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Introduction. Studying quantization, F. A. Berezin (see [1]) introduced a family Bλ

of G-invariant kernels on a Hermitian symmetric space G/K. For “large” values of the

parameter λ these kernels give rise to some positive-definite bi-K-invariant functions ψλ.

The decomposition of ψλ into a direct (not necessarily discrete) sum of positive-definite

spherical functions can also be understood via group representation theory.

In fact, it is known (see [3, 9, 14, 17]) that Berezin kernels occur in a natural way when

one considers the decomposition problem for the tensor product of a holomorphic and

anti-holomorphic discrete series representation of G×G restricted to G = diag(G×G).

Following the same reasoning the decomposition of holomorphic discrete series rep-

resentations of G restricted to some “causally” symmetric subgroup H (see Table 1 for

the classification) is obtained using the spherical Fourier transform of the corresponding

Berezin kernels (see [4]).

A logical continuation of this problem is the extension to the case of vector-valued

holomorphic discrete series representations of the group G.

We develop a general theory for the associated matrix-valued Berezin kernels and

establish some useful properties of them.

The last part of this paper is devoted to the really relevant case G = SU(1, n), H =

SOo(1, n). We consider the vector-valued holomorphic discrete series representations π

induced by the slightly modified spinor representations of the maximal compact subgroup
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K. We obtain an explicit expression, in terms of Euler Beta and Gauss Hypergeometric

functions, for the decomposition spectrum of the tensor product of π with a scalar anti-

holomorphic discrete series representation, considered as a representation of G and the

decomposition spectrum for π when restricted to a “fully restrictive” group H .

We are grateful to G. Zhang for fruitful discussions and helpful remarks during the

preparation of this manuscript.

M. Pevzner would like to thank the Mathematical Institute of Leiden University,

where this work was done, for its hospitality.

Table 1. The irreducible causal symmetric pairs

g gc h

compactly causal non-compactly causal

su(p, q)⊕ su(p, q) sl(p+ q;C) su(p, q)

so∗(2n)⊕ so∗(2n) so(2n;C) so∗(2n)

so(2, n)⊕ so(2, n) so(2 + n;C) so(2, n)

sp(n,R)⊕ sp(n,R) sp(n,C) sp(n,R)

e6(−14) ⊕ e6(−14) e6 e6(−14)

e7(−25) ⊕ e7(−25) e7 e7(−25)

su(p, q) sl(p+ q;R) so(p, q)

su(n, n) su(n, n) sl(n;C)⊕R

su(2p, 2q) su∗(2(p+ q)) sp(p, q)

so∗(2n) so(n, n) so(n;C)

so∗(4n) so∗(4n) su∗(2n)⊕R

so(2, p+ q) so(p+ 1, q + 1) so(p, 1)× so(1, q)

sp(n,R) sp(n,R) sl(n;R)⊕R

sp(2n,R) sp(n, n) sp(n,C)

e6(−14) e6(6) sp(2, 2)

e6(−14) e6(−26) f4(−20)

e7(−25) e7(−25) e6(−26) ⊕R

e7(−25) e7(7) su∗(8)

1. Structure theory. In this section we recall some structure theory, mainly follow-

ing [13] and [8], Ch. VIII.

1.1. Hermitian symmetric spaces. Let g be a non-compact simple real Lie algebra

with complexification gc. Let g = k ⊕ p be a Cartan decomposition and let θ denote the

corresponding Cartan involution. Let z denote the center of k. g is said to be Hermitian

if the centralizer of z in g is equal to k. The center of k is one-dimensional and there is

an element Z0 ∈ z such that (adZ0)
2 = −1 on p. Fixing i a square root of −1, one has

pc = p+ ip = p+ + p− where adZ0|p+ = i, adZ0|p−
= −i. Then

gc = p+ ⊕ kc ⊕ p−.(1)

and [p±, p±] = 0, [p+, p−] = kc and [kc, p±] = p±. Let Gc be a connected, simply connected

Lie group with Lie algebra gc and Kc, P+, P−, G,K the analytic subgroups correspond-
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ing to kc, p+, p−, g and k respectively. Then KcP− (and KcP+) is a maximal parabolic

subgroup of Gc with split component A = exp iRZ0. G is closed in Gc.

