((G )z) for all @ € M,a € C}(G),

s

and this defines a surjective *-morphism

g Co(G) = CH(G) - p > alg - P
Proof. Let A C C;(G) be the dense *-algebra generated by {a - p|a € A(G)}. Since

p* = p, this is the linear span of

(a1 -p) - (apn -p) wheren € N, () C A(G).
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Define wa((ag - p) -« (- p)) == (aa]a - D) - - - (an|@ - D) and extend linearly. We need to
see that this is well-defined. Indeed, let

D@k p) (e p) =) (@ p) e (g, D).
By lemma 4.5.3, for 7 € M

Nk Nk
Zk [T (@n—skle - p)F = limgjie(7) Zk [T s p)E ) de(7)
j=1 j=1
mi
= limeje(7)* Y T[ (@ -2V, ) G(7)
j=1

mp
SN | (e
j=1

So 7 is well-defined, and in fact a #-morphism. (Note that the reversed order is due to
the * in the definition of Fourier coefficients.) Moreover, for all a € A and 7 € M, we
have by uniform boundedness

Ima(@)? || < supy || af || < llal,

SO

Ime (@)l = esssup, | 7a(a)} || < |lall,

cf. [Tak76]. Hence 7 extends by continuity to a *-morphism of Cj(G). Clearly, 7¢ is
surjective. By lemma 4.5.4, 75 is given by limits as stated. m

REMARK 4.5.6. The corepresentation W associated with ress (cf. definition 3.3.2) is
clearly given by

WeE(s,t) = E(s,s1t) forall se G, teG,¢cL?(GxQq).
Recalling extg = resy from theorem 4.1.1, (id ® extg)(Wg) = W.

PROPOSITION 4.5.7. Let the conditions of proposition 4.5.5 be satisfied and assume

further that p has full support and is a.e. locally contained in A(G). Then (n5,1esa) is a
covariant pair of non-degenerate representations on L2(G) for the coaction (Cy(G),6,G).

REMARK 4.5.8. Note that 7 is surjective onto C3(G) and in particular non-degene-
rate as a *-morphism into M(C%(G)). However, the definition of a covariant pair (7, u)
requires that m and g be non-degenerate as *-morphisms into the multiplier algebra of

the same C*-algebra B. Hence, in proposition 4.5.7, it is necessary to assume that CE(G)
acts non-degenerately on L2(G)!

Proof of proposition 4.5.7. By proposition 3.2.4 (ii), ms is a non-degenerate represen-
tation on L?(G). Let 7 € M, a € A(G), a € C;(G) and b € C%(G). Then, writing m = ¢
and omitting ™ where possible,

(r®id)a@b)Tidod(a p)f = (r@id)(a®b)da-p)iy,
= lim Ad(j7 @ 1)[5(cc - )7, o (a, @ b7)).
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Now,

(@x|8@)f gun®() = ((mn | xx" : 6a))

=((men|€) : Cxx¥-a)=(E|((xx"-a)f n),
(¢®x | AdGF @ D[d(a - p)E o u(a, @07 n@ ()

IAd(Jz)[(W*X ca-p)Fat]n) (€| FCxx]g - alg - pEn(@)En)
(r(@in|€) @b Cxx"|g : dalalg - b))
(7m(a)in| &) @b CxxY + AdW)(alg p@1))
€®X|[( (a) @b) Ad(W)(alg -p@ D], ,n® ),

where W is the corepresentation corresponding to ress. By non-degeneracy of ws, we

=
(
(
(

deduce
mg @idod(a-p) = Ad(W)lalg - p@ 1],
and hence the assertion. m

REMARK 4.5.9. It is easy to see that for any covariant pair (7, 1) of representations

for the coaction (4,4, G),

@ Ad(W)(a @ 1) : C*(m, 1) — M(C* (, 1) ® C4(G)),
where W is the corepresentation corresponding to u, defines a coaction on C* (7, 1) which
restricts to a coaction of w(A), cf. [Dei00, remark 2.2 (iv)]. Furthermore, it is straightfor-
ward to check that 7, and in fact the strict extension 7, is B4 (G)-linear for the induced
module structure.

