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1. Introduction. These are introductory lectures on canonical representations. The

lectures aim to be an advertisement for a new kind of representations. Harmonic anal-

ysis is mainly concerned with L2 Fourier analysis, so with the decomposition of regular

representations. Canonical representations are different, and are to be regarded as quan-

tizations of regular representations. They were introduced by Berezin in or about 1975

([2], [3], [4], [5]), as well as by Gelfand, Graev and Vershik, from a different point of view,

([50], [51]). Their study is now a hot topic, mainly because of the relation with the de-

composition of the tensor product of a holomorphic and anti-holomorphic discrete series

representation. We restrict because of the introductory nature to the group SU(1, 1). At

the end of the lectures we give some literature (included in the references) for further

reading.

2. Unit disc and upper half plane. Let G = SU(1, 1) be the group of complex

2× 2-matrices of the form (
α β

β α

)

satisfying |α|2 − |β|2 = 1. It acts transitively on the unit disc D = {ζ ∈ C : |ζ| < 1} by

g · ζ =
αζ + β

βζ + α
.

The stabilizer of ζ = 0 is the subgroup

K =

{(
eiθ 0

0 e−iθ

)
: θ ∈ R

}
,

2000 Mathematics Subject Classification: Primary 22E30.
Received 19 February 2001; revised 6 August 2001.
The paper is in final form and no version of it will be published elsewhere.

[253]



254 G. VAN DIJK

so D ≃ G/K. We also consider the group Go = SL(2,R), acting on the Poincaré upper

half plane C+ = {z = x+ iy : y > 0} by

g · z =
az + b

cz + d

if g =
(

a b
c d

)
. The stabilizer of z = i is given by

Ko =

{(
cos θ sin θ

−sin θ cos θ

)
: θ ∈ R

}
,

and hence C+ ≃ Go/Ko.

The Cayley transform c : z →
z − i

z + i
transforms C+ bijectively onto D. Let C be the

2× 2 matrix (
1 −i

1 i

)
.

Then G = C Go C
−1, and also, as transformation groups, G = cG0 c

−1. We call D a

bounded realization of G/K and C+ a tube realization of G/K.

3. Some subgroups of G and Go. Set

Ao =

{
at =

(
et 0

0 e−t

)
: t ∈ R

}
, No =

{
nξ =

(
1 ξ

0 1

)
: ξ ∈ R

}
.

These are subgroups of Go and Go = KoAoNo = AoNoKo (Iwasawa decomposition). The

corresponding subgroups of G are:

A =

{(
cosh t sinh t

sinh t cosh t

)
: t ∈ R

}
and N =

{(
1 + iξ

2 − iξ
2

iξ
2 1− iξ

2

)
: ξ ∈ R

}
.

4. The invariant measures and the Laplace-Beltrami operators on D and

C+. D ≃ G/K and C+ ∼ Go/Ko carry invariant measures. Let us start with C+. Taking

dg = dtdξdko as Haar measure onGo (g = atnξk), dko being the normalized Haar measure

on Ko, we get for the Go-invariant measure dµ on C
+:

dµ(z) =
1

2

dxdy

y2

if z = x+ iy. Similarly on D:

dν(ζ) = 2 (1− |ζ|2)−2 dudv

where ζ = u+ iv, is the corresponding G-invariant measure.

The Laplace-Beltrami operator on C+ is given by y2( ∂2

∂x2 + ∂2

∂y2 ), and accordingly on

D by the formula (1− |ζ|2)2 ∂2

∂ζ∂ζ
= 4v2 ( ∂2

∂u2 + ∂2

∂v2 ).

5. Berezin kernel, canonical representation. Set for λ ∈ R, g ∈ G,

ψλ(g) = (1 − |ζ|2)λ

if ζ = g · 0, ζ ∈ D.
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Clearly ψλ is a bi-K-invariant continuous function on G. An easy computation shows:

ψλ(g
−1
1 g2) =

{
(1− |ζ|2)(1− |η|2)

(1− ζη)(1− ηζ)

}λ

if ζ = g1 · 0, η = g2 · 0. Let us denote this expression by Bλ(η, ζ). Bλ is called a Berezin

kernel on D. Clearly Bλ is G-invariant by construction: Bλ(g · η, g · ζ) = Bλ(η, ζ) for all

g ∈ G.