Moreover, the exponential mapping is a diffeomorphism of p− onto P− and of p+ onto

P+ ([8], Ch. VIII, Lemma 7.8). Furthermore:

Lemma 1.1 (see [8], Ch. VIII, Lemmæ 7.9 and 7.10). a.The mapping (q, k, p) 7→qkp

is a diffeomorphism of P+×Kc×P− onto an open dense submanifold of Gc containing G.

b. The set GKcP− is open in P+KcP− and G ∩KcP− = K.

Thus G/K is mapped on an open, bounded domain D in p+. G acts on D via holo-

morphic transformations.

Example. Let g = su(1, 1). Then Gc = SL(2,C) and G = SU(1, 1). Clearly Z0 =
1
2

(
i 0

0 −i

)
, p± are one-dimensional and generated by

(
0 1

0 0

)
and

(
0 0

1 0

)
respectively. Let

g =
(

α β

β̄ ᾱ

)
∈ G. Then the decomposition g = qkp (see Lemma 1.1.a) is given by

g =

(
1 βᾱ−1

0 1

)(
ᾱ−1 0

0 ᾱ

)(
1 0

ᾱ−1β̄ 1

)

where |α|2 − |β|2 = 1. The embedding of G/K into C is given by

g 7→ βᾱ−1 = ζ.

Since |α|2 − |β|2 = 1, it follows |ζ| < 1. Conversely, let |ζ| < 1. Take then α such that

|α|2 = (1− |ζ|2)−1 and let β = ζᾱ. Then
(

α β

β̄ ᾱ

)
is mapped onto ζ. So D is the unit disc

“|ζ| < 1”. G acts on D by means of fractional linear transformations

g.ζ =
αζ + β

β̄ζ + ᾱ
, g =

(
α β

β̄ ᾱ

)
∈ G.

Everywhere we shall denote ḡ the complex conjugate of g ∈ Gc with respect to G.

So, for example, if g =
(

a 0

0 a−1

)
∈ SL(2,C), then its conjugate with respect to SU(1, 1)

is given by ḡ =
(

ā−1 0

0 ā

)
. Notice that P̄+ = P−.

For g ∈ P+KcP− we shall write g = (g)+ (g)0 (g)−, where (g)± ∈ P±, (g)0 ∈ Kc. For

g ∈ Gc, z ∈ p+ such that g. exp z ∈ P+KcP− we define

exp g(z) = (g. exp z)+,(2)

J(g, z) = (g. exp z)0.(3)

J(g, z) ∈ Kc is called the canonical automorphic factor of Gc (terminology of Satake).

Lemma 1.2 (see [13], Ch. II, Lemma 5.1). J satisfies

(i) J(g, o) = (g)0, for g ∈ P+KcP−,

(ii) J(k, z) = k for k ∈ Kc, z ∈ p+.

If for g1, g2 ∈ Gc and z ∈ p+, g1(g2(z)) and g2(z) are defined, then (g1g2)(z) is also

defined and

(iii) J(g1g2, z) = J(g1, g2(z)) J(g2, z).
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For z, w ∈ p+ satisfying (exp w̄)−1. exp z ∈ P+KcP− we define

K(z, w) = J((exp w̄)−1, z)−1(4)

= ((exp w̄)−1. exp z)−1
0 .(5)

This expression is always defined for z, w ∈ D, for then

(exp w̄)−1. exp z ∈ (GKcP−)
−1
GKcP− = P+KcGKcP− = P+KcP−.

K(z, w), defined on D × D, is called the canonical kernel on D ( by Satake). K(z, w) is

holomorphic in z, anti-holomorphic in w, with values in Kc. Here are a few properties:

Lemma 1.3 (see [13], Ch. II, Lemma 5.2). (i) K(z, w) = K(w, z)
−1

if K(z, w) is de-

fined,

(ii) K(o, w) = K(z, o) = 1 for z, w ∈ p+.

If g(z), ḡ(w) and K(z, w) are defined, then K(g(z), ḡ(w)) is also defined and one has:

(iii) K(g(z), ḡ(w)) = J(g, z)K(z, w) J(ḡ, w)
−1

,

Lemma 1.4 (see [13], Ch. II, Lemma 5.3). For g ∈ Gc the Jacobian of the holomor-

phic mapping z 7→ g(z), when it is defined, is given by

Jac (z 7→ g(z)) = Adp+(J(g, z)).