Furthermore, by remark 4.5.6, if we take (m, ) = (7g,resgs), then the A(G)-module
structure defined by the corepresentation W corresponding to ress coincides on C;(G‘)
with the one induced from W*(G), i.e.

id@a(Ad(W)(a® 1)) =alg-a forall ae CyG),ac AG).
COROLLARY 4.5.10. Under the conditions of proposition 4.5.7, if
singa N U swp™[Ge(®) | me(m) je(mm)] = 0,
TEMENE(G )x
then a € ker wa. In particular, if p has full support and is a.e. locally contained in A(G),
then C%(G) C ker mg.
Proof. Fix 7 and &,7 € (G )z. Let a € C};(G) be such that

sing a N supp™ [(je | me jen)] = 0.
We have for all a € A(G)
(alg + (7Fn1€)-mg(a) = (& | mala-a)En)
= limg(je€ | (- a)¥, jem) = lime(a = (me jen | jef) - a),
SO

([ €) - mg(a) = limy(me jen | je€) - in o(W*(G), A(G))
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where we consider W*(G) C W*(G). By proposition 4.4.1 and proposition 4.4.2,

supp(7n | §) - 7g(a) = 0.
Since C%(G) is a non-degenerate A(G)-module, by proposition 3.1.8 (i), we find that
(7n | €) - 7 (a) = 0, and hence 75 (a - a)? = 0 for all a € A(G). Since M is co-zero, we
have
alg -ma(a) =7mg(a-a) =0 for all o € A(G),

so mg(a) = 0, again by the non-degeneracy of the A(G)-module C5(G).

The second assertion follows from proposition 3.2.4 (ii) and the fact that singa = (
forall a € C(G). »

THEOREM 4.5.11. Let the conditions of proposition 4.5.7 be satisfied. Further, assume
that p has full support and is a.e. locally contained in A(G). Then
oc(pap) = p(mg ®s resg)(a)p  for all a € CH(G) ®5 C4(G)
defines an irreducible x-representation of T,(G) on pL?(G) with LC(pL*(G)) C ker gg.
Furthermore, o& satisfies the equation
06(Tp(f)) = Tp(fla) for all f e C(G).

Proof. Abbreviate v = mg ®s resg. Let a,b,¢ € C(G) ®5 C*(G) such that pap = 0.
By proposition 3.3.12 and its proof, bpc € C;(G) @ C°(G) and v(bpc) = v(b)pr(c). Hence,
take a1, as € C5(G) ® C°(G) such that a = a; - az. We have

v(b)pr(a)pr(c) = v(b)pr(ar)v(az)pr(c) = v(bpai)v(azpc) = v(bpape) = 0.
Since v is non-degenerate, pr(a)p = 0. Thus we have shown that gs is well-defined.
Clearly, g is linear and involutive. Furthermore, for a,b € C3(G) ®s Cco(@),
0c(papbp) = pr(apb)p = pv(a)pv(b)p = o (pap)ea (pbp),
S0 o is a *-morphism. Now, for f € C%(G), clearly oa(T,(f)) = Tp(fla), so og is
surjective onto 7;(G) which acts irreducibly on pL?(G) by proposition 3.3.11.

The statement about the kernel follows from corollary 4.5.10, proposition 3.3.11 and
its proof. m

REMARK 4.5.12. Let p be central, i.e. Ad(G)(p) = p. Then C;(G) is Ad(G)-invariant.

What is more, if we set
d(g,g) = Ad((9,9)% (e, 9')4) forall g,¢' € G,
then d: G x G — Aut(C;(G) ®5 C°(G)) is an action of G x G on C}(G) ®5C°(G).

If (, p) is a covariant pair of representations for (C;(G),d,G) and g,9" € G, then
r@spod’l, (3(a)(18 1)) = m(Ad(g~#)(@)ulg f+g) for all a € CI(G), f € CYG),
since § o Ad(¢9%) = (g,9)* o 6. Here, g * f x ¢'(t) = f(g~'tg’). Moreover,

(moAd(g™'%), f = ulg* [ x¢') = (x', 1)

is a covariant pair of representations such that ' ®s ' = (7 ® p) o d
5.4 lemma]. Thus, G' x G acts naturally on Rep Cj(G) ®5 C(G).

(g}g,), cf. [LPRS87,

With this in mind, the proof of the following corollary is straightforward.
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COROLLARY 4.5.13. Let the conditions of theorem 4.5.11 be satisfied and assume fur-
ther that p is central. Let g,q' € G and set
TyGg—1 = TG © Ad(g~'*)  and tgcg—1 = [ (gx f*xg)la
Then
0gGg—1 (Pap) = P(T,ay-1 ®5 pyay—1(a)p  for all a € CH(G) ®5C°(G)
defines an irreducible x-representation of T,(G) on pL3(G) with LC(pL3(G)) C ker og.

Furthermore, o5 satisfies the equation

096y (Tp(f)) = Tolg * fx g'|c)  for all feC’(G).

5. The Hardy—Toeplitz C*-algebras 7. (SL(2,R)). In this section, we let G =
SL(2,R) and G€ = SL(2,C). We also adopt the convention of denoting the Lie algebra
of a Lie group by the corresponding lower case Fraktur letter.