A kernel K(η, ζ) on D ×D is said to be positive-definite if

N∑

i=1

K(ηi, ηj)λiλj ≥ 0

for all finite sets of elements η1, . . . , ηN in D and complex numbers λ1, . . . , λN . If K is

continuous, this property is well-known (and easily shown by approximating with Dirac

measures) to be equivalent to
∫

D

∫

D

K(η, ζ) f(ζ) f(η)dν(ζ)dν(η) ≥ 0

for all functions f ∈ C∞
c (D), the space of C∞-functions on D with compact support.

Since products and (uniform) limits of positive-definite kernels are again positive-

definite, we easily get ,by expanding (1− ζη)−λ into a power series:

(1− ζη)−λ =

∞∑

m=0

(
−λ

m

)
ζm ηm (−1)m

that Bλ is a positive-definite kernel for λ ≥ 0. Or, otherwise said, ψλ is a positive-definite

function for λ ≥ 0: ∫

G

∫

G

ψλ(g
−1
2 g1) f(g1) f(g2)dg1dg2 ≥ 0

for all f ∈ C∞
c (G/K), the space of C∞

c -functions on G, which are right-invariant with

respect to the subgroup K.

Let τλ denote the unitary representation, naturally associated with ψλ or Bλ. Its

definition is straightforward. The Hilbert space is the completion of the pre-Hilbert space

of functions of the form f ∗ ψλ with f ∈ C∞
c (G/K) and inner product

〈f1 ∗ ψλ, f2 ∗ ψλ〉 =

∫

G

∫

G

ψλ(g
−1
2 g1) f1(g1)f(g2)dg1dg2

This is a well-defined expression, which produces a genuine inner product. The right-hand

side can also be written as ∫

G

ψλ(g) (f̃2 ∗ f1)(g) dg

where f̃2(x) = f2(x−1), x ∈ G. The G-action is simply left translation.

We call the τλ (λ ≥ 0) canonical representations after Gelfand, Graev and Vershik

(1975), cf. [50], [51]. We shall study these representations; in particular their behaviour

for λ→ ∞ and their decomposition into irreducible representations.
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6. The spherical Fourier transform of ψλ. For s ∈ C let

ϕs(g) =

∫

K

e(−s+1)t(kg)dk (g ∈ G)

where t(g) is given by the Iwasawa decomposition g = at(g)nk. Then ϕs is a zonal spherical

function with the parametrization of Harish-Chandra.

We also need Harish-Chandra’s c-function:

c(s) = 21−s Γ(s)

Γ( s+1
2 )2

.

Let ψλ be as in Section 5. It easily follows from the explicit form of the invariant measure

on D that ψλ ∈ L1(G) ∩ L2(G) for λ > 1 (even for Reλ > 1, though ψλ was a priori

defined for real λ only).

To decompose the canonical representation τλ into irreducible unitary representations

for λ > 1, it suffices to determine the inverse spherical Fourier transform of ψλ:

ψλ(g) =
1

π2

∫ ∞

0

aλ(iµ)ϕiµ(g)
dµ

|c(iµ)|2

in L2-sense, where aλ(iµ) is the spherical Fourier transform of ψλ:

aλ(iµ) =

∫

G

ψλ(g)ϕ−iµ(g) dg.

It will turn out that aλ(iµ) is also of importance for 0 < λ ≤ 1.

7. Computation of aλ(iµ). Notice that

aλ(iµ) =

∫

G

ψλ(g) e
(+iµ+1)t(g)dg

and that this is actually an integral over G/K. This integral is most easily computed in

the tube realization of G/K, namely on C+.

Then

ψλ(z) = (1− |cz|2)λ =

(
4y

x2 + (y + 1)2

)λ

if z = x+ iy, y > 0. Here c is the Cayley transform.

