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Introduction. In this paper we classify and describe real rank one simple Lie algebras
g with an approach based on the analysis of an Iwasawa nilpotent subalgebra n of g. Our
approach is based on the observation of A. Koranyi that there is an inner product on
n which satisfies the compatibility conditions with the Lie product of n characteristic
of the so called generalized Heisenberg algebras. Koranyi, M. Cowling, A. Dooley, and
F. Ricci used this fact to classify real rank one simple Lie algebras establishing that
the generalized Heisenberg algebras which are Iwasawa satisfy the .J2-condition, and
determining the generalized Heisenberg algebras with this property.

Here is an outline of the paper. In Section 1 after some generalities on real simple
Lie algebras and generalized Heisenberg algebras, we give a more detailed account of the
contents of the paper. In Section 2 we describe the subalgebra m and its action on the root
spaces, obtaining a new and easier proof of the J?-condition. In Section 3 and Section 4
we provide a uniform construction of real rank one simple Lie algebras starting from a
representation of a Clifford algebra. In Section 5 we give some more informations on the
structure of m, proving that m coincides with the algebra of skew-symmetric derivations
of n. In Appendix 1 we classify generalized Heisenberg algebras with the J2-property
using Clifford algebras, and avoiding to use division algebras as done by Koranyi and
collaborators. Finally, in Appendix 2 we show how our approach can be used to make
explicit computations in g in the case of sp(1,n). The results of Section 2 and Appendix 1
will be also published in Proceedings of the American Mathematical Society [C2].

1. Generalities. Let g be a real semi-simple Lie algebra with Killing form B. A Car-
tan involution 6 of g is an involutive automorphism such that the symmetric bilinear form

(1.1) (X,Y)=—-cB(X,0Y), c¢>0,
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is positive definite. Let
g=top
be the decomposition of g into eigenspaces of 6, where
t={Xecg:0X=X} and p={Xe€g:60X=-X}.
We denote by ad : g — End (g) the adjoint representation of g, defined by
(adX)Y =[X,Y], X, Yeg.

If X lies in p the operator ad X is symmetric with respect to (-,-) and hence diagonal-
izable. We fix and diagonalize a maximal subalgebra a contained in p (a is necessarily
abelian). The dimension of a is an invariant of g and is called the real rank of g. A linear
non-zero form « on a is called a restricted root, or just a root, relative to the pair (g, a)
if the linear space

go={X€g:(adH)X =a(H)X}

is non-trivial. In this case g,, is called the root space of a. Denote by X the set of restricted
roots. If « is a root, then —a is also a root and g_, = 6g,. Moreover, if o, 8 € X, the
linear space

(90,08 =span{[X,Y]: X € g4, Y € g3}

is trivial when a+4 ¢ 3, and is a subset of g4 when a+f € . From now on g is a simple
Lie algebra of real rank one. Hence, ¥ is either equal to {+a}, or {£a, £2a}. The set X is
called A; in the first case and BC1 in the second case. One thus obtains the decomposition

(1.2) g=60ndgodn,

where n = g, for ¥ = A;, and n = g, @ g2, for ¥ = BC;. The subspace n is a nilpotent
subalgebra of g.

In this paper we are specially interested in discussing the structure of n. For this task
we shall use the following notion introduced by A. Kaplan in 1980.

1.1. DEFINITION [K]. A nilpotent Lie algebra n = v& 3 endowed with an inner product
(-,-), with centre 3 and 3= = v, is a generalized Heisenberg algebra if the linear map Jz
defined for Z € 3 by

(JzX,Y)=(Z,[X,Y]) forall X,Y €v,
satisfies
(1.3) J2=JzoJdz=—|Z|*T forall Z € 3.
From (1.3) it follows by polarization that for Z, Z’ € 3
(1.4) Jzdz 4+ Jzdz =—=2(Z,Z")I.

Thus, J : 3 — End (v) extends to a representation of the Clifford algebra C (0, da,) (see
for instance [P]). From the definition it also follows easily that ([K])

(1.5) [X,JzX]=||X|?Z for X cvand Z c3;.

The group of linear orthogonal automorphisms of a generalized Heisenberg algebra
has been extensively studied by C. Riehm ([R], see also [S]). The object of interest now is
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the Lie algebra of this group, that is, the space D (n) of the skew-symmetric derivations
of n. If D € D (n), then D, being a derivation, maps 3 into itself, and since D is skew-
symmetric it also maps v into itself. The following result was partially proved in [C,
Proposition 3.3] (see also [S]).

1.1. PROPOSITION. (1) A skew-symmetric endomorphism D of the linear space n
mapping 3 into itself is a derivation of n if and only if
(1.6) DJz —JzD = Jpz for dll Z in ;.
In particular, the subalgebra Dy of D (n) consisting of the derivations which are trivial on
3 can be identified with the algebra of skew-symmetric linear endomorphisms of v wich
commute with the action of C (0, da2q).

(2) The linear endomorphism Dzz of n defined for each pair (Z,Z') of orthogonal
vectors of 3 by

Dy X =JzJ X fOT Xecv and
Dyzp 2" =2(2,2"V72"'—2(Z',Z2"YZ for Z" €,
is a derivation of n. The space
Dy =span{Dzz : 2,72 €3, (Z,Z')y =0}
is a Lie algebra isomorphic to so (day), the Lie algebra of all skew-symmetric linear
endomorphisms of R%« (~ z), and
D (n) =Dy & D;.
In particular, the action of Dy commutes with the action of D;.
Proof. (1) Let D € D (n). Since D is skew-symmetric
(DJzX,Y)=—(JzX,DY)=—(Z,[X,DY])
for Z € 3 and X,Y € v. This relation yields, recalling that D is a derivation and using
the definition of J,
<DJZX7 Y> = <ZaD [Xa Y]> + <Za [DX, Y]>
= (JpzX,Y)+ (JzDX,Y),
showing (1.6). These computations read in the opposite direction also prove the converse.
The rest of (1) is clear.
(2) By (1.6) Dzz is a derivation. Notice that so (d2o) is isomorphic to D;. If D
belongs to D (n), DJ; is a skew-symmetric linear transformation of 3, and therefore is

the restriction to 3 of an element D’ of D;. Since D — D’ € Dy and D; N Dy = {0}, the
assertion follows. m

The first application of the generalized Heisenberg algebras in the study of real semi-
simple Lie algebras is due to A. Kordnyi [Ko], who in 1985 noticed that if ¢ in (1.1) is
chosen in such a way that (a | o) = 1/2, setting

(1.7) JzX =[2,0X],  Z € goa, X € ga,
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Jz satisfies (1.3), and therefore (n, (-,-)) is a generalized Heisenberg algebra. After that,
he discovered in collaboration with M. Cowling, A. Dooley, and F. Ricci the following
property that characterizes in the class of generalized Heisenberg algebras those which
derive from the decomposition (1.2) of a real simple Lie algebra (see [CDKR 1], [CDKR
2], and [C2)).

1.2. DEFINITION [CDKR 1]. Let n = v @ 3 be a generalized Heisenberg algebra with
centre 3. One says that n satisfies the J2-condition if for all X € v and all orthogonal
pairs (Z,Z’) in 3, there exists Z” in 3, (possibly depending on X, Z, and Z’), satisfying

JzJ7 X = Jzn X.