For any holomorphic character χ : Kc 7→ C we define:

jχ(g, z) = χ(J(g, z)),(6)

kχ(z, w) = χ(K(z, w)).(7)

Since χ(k̄) = χ(k)
−1

we have:

kχ(z, w) = kχ(w, z),(8)

kχ(g(z), ḡ(w)) = jχ(g, z)kχ(z, w)jχ(ḡ, w)(9)

in place of Lemma (1.3) (i) and (iii).

The character χ1(k) = detAdp+(k), (k ∈ Kc) is of particular importance. We call the

corresponding jχ1 , kχ1 : j1 and k1. Notice that

j1(g, z) = det(Jac (z 7→ g(z))).(10)

Example. g = su(1, 1). For g =
(

α β

β̄ ᾱ

)
in SU(1, 1) one has

J(g, z) =

(
(β̄z + ᾱ)−1 0

0 (β̄z + ᾱ)

)
, K(z, w) =

(
(1− zw̄) 0

0 (1 − zw̄)−1

)

and χ1

(
α 0

0 α−1

)
= α2, (α ∈ C∗), so

j1(g, z) = (β̄z + ᾱ)−2, k1(z, w) = (1− z̄w)2.

Because of (10), |k1(z, z)|
−1dµ(z), where dµ(z) is the Euclidean measure on p+, is a

G-invariant measure on D. Indeed:
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dµ(g(z)) = |j1(g, z)|
2dµ(z),

k1(g(z), g(z)) = j1(g, z) k1(z, z) j1(g, z), for g ∈ G.

(see (1.9)). One can actually show that k1(z, z) > 0 on D ([13], Ch. II, Lemma 5.8).

For the list of groups G considered here, we refer to the upper part of Table 1, right

column.

1.2. Symmetric spaces of Hermitian type. Let g, gc, G,Gc, . . . be as in section 1.1. We

add to g an involutive automorphism σ, commuting with the Cartan involution θ. Let

g = h⊕ q be the decomposition of g into +1 and −1 eigenspaces of σ.

The Lie algebra g is said to be of Hermitian type if g is Hermitian and, in addition,

Z0 ∈ q∩ k. There are several other terminologies in use; the most closely related to us is:

g is a compactly causal Lie algebra.

The involution σ is extended to gc and Gc and leaves G invariant. Let H denote the

closed subgroup of G consisting of the fixed points of σ. The Lie algebra of H is h.

Now observe that, since σ(Z0) = −Z0, σ(p+) = p−. Since p̄+ = p−, we see that σ̄,

defined by σ̄(X) = σ(X̄), leaves p+ and p− invariant. Set

pσ̄± = {X ∈ p± : σ̄(X) = X}.

Then clearly dimR pσ̄+ = dimR pσ̄− = dimC p+, since σ̄ is a conjugation.

It is clear that σ̄(D) = D. Set Dσ̄ for the set of fixed points of σ̄ in D. Since σ̄(H) = H

it easily follows that H/H ∩K can be identified with an open submanifold of Dσ̄. The

proof is according to the same lines as in Lemma (1.1). The real “ball”Dσ̄ is an interesting

object; one can actually show that H acts transitively on it.

Example. g = su(1, 1), σ(X) = X̄, h = so(1, 1). H = SO(1, 1), h ∈ H is of the form(
cosh t sinh t

sinh t cosh t

)
, t ∈ R.

Now D = {z ∈ C : |z| < 1}, so Dσ̄ = (−1, 1) ⊂ R. This is clearly the same as

H.o = {tanh t : t ∈ R}.

It is clear that |k1(z, z)|
−1/2dν(z), where dν(z) is a Euclidean measure on Dσ̄, is a

H-invariant measure on Dσ̄. The proof is along the same line as in section 1.1.

For the spaces we are talking about, see Table 1 (lower part). This table also includes

a list of non-compactly causal Lie algebras gc = h ⊕ iq which has been discussed in [5].

Table 1 is taken from [7].

2. Bergman kernel of a holomorphic discrete series representation

2.1. The matrix-valued holomorphic discrete series. Let τ be an irreducible holomor-

phic representation of Kc on a finite dimensional complex vector space V with scalar

product 〈 | 〉, such that τ|K is unitary.

Lemma 2.1. τ∗(k) = τ(k̄)−1 for k ∈ Kc.

This follows easily by writing k = ko · exp iX with ko ∈ K, X ∈ k and using that τ|K
is unitary.