Set ∆(z) = y. Then ∆(nξ · z) = ∆(z) and ∆(at · z) = e2t ∆(z). Therefore

aλ(iµ) =

∫

C+

ψλ(z)∆(z)
1
2
iµ+ 1

2 dµ(z)

= π
Γ(λ+ iµ−1

2 ) Γ(λ+ −iµ−1
2 )

Γ(λ)2
.

For a computation, applying the Cartan decomposition G = KAK, see [10]. This com-

putation relies on formulae in [20].

8. Behaviour as λ→ ∞. The following is well known (see [20] p. 47, (1)):

Γ(z + a)

Γ(z + b)
= za−b

{
1 +

1

2z
(a− b)(a+ b− 1) +O(z−2)

}
as z → ∞.(8.1)
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This leads to:
λ− 1

π
aλ(iµ) ∼ 1 +

−µ2 − 1

4λ
+ · · · (λ→ ∞).

So, up to a right normalization, τλ tends to the usual regular representation of G on

G/K ≃ D. The normalization factor is λ−1
π .

Indeed, we also have, because ϕs = (s2 − 1)ϕs,

λ− 1

π
ψλ = δ +

δ

4λ
+O(

1

λ2
),(8.2)

where is the Laplace-Beltrami operator, and thus obtain for all f1, f2 ∈ C∞
c (G/K)

that
λ− 1

π

∫

G

ψλ(g) (f̃2 ∗ f1)(g)dg

tends to ∫

G

δ(g) (f̃ ∗ f1((g)dg =

∫

G

f1(g)f2(g)dg,

which is the usual L2-inner product of f1 and f2 on G/K.

9. Decomposition of τλ. Set

aλ(s) = π
Γ(λ+ s−1

2 ) Γ(λ+ −s−1
2 )

Γ(λ)2
.

Then we can write for Reλ > 1:

ψλ =
1

2iπ2

∫

C

aλ(s)ϕs
ds

c(s) c(−s)
,(9.1)

where C is the line Re s = 0 in the complex plane, taken from below upwards. The

integrand in (9.1) has, as a function of s, poles depending on λ at s = ±(1−2λ−2k), k =

0, 1, 2, . . .. So (9.1) even holds for Reλ > 1/2.

For Reλ > 1/2 we may shift C to C′ (see figure) and the resulting integral is analytic

in λ for Reλ→ 0. When Reλ→ 0, ±(1− 2λ) pass C.

−(1−2λ)

1−2λ

−1 1

C’

C

When shifting C′ to C again, we meet the poles ±(1− 2λ), but only for 0 < Reλ < 1/2.
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(The case Reλ = 1/2 causes trouble). The residue of
aλ(s)

c(s) c(−s)
at 1− 2λ is equal to

r(λ) =
π

2

Γ(1− λ)2

Γ(1− 2λ)
.

So we get for 0 < Reλ < 1/2:

ψλ =
1

π2

∫ ∞

0

aλ(iµ)ϕiµ
dµ

|c(iµ)|2
+

Γ(1− λ)2

Γ(1− 2λ)
ϕ1−2λ(9.2)

in the sense of distributions.

Let us now consider the case λ = 1/2 (only). Then we would like to take the limit

in (9.1) from the right and in (9.2) from the left. This is allowed and gives no residue.

Of course, the integrand
aλ(s)

c(s) c(−s)
at first sight has a singularity at s = 0; aλ(s) has a

double pole,
1

c(s) c(−s)
a double zero, so actually everything is in order.

The spherical function ϕ1−2λ is positive-definite and corresponds to the complemen-

tary series of G, see next section, for λ ∈ R, 0 < λ < 1/2.

Observe that (9.2) also holds for λ = 0.