5.1. The Olshanskii domains Gg, The Lie algebra g = s[(2,R) has the convenient

basis
0 1 1 0 0 1
2=(50) =0 5) x=(5 o)

of infinitesimal generators for the respective 1-parameter subgroups

ko — cos?¥  sind b, et 0 S 1 =z
T\ —sin® cos® ) T N0 e t) T 0 1

also denoted K (= SO(2)), A and N. KAN is an Iwasawa decomposition of G. M =

{£1} C K is the centre of G. M AN, the normalizer of N, is the set of upper triangular

matrices in G. G has the Iwasawa decomposition SU(2) - A - NC where NC = (| (13)
In the following we choose a fixed sign o € {+, —} in order to treat the holomorphic

and anti-holomorphic discrete series simultaneously.

DEFINITION 5.1.1. We introduce the (forward resp. backward) light cone

Ag::{< y x—i—z) ax>a\/22—x2—y2}.
r—z -y

Also, we set A = Ay UA_. A, C g is an open convex Ad(G)-invariant cone. For such

cones and g with trivial centre (or G€ simply connected), Lawson’s theorem on Olshanskii
semigroups ensures that G-expiA, is a closed involutive subsemigroup of G€ (a so-called
complex Olshanskii semigroup), such that the polar decomposition

G x Ay = G-expil, C GC: (g,v) = g-expiv

is a homeomorphism. Furthermore, the interior G - expiA, (which we call an Olshanskii
domain) is a G x G-invariant domain in G, cf. [Nee00].

The following proposition is easy to check with Iwasawa decomposition.

PRrROPOSITION 5.1.2. The open cone A, decomposes as the set of orbits

s = {(mgz mj;) ox > o\/22—1? —y? = /\} = Ad(G).\Z.
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where o\ > 0. Its boundary OA, decomposes into {0} and the orbit

o _ y Ttz V2 _2=0%=
QO_{(x—z —y) ox >\/22—12—y? =0, =Ad(G).0cX.

Moreover, if Il = G/K denotes the upper half plane (with base point i), the map

1 .
(I):A(T—>O'H:’U=< y x+z>b—>—(v11—ivdetv)=y 'VE

r—z ) V21 r—z

2_$2_y2

is a G-equivariant foliation. Here, the action of G on oll is given by fractional linear
transformations

a b aw +b a b
<c d).w.— for all <c d>€G,wEJH.

cw+d

REMARK 5.1.3. The map @ is a useful tool for the explicit evaluation of the moment
map for the highest weight representations of G, as we shall see below.

Corresponding to the decomposition of A, in proposition 5.1.2, the Olshanskii do-
mains G - expiA, have the following decomposition.

THEOREM 5.1.4. Consider the action of G x G on G€ given by
(G xG)x G = GC:((s,t),7) — syt™*
Then we have the following decomposition as a disjoint union of G X G-fibre bundles

GS =GU(BGS\ G)UGS
= (G X G) Xdiag(c) {€} U (G X G) Xgiag(ma)ynxn NEU (G x G) xaxa GE.

Here, NC = N - expin, is the Olshanskii domain in N corresponding to the cone
ny = A, Nn\ {0} ={\- X, |o) >0}

Proof. The first equality is clear. Also, we clearly have G = (G X G) X giag(c) 1€}, since
G x G/ diag(G) = G as G x G-spaces. Also, GS is G x G-invariant, so

G = (G x Q) xgxa GE.
By Lawson’s theorem and proposition 5.1.2,
OGS\ G = G -exp(idA, \ {0}) = G - exp(iQF) = G exp(in,)G.

Now, N€ = N - exp(in,) = ((1]011'[)’ so since

0 1

and M is central in G, the domain N is diag(M A) - N x N-invariant.
It remains to be shown that

(5,t). NN NS £0 = (s,t) € diag(MA)-N x N.

1 1 A2
hang (O lf)n_gchl/)\:< )\w) forall A\ >0,z c R,we C

To this end, let s((l) 7)) = ((1) V)t for some s,t € G and z,w € oll. In particular,

—sntgllmz slltnlmz —Tms 1 =z t_l_Im 1 w o 0 Imw
—Sgltgllmz —szltnlmz - 0 1 o 0 1 - 0 0 ’
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We deduce si1t11 # 0, so from sji1te1 = so1t11 = 0 we have so; = to; = 0. Hence s,t
are upper triangular, i.e. s, € MAN. Since NS is invariant under conjugation by this
group, there exists w’ € oIl such that

GG )

By uniqueness of Iwasawa decomposition in G€, we conclude that s and ¢ have the same
M A-component. =

5.2. The Hardy spaces H?(GY)

REMARK 5.2.1. The space of holomorphic functions

sup /Glf(v*g)Ing < OO}

YEGS

H2(GF) = {f c 0(c2)

endowed with the norm given by the square root of the integral in its definition, is called
the Hardy space of GS. It can be considered as a closed subspace of L?(G) via the
isometry

j:HA(GY) = L*(G), jf(9) =limges, e f(779)-

Its topology is weaker than the topology of convergence on compact subsets, so it is
a reproducing kernel Hilbert space whose kernel E,(z,w), the so-called Cauchy-Szegé
kernel, is holomorphic in z and anti-holomorphic in w. Moreover, it is given by a single
function as E,(zw*). E,(z,w) can be extended continuously in one variable to G, cf.
[Nee00], [HN93], [HOQ91].