Call πτ = IndG
K τ and set Vτ for the space of representation of πτ . Then Vτ consists

of maps f : G 7→ V satisfying
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(i) f measurable,

(ii) f(gk) = τ−1(k)f(g) for g ∈ G, k ∈ K,

(iii)
∫
G/K

‖f(g)‖2dġ <∞,

where ‖f(g)‖2 = 〈f(g)|f(g)〉 and dġ an invariant measure on G/K. Let us identify G/K

with D and dġ with d∗z = k1(z, z)
−1dµ(z). Then Vτ can be identified with a space of

maps on D, setting

ϕ(z) = τ(J(g, o))f(g),(11)

if z = g(o), f ∈ Vτ . Indeed, the right-hand side of (11) is clearly right K-invariant. The

inner product becomes

(ϕ|ψ) =

∫

D

〈τ−1(J(g, o))ϕ(z)|τ−1(J(g, o))ψ(z)〉d∗z.

Since τ−1(J(g, o))∗τ−1(J(g, o)) = τ−1(J(g, o)J(g, o)
−1

) = τ−1(K(z, z)) by Lemma (1.3),

we may also write

(ϕ|ψ) =

∫

D

〈τ−1(K(z, z))ϕ(z)|ψ(z)〉d∗z.(12)

The G-action on the new space is given by

πτ (g)ϕ(z) = τ−1(J(g−1, z))ϕ(g−1(z)) (g ∈ G, z ∈ D).(13)

Now we restrict to the closed subspace of holomorphic maps and call the resulting Hilbert

space Hτ . The space Hτ is πτ (G)-invariant. We assume that Hτ 6= {0}; see however

section 2.3.

The pair (πτ ,Hτ ) is called a holomorphic discrete series of G.

In a similar way we can define the anti-holomorphic discrete series. We therefore start

with τ̄ instead of τ and take anti-holomorphic maps. Then

πτ̄ (g)ψ(z) = τ̄−1(J(g−1, z))ψ(g−1(z)).(14)

for ψ ∈ Hτ̄ . One easily sees that Hτ̄ = H̄τ and πτ̄ = π̄τ in the usual sense.

2.2. The Bergman kernel. The Hilbert space Hτ (see section 2.1) is known to have a

reproducing (or Bergman) kernel Kτ (z, w). Its definition is as follows. Set

Ez : ϕ 7→ ϕ(z) (ϕ ∈ Hτ )

for z ∈ D. Then Ez : Hτ 7→ V is a continuous linear operator, and Kτ (z, w) = EzE
∗
w,

being a End(V )-valued kernel, holomorphic in z, anti-holomorphic in w. In more detail:

〈ϕ(w)| ξ〉 =

∫

D

〈τ−1(K(z, z))ϕ(z)| Kτ (z, w)ξ〉d∗z(15)

for any ϕ ∈ Hτ , ξ ∈ V and w ∈ D.

Since Hτ is a G-module, one easily gets the following transformation property for

Kτ (z, w):

Kτ (g(z), g(w)) = τ(J(g, z))Kτ (z, w)τ(J(g, w))
−1 (g ∈ G, z, w ∈ D).(16)

Now consider H(z, w) = Kτ (z, w) · τ
−1(K(z, w)).

Clearly H(g(z), g(w)) = τ(J(g, z))H(z, w)τ−1(J(g, z)) for all z, w ∈ D. So, setting

z = w = o, g ∈ K we see that H(o, o) is a scalar operator, and hence H(z, z) = H(o, o)
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is. But then H(z, w) = H(o, o). So, we get

Kτ (z, w) = c · τ(K(z, w)),(17)

where c is a scalar. The way of obtaining (17) is similar to [13] Ch II, Lemma 6.1.

The same reasoning yields that πτ is irreducible. Indeed, ifH ⊂ Hτ is a closed invariant

subspace, then H has a reproducing kernel, say KH and it follows that KH = cKτ , so

either H = {0} or H = Hτ .

2.3. Examples. In this section we consider several representations τ of K (or Kc)

with Hτ 6= {0} and more precisely the spinor representations. We were inspired by the

paper [12] of Pedon.