A similar calculation as the above gives the analytic continuation beyond λ = 0,

namely for λ < 0. If

−
1

2
− k < Reλ <

1

2
− k, k = 0, 1, 2, . . .

then we get k + 1 extra terms Rj(λ)ϕ1−2λ−2j with

Rj(λ) =
Γ(1− λ)2 · (1− 2λ− 2j)

j! Γ(2− 2λ− j)

(j = 0, . . . , k). In other words: if − 1
2 − k < Reλ < 1

2 − k, then

ψλ =
1

π2

∫ ∞

0

aλ(iµ)ϕiµ
dµ

|c(iµ)|2
+

k∑

j=0

Rj(λ)ϕ1−2λ−2j .(9.3)

Of course unitarity of τλ fails for negative λ. It would be interesting to give a meaning to

the limit for λ integer and λ→ −∞. Observe that the integral in (9.3) disappears for λ a

negative integer. It is plausible that the (normalized) limit gives the Plancherel formula

for SU(2)/K. Might we say that the τλ yield an interpolation between L2(SU(2)/K) and

L2(SU(1, 1)/K)? 1

10. Complementary series representations; a model. Let U denote the unit

circle in C, the boundary of D. G acts on U by fractional linear transformations:

g · ω =
αω + β

βω + α

1This question is very recently settled by Yu. A. Neretin in his preprint: Matrix balls,
radial analysis of Berezin kernels, and hypergeometric determinants, http://xxx.lanl.gov/
math.RT/0012200. A careful analysis of the asymptotic behaviour for λ → −∞ shows that
even the “correspondence principle”, i.e. the analogue of formula (8.2) holds. See a forthcoming
note by van Dijk and Molchanov. We will return to this matter in Section 14.
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if g =
(

α β

β α

)
, ω ∈ U .

For s ∈ C we define a representation πc
s of G acting on C(U):

πc
s(g) f(ω) = |βω + α|−(s+1) f(g−1 · ω)

if g−1 =
(

α β

β α

)
.

We provide C(U) with the sesquilinear form

(f, g)s =

∫

U

∫

U

|1− ωω′|s−1 f(ω) g(ω′) dωdω′ (s > 0)

where dω is 1
2π dθ if ω = eiθ. Then dω is quasi-invariant with respect to the action of G

on U : ∫

U

f(g · ω) dω =

∫

U

f(ω) |βω + α|−2dω.

Thus, ( , )s is G-invariant with respect to πc
s. It turns out that ( , )s is positive-definite

for 0 < s < 1. The corresponding series of (irreducible) unitary representations is called

the complementary series of G.

Remark. With respect to the usual L2-inner product on C(U), we get the spherical

principal series πs. For s ∈ iR, πs is unitary and irreducible.

11. The holomorphic and anti-holomorphic discrete series; canonical repre-

sentations as tensor products. For λ ∈ R consider the Fock space Fλ of holomorphic

functions on D satisfying

‖f‖2λ =

∫

D

|f(ζ)|2 (1 − |ζ|2)λ dν(ζ) <∞.

This space is non-trivial for λ > 1, since Fλ contains the function which is identically 1.

One has

‖1‖2λ =
π

λ− 1
.

Fλ is a closed subspace of L2(D, dνλ), hence a Hilbert space, where dνλ(ζ) = (1 −

|ζ|2)λ dν(ζ). It has a reproducing kernel, namely

Eλ(ζ, η) =
λ− 1

π
(1− ζη)−λ.

It is also a unitary module for the action of the universal covering group G̃ of G; for

integer λ > 1 it is even a G-module: a holomorphic discrete series representation. The

group G acts by

πd
λ(g) f(ζ) = f

(
αζ + β

βζ + α

)
(βζ + α)−λ

if g−1 =
(

α β

β α

)
.

Let us denote by Fλ the space of complex conjugates of elements of Fλ. It consists of

anti-holomorphic functions and gives rise to an obvious unitary action πd
λ of G̃ as well.

So

πd
λ(g) f(ζ) = f

(
αζ + β

βζ + α

)
(βζ + α)−λ
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if g−1 =
(

α β

β α

)
, f ∈ Fλ, λ > 1. For λ ∈ N, λ > 1 we get the anti-holomorphic discrete

series of G.

Consider the Hilbert space tensor product Fλ⊗̂2Fλ with λ > 1. The group G̃ acts

diagonally. It turns out that we actually have a G-action, which for integer λ is given by

go · F (ζ, η) = F (g−1
o · ζ, g−1

o · η) (α + βζ)−λ (α+ βη)−λ

if g−1
o =

(
α β

β α

)
.