The map j* : L2(G) — H2(G€) c O(GE) is the integral operator with kernel E,, so
jj* has distribution kernel E,. Since, furthermore, the Hardy space H2(GS) is G x G-
invariant, its associated orthogonal projection jj* is a central element of W*(G), so we
consider E, € W*(G).

REMARK 5.2.2. We recall the definition of the discrete series representations of G, cf.
[War72], [Lan75], [Tay86]. The Bergman spaces

02 (oT1) :={fec9<on>\ / If(x+iy)l2|ylm‘2dxdy<oo},
oll

defined for N > m > 2, and endowed with the corresponding L2 norm, are the reproducing
kernel Hilbert spaces associated to the kernel functions

! 2ic \"
Km,n(z):Km,a(z,w):ﬁ.< ZU) .

w T z— W

We also introduce the normalized kernel functions

m.c K™ (z, w)
kwl/ (Z) = Km’g(’w,U))l/Q.

By the reproducing property, the k™ are indeed unit vectors in O (¢11). The action of
G on 02, (oTl) is given by

g™ f(2) =097 (2)™? - flg7 2)
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where the action of G on oIl was introduced in proposition 5.1.2. 77, is an irreducible con-
tinuous unitary representation of G. In fact, it is a discrete series (i.e., square-integrable)
representation.

It is well-known that the Hardy spaces H?(G$) are associated with the discrete series
of G in the following way.

PROPOSITION 5.2.3. We have the following G -equivariant isomorphism
> 05 (0Tl) @ O2,(T1) = H*(GT) : (4 @ 71m) = Y dif* (77,1 | &m)
m>2 m>2

where d,, denotes formal dimension and H?(GS) is considered as a subspace of L?(G).

5.3. The Hardy—Toeplitz C*-algebras T+ (G) and their irreducibility

NOTATION 5.3.1. We use the notation T,(G) = Tg, (G) for the Hardy—Toeplitz C*-
algebra.

In order to get more information on 7,(G), we need to analyse E, in greater detail.

REMARK 5.3.2. It can be shown by elementary considerations (cf. [GG77]) that every
v € GE has an eigenvalue g(y) of modulus > 1. Moreover, q : GS — C is holomorphic,

and
e

B =3y

cf. [GGT7], [O1s95].
PRrROPOSITION 5.3.3. The function q has a smooth extension q, to
Greg={9€G | trg — 4 # 0},
the set of g € G where g has distinct eigenvalues. Moreover, writing
N¥ =) kNETY,
keK
we have G\ Greg =M - N¥.

Furthermore, (¢, + 1)~ is locally integrable near mN*¥, m = (Bl 701)' Hence

singsupp E, ¢ M - N¥  and sing E, c N¥.

Proof. The first part follows by considering the quadratic equation defining ¢ and
noting that trg — 4 is the discriminant of the characteristic polynomial x4. The local
integrability of (g, + 1)7! is seen by explicit integration. The remaining assertions now
follow from remark 5.3.2. m

COROLLARY 5.3.4. The Hardy-Toeplitz C*-algebra T+ (G) contains LC(H?(GY)), and
hence acts irreducibly on H?(GY).

Proof. Clearly, supp E, = G. Moreover, singsupp E, C M - N¥ is negligible. So the
assertion follows from theorem 3.3.11. m

So far, we have established the irreducibility of the ‘identity’ representation of T (G)
on H2(GY), associated with the interior GS of GS.
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6. The representation theory of 7. (SL(2,R)). In this section G = SL(2,R), and
we use the notation from section 5.

Following the general procedure outlined at the end of the previous section, we con-
struct representations of 7 (G) corresponding to the boundary faces of GS given by
theorem 5.1.4. They correspond to information ‘at 0o’ (in é), and consequently vanish
on LC(H%(GY)).

Again, we fix a sign o € {+, —}.

6.1. A class of pure states. In this subsection, we define functions of positive type
A, for v € A contained in an ‘integral orbit’ Q7 ,. Of course, this can be considered as
a pure state of C}(G), indeed of C3 (G). It also proves useful to consider this function
as an element of both A(G) and H2(G€,). What is more, as we shall see, although all v
contained in the same orbit define the same representation of G via the GNS construction,
different ‘directions’ in which we consider limits to infinity in A, give rise to different
representations of C3, (G).