The group Ad(K) acts irreducibly on p, but its action is reducible on pc, while splitting

into two irreducible subspaces pc = p+⊕p−. An inner product on pc is given by 〈X |Y 〉 =

B(X, Ȳ ), where B is the Killing form of gc. It is clear that p+ and p− are orthogonal

with respect to this inner product. Moreover, the map X → X̄, which is anti-linear, of

p+ into p−, gives an isomorphism of Ad(k)|p
−

and Ad(k̄)|p+
(k ∈ Kc). So we have

Ad(k)|p
−

X̄ = Ad(k̄)|p+
X (X ∈ p+).(18)

The latter is equal to Ad(k−1)∗|p+
X .

Let n = dim p−. Define for k ∈ Kc the holomorphic representations

(i) τn(k) = detCAd(k)|p
−

(scalar valued),(19)

(ii) τ1(k) = Ad(k)|p
−

on p−,(20)

(iii) τr(k) =
∧r

Ad(k)|p
−

on
∧r

p−, (1 ≤ r ≤ n).(21)

The representations τn and τ1 are irreducible, while τr certainly is in case G = SU(1, n)

(see Section 5.2). Let us assume that τr is irreducible, 1 ≤ r ≤ n.

Next, set for ℓ ∈ Z and k ∈ Kc,

(i) τn,ℓ(k) = τn(k)
ℓ,(22)

(ii) τ1,ℓ(k) = τn(k)
ℓ−1τ1(k),(23)

(iii) τr,ℓ(k) = τn(k)
ℓ−1τr(k)(24)

Then τn,ℓ gives rise to so-called scalar holomorphic discrete series of G on Hn,ℓ. Clearly

τ−1
n,l (K(z, z)) = j1(K(z, z))−ℓ = k1(z, z)

ℓ.

So

Hn,ℓ 6= {0} for ℓ ≥ 1.(25)

In a similar way, applying that the eigenvalues of AdK(z, z)|p+
are real, positive and

bounded by 1 (see [13], Ch. II, Lemma 5.8), we get:

Hr,ℓ 6= {0} for ℓ ≥ 2.(26)

For r = n, see (25).
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3. Study of the tensor product of a matrix-valued holomorphic and a scalar

anti-holomorphic discrete series representation. Let τ be one of the representa-

tions (19)-(21) and τℓ = τ ℓ−1
n τ one of the representations (22)-(24).

Set πτ
ℓ = πτℓ and Hτ

ℓ = Hτℓ . If τ = τn then we simply write πℓ and Hℓ. We will study

the tensor product

πτ
ℓ+1⊗̂2 π̄ℓ

as a representation of G and finally determine its expansion into irreducible unitary

representations. Let us assume ℓ ≥ 1.

3.1. The restriction map. For f ∈ Hτ
ℓ+1 and g ∈ Hℓ define the map

Aτ
ℓ : f(z)⊗ ḡ(w) → f(z)ḡ(z)k1(z, z)

ℓ(27)

ofHτ
ℓ+1⊗̂2H̄ℓ into the space of V -valued distributions onD, denoted byD′(D, V ). Writing

general elements in Hτ
ℓ+1⊗̂2H̄ℓ as F (z, w) we have

Aτ
ℓF (z) = F (z, z)k1(z, z)

ℓ.(28)

Here Aτ
ℓF (z) is seen as the distribution

〈Aτ
ℓF | ϕ〉 =

∫

D

〈τ−1(K(z, z))F (z)|ϕ(z)〉d∗z (ϕ ∈ D(D, V )).(29)

Notice that Aτ
ℓ is an intertwining operator:

Aτ
ℓ ◦ (πτ

ℓ+1(g)⊗ πℓ(g)) = πτ (g)i̧rcA
τ
ℓ (g ∈ G).(30)

We are going to compute

(Aτ
ℓ )

∗ : D(D, V ) → Hτ
ℓ+1⊗̂2H̄ℓ.(31)

Let h ∈ D(D, V ) be a V -valued test function on D. Then (Aτ
ℓ )

∗h(z, w) is an element of

the right-hand side of (31), holomorphic in z, anti-holomorphic in w.

Set Kτ (z, w) = τ(K(z, w)) and let Kℓ(z, w) be the reproducing kernel of Hℓ. Then

Kτ
ℓ+1(z, w) = cτℓKτ (z, w)Kℓ(z, w)

is the reproducing kernel of Hτ
ℓ where cτℓ is a constant, depending on τ and ℓ. Observe

that Kℓ(z, w) = c1ℓk1(z, w)
−ℓ.