This condition is trivially satisfied if n is degenerate, i.e. 3 = {0}, or if dimj = 1. It is
equivalent to requiring that Jz preserves the subspace

RX® L,X ={aX+JzpX:a€R, Z €3}

for any X in v and any Z in 3, or that the irreducible C (0, da, )-module to which X belongs
is equal to RX & J, X . From now on we fix ¢ in such a way that (o | &) = 1/2. In this paper
we present a new proof of the result of Cowling, Dooley, Koranyi, and Ricci (Theorem 2.3)
and of its main consequence that dao = dim go, € {0,1, 3,7} (Corollary 2.5).

It remains to analyse the subalgebra go. It is clear from the definition that

a=gonNp.
In our case a is one dimensional, and
a=R[V,0V] with V in g, \ {0} or in g2, \ {0}.
In general a does not exhaust go. We set
m=goN¢

so that
go=adm.

Then (1.2) gives the Bruhat decomposition of g
g=dadmodn.
It is easy to see that m is a subalgebra and that (see [C1])

(1.8) m =span {[X,0Y]: X,Y € gg with 8 € {a,2a} and (X,Y) =0}.
Set also

(1.8") Mo, =span{[Z,02']: Z,Z' € g2 and (Z,Z') =0}

and

(1.8") m, =span{[X,0Y]: XY € g, and (X,Y) =0}.

If g®® denotes the subalgebra of g generated by the root spaces goq and g_sq, then
Mo = m N g,

The next result holds in a wider context and was proved in [C1] as Corollary 5.2. We
present the proof here in an attempt to make the paper self-contained.
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1.2. PROPOSITION. Take a unit vector X in g, and two vectors Z1, Zs in goo. Then
(1.9) [[Z1,025), X] = J1J2X,
where J1X and Jo X stand for Jz, X and Jz,X, respectively. Hence, the action of ma,
on go coincides with the action of the even subalgebra C* (dag) of C (0,das). Moreover,
(1.10) [Z1,025] = [0X, J1JoX] + [1 X, 0J2X].
In particular,
mo, C My and m=mg,.

Proof. Formula (1.9) follows from the Jacobi identity and (1.7). Formula (1.10) is also
obtained by Jacobi plugging Z; = [X, JoX] in the left hand side and using (1.7) and
(1.9). Finally, from (1.8"), (1.8”), and (1.10) one deduces the last formulee. =

In Proposition 2.1, using only the Jacobi identity and the property of m of being fixed
by 6, we prove the following formula holding for X, Y, W € g,,

1 1 1
(1.11) [X,0Y],W] = 5 (W.X)Y =5 (W,Y) X = 5 (X, Y)W
1 1 1
+ §J[X7y]W + §J[XV[/]Y + EJ[WY]X
This formula yields the action of m on the linear space g, ® g_«, and will be the main
tool in our proof of the J?-property of n (Theorem 2.3).
We denote by my,, the orthogonal complement of ma, in m, i.e.

(1.12) my, = {M €wm: (M, M) =0 for all M' € my, },
obtaining the decomposition
(1.13) m = ma, G my,.
1.3. PROPOSITION. The subspaces ma, and my,, are ideals of m, and
[m2q, m%a] C my, Nmy, = 0.

Hence, my,, is the algebra of all skew-symmetric linear endomorphisms of go which com-
mute with the action of CT (daq).

Proof. Tt follows from the Jacobi identity that ma, is an ideal in m. Thus, my,, is also
an ideal, and mo, N mé-a is an ideal in both msy, and mj-a. Hence, mo, N mj-a which is
trivial, contains [ma,, m3,]. The last part of the assertion follows now by (1.9). m

REMARK. We shall see in Corollary 2.6 that my;, is actually the algebra of skew-
symmetric linear transformations of n commuting with the action of the full algebra
C (0,dzq).

We close the section with the following result, holding in a wider context than real
rank one simple Lie algebras, which yields another evidence for Clifford algebras in real
semi-simple Lie algebras.

1.4. PROPOSITION. Fiz an orthonormal basis {Z1, ..., Z4,.} of 924.
(1) The set of endomorphisms of the linear space go ® g—o defined by
K;,=adZ; —adbZz; fO’l"iG {1,...,d2a}, Kd2a+1 =ad [9Z1,Z1], Kd2a+2 :9,
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provides a representation of the Clifford algebra C (daw + 2,0), i.e.
KK;+ K;K; =251 fori,je{l,... dyo+2}.
(2) The linear transformations
L,=K;K4,,+1=K; ad[0Z1,Z1] =ad Z; + ad0Z;, foric{l,...,da},
yield a representation of the Clifford algebra C (0,d2q) on go ® g—q, i-c.
LiLj+ L;Li = —265;1 fori,je{l,... dy}
They satisfy fori,j € {1,...,d2q} and i # j
K,L; = —LiK;, K,L;j = L;K;,
Kg, +1L; =—L;Kq, +1, and Kg, 1oL; =L;Kg4,_ to.
(8) If Z € gan is non-zero,
9o =ker(Lz+ Kz) and g_,=ker(Lz— Kz).
(4) Finally, for Z € gaq,

1 1 1
Jz = 5(Kz—kLz) K42 = §(Kz+LZ) 0= 59 (Lz — Kz).

Proof. We only sketch the proof. Since ad Z;|,, = 0 and (adZ;)° = 0, it follows for
i€{l,...,ds} and X € g, that

KZZX =[Z;,-02,,|Z; — 02, X]|| =—[Z; — 0Z;,[0Z;, X]| = — | Z:,[0Z:, X]],
which by Jacobi, as (a | «) = 1/2, yields
KX =—[X,[0Z;, Z]) = 2| @) || Zi]? X = X.

For Y € g_, one proceeds similarly. The rest of (1) is immediate. The assertion in
(2) follows from (1) by straightforward calculations, (3) is obvious, and (4) is Kordnyi’s
formula (1.7). m

REMARK. We see in particular from the above proposition that the action of p N g(2®)
on g, ® g_, extends to a representation of C (dao + 1,0).

The above proposition and Formula (1.11) provide the main instruments in our con-
struction of real rank one simple Lie algebras starting in Section 3. Indeed, in that section
we build, according to Proposition 1.4, a Lie algebra g, of endomorphisms of the linear
space goDg_,, from a representation of C (dan, + 2,0). Then we prove that g, is isomorphic
to 50 (dao + 1,1) (Theorem 3.2). The algebra g, yields g(>*). Finally, using Formula (4)
in Proposition 1.4 we introduce a structure of generalized Heisenberg Lie algebra on
n =gy D go, and n = g_, ® g_2, (Theorem 3.4).

In Section 4, we complete the definition of our algebra introducing the bracket of a
vector of g, and a vector of g_, by means of (1.11). The linear span of these brackets
is by definition a @ m. In Proposition 4.1 we show that if n satisfies the J2-condition
m consists of derivations of n. From this result the proof that we have obtained a Lie
algebra will follow easily (Theorem 4.5). Indeed, Proposition 4.1 is the crucial step in our
construction, the actual converse of Theorem 2.3. In fact, one can associate using (1.11)
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a space of linear endomorphisms of g_, & g, to any generalized Heisenberg algebra n
with v = g, but only if n satisfies the J?-condition these are derivations of n.