DEFINITION 6.1.1. Let N > m > 2 and v € Q2 ,. For all s € G, set

Ay(s) = (kg(y) s”g".kgb(’q‘)g).

REMARK 6.1.2.

(i) We have —Q7 , = Q9 and A, =A_,,s0 A, € H*(GC,) by proposition 5.2.3.
(ii) 72 is square-integrable; so by Schur orthogonality [War72, corollary 4.5.9.4], it is

easy to see that A, € A(G). Indeed,
A, = (k;gl(f) kgl(;’)) Ay =dro - Ay x A, € A(G).

We shall consider the asymptotic behaviour of A, for certain sequences of vs.

NOTATION 6.1.3. Let 7 € R\ {0} and m > 2. Define

0 om _ _ m? 0 m*/v
Be(o,m) :=omZ = (—Jm 0 ) and By(7,m) :=vX_ + 7X+ = (_ﬁ / )

where X_ = —X1. Thus f(0,m) € 05, and Sy (7, m) € %2

m?2

PROPOSITION 6.1.4. For all m > 2, let v,, €n®nNQ? 5, so that

0 *
U, = <—$m 0) for some ox,, > 0.

Then

2 m
A, () = : m ’
7n( ) (t11+t22+z(%t12— x_mt21)>
In particular,

(6.1.1) Ag, (o,m)(t) = < 2

t11 + tos +io(t12 — tm))

(6.1.2) Ap (mm) (8) = ( : ))m

t11 + too + i(t120/m — taym/v
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Proof. Since A_,, = Ay, w.l.o.g. we may assume o = 4. We have ®(v,,) = i%, hence

R ) = K (e ) [ R ] (im )

’Lm/l'm, xm xm zm/mm
m\" 2 m
— 8t_1 m/2(; -
(32) @ imsend (i e
(N (o — i) 2i "
-~ \Zm e (t—Lim/zy) +im/xm,

m m
() i )
Tm itoom/Tm — t1a + M/ Ty - (t11 — it21M/ X0
2 m
B (tu +tog +i(Tmtyp — xﬂmtm)) '
The other equations follow immediately. m
REMARK 6.1.5. Since the kernel of O2 (II) at i = ®(B(+,m)) is K-invariant (be-
cause i is the base point of Il = G/K), it is easy see to that the Ag_(,,,) are highest
weight vectors of the lowest K-type in m,,. So, in a sense, taking the whole orbit picture

A, (1) = (KT

im/xTm

generalizes the highest weight theory.
NOTATION 6.1.6. For € > 0, define
K. :={s € G||s11 — s22|” + |s12 + 521|* < e},
and
(MAN). :={s € G||sa1| < e}.
LEMMA 6.1.7.

(i) For alle > 0, K. is a neighbourhood of K. Furthermore,
(6.1.3) (] K- = Ko = K.

e>0
(ii) For alle >0, (MAN). is a neighbourhood of M AN. Furthermore,
(6.1.4) [J(MAN). = (MAN), = MAN.
e>0
Proof. (i) Let s € G. Manifestly, s € Ky if and only if

511 = 522 und 891 = —S12,

ie. s= (be) for some a,b € R. Hence Ky = K.
On the other hand, the family of sets (K:).¢[o,o0[ is increasing. From this, (6.1.3) is
easily deduced. The first assertion now follows from

K=Ky C KE/Q C {S S G‘ |811 —822|2+ |812+821|2 < 46} C K;

(ii) Let s € G. s is an upper triangular matrix if and only if s91 = 0, i.e. s € (M AN)j.
Thus MAN = (M AN).

Trivially, the family (M AN ).cjo,o0[ is increasing, so the equation (6.1.4) follows. As
in (i), we see that (M AN). is a neighbourhood of M AN for e > 0. m
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PROPOSITION 6.1.8. Let € > 0 and v # 0.
(i) Lett € G\ K.. We have
(6.1.5) |8, (om) (1) < (1 +)7™2

in particular, Ag_(5.m) converges to 0 for m — oo uniformly on G\ K. and point-
wise on G\ K.