We have for F ∈ Hτ
ℓ+1⊗̂2Hℓ and h ∈ D(D, V ):

〈(Aτ
ℓ )

∗h| F 〉 = (h,Aτ
ℓF ) =

∫

D

〈τ−1(K(z, z))h(z)| F (z, z)〉k1(z, z)
ℓd∗z(32)

=

∫

D

∫

D

〈τ−1(K(z, z))h(z)| F (z, w)〉Kℓ(z, w)k1(w,w)
ℓk1(z, z)

ℓd∗wd∗z.(33)

We have to write (33) in the form
∫

D

∫

D

〈τ−1(K(z, z))(Aτ
ℓ )

∗h(z, w)| F (z, w)〉k1(w,w)
ℓk1(z, z)

ℓd∗wd∗z.(34)

Therefore we apply the reproducing kernel property (15) for F (·, w), so (33) becomes:
∫

D

∫

D

∫

D

〈Kτ
ℓ+1(w

′, z)τ−1(K(z, z))h(z)| τ−1(K(w′, w′))F (w′, w)〉

· Kℓ(z, w)k1(w,w)
ℓk1(z, z)

ℓk1(w
′, w′)ℓd∗w

′d∗wd∗z.
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So:

(Aτ
ℓ )

∗h(z, w) =

∫

D

Kτ
ℓ+1(z, z

′)τ−1(K(z′, z′))h(z′)k1(z
′, z′)ℓKℓ(z

′, w)d∗z
′.(35)

3.2. The Berezin kernel. Hence we obtain for Aτ
ℓ (A

τ
ℓ )

∗ the following expression. Let

f ∈ D(D, V ), then:

Aτ
ℓ (A

τ
ℓ )

∗f(z) = k1(z, z)
ℓ

∫

D

Kτ
ℓ+1(z, z

′)τ−1(K(z′, z′))f(z′)k1(z
′, z′)ℓKℓ(z

′, w)d∗z
′

= c′ℓc
τ
ℓ

∫

D

Kτ (z, z
′)τ−1(K(z′, z′))k1(z, z

′)−ℓk1(z
′, z)−ℓk1(z, z)

ℓk1(z
′, z′)ℓf(z′)d∗z

′.

We see that Aτ
ℓ (A

τ
ℓ )

∗ is a kernel operator on D(D, V ) with the kernel

Bτ
ℓ (z, z

′) = c′ℓc
τ
ℓ τ

−1(K(z, z))Kτ (z, z
′)τ−1(K(z′, z′))

·k1(z, z
′)−ℓk1(z

′, z)−ℓk1(z, z)
ℓk1(z

′, z′)ℓ.

Observe that Bτ
ℓ is an Hermitian kernel.

Bτ
ℓ has the following transformation property under G :

Bτ
ℓ (g(z), g(z

′)) = τ−1(J(g, z))∗Bτ
ℓ (z, z

′)τ−1(J(g, z′)).(36)

So, consider

F τ
ℓ (g, g

′) = τ(J(g, o))∗Bτ
ℓ (g(o), g

′(o))τ(J(g′, o)).(37)

This map is G-invariant. Let

ψτ
ℓ (g) = F τ

ℓ (e, g) (g ∈ G).(38)

So, ψτ
ℓ (g) = Bτ

ℓ (o, g(o))τ(J(g, o)); and it satisfies

ψτ
ℓ (kgk

′) = τ(k)ψτ
ℓ (g)τ(k

′) (g ∈ G, k, k′ ∈ K).(39)

Furthermore:

Bτ
ℓ (o, g(o)) = c′ℓc

τ
ℓ k1(z, z)

ℓτ−1(K(z, z))(40)

if z = g(o). So,

ψτ
ℓ (g) = c′ℓc

τ
ℓ k1(g(o), g(o))

ℓτ∗
−1

(J(g, o)).(41)

Define for λ ∈ R,

Bτ
λ(z, z

′) = τ−1(K(z, z))Kτ (z, z
′)τ−1(K(z′, z′)) ·

{
k1(z, z)k1(z

′, z′)

k1(z′, z)k1(z, z′)

}λ

.(42)

Bτ
λ is a matrix-valued Berezin kernel. It has the same properties as in (36). In a similar

way we can define the function ψτ
λ associated with the Berezin kernel by

ψτ
λ(g) = k1(g(o), g(o))

λτ∗(J(g, o)−1) (gınG).(43)

Remarks. 1. For any λ ≥ 1 we can define, in an obvious way, the generalized Fock

spaces Hτ
λ+1. These spaces have reproducing kernels Kτ

λ+1 and the above theory leads in

a similar way to the definition of Bτ
λ.