Finally, in Section 5 we discuss the way in which a skew-symmetric derivation of n,
or fn, can be expressed as a linear combination of elements of m, proving that the space
of these derivations coincides with m. We also determine how m depending on ds,, splits
into the orthogonal sum of msy, and mé-a.

2. The action of m. The following proposition provides a formula describing the
action of m on g,.

2.1. PROPOSITION. For X,Y, W € g, one has
(2.1) [X,0Y], W] = <WX>Y——<WY>X—§<X Y)W

X, Y]L0W) + 5 (X, W] 0]+ 3 [[W,Y],0X].

N - o

+

Proof. If one of X, Y, and W is zero (2.1) is trivially true. Assume that X, Y, and
W are not trivial. By Jacobi one obtains

(2.2) (X, 0Y], W] = [[W,6Y], X] + [X.W],0Y].
Plugging < > < |
W, Y W, Y
VEavE (W‘ HaE Y)’

in the first bracket on the right hand side of (2.2), we decompose [W, Y] into the sum
of a term lying in a and a term lying in m which is therefore fixed by 6. Hence,

w.Y)
1Y ]2

(X, 0], W] = —%(W, V)X + Hew _ e Y} ,X] X, W], 0Y].

From this it follows that
and, using again the Jacobi identity,

[X.0Y], W] = —(W,Y)X + [[§W, X], Y] + [[X,Y],6W] + [[X, W], 0Y].

(W, X) WX
W= |X|2X+<W X2 X)

in the first bracket on the right hand side, obtaining

Now plug

(W, X)

[1X,0V], W] = —(W,Y)X + - (WX)Y—i—HW T

T

+ [X, Y], 0W] + [[X, W], 0Y],
which yields
[X,0Y], W] = (W, X)Y — (W Y)X +[[W,0X],Y] + [[X,Y],0W] + [[X, W], 6Y].



234 P. CIATTI

The Jacobi identity gives
[[X7 GY] 7W] = <VV; X>Y - (W Y)X + [[Ya GX] 7W]
(W, Y],6X] + [[X,Y],0W] + [[X,W],0Y].

_|_

Plugging in this formula

_(rx) (¥.X)
VxRt T (Y BRE X)’

one obtains
([X,0Y], W] = (W, X)Y — (W, Y)X — %(X, YW + HHY — %GX, X} ,W}
+[[W,Y],0X]+ [[X,Y],0W] + [[X,W],0Y],
which implies
[X,0Y], W] = (W, X)Y — (W)X — (X,Y)W — [[X,60Y], V]
+ [[W,Y],0X] + [[X,Y],0W] + [[X,W],0Y],
providing the statement. m

When 2« is not a root the last three terms in (2.1) vanish yielding the usual formula
which decribes the action of so (d,) on R,

1 1 1
(2.3) v wl=Lwx)y - Lo x4 Lixnw.
When 2« is a root, (2.1) provides by (1.7) Formula (1.11)

1 1 1
(2.4 Lov]wl=Lmx)y - Lnn) x4 Ly w

1 1 1
+ §J[X7y]W+ §J[X,W]Y + §J[W,Y]X
From (2.3) and (2.4) it follows in particular that [X,0Y] =0only if X =0or ¥ = 0.

2.2. LEMMA. Suppose n = v @ 3 is a generalized Heisenberg algebra satisfying the
J%-condition. If Z, Z' are orthogonal vectors in 3 and X is a unit vector in v, then

(2.5) Jix,0,0,x1X = Juyx,0,x1X = JzJz2: X,
Proof. If one of Z and Z' is zero (2.5) is trivial. Assume ||Z]] = ||Z’|| = 1 and let
7" € 3 satisty JzJz X = Jz» X. Then,
Jx, 727, x1X =Jx,0,,x1X = Jz20 X = JzJz X,
by (1.5), proving the first equality. Since Z” is orthogonal to Z we find
Jp X =—Jz2 00X = —JgdgnX = JgnJz X,

from which by (1.5) it follows that

J2x,0, X)X = Ju,x0,00,x1X = Jzn X = Jz 07 X,

completing the proof. m
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The following result was stated and proved in [CDKR 1] (see also [CDKR 2]). Here
we recall the easier proof given in [C2] which is based through Lemma 2.4 on (2.4) and
(1.10).

2.3. THEOREM. If a generalized Heisenberg Lie algebra n appears in the Bruhat de-
composition of a simple real rank one Lie algebra g, then n satisfies the J*-condition (see
Definition 1.2).

2.4. LEMMA. Suppose a,2c € Y. Take a unit vector X in g, and two orthogonal
vectors Zy, Za in gon- Then

(2.6) 1o X = Ji 5 x, nx1X = Jix, 0 0. x1 X
Proof. We prove the following formula

1 2
(2.7) J1Jo X = §J[J1X,J2X]X + §J[X,J1J2X]X7

from which one sees that the J?-condition holds in go @ g2o. Then the assertion follows
by Lemma 2.2. From (2.4) and (1.4) one has

(2.8) [X,0,X], J.X] = %JngX + %JngX + %J[J2X7J1X]X = %J[J2X7J1X]X.
On the other hand, by Jacobi and (1.5) one obtains
(X, 0, X], JoX] = [[JaX, 0, X], X] + [[X, J2X], 0], X]
= ([ X, 01 X], X]+ Jo 1 X.

Using (1.10) replace in the last formula [J2 X, 8J, X] with [Zs,0Z1] — [X,0J2J1 X], ob-
taining by (1.9)

(2.9) [[X, 9J1X] R JQX] = [[ZQ, (9Z1] — [X, 9J2J1X] ,X] + Jo 1 X
=2Jo 1 X —[[X,0J2:X], X].
The last term can be computed with (2.4) that provides
1
[[X, 9J2.]1X] ,X] = §J2J1X + J[X,J2J1X]X7
which plugged in (2.9) yields
3
[[X, 9J1X] 5 JQX] = §J2J1X - J[X”]lex]X.
Now, (2.7) follows by comparison of this relation and (2.8). m
2.5. COROLLARY. day,, belongs to {0,1,3,7}.

Proof. The statement follows from the classification of generalized Heisenberg algebras
satisfying the J2-condition (Theorem 1.1 in [CDKR 1]), or alternatively from Proposi-
tion A.1.1 in Appendix A.1. =

2.6. COROLLARY. my,, is the algebra of all linear endomorphisms which commute with
the action of C (0,d) on gu.

Proof. The assertion follows from Proposition 1.3 and Formula (2.6). m
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2.7. PROPOSITION. Suppose dao = 3. Let {Z1, Z2, Z3} be an orthonormal basis of g2q
and set € = Jz, Jz,J7,. Then either

e=1, or e=-I,

i.e. the irreducible C(0,3)-modules in which go splits are isotypic.

Proof. Suppose that X, Y € g, satisfy

eX =X and €Y =-Y.
Assume to fix ideas X # 0. Since te = € and eJz = Jze for all Z in 3, it follows that
(X,)Y)=(JzX,Y)=0 forall Z € g,
which implies by Jacobi that ad [X, Y] is trivial on ga,, and thus
Jzoad[X,0Y] =ad[X,0Y]oJ; forall Z € go,.

Hence,
eoad [X,0Y] =ad[X,0Y]oe.
Therefore,
1 1
X, 0Y],X]=-¢Y = =Y
[IX,07], X] = 5ev =
is equal to

1
[X,0Y],eX] =[[X,0Y],X] = §Y’
which yields Y = 0 and provides the statement. m
2.8. PROPOSITION. If do, = 7, then d, = 8.