(ii) Let L C G\ (MAN). be a compact subset. There exists C > 0 such that for large
m, and all t € L

(6.1.6) B ooy (D] < (ﬁ c) ,

in particular, Agy (z,m) converges to 0 for m — oo uniformly on compact subsets of
G\ (MAN). and point-wise on G\ M AN.
Proof. (i) We have

lt11 + taotio(tiz — ta1)|* — [ti1 — taz + io(t12 + ta1)]?
= (t11 +t22)? — (t11 — to2)® 4 (tiz — to1)? — (t12 +to1)* = ddett = 4.
So, applying (6.1.1) from proposition 6.1.4 (i), we get
A (om) (]2 = 14 §((t11 — t22)* + (tr2 +121)%) > 1+,
and hence the estimate (6.1.5). The first convergence assertion is immediate, and the
second one follows from (6.1.3) in lemma 6.1.7 (i).
(ii) For all m > 2 and ¢t € G, we have

L)y tos + itn 2| < Litan + o] + o] 2L
) 11 22 112m_211 22 122m’

by compactness of L, the right hand side is bounded for all m > 2 and ¢ € L by some
C > 0. Furthermore, since [|to1] > ¢, there exists 2 < k € N such that for m > k and
tel,

o] = — C' > 0.
27|

Hence for all m > k, t € L, we have

- t11+ta2 ., U m em
A - ¢ 1/m _ t1o——0 it t —-C>——-0C,
1Ay (5.m) (2] 5 Tty —itnoo| > | 21|2| | Z 3]
where (6.1.2) from proposition 6.1.4 (ii) and the inverse triangular inequality were applied.
The estimate and the first convergence assertion follow. The point-wise convergence now

follows from (6.1.4) in lemma 6.1.7 (ii). =

NOTATION 6.1.9. In the following lemma, we define for v € N3 the left-invariant
differential operators

DY :=X7'Y22% on G =SL(2,R).

Moreover, we consider for & € N4 the monomial

tn t
1 = 1SH3ISHSE int = ( ' 12) €G.
lo1  to2
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LEMMA 6.1.10. Choose for all m > 2 elements v, € n® 0N Q7 , such that
vm:(o *>, 0<r<|zm <R< oo,
Tm O

where r and R are fized. Then, for all v € N3, there are polynomials (p,,) C Clti1,. . ., t22]
and p € Rlz|, the latter independent of m, such that

degpm < |yl, degp <2y, pm(t)= D et || < [p(m)]
lee| <[~

and

(617) D’YAUM = Avm . where qm(t) =111 + tas —l—Z(% ~t1o — :L'ﬂ -tgg).

Pm
+1
& -

Proof. First, note that for o € N*
X t® = g - 4T (-1100) |y 4o (00,-1,1),
Yo = (o — ag + ag — ay) - t9,
210 = —qy - t0H(LL0.0) |0 L o (L=100) _ . 4ot (0.0,-11) 4 poH(0,0,1,-1)
So, if Ve {X;,Y,Z} and
q(t) = Z cat®, then Vg(t) = Z dt™
lee|<n lee|<n

where max,, |dqo| < (142n)-max, |¢q|. Furthermore, if we denote by rv.,, € Clt11, .. ., t22]
the polynomial such that

(VA () = Ay, (1) - T;’:Eg) for all t € G,

then degry,, = 1 and its coefficients are bounded by max(1, R)-m?. So, let m € N, and

o)
let p,, and p satisfy the assertions of the lemma with || replaced by k. Then, applying
the product and quotient rules, we get

VIA,, - =) = A, (1) — )
|: m qu;L:| ( ) 7n( ) Q7n (t)k"l‘l
The numerator of the fraction on the right hand side is a polynomial in Clti1, ..., t22] of

degree < k + 1. Its coefficients are bounded by
[max(L, R)-m? + (1 + 2k) - max(2, R) - m + 5k - max (L, R)] - [p(m)|

T T
since the coefficients of ¢,, are bounded by max(%, R) - m. This proves the assertion. m
COROLLARY 6.1.11. Let v # 0.

(i) We have Ag, (om)la\x 50 i E(G\ K), i.e. supp™(Ag, (o,m)) C K.
(ii) We have Agy (5,m)la\man 50 in E(G\ MAN), i.e. supp™ (Agy (7,m)) € MAN.

Proof. (i) The topology of £(G \ K) is the topology of uniform convergence of all
derivatives on compact subsets. Since G is locally generated by its Lie algebra g, it suffices
to restrict attention to left invariant differential operators. By the Poincaré—Birkhoff-Witt
theorem, a basis for these is given by the ordered monomials in the basis X,Y, Z. Set

Um = Be(aa m)
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Let v € N3. By (6.1.7) in lemma 6.1.10, there exist (p,,) C Clt11, .- ., t22] and p € R|z]
such that degp,, < |v|, degp < 2|v|, the coefficients of p,, are bounded by p(m), and

(DA, () = Ay, () - #@H

Let L C G\ K be a compact subset, € > 0 such that L C G\ K. and M > 1 such that
maxy =12 [tk| < M for all t € L. Then

1
and for all m > 2 and ¢t € L, by (6.1.5) from proposition 6.1.8 (i), we have

(D7A,,)(O)] < MPT-[p(m)] - (1 +)7™/2 50,

forallt € G,m > 2.