2. ψτ
λ is a positive-definite function since Aτ

λ(A
τ
λ)

∗ is positive-definite for λ ≥ 1.

3. ψτ
λ ∈ L1 ∩ L2(G, V ) for λ ≥ 1.

4. Aτ
λ is a bounded linear operator fromHτ

λ+1⊗̂2Hλ into Vτ ; moreoverAτ
λ is one-to-one

for λ ≥ 1. The proofs are similar to the case τ ≡ 1 (see [4]).
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3.3. Restriction to real bounded domains. For f ∈ Hτ
ℓ+1 define the map

Aτ
ℓ : f(z) → f(x)k1(x, x)

ℓ/2(44)

of Hτ
ℓ+1 into D′(Dσ̄, V ) (so x ∈ Dσ̄). The map Aτ

ℓ is clearly one-to-one and continuous.

MoreoverAτ
ℓ is an intertwining operator, at least for ℓ ∈ mN wherem is a positive integer

satisfying τ ℓn(k)
m = 1 for k ∈ K ∩H :

Aτ
ℓ ◦ πτ

ℓ+1(h) = πτ (h) ◦ A
τ
ℓ (h ∈ H).(45)

The existence of m follows from the fact that the center of K has finite intersection with

K ∩H because G/H is a compactly causal space. Strictly speaking πτ (h) has not been

defined; here is the definition:

πτ (h)ϕ(x) = τ−1(J(h, x))ϕ(h.x) (h ∈ H,x ∈ Dσ̄, ϕ ∈ D′(D, V )).

As in Section 3 we can determine (Aτ
ℓ )

∗ and then Aτ
ℓ (A

τ
ℓ )

∗, which again is a kernel

operator on D(Dσ̄ , V ) with kernel proportional to:

Bτ
ℓ (x, x

′) = τ−1(K(x, x))Kτ (x, x
′)τ−1(K(x′, x′)) ·

{
k1(x, x)k1(x

′, x′)

k1(x′, x)k1(x, x′)

}ℓ/2

.

(46)

Remark that Bτ
ℓ (x, x

′) = Bτ
ℓ/2(x, x

′) for x, x′ ∈ Dσ̄ .

Bτ
ℓ has the following transformation property under H :

Bτ
ℓ (h(x), h(x

′)) = τ−1(J(h, x))∗Bτ
ℓ (x, x

′)τ−1(J(h, x′)).(47)

We can associate with Bτ
ℓ a positive-definite matrix-valued function

Ψτ
ℓ (h) = k1(h(o), h(o))

ℓ/2τ∗
−1

(J(h, o)) = ψτ
ℓ/2(h) (h ∈ H).(48)

In a similar way as in Section 3 we can define for λ ∈ R

Bτ
λ(x, x

′) = Bτ
λ/2(x, x

′) and Ψτ
λ(h) = ψτ

λ/2(h)

for x, x′ ∈ Dσ̄ and h ∈ H . The function Ψτ
λ satisfies

Ψτ
λ(khk

′) = τ(k)Ψτ
λ(h)τ(k

′) (h ∈ H, k, k′ ∈ K ∩H).

4. The cases SU(1, n) and SOo(1, n). Here we shall determine ψτ
λ for SU(1, n) and,

by restriction, for SOo(1, n), and compute its spherical Fourier transforms.

4.1. Structure theory. We begin with the recollection of some structure theory of the

groups in the title.

Let F denote one of the fields R or C and define the sesquilinear form

[x, y] = ȳoxo − ȳ1x1 − . . .− ȳnxn(49)

on Fn+1. Let G = SU(1, n,F) be the group of (n+1)× (n+1) matrices with coefficients

in F and determinant 1, which preserve this form. In case of F = R we take the connected

component of G.

The Lie algebra of G consists of the matrices X of the form

X =

(
Z1 Z2
tZ̄2 Z3

)
(50)
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with Z1 (1 × 1), Z2 (1 × n), Z3 (n × n) matrices, satisfying: Z1 and Z2 anti-Hermitian,

tr(Z1+Z3) = 0, Z2 arbitrary. Let J be the (n+1)×(n+1) matrix: J = diag(−1, 1, . . . , 1)

and set

ϑX = JXJ.