Let Aλ denote the linear map, defined on Fλ⊗̂2Fλ by

F (ζ, η) → F (ζ, ζ) (1 − |ζ|2)λ.

Aλ is a bounded linear operator Fλ⊗̂2Fλ → L2(D, dν) where L2(D, dν) is considered

as a G-space in the natural way. Aλ intertwines the G-actions. Let us show that Aλ is

bounded.

Let F (ζ, η) ∈ Fλ⊗̂2Fλ. Then, according to the reproducing property,

F (ζ, η) =

∫

D

Eλ(w, η)F (ζ, w) dνλ(w),

therefore

AλF (ζ) =

∫

D

Eλ(w, ζ)F (ζ, w) dνλ(w) · (1 − |ζ|2)λ.

Hence

|AλF (ζ)|
2 ≤

∫

D

|Eλ(w, ζ)|
2 dνλ(w) ·

∫

D

|F (ζ, w)|2 dνλ(w) · (1− |ζ|2)2λ.

So

‖AλF‖
2 =

∫

D

|AλF (ζ)|
2 dν(ζ) ≤

1

‖1‖2λ
· ‖F‖22.

We now determine A∗
λ.

Let F (ζ, η) be holomorphic in ζ, anti-holomorphic in η, and belonging to Fλ⊗̂2Fλ.

Let h ∈ L2(D, dν). We shall determine an explicit expression for A∗
λh. It is clear that

A∗
λh(ζ, η) is holomorphic in ζ and anti-holomorphic in η, since it belongs to Fλ⊗̂2Fλ.

One has:

(A∗
λh, F ) = (h, AλF )

=

∫

D

∫

D

h(z)Eλ(z, w)F (z, w) (1 − |z|2)λ dνλ(w) dν(z).

So A∗
λ h is the projection of the function

(z, w) → h(z)Eλ(z, w)

onto Fλ⊗̂2Fλ. This function is in L2(D×D, dνλ ⊗ dνλ). The orthogonal projection, call

it E, is given by

EF (z, w) =

∫

D

∫

D

Eλ(w
′, w)Eλ(z, z

′)F (z′, w′) dνλ(z
′) dνλ(w

′).

Hence

A∗
λh(ζ, η) =

∫

D

Eλ(ζ, z
′)Eλ(z

′, η)h(z′) dνλ(z
′).
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Finally,

AλA
∗
λf(ζ) =

∫

D

Eλ(ζ, η)Eλ(η, ζ) f(η) dνλ(η) · (1− |ζ|2)λ.

So AλA
∗
λ is a kernel operator on L2(D, dν) with kernel:

Bλ(ζ, η) = (‖1‖2λ)
−2 Eλ(ζ, η)Eλ(η, ζ)

Eλ(ζ, ζ)Eλ(η, η)

= (‖1‖2λ)
−2

{
(1− |ζ|2) (1− |η|2)

(1− ζη) (1− ζη)

}λ

.

This is again the Berezin kernel up to a positive constant.

Consequently, applying the well-known theory of L. Schwartz on invariant Hilbert

subspaces (cf. [7]), we get τλ ≃ restriction of πd
λ⊗̂2π

d
λ to G.

12. Principal series of SL(2,C); connection with canonical representations.

Let Gc = SL(2,C), a complexification of G = SU(1, 1). Let P−
c be the Borel subgroup

of Gc consisting of the lower triangular matrices

P−
c :

(
a 0

c a−1

)

with c ∈ C, a ∈ C∗ and let P+
c be the group of upper triangular matrices

P−
c :

(
a b

0 a−1

)

with b ∈ C, a ∈ C∗. Gc acts on S = {s ∈ C2 : ‖s‖2 = 1} and on S̃ = S/ ∼, where s ∼ s′

iff s = λs′, |λ| = 1, by

g · s =
g(s)

‖g(s)‖

transitively. Clearly Stab ˜(0, 1) = P−
c . So, S̃ ≃ Gc/P

−
c . Similarly S̃ ≃ Gc/P

+
c . If ds is the

usual normalized surface measure on S, then

d(g · s) = ‖g(s)‖−4ds.

For µ ∈ C, define the character ωµ of P±
c by

ωµ(p) = |a|µ.