= |A6ﬂ(a,m)|1/m <1,

proving the assertion.
(ii) The proof is analogous to that of (i), using (6.1.6) from proposition 6.1.8 (i). m

6.2. Convergence of states defined by the 0-dimensional faces. In this section, we shall
study the behaviour of A, - F, at infinity, where

Um = ,86(0'/,77’1) = ( 0 Uom) .

—o'm
Here, o’ € {+,—} is a sign possibly distinct from o.
These sequences are precisely the points of intersection of £ with the ‘integral orbits’
Q7

2. As we shall see, in the limit, they give rise the to Fourier transform of the projection
of C = L2({e}) onto the Hardy space C = H?({e}).

NoOTATION 6.2.1. For the sake of brevity, let us write AZ; = Ag,(o'm)-
THEOREM 6.2.2. For all « € A(G),

limim (K505, T gr .y 1@ Eo )oK T gr,my) = O €) = 0, (algey - 00T

Proof. By corollary 4.2.3, let 1 be a subsequential limit of (A;’,; - E5). By proposi-
tion 5.3.3, corollary 6.1.11 (i), proposition 4.4.1 and proposition 4.4.2,

supp p C sing E, N suppoo(Af,;) CNENK ={e}.

So, by [Eym64, (4.9) théoreme],

w=C_-9. forsome (e C.
Thus

C=C- A3 () =l (AT - AL, Bo) =limm B (A A%,)" (€) = G,
proving the assertion. m
COROLLARY 6.2.3. For every g € G,
09 : Tx(G) = C: T=(f) = f(g)

defines a mnon-trivial character vanishing on LC(H?(GY)).

Proof. This follows by applying corollary 4.5.13 to theorem 6.2.2. =
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In the proof of theorem 6.2.2; all that was needed to identify the limit of (AZ; - E,)
were Eymard’s version of Beurling’s theorem and the decomposition of the Hardy space.
As we shall see, the situation for the 1-dimensional faces is more involved.

6.3. Convergence of states defined by the 1-dimensional faces. In this section, we shall

study the behaviour of A, - E, at infinity, where
2 —
U = BN (V,m) = <_0ﬁ mo/y> :

These sequences are precisely the points of intersection of the parallel translations of n
by 7 - X_ with the ‘integral orbits’ Qfﬁgﬁ. As we shall see, they give rise exactly to the
Fourier coefficients (E,)¥ of the distribution E, € W*(N) defining the projection of
L?(N) onto the Hardy space H?(NC) localized at the character e~*/2 of N.

NOTATION 6.3.1. For the sake of brevity, we write A := Ag_ (5 m). Also, we use the
notation acc(g;) for the set of o(W*(G), A(G))-accumulation points of (u;) C W*(G).
The proof of our convergence result requires some preparation.
PROPOSITION 6.3.2. Let v # 0. If u”7 € acc(AY, - E,) then
(2 p"%) =05 sgnp - (e)  for any a¥ € A(G) N HZ(GSgnD).
In particular, this is true for « = A, where v € Qfﬁgﬁ for some N 3m > 2.

Proof. Choose a subsequence v < N associated to u”:°. We have

{a : p”7) = lim,, (a - Aﬁ(m) . B,) = lim,, E¥ (a- A7, )V (e)

gl 3 v(m)
= bo,p - a(e) - limy, A (€) = 00,5 - a(e),
since (« - AZ(m))v € H*(GS,, ), and E¥ is the orthogonal projection onto H*(GS). =

PROPOSITION 6.3.3. Let y, (ym) C R\{0} such that y = lim, ym and vy, € Q7 .Nndn
such that pry Vm = Ym. (In particular, o -y > 0,0 -y, > 0.)

(i) For all x € R, we have lim,, ||n;rf"kgb(g) - eiiyw/ng(’;'L) oz (om) = 0.
(ii) For all x € R, we have lim,, ||A,,, (ns0) — e’zym/QAum A =0.

(iii) We have e=%/2° = lim,,, A

om | N strictly in B(N).
Proof. (i) Since 7g, is a unitary representation of G, we obviously have
Ina ki, ) — efiywmkgl(ﬁ”) 152 (o) =2 — 2Re eiyw/z(kg(ﬁm) e kg, )
=2 - 2Ree¥/2A, (n,).