Proof. When d, = 8, m = ma, =~ 50(7) since by Corollary 2.6 my,, is contained in
the commutator of C(7) ~ R(8) ® R(8). If do = 8k, with k > 1, there are two non-trivial
vectors X,Y € g, satisfying

(J2X,Y) = (JzJpX,Y)=0 forall Z,Z' € ga.

This gives
[JzX,Y] =0 forall Z € g,

which implies by (1.7) and Jacobi
(2.10) [[6X,Y],Z] =0 forall Z € gaq,-

This yields a contradiction since [X,0Y] lies in my, and the action of ma, on go, is
faithful by (2.1). =

For future reference in the next theorem we summarize some of the results of this
section.

2.9. THEOREM. The possible values of (dza,do) are: (0,n), (1,2n), (3,4n), and (7,8),
with n € N.

We recall that by (1.13) m = ma, © my,,.
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2.10. THEOREM. With the notations of Theorem 2.9,

ma, = {0}, my,, ~ s0(n) for daoq =0,

Mae =~ 650(2) ~ u(l), my, ~su(n)  for dyo = 1,
Mo, ~ 50(3) ~ sp(1), my,, ~ sp(n) for dog = 3,
Maq =~ 50(7), my, = {0} fordoo =17

Proof. The assertion is immediate for da, = 0, and it is a corollary of the proof of
Proposition 2.8 for da, = 7. For the other cases, by Corollary 2.6 the action of ms,,
commutes with the action of C (0, d2,). When dao = d € {1, 3}, ma, is the algebra of all
skew-symmetric linear endomorphisms of g, commuting with the complex (for d = 1), or
quaternionic (for d = 3) structure {.J1, ..., JJq}. The assertion follows from the definitions
of su(n) and sp (n). m

3. Clifford structures in real simple Lie algebras. In this section we assume
that go, is non-trivial. The construction presented here is inspired by Proposition 1.4,
but it is useful in contexts wider than real rank one simple Lie algebras.

Fix a positive integer d. Take a module to of the Clifford algebra C(d + 2,0) and let
{71,--,7Vd+2} be a set of linear endomorphisms of w satisfying

Ya Vo + Vo Va = 20451 fora,b=1,....d+ 2,

where I is the identity on w. There is a euclidean inner product (-, -) on to with respect to
which all the ~,’s are orthogonal. With respect to this inner product each -, is symmetric.
Let

0 =Yqt+2, 0 =7at+1, Qi=~ and P, =0 fori=1,...,d.

Then ¢ and 6 are anticommuting involutive endomorphisms of tv, i.e.
0?=6>=1 and of+60=0.

Moreover,

PPj + PjP; = =26;; and Q;Q; + Q;Q; = 20y,
that is, {P1, ..., Py} provides a representation of the Clifford algebra C(0, d) and {Q1, ...,
Qa} a representation of the Clifford algebra C(d,0). They satisfy the following commu-
tation relations

PQi+QiP;=0 and PQ; —Q;FP;=0 fori,j=1,...,dandi# j,
and
UQi = _QiU; 9@1 = —Qig, PiO' = —O’Pi, Plg — QPZ for i = ]., ceey d.

Take a d-dimensional real linear space u endowed with the canonical inner product (-, -).
Consider the cartesian product u x {+,—}. Set

3+=u><{+}, 3_:u><{—},
and write
ux {+, -}t =34 D5,
Zt=(Z,+) and Z = (Z,—) for Zeu.
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Fix an orthonormal basis {Z1,...,Z4} of u and define a linear map 6; of 34 & 3— onto
itself by
0,2 = Z;

(2

Set also for Z =31 | GZ} €34, ¢ €R,

and 0,7, :Zj'.

Qz = ZQQi and Pz = ZCiPi,

i=1 i=1
and extend the definition of @)z and Pz to 34 @ 3 by
(3.1) Py,z =Pz and Qy,z=—Qz.
Since 02 = I and ‘o = 0, o has two eigenvalues 1. Let
w=0b, o
be the decomposition of tv into the eigenspaces of o, where
oy ={Xew:cX=X} and v_={Xew:0X=—-X}=0v,.

Let g, be the subalgebra of the Lie algebra of all linear endorphisms of w (consisting of
the linear space End (w) equipped with the ordinary commutator [-,-]) generated by

{Pz+Qz,Pz—Qz : Zeu}.
We shall prove that g, is isomorphic to so (d + 1,1).
3.1. LEMMA. For Z,7' € 3*:

(1) ker (Pz 4+ Qz) =vy and ker(Pz—Qz)=1v_.

(2) (Pz+Qz) (Pz +Qz)=(Pz—Qz) (P2 —Qz)=0.

(3) [Pz +Qz, Pz —Qz]=2(QzQz — QzQz) -2 (QzPz + Qz Pz) .0.
(4) QzQz (Pz +Qz)=Pz+Qz and QzQz (Pz —Qz) =Pz —Qz.

Proof. (1) is obvious. By linearity it is enough to prove the remaining identities for
Z =7} and Z' = Z]. To prove the first in (2) observe that

(P + Qi) (Pi+ Q) =QiQ; (I —0o) (I +0) =0,

since o anti-commutes with Q; and o2 = I. These properties of o also yield

(Pi+Qi) (P = Q) = QiQ; (I —0)" =2Qi (@5 = P))
and

(P = Qi) (P + Q) = QiQ; (I +0)° =2Q: (Q; + ),
which give (3). The first identity in (4) follows from

QiQ; (Q;+Pj) =Q; (I +0)=Qi+ P,

the second one can be proved similarly. m

3.2. THEOREM. g, is isomorphic to so (1 +d,1). The restriction to g, of the linear
map O defined by

o (Qzl - Qz,Pz,,, - "PZq+p) =Qo,z, - Qo,2,P0,2,,, - Po,z,.,
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is a Cartan involution. The map gy X w — 1o defined by (S, X) — S X yields an action
of gu on 1.

Proof. By (3.1)
O(Pz+Qz)=Pz—-Qz and O(Pz—-Qz)=Pz+Qz.

In particular, 6, is involutive.
We show that if (Pz +Qz) X = 0 for all X € w, then Z = 0, and similarly that if
(Pz —Qz)X =0 for all X € 1o, then Z = 0. We prove the first assertion. For any X in

O,
0=(Pz+Qz)X=Qz (c+1) X =20QzX,
which implies
0=Q%X = |Z|°X,

and hence Z = 0.
Now by (3) in Lemma 3.1,

[P — Qi, P + Qi] = 4Q P; = 4o,
and for ¢ # j
[Pi — Qi, Pj + Q4] = [P + Qi, P — Q)] = 4Q;Q;.
It follows that © is an automorphism of the Lie algebra g,,. From the definition of ©, being

o = Q;P;, it follows that ©c = —o. Perform the diagonalization of ¢. Using Lemma 3.1
one obtains from the above relations

Gu = Gu—1 D Guo D Gu1,

where
1
Gul = span{§ (Pz+Qz):Z¢€ 3+},

Ju—1 = span{% (Pz —Qz):Z € 3+} = Ogy1,
and
(3.2) guwo=Rodm, =Ro®span{QzQz : Z,Z' € 3, and (Z,Z') = 0}.
This proves the first part of the statement. The second half is clear. m