Consider π±
µ = IndP±

c ↑Gc
ω∓µ.

π+
µ and π−

µ can both be realized on C∞(S̃): the space of C∞-functions ϕ on S satisfying

ϕ(λs) = ϕ(s) for s ∈ S, λ ∈ C, |λ| = 1.

The formula for π−
µ is:

π−
µ (g)ϕ(s) = ϕ(g−1 · s) ‖g−1(s)‖µ.

Let θ be the Cartan involution of Gc given by θ(g) = (g∗)−1. Then

π+
µ (g)ϕ(s) = ϕ(θ(g−1) · s) ‖θ(g−1(s)‖µ.
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Let ( , ) denote the standard inner product on L2(S):

(ϕ, ψ) =

∫

S

ϕ(s)ψ(s)ds.

Then clearly this form is invariant with respect to the pairs

(π−
µ , π

−
−µ−4) and (π+

µ , π
+
−µ−4).

Therefore, if Reµ = −2, then the representations π±
µ are unitarizable, the inner product

being ( , ).

Irreducibility and intertwining operators. It is known that:

- π±
µ is irreducible if µ 6∈ (−4− 2N0) ∪ (2N0);

- if µ = 2k (k = 0, 1, 2, . . .), then there is one irreducible finite-dimensional subspace

for π±
µ , namely ⊕k

a=0 Ha (Ha: space of harmonic polynomials on C2, homogeneous of

degree a in z and z). The quotient representation is irreducible.

- if µ = −2k − 4, then there is one infinite-dimensional irreducible subspace for π±
µ ,

namely ⊕∞
a=k+1Ha. The quotient representation is irreducible and finite-dimensional.

- π+
µ ∼ π−

−µ−4 (if π+
µ is irreducible), π+

µ ∼ π−
µ .

- π±
µ is unitarizable if and only if

• Reµ = −2: (spherical) principal series

• µ ∈ (−2, 0): complementary series.

Define the operator Aµ on C∞(S̃) by the formula

Aµ ϕ(s) =

∫

S

|(s, t)|−µ−4ϕ(t) dt.

The integral is absolutely convergent for Reµ < −3 and can be analytically extended to

the whole complex plane as a meromorphic function. It is easily checked that Aµ is an

intertwining operator

Aµ π
±
µ (g) = π∓

−µ−4 Aµ.

The operator A−µ−4 ·Aµ intertwines π±
µ with itself, and is therefore a scalar c(µ). It can

be computed using K-types:

c(µ) = −

(
µ

2
+ 1

)2

.

G acts on S (G = SU(1, 1), seen as the group of 2× 2 matrices, with determinant 1,

leaving |z1|
2 − |z2|

2 invariant; set [z, w] = z1w1 − z2w2 (z, w ∈ C
2)).

There are 3 orbits, given by

[s, s] > 0, [s, s] = 0, [s, s] < 0.

All three orbits are invariant under s → λs (|λ| = 1). Call the corresponding orbits on

S̃ : O1, O2, O3. Then

O1 ≃ G/K via g → g · e1

O2 ≃ G/MAN via g → g · (e1 + e2)

O3 ≃ G/K via g → g · e2.
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Here M = {±I}, MAN is a minimal parabolic subgroup of G and ei is the i-th unit

vector in C2.

Let ϕ be a C∞-function on O1. Then

ψ(s) = [s, s]−µ/2 ϕ(s)

again lives on O1 and satisfies

ψ(g · s) = [g · s, g · s]−µ/2 ϕ(g · s)

= π−
µ (g)ϕ(s) [s, s]

−µ/2 (g ∈ G).

So ϕ→ ψ is a linear intertwiner of π−
µ |G with the left regular action of G on C∞

c (G/K) =

C∞
c (O1) = D(O1). Since θ(g) = J g J (g ∈ G), J = diag (1,−1), Aµ becomes

Aµϕ(s) =

∫

S

|[s, t]|−µ−4ϕ(t) dt (s ∈ O1)

and is defined on C∞
c (O1) for all µ, and intertwines π−

µ and π−
−µ−4 restricted to G.