The assertion (i) follows since ®(vp,) =iy, so we have

Avm (nw) = (1 + Zymx) ﬂ) efiyw/Q.
2m

(ii) Since A(G) carries the norm induced by B(G) and

Avm (nxs) B e_iyx/QAvm (3) = (TLT; kgb(ﬁ”) - eiyz/ZkgL(ﬁ”) SWZL kgb(ﬁ”))a
we have, by [Eym64, (2.14) lemme],
1A, (nz0) = e 20, la) < InT5k5e] ) — €2kl oz, em 0.
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(iii) From the proof of (i) we have point-wise convergence on N. Since e~ /% is a
unitary character of N, it is contained in S(B(N)). By theorem 4.1.1 (i), (A, |n) C
A(N). Since the inclusion N — G is a homomorphism, these functions are of positive
type. Evaluation at the neutral element e shows their norm is 1. On norm bounded subsets
of B(N), convergence a.e. coincides with convergence in o(B(NNV),L!(N)) which in turn
coincides with o(B(IN),C*(N)) on bounded subsets since L'(N) Cc C*(N) is dense. By
[GL8&1, theorem Bs], the latter topology coincides with the strict topology on the unit
sphere, whence the assertion. m

LEMMA 6.3.4.

(i) Let m € N and w € oll. For any g € G, there is ug ,, € U(1) such that

(6.3.1) gk =g, - k.
If g€ MAN, we even have uj , = 1.
(i) Let v € A. We have
(6.3.2) Ay oInt(g) = Apdag-—1)w forallge G

where Int(g)(t) = gtg~! for all t € G.
Proof. (i) For all z € oII, we have
G (2) = (9712 (2) - K™ (g 2, w)
= [(0g=1)/2(w)] " K™ (2, g.w) = [(9g=1)™/2(w)] ™" - K27 (2),
hence g™ k7 = C - k' for some constant C' € C. Since g™ is unitary and the ks are
unit vectors, C' has modulus 1.
Finally, for g € M AN, one easily sees that (9g)™/?(w) is a positive number, so that

C is also a positive number, and hence equals 1.
(ii) Let m € N, such that v € Q7 ,. Then, by (6.3.1)

Ay (Int(g~h)t) = (g”:“kg(’$ |t7r’(;9ﬂ:"’kg(’g)) = (/f;'ﬂif(v) |t7rf"’k;?&>g(v)) = Ana(gp(t)
for all g,t € G since go ® = ® o Ad(g) by proposition 5.1.2. m
Now we are ready to prove the following theorem.
THEOREM 6.3.5. Let v # 0 and o’ := sgnv. Denote by E, € W*(N) the orthogonal
projection of L2(N) onto the Hardy space H?(NE). Then

Lt (K57 | (@ E,,)f;a, kol o) = (aln - Bo)%, . for all a € A(G).

Proof. Let u”° € acc(Ag(m)
by proposition 4.2.3. By proposition 5.3.3, corollary 6.1.11 (ii), proposition 4.4.1 and
proposition 4.4.2,

- E,) and choose a corresponding subsequence 7 < N

supp p”° C sing B, Nsupp™(AZ) C NN MAN = N.
Set p1:= /2. %7 € W*(N). First, assume o’ = ¢. By proposition 6.3.3,

<Ag : /’LD’0> = lim7rl<Ag ’ Z(Tn) : EO'> =1,



TOEPLITZ OPERATORS ON SL(2,R) 207

so |||l = ||#”|| = 1. Hence there exists a unique class f € L>°(R) such that

= (n0)o(F~1) ().
Here F is the Fourier transform and , denotes image measure.
We have f > 0 a.e. and ||f]|cc = 1. In fact, f is a.e. constant on rays. Indeed, for all

A > 0, we have A” olInt(hy) = AZL/)‘Q. By lemma 6.3.4 (ii) and centrality of E,,

Int(hy)op”? = limy, A . E
Aok = m Sy (m) o
Applying corollary 4.3.6, we get

e—iﬁ/2~<> . Int(h,\)ou%" — 6—117/(2/\2)0 . M%n7

i.e. Int(hy)o (i) = p. Since, for all ¢ € A(N), we have

(o : Mt(ha)oms) = 5= /R 1) /R T p(ya, ) drdy = 5 /R F02y) /R i o(n,) du dy,

the function f is a.e. constant on rays.

Now, since supp F (A5 on,) = o'Ry (cf. [Bil79, exercises 20.23 and (26.8)]) and
[ flloc = 1, we deduce f = 1om, ae.,ie p=E,.

Now, let ¢’ # o. By the first part of the proof,

eV/?° . B, =lim, A7 - E, ino(W*(Q),A(Q)).
By corollary 4.3.6,
o= £i7/2-0 'N%G — /20 iD[20 Ea — Eo-
The theorem is proven. m
COROLLARY 6.3.6. For any k, k' € K,
opnp—1 P Te(G) = Te(N) : T (f) = Tk * f + K| w)
defines an irreducible x-representation of T+(G) on H2(NE) vanishing on LC(H?(GY)).

Proof. This follows by applying corollary 4.5.13 to theorem 6.2.2. m
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