We identify the linear span of the sets {Pz + Qz:Z €u} and {Pz —Qz:Z € u}
respectively with 34 and 3_, writing for Z, 7’ € 3, and W € 1o

(33) (dZ)W = (Z,W] = (Pz+ Q) W, (ad6,2)W = (6,2, W] = (P7 — Q2) W,
and  ad([Z,6;2']) = [Pz + Q2,0 (Pz + Qz)] = [Pz + Qz, Pz — Qz].
For Z € 34, we define, according to Proposition 1.4,
(3.4) Ty = % Qs — Py) 6.
3.3. LEMMA. Let Z € 34 and Z' € 3. Then,
(1) Jzlo, =Qz0, Jzloo =0 and Jyz|e. = —-Qz0;, Joz'|o, =0.
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Moreover,
(2) cJz=Jz0 and Jz04+0Jz;=0.
The operators
Iy = Jzlo, Ze€jy, and Jy =Jozle., Z' €j-,
satisfy, for Z1,7Z4 € 34 and Z1,Z% € 3,
Ip gyt 0,0z, = =2021,2Z2) Lo, and Ty Jy +J 0, = =2(Z1,Z5) I,_.
Hence, J* : 31 — End(vy) and J~ : 3 — End(v_) extend to representations of

the Clifford algebra C (0,d). Finally, Jg and J, are skew-symmetric with respect to the
restrictions of (-,+) to vy and v_, respectively.

Proof. Formulae (1) and (2) follow directly from (3.4) and from

Joz =5 Qo2 — Poyz) 6= —3 (@ + Po) 0= Q0 (1 - 0),
which holds for Z’ € 3_ (recall that by definition Qp,z = —Qz and Py z = Pz). The
rest of the assertion is now an immediate consequence. m
From this lemma the following theorem immediately follows.
3.4. THEOREM. The brackets defined on the linear spaces
ng=vy@34 and n_=v_SPj_,
for Z,,Z' €3, and Z_,Z" €;_, by
2.,2,) = [2,2'] =,
and for X1,Y, €vyp and X_,Y_ €v_, by
(Z4 X4, Vo)) = (J5, X0, Y5) and (2, [X_,Yo]) = (J; X_,Y.)
forall Zy € 34 and Z_ € 3_, provide on ny and n_ a structure of H-type Lie algebra.

We have introduced a bracket on the linear spaces gy, ny, and n_. These spaces by
construction are Lie algebras. Furthermore, we have defined the brackets of a vector lying
in g, with a vector lying in to by (3.3). It remains to define the bracket of a vector in v
with a vector in v_ = fv . This will be done in the next section.

4. Construction of real rank one simple Lie algebras. Assume according to
Theorem 2.3 that n, which is equal to g, for ¥ = {£a} and to g,®gaq for ¥ = {+a, +2a},
satisfies the J?-condition. Let d denote the multiplicity of 2a.. By Corollary 2.5 it follows
that d € {0,1,3,7}, with d = 0 for ¥ = A;.

Let X,Y € vy. We distinguish the cases ¥ = A; and ¥ = B(, and define the bracket
of X and 0Y by (2.3) and (2.4). For ¥ = Ay, let Pxy € End (v) be defined by

1 1 1
(4.1) <I>XyW:§<W,X>Y—§<W,Y)X—§<X,Y>VV.
For ¥ = BC1, let ®xy € End (v;4) be defined by

1 1 1
(4.2) Sxy W =3 (W.X)Y — 2 (WY)X — 2 (X.V)W
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+ %J[Xy]W + %J[X,W]Y + %J[W,Y]X~

To extend ®xy to to we require that
(4.3) Oxy=0Dxy.
Observe that ®x x is proportional to o and that for all orthogonal vectors X,Y in v,
(4.4) Oxyo=0Pxy.
By means of the following result we shall extend ® xy to a derivation of the Lie algebras
nt and n™.

4.1. PROPOSITION. (1) Let Z € gan and X,Y € go. Then,
(4.5) Oxy Jz — Jz Oxy = { %JZY’X] Zz Z/X:%X: S

(2) The linear map Exy defined by
o (B s
is a derivation of the generalized Heisenberg algebra n,. .

(3) Let also X', Y' € go. Then,

(Exy Exyv' —Exyv' Exy) Jz — Jz Exy Ex'y' — Ex'v' Exy)

:J[

J[Jzy,’x,]y,x} [J[Jzy’X]Y',X']

REMARK 1. Here and in the sequel we state results holding for n;, and n_ only for n.

REMARK 2. This proposition is the actual converse of Theorem 2.3. Indeed, as we
shall see, it is the property of Zxy of being a derivation of ny which guarantees that the
Jacobi identity holds. But Zxy, which may be defined for any generalized Heisenberg
algebra ny by (4.2), is a derivation of it only if n, satisfies the J2-property (this is
essentially the content of Theorem 2.3).

4.2. LEMMA. Let A € End(vy) and Z be a unit vector in 3. Then
(4.7) (A, Jz] Jz =—Jz [A, Jz].

Proof. Indeed,
[A,Jz) Jg=A(Jz) —JzAJy=—A—JzAJy
=(Jg) A—JzAJy=—Jz [A Jz]. m

Proof of Proposition 4.1. We start by proving (1). If d = 0 the statement is trivial. It
is not restrictive to assume that X, Y, and Z are normalized. In the course of the proof
{Z1,...,Zy} will always denote an orthonormal set of vectors in goo. If Y = AX the
assertion follows from (3.4) since ®x x is proportional to o. Hence, assume that X and
Y are orthogonal. We first suppose that X and Y lie in distinct modules of C(0, d), that
implies (X,Y) = (JzX,Y) =0 for all Z € ga,. By Proposition 2.7 we assume d < 3. We
have by (4.2)

1 1
(I)XYJ1X = §J1Y and qu)XyX = §J1Y
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Hence,
(4.8) [Pxy, 1] X = (PxyJ1 — J1Pxy) X =0,
which by (4.7) also yields
[Pxy,J1] 1K1 X =0,
proving in particular (4.5) for d = 1. If d > 3, suppose first W = JX. Using Lemma 2.2
to express J1J2X as Jix, 7, 5,x]X and (4.8), one finds

OxyJiJo X = %JngY and JiPxy o X = %JlJQY,
which, as required, provides
[®xy, J1] J2X = 0.
Similarly, one proves that
[®xy, 1] JzY =0 for any Z € ga,.
Moreover, if (X, W) = (JzX, W) =(Y,W) = (JzY,W) =0 for all Z € ga,, the identity

[®xy, J1]W =0 is trivial
Suppose now Y = J; X. We shall show that

(4.9) [®x,x,J1] =0,
and that

(4.9" [Px g, x,J2] = —Js,
where Z3 is uniquely determined by

(4.10) JiJads X = X,

proving (4.5).
We start by discussing the case in which W is orthogonal to RX & J;X. Then

1 1
(I)lex.fzw = §J1J2W and Jz‘l)lexw = §JzJ1W

Therefore,
[Oxsx,Jz]W=J1JzW +(Z,Z1) W,

which implies (4.9) and (4.9") (for W orthogonal to RX & J,X).
We prove (4.9) and (4.9") for W € RX @ J;X. For the first, we have, for W = X,