For ϕ1, ϕ2 ∈ C∞
c (O1) and µ ∈ R consider the Hermitian form

〈ϕ1, Aµϕ2〉 =

∫

S

∫

S

|[s, t]|−µ−4ϕ1(s)ϕ2(t) dsdt.

This form is clearly π−
µ (G)-invariant. A G-invariant measure on O1 is given by dm(s) =

ds

[s, s]2
. Applying the above linear map ϕ→ ψ we get instead of (12.13),

〈ψ1, ψ2〉µ =

∫

S

∫

S

ψ1(s)ψ2(t)

[
[s, s] [t, t]

[s, t] [t, s]

]µ
2
+2

dm(s)dm(t).

Thus

Bλ(s, t) =

{
[s, s] [t, t]

[s, t] [t, s]

}λ

is again the Berezin kernel, now living on [s, s] > 0 (s ∈ S̃) ≃ O1. Indeed, Bλ(g ·e1, e1) =

(cosh t)−2λ if g = at.

This approach was firstly observed by Molchanov in [33].

13. Some generalizations and remarks

• Let us restrict the holomorphic discrete series πd
λ to the real group SOo(1, 1) and the

functions in Fλ to the real “unit disc” (x ∈ R, |x| < 1). More precisely, let us define the

analogue of Aλ by

F (ζ) → F (x) (1 − |x|2)λ/2.

Then we get ”the” canonical representation of SO0(1, 1) with Berezin kernel Bλ/2(x, y),

which remains positive-definite for λ > 0.

Let ψλ/2(x) = (1− |x|2)λ/2 be the associated positive-definite function. We can com-

pute the spherical decomposition of this restricted representation in a similar way as

before and get:

aλ/2(iµ) = 2λ−1 Γ(λ+iµ
2 ) Γ(λ−iµ

2 )

Γ(λ)
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c(s) =
1

2

ψλ/2(g) =
1

4π

∫ ∞

0

aλ/2(iµ)ϕiµ(g)
dµ

|c(iµ)|2
in L2-sense

If g = at =
(

cosh t sinh t
sinh t cosh t

)
, then ϕiµ(g) = e−iµt. Observe that this decomposition holds for

Reλ > 0.

The computation of aλ/2(iµ) is again most easily done in the tube realization. Observe

that |x| < 1 is identified with the positive imaginary axis. The integral becomes:

2λ−1

∫ ∞

0

yλ/2+iµ/2

(y + 1)λ
dy

y
.

We thus finally get:

(cosh t)−λ = ψλ/2(at) =
1

2π

∫ ∞

0

2λ−1Γ(λ+iµ
2 ) Γ(λ−iµ

2 )

Γ(λ)
e−iµt dµ (Reλ > 0)

in L2-sense, a “classical” Fourier transform identity. See [8] for generalization.

• A quite interesting extension of the notion of canonical representation is obtained by

considering πd
λ⊗̂2 π

d
λ′ with λ− λ′ = l ∈ Z, see Section 11 (exercise). See [8], [52].

If |l| > 1 we get discrete series occurring in the decomposition of ”τλ,l” (apart from

principal series and complementary series if l is even).

• Extension of the results to G = SU(1, n) is rather immediate. Finitely many comple-

mentary series occur for λ > 0, situated at the points n− 2λ− 2k = sk, as far as sk > 0.

See [10].

An interesting phenomenon occurs also in the ”compact” realization of τλ. The G-

orbits on S̃ = {x ∈ Cn : ‖x‖ < 1}/ ∼ can be identified with G/K, G/P, G/H , where

H = S(U(1, n − 1) × U(1)). The Berezin kernel can also be defined on the latter space

and gives rise to a canonical representation on a pseudo-Riemannian space, see [11].

Unfortunately, τλ is not unitary anymore, so a good decomposition theory is missing!

One can however try to decompose ψλ into H-spherical (positive-definite) distributions.

(see Van Dijk-Molchanov, forthcoming publication, and thesis Charchov [6]).

• Berezin kernels are mostly studied in the context of Hermitian symmetric spaces. See

e.g. [8], [30], [35], [37], [38], [39], [42], [45], [48], [52], [53].