1 1
@leleX = §J1X and qu)lexX = §J1X,

which imply [®x s, x, J1] X = 0. Then by (4.7) we also obtain [®x j, x,J1] J1X = 0. Now
consider W = Jo X,

1 1 1 1
OxpxJioX = §J1J1J2X + §[X, J3X]J1X + §J[J1J2X7J1X]X = §J2X,
by (4.10) and (1.7), and
1 1 1 1
J1Px g xS X = §J1J1J2X + §J1J2J1X + §J1J[J2X,J1X]X = §J2X7

where we used (1.5) and Ji1Ji7,x,7,x1X = JiJinx,mnxX = J1J3X = JoX. Hence,
[®x.,x,J1] JoX = 0, concluding the proof of (4.9).
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Consider now the relation (4.9’). We have, for W = X,
1 1 1 1
(I)leijX = §J1J2X + §J2J1X + §J[J2X7J1X]X = §J3X,

by (4.10) and (1.7), and

1 1 1 3

JoPx g x X = §J2J1X + §J2J[X,J1X]X + §J2J[X,J1X]X = §J3X7
which yields
[PxJ,x, 2] X = —J3X.

It also follows from (4.7) that

[@xg,x, Jo] o X = —J3JaX = —J, X.
Then consider W = J3 X,

3
PxyxJosX = —Pxjx 1 X = §X,

and
BOxsx TsX = S I IIX + Sl hX + STk s X = 5 X.
These relations yield
[Px,x,J 2] s3X = X = —J3J3X,
which by (4.7) implies
[Pxs,x,J2] WX = —[Px 7 x, 2] oS3 X = —J31 X,
completing the discussion of the case d < 3.
For d = 7, we show that

[Pxg,x,J2] uX = —J3J4 X.

Let Z5 € gao be given by JoJy X = J5X, then, using (1.7),

1 1 1 1
@lexj2J4X = (I)lexj5X = §J1J5X + §J5J1X + §J[J5X7J1X]X = §J6X,

where Zg satisfies J5 X = J1JsX. On the other hand, by Lemma 2.2,
1 1 1
Jo®x g x uX = §J2J1J4X + §J2J4J1X + §J2J[J4X7J1X]X

1 1 1
2J2J4J1 2J1J5 2J6
Thus
[®xgx,J2) uX = J6 X = =1 Js X = Ju 1 Js Ju X = —Jy 1 J2 X
= JuJ3 X = —J3 4 X,
as required. Then (2) follows from (1) by Proposition 1.1.
The proof of (3) is an easy and straightforward computation. By (4.5) it follows that
Exy Exv Jz =Exy (JzExv + Ju,v,x1)
= (JzExy + J,v.x)) Exvr +Exy Jvx)

=JzExy Exry + Ji,v x) Exyr + Exy Jy x),
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from which, since
Jrv.x1 Exy + Exy v x — Juayxn Exy — Exoyr Jr,v,x)
= J[J[JZY’,X’]Y7X] o J[J[JZY,X]Y/vX']’
one obtains the result. m

4.3. COROLLARY. If (X|Y) =0,
Pxy (Qz + Pz) — (Qz £ Pz) ®xv = Qu,v,x] £ Pu,v.x)-

Proof. The assertion follows from Proposition 4.1 by (3.4). =
Let m be the Lie algebra generated in End (tv) by the set
(4.11) {Exy:X,Y€U+, <X,Y>=0}

From Proposition 4.1 (3) it follows that m counsists of skew-symmetric derivations of n,
or n_. In the next section we shall prove that m is actually the linear span of the set
described by (4.11). Define for ¥ = A; and ¥ = BC}

ad[X,0Y] = — ad [0V, X] = Zxv,
by
[X,0Y],V]=—-[V,[X,0Y]] =ExyV forVew and
[X,0Y],V]=—=[V,[X,0Y]] =2xyV = VExy forV e€g,+m.

Abusing notations we shall denote by m also the space spanned by the brackets [ X, 0Y7].
Recalling (3.3) with these notations Corollary 4.3 may be restated as

(4.12) [X,0Y],Z]=[JzY,X] and [[X,0Y],0Z]=0[JzY,X],
the second relation follows from the first by (4.3). If (X,Y) = 0, since Exy = —Eyx,
[X,0Y] =[6X,Y].

We therefore extend © to g, + m setting
O[X,0Y] =[X,6Y].
Set
=10 (gu+m) =S g dm,
and extend @ to a linear map, also denoted #, on g putting
Olg,+m = ©.

Now g is endowed with a skew-symmetric product [-,-]. We shall see shortly that g with
the bracket introduced in this and the previous section is a simple Lie algebra, but first
we say something more about m.

4.4. PROPOSITION. Let Zy, Zs be orthogonal unit vectors in 31. Then for all unit X
m oy,
(4.13) ad[Z1,02] = Ex g 0x + E5x0x = —ExXJX T 25X 7X,

where Zs in 34 satisfies JyJoJJ3sX = X. In particular, my (defined by (3.2)) is a subalgebra
of m.
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Proof. The proof is an easy and straightforward calculation which makes use of
Lemma 2.2. m

By (4.13) Formula (1.10) holds in g.

Let m* be the orthogonal complement of m, with respect to the trace (of a linear
endomorphism of tv) in m. It is easy to see that m= is the algebra of the skew-symmetric
linear endomorphisms of tv which commute with the action of C (d + 2,0). In general, m*

is not trivial. In particular, this is the case when w is a reducible module of C (d 4 2,0).
Indeed, let

(4.14) =1, D... D to,,

where 1,19, ..., 1w, are irreducible modules of C (d + 2,0). Then for any pair (a,b) of
distinct elements of {1,...,n}, if X, € w, and X} € wy, Zx, x, lies in m* by (4.6) since
[Xa, JzXp] =0 for all Z € 34. Put

(4.15) my =span{=x,x, :a,b€ {1,...,n} and a # b}.

It is easy to see that mg is isomorphic to so (n), the Lie algebra of all skew-symmetric
linear endomorphisms of R™.

4.5. THEOREM. To any pair (d, k) in {(0,n), (1,2n),(3,4n),(7,8) : n € N} there cor-
responds exactly one simple Lie algebra g with dim go,, = d and dim g, = k.

Proof. We prove that g is a Lie algebra showing that the Jacobi identity is satisfied,
i.e. that

(4.16) [Vi, V2], V3] = [[V1, V5], Va] + [V1, [V2, V5] holds for all Vi, V2, V3 in g.

This is implicit in the discussions made in this and the previous section. In fact, g, + m,
n,, and n_ are Lie algebras by Theorem 3.2 and Theorem 3.4. Since to is a representation
space for the Lie algebra g, +m, (4.16) with V3, V5 in g, + m and V3 in to is automatically
true. Since by Proposition 4.1 m is a space of derivations of ny and n_, (4.16) holds for
Vs in m and V1, Vs in vy, or V4, V5 in v_. Finally, (4.16) with V4, V3 in vy (or V1, V3 in
v_) and V5 in v_ (V3 in vy ), is equivalent to

Dy v, Va3 + Pyyy, Vi =0,

for ¥ = A, and to
Dvyv, Vs + Jp i Va + Py Vi =0,

for ¥ = BC,. Both these identities follow from (4.1) and (4.2) with straightforward
computations.

The construction we have outlined uniquely determines [-, -]. Therefore, any given sim-
ple Lie algebra of real rank one coincides with one of our algebras (g, [, -]) by Theorem 2.3,
Proposition 1.4, and Proposition 2.1.

To prove that g is simple, let h be a non-trivial ideal in g. If o liesin h, g C [0, 9] C b
proving the assertion. If there is a non-trivial V' in h which lies in one of the subspaces
3+, 3—, b4, or v_, then [0V, V] is proportional to o which thus belongs to h, and h C g
by the previous observation. Otherwise, take a non-trivial U in . If ¥ = Ay, for any
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non-zero X in vy there is an integer k such that
V=(dX)"U#0 and (adX)"™ U =0.

Thus, V lies in vy and b implying the assertion. Similarly, if ¥ = BC1, for any non-zero
Z in 34 there is an integer k such that

V=0d2) U#0 and (ad2)"™ U =0.

Therefore, V belongs to ny. = vy @ 34. When V lies in 34, or in v, the assertion follows.
Otherwise, V = X 4+ Z' with X € vy and Z’ € 34 both non-trivial. We have

h>[02,2],V]=Z|* (27" + X).
Hence, || Z]|?Z" = [[02,Z],V] — ||Z||*V € b\ {0}, and the proof continues as above. =

In the decomposition of g in spaces of restricted roots with respect to a = Ro, 34 and
3— correspond to the root spaces go, and g_s,., respectively, and vy and v_ to g, and
g—qo- Moreover, go = Ro @ m.

5. Derivations of n, . In this section we give some further details on the construction
of simple Lie algebras of real rank one with the task of proving that m is the algebra of
skew-symmetric derivations of ny and n_. We shall obtain this result discussing the way
in which m splits into the direct sum of m, and m*.

Recall that d is the multiplicity of go, and that a real Clifford algebra has, up to
equivalences, one irreducible module, or two irreducible modules of the same dimension.
We shall indicate the real linear space supporting the irreducible modules of C (d + 2,0)
with w’.

5.1. d = 0. Since C(2,0) =~ R(2), the algebra of 2 x 2 real matrices, v’ = R? and
o = R?". Being d = 0, 3, and j_ are trivial. Therefore, g, reduces to Ro and m to
m*. Furthermore, since the algebra of linear endomorphisms of w’ that commute with
the action of C (2,0) is R (=~ C (0,0)), m* = m coincides with mg which, as already noted
after (4.15), is isomorphic to so(n). Hence,

g =13 Rodmg.

To handle the case d > 0 we keep in mind the following formula holding for X € v
and Z € 3T
(5.1) JFX =JzX =(Pz+Qz) 6X = [Z,0X]

Jo 0X = Jpz0X = (P —Qz) 0X =0 (Pz+Qz) X =0[Z,0X].

We first consider the case w = w’, in which for any non-zero X in vy
(5.2) o ==RX@{JzX:Z€j3:}.

5.2. d = 1. Since C(3,0) =~ C(2), the algebra of 2 x 2 complex matrices, v’ = R*. Fix

a unit vector Z in 34, then 34 = RZ and 3 = ROZ. Since dim vy = 2, picking a unit
vector X in v, one obtains

vy =span{X,JzX} and v_ =span{6X,0JzX}.
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The algebra of linear endomorphisms of w’ commuting with the action of C(3,0) is
C ~ C(0,1). A generator of this algebra is given by A = —7;72y3. Hence, m* = R\.
Since X € v from Lemma 3.3 (1) it follows that

AX = Qr00X =Qz0X = JyX.
The relations
(5.3) ad [X, 077X = —ad (075X, X] = gJZ _ g)\
follow easily from (4.5) and (4.2).

5.3. d = 3. Since C(5,0) ~ H(2) @ H(2), where H(2) is the algebra of 2 x 2 matrices
with quaternionic entries, ro’ = R®. Fix an orthonormal basis {Z1, Z2, Z3} of 3. Then
{021,075,0Z3} is an orthonormal basis of 3_. Since Jq J2J3 is symmetric and (J; J2J2)2 =
I, J1J2J3 has eigenvalues 1. By formulee (2) in Lemma 3.3 J; JoJ3 commutes with o and
anti-commutes with 6. Therefore, without loss of generality we can assume that J;J2J3
restricted to vy is the identity and restricted to v_ minus the identity. Pick a unit vector
X in vy. Since dimv; = 4 one obtains

vy =span{X, 1 X, X, J3X} and v_ =span{0X,0J1X,0J.X,0J3X}.

The algebra m* of skew-symmetric linear endomorphisms of tw’ commuting with C (5,0)
is H=~C(0,2). Let {A1, A2} C End (1’) be defined by

(5.4) NO=60X), \X=JX, and
XNi kX =J, ;X fori=1,2and k=1,2,3.
Then {\;, A2} is a set of generators of m* which satisfy
A+ Ag =—0ap] and Agvi=7Aa a,b=1,2andi=1,...,5.

Set also A3 = A1 Ao, then
(5.5) AsX = MheX =M LX =L X = 03X,
and m* = span {\1, A2, \3} =~ C(0,2) ~ H. From (4.2) (see Appendix A.2) one obtains
(5.6) ad [X,0J;X] = —ad[0J; X, X]

1 1 _

= 5(/\1 ~3 Z €ijk ad[Zj,GZk]) 1=1,2,3,
k=1

where €;;;, is defined in Appendix A.2, and, using also (4.13),
(5.6") ad [J; X, 00, X] = —ad[0J; X, Jp X]

1 3
= = ad[Zz,HZ]—i— €ikl A i,k=1,2,3.
2( k ; kl l)

Using the second of the (A.2.2)’s to find A; from (5.6’) and summing the result to (5.6)
one obtains

N | =

(5.7) A = [X,00:X] + ek [1;X,0J:X].

3
Jk=1
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5.4. d = 7. Since C(9,0) ~ R(16) ® R(16), ro’ = R!®. The algebra m* of skew-
symmetric linear endomorphisms of to’ commuting with the action of C(9,0) is trivial.
Therefore m = m,,, according to Theorem 2.10. Hence,

g= ' @ Gu-

Fix a unit vector X in vy and a unit vector Z; in 3. We shall write [X,0.J; X] as a
linear combination of elements of m,. There is an orthonormal basis {Z1,...,Z7} of 34+
such that
(5.8) J1JoJ3 X = 1 Ju s X = JiJe 7 X = X,

which implies
Jy.oo o J X =-X.

Let
M, =[X,01X]+ [JX,0]3X].

From (5.8) one obtains
M, = —[X,0J2J3X] + [J2X,0J3X],
and from (4.13)
(5.9) My = [Z2,025) + 2[X, 01 X] = — [Z2,025] + 2 [Jo X, 0J3X] .
By (5.8) it follows from (4.12) and Proposition 4.1, or alternatively using the Jacobi
identity (which holds in g by Theorem 4.5), that
[My,Z;] =0 fori=1,2,3,
and that
[My,Z4) = =275, [Miy,Z5) =272y, [My,Ze)=—2Z7, [My,Z7]=27s.

Therefore,

My = —[Z4,075] — [Zs,07Z7] ,
from which we deduce by (5.9)

1 1
[X,0:X] = —3 [Z2,0Z5] — 3 [Z4,0Z5) — = [Z6,027],

1
2
and also

1 1 1
[JQX, 9J3X] = 5 [ZQ, 0Z3] - 5 [Z47 925] - 5 [ZG, 0Z7] .