The second model coming from the principal series representations of SL(2,C) is well-

suited for generalizing canonical representations to para-Hermitian symmetric spaces (cf.

[33]).

The most general definition of canonical representation is given in S. C. Hille’s thesis

[29]. It is built around arbitrary so-called σθ-invariant parabolic subgroups.

14. Interpolation. We return to the question posed in Section 9 about the interpo-

lation of τλ between the L2-spaces of SU(2)/K and SU(1, 1)/K. Notice that SU(1, 1)/K

can be viewed as an open submanifold of SU(2)/K ≃ S̃, see Section 12. This is in our

view the main reason that we can relate both spaces in question. Let us now explain

Neretin’s solution in our own words and add some remarks.
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Let λ be a negative integer. Then

ψλ =
−λ∑

j=0

Rj(λ)ϕ1−2λ−2j

according to Section 9.

Taking both sides at the point g = at =
(

cosh t sinh t
sinh t cosh t

)
, we get

(cosh t)−2λ =

−λ∑

j=0

Rj(λ)ϕ1−2λ−2j(at).(14.1)

One has

ϕs(at) = 2F1(
s+ 1

2
,
−s+ 1

2
; 1;−sinh2 t).

For s = 1− 2λ− 2j, being a positive odd integer, ϕs(at) is a polynomial in cosh2 t, hence

(14.1) also holds if we replace cosh t by cos t. We get

ψ
SU(2)
λ =

−λ∑

j=0

Rj(λ)ϕ
SU(2)
1−2λ−2j(14.2)

where

ψ
SU(2)
λ (u) = |(u e1, e1)|

−2λ (u ∈ SU(2))

and ϕ
SU(2)
1−2λ−2j is defined on SU(2) by setting its radial part equal to

2F1(1− λ− j, λ+ j; 1; sin2 t).

Observe that ϕ
SU(2)
1−2λ−2j is a spherical function on SU(2).

Set v = 1− 2λ− 2j. Then (14.2) can be rewritten as

ψ
SU(2)
λ =

−2λ+1∑

v=1

v odd

R 1−2λ−v
2

(λ)ϕSU(2)
v .

Notice that

R 1−2λ−v
2

(λ) =
v Γ(1− λ)2

Γ(1− λ+ 1−v
2 ) Γ(1− λ+ 1+v

2 )
.

Call this expression rv(λ). One easily computes
∫

SU(2)

ψ
SU(2)
λ (u)du =

1

1− λ
.

Let us now compute the asymptotic behaviour of (1 − λ)ψλ for λ → −∞. This comes

down to determining the asymptotics of (1 − λ) rv(λ) for fixed v (v = 1, 3, 5, . . .).

Applying formula (8.1) we obtain:

(1 − λ) rv(λ) = v

{
1 +

v2 − 1

4λ
+O

(
1

λ2

)}
(λ→ −∞, λ integer).(14.3)

Observe that v runs over the set of dimensions of the finite-dimensional spherical repre-

sentations of SU(2). Clearly (14.3) is equivalent to the following identity of distributions
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on S̃:

(1− λ)ψ
SU(2)
λ = δ +

δ

4λ
+O

(
1

λ2

)
(λ→ −∞, λ integer).(14.4)

where is now the Laplace-Beltrami operator on S̃.

Remark. One has for λ negative integer:

ψ
SU(2)
λ =

∞∑

v=1

v odd

rv(λ)ϕv .(14.5)

Indeed, notice that rv(λ) = 0 for v odd, v > −2λ + 1. It is easily checked that (14.5)

remains true for all complex λ with Reλ < 1/2 in L2-sense, by computing inner products

and using formulae from [21]. Neretin applies Carlson’s theorem (Theorem 9.1), which is

more convenient. Clearly (14.3) and (14.4) now hold without the restriction “λ integer”.

A final observation is that ψ
SU(2)
λ , for λ a negative integer, is a positive-definite

function associated with the representation V−λ ⊗ V −λ, where V−λ is the standard rep-

resentation of SU(2) on holomorphic (harmonic) polynomials in z1, z2, homogeneous of

degree −λ.
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