We now discuss the algebras in which to is a reducible module of C(d + 2,0) and d is
not zero. According to Theorem 2.10 we assume d = 1, 3. The following result describes
the action of m on tv.

5.1. PROPOSITION. Consider the decomposition (4.14) of w and let X, be a unit vector
inw,. If a #b,

1 1
(5.10) ([Xa,0Xs], JzXc) = Jz [ Xa,0Xs], Xc] = 3 Oacdz Xp — 3 Obez X4
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Proof. The assertion follows from Proposition 4.1 since [X,,JJzX;,] = 0 for all Z
in g2 W
In the next theorem we prove that in real rank one simple Lie algebras the subalgebra

m coincides with the space of skew-symmetric derivations of the generalized Heisenberg
algebra ny, a result which is far from being true in higher rank (see [C1] and [CC]).

5.2. THEOREM. m coincides with D (ny) = D4, the algebra of all skew-symmetric
derivations of ng.

Proof. By Proposition 4.1 Exy is a derivation of n for any pair (X,Y") of orthogonal
vectors in vy . Clearly, if X and Y are orthogonal Zxy is skew-symmetric and thus lies
inDy.

For the converse, observe that D, , the algebra of skew-symmetric derivations which
are non-trivial on 34, is equal to m, by Proposition 1.1 (2). Let D € D,. By Proposi-
tion 1.1 there is a derivation D’ in D;, such that D — D' € Dy. Pick a unit vector X in
v, then

DX =J;X+Y,

for some Z € 3, and some Y € v, orthogonal to X and JzX for all Z € 3, by (5.2).
Clearly, [X,0Y] belongs to the subalgebra my defined by (4.15). Moreover,

(D' —2ad[X,0Y]) X = J,X and (D' —2ad[X,0V])JzX = JzJ; X
for Z € 4. Hence, denoting by D" the restriction of D’ —2ad [X, 0Y] to RX & J; X, D"
is a linear map of RX & J; X into itself commuting with the action of C (0, d). Therefore,

D" is a linear combination of the \;’s. It follows from (5.3), (5.6), and (5.7) that D" lies
in m (actually, D” € m*), proving the statement. m

From this theorem and Proposition 4.1 (3) one immediately obtains the following
result.

5.3. COROLLARY.
m =span{Exy : X,Y € o4, (X,Y) =0}.

A.1. Appendix. In this appendix we are concerned with a generalized Heisenberg
algebra n = v @ 3 with inner product (-, -), centre 3 of dimension d, and v = 3*.

A.1.1. PROPOSITION. If n satisfies the J?-condition, then d belongs to {0,1,3,7}.

Proof. Observe that by the .J2-condition if X is a vector in v and Z;, Z are orthogonal
unit vectors in 3 such that

(JzX,J1JoX)=0 forall Zin 3,

then X = 0. We prove the proposition showing by the following two lemmas that this
property (which is trivial for d = 0, 1) does not hold if d is not in {0,1,3,7}. =

A.1.2. LEMMA. Let d € {2,4,5,11} and let {Z1,...,Z4} be an orthonormal basis of
3. Then there is a unit vector X € v satisfying

(A.1.1) (12X, JzX) =0  foral Z €3.
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Proof. For d =2, if Z = aZy + bZs, we have
(Z,[X, 12 X)) = (JzX, 1. X) =a (X, ,X)—b(X,J1 X)=0.

For d =4, let
€ = J1J2J3J4.

Then € is symmetric and €2 = I. Therefore, there is a unit X € v such that eX = +X.
Assume to fix ideas that eX = X. Since e anticommutes with Jz for any Z # 0 in 3, we
have

eJ; X =—J,X and eJ; 1. X = J;Jp, X for 7, ke {]., 2,3, 4},

from which it follows
(J; Jy X, 1 X) =0,

yielding (A.1.1).
For d =5, let
(;5 = J1J2J3J4 and n= J2J4J5.

Then ¢ and 7 are symmetric, commute, and ¢?> = 12> = I. Hence, there is a unit vector
X in v such that X = nX = X. As in the previous case it follows that

<J1J2X, J1X> =0 forie {1, R ,4}.
Moreover, since nJ1 Jo X = —J1J2 X and nJs X = J5 X, we also have
(12X, J5X) = 0.

For d =11, let
n = .]1.]3J5J7 and v = J2J4J6J8.

Note that p and v are symmetric, commute, and p? = v? = I. Hence, there is a unit
vector X in v satisfying
uX =vX =X.

Call L, M, and N the linear spans of {Zy, Z10, Z11}, {Z1,Zs, Z5, Z7}, and {Za, Z4, Zs,
Zg}, respectively. We have

(A.1.2) pJr1JoX = —J1Jo X and vJiJoX = —J1 o X.
Therefore, since Z € L yields
pJzX =JzuX = Jz X,

one obtains by (A4.1.2)
(JzX,J1JoX)=0 forall Zej.

Similarly, since Z € M implies
VJzX = le/X = JzX,

it follows from (A.1.2) that Jz X is orthogonal to J; JJo X . Finally, the same argument with
w in place of v shows that JzX is orthogonal to J;J2X for Z in N yielding (A.1.1). m

A.1.3. LEMMA. Letd=m+4, m > 2. If
(J1J2X, J; X)=0 forallie{1,...,m},
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then
(J1J2X, ;. X)y=0 forallie{l,...,m+4}.

Proof. Set
X = Jm+1Jm+2Jm+3Jm+4~
It is clear that x is symmetric and that x? = I. As before there is a unit vector X € v
satisfying X = X. Since
Jix=xJ; forie{l,...,m},
it follows that
XJ1J2X = J1J2X,
from which, as
Jix=—-xJi forie{m+1,...,m+4},

one obtains
<J1J2X,J¢X> =0 forie {1,...,m—|—4}. n

A.2. Appendix. We compute the brackets in ny for d = 3. Let {Z1, Z3, Z3} be an
orthonormal basis of 3 and X € v a unit vector satisfying

(A.2.1) J1JoJs X = X.
To get compact formulee, it is useful to introduce the tensor €;;, which is by definition
invariant under circular permutations of the indexes and satisfies €103 = —e213 = 1,
€i; =0, 4,7 € {1,2,3}. The symbol ¢;;;, satisfies the identities
3 3
(A22) Z €ijm Emkl = 6ik éjl — 5il 6jk~ and Z €ilm €lmj = 25”
m=1 I,m=1

Now, using the first of the (A.2.2)’s, it is easy to see that

3 3
1
(AQS) JzX = —5 E €imn .]mJnX and JfLJkX = —(SikX — E €ikm JmX,
m=1 m=1

from which it follows
(A.2.4) Jidk i X = 651 Jp X — O 1 X — 01 J; X + €551 X.

From (A.2.3) one obtains
3
(A.2.5) (X, i X]==> e Zi  Lke{1,2,3}.
i=1
Moreover, since

(Z1, [ i X, X)) = (L Ji X, [y X) = = (Jp 1 Ji X, X) = —€piis

it follows that
3
(A.2.6) [JiX, kX == em 2  1ke{1,23},
=1
which, according to Lemma 2.2, is equal to [X, J;J, X].
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