Then ϑ is a Cartan involution with Cartan decomposition g = k ⊕ p. Here k is the Lie

algebra of K = S(U(1)× U(n)) (respectively K = SO(n)).

Clearly

k =

{(
Z1 0

0 Z3

)
: Z1, Z3 anti-Hermitian; tr(Z1 + Z3) = 0

}
,

p =

{(
0 Z2

tZ̄2 0

)
: Z2 arbitrary 1× nmatrix

}
.

Let L be the following element of g:

L =




0 0 1

0 O 0

1 0 0


 .

We have L ∈ p and a = RL is a maximal Abelian subspace of p. We are going to

diagonalize the operator adL. The centralizer of L in k is

m =







u 0 0

0 v 0

0 0 u


 : u ∈ F, u+ ū = 0, v ∈ U(n− 1,F), 2u+ tr v = 0



 .

Let α = 1. The nonzero eigenvalues of adL are ±α if F = R and ±α,±2α if F = C. The

space gα consists of the matrices

X =




0 z∗ 0

z O −z

0 z∗ 0


 ,

where z is a matrix of type (n − 1, 1) with coefficients in F and with z∗ = −tz̄. The

dimension of gα is equal to mα = d(n− 1) (where d = 1 if F = R, d = 2 if F = C). The

space g2α consists of the matrices of the form

X =



w 0 −w

0 O 0

w 0 −w


 ,

with w ∈ F, w + w̄ = 0. The dimension of g2α is equal to m2α = d − 1. We have

g = g−2α + g−α + a + m+ gα + g2α. Let A be the subgroup exp a. This is the subgroup

of the matrices

at =




cosh t 0 sinh t

0 I 0

sinh t 0 cosh t




where t is a real number. The centralizer of A in K is the subgroup M of the matrices


u 0 0

0 v 0

0 0 u


(51)



280 G. VAN DIJK AND M. PEVZNER

with u ∈ F, |u| = 1 (u = 1 if F = R), v ∈ U(n− 1,F), u2 det v = 1. The Lie algebra of M

is m.

The subspace n = gα + g2α is a nilpotent subalgebra. Set N = exp n. This is the

subgroup of the matrices

n(w, z) =




1 + w − 1
2 [z, z] z∗ −w + 1

2 [z, z]

z I −z

w − 1
2 [z, z] z∗ 1− w + 1

2 [z, z]




with w ∈ F, w + w̄ = 0 and with z a matrix of type (n − 1, 1) with coefficients in F,

z∗ = −tz̄, and if

z =



z2
...

zn


 , z′ =



z′2
...

z′n


 ,

then [z, z′] = −z̄′2z2 − . . .− z̄′nzn. The composition law in N is the following:

n(w, z) · n(w′, z′) = n(w + w′ + ℑ[z, z′], z + z′).

The subgroup A normalizes N :

atn(w, z)a−t = n(e2tw, etz).

Let 2ρ be the trace of the restriction of adL to n:

ρ =
1

2
(mα +m2α) =

1

2
d(n+ 1)− 1.

We have the Iwasawa decomposition G = KAN = NAK. Each g ∈ G can uniquely be

written as g = kat(g)n accordingly. One has the corresponding integral formula
∫

G

f(g)dg =

∫

KAN

f(katn)e
2ρtdkdtdn(52)

for f ∈ D(G). This is also equal to
∫

NAK

f(natk)e
−2ρtdndtdk.(53)

Here dn = dzdw (n = n(w, z)) and dk is the normalized Haar measure on K. Observe

that NA parameterizes D ≃ G/K.

Moreover, we have the Cartan decomposition G = KA+K where

A+ = {at : t ≥ 0}

and, after dg is normalized according to (52), the corresponding integral formula is
∫

G

f(g)dg =

∫

K

∫ ∞

0

∫

K

f(katk
′)δ(t)dkdtdk′.

Here δ(t) = 2 πn

Γ(n) (sinh t)
2(n−1) sinh 2t.

Let F = C. Then gc = sl(n+ 1,C) and

pc =

{(
0 tX

Y 0

)
: X,Y arbitrary n× 1matrices over C

}
.
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If we take Zo = diag(−i n
n+1 ,

i
n+1 , . . . ,

i
n+1 ) in the center of k, then p+ =

{(
0 0

Y 0

)
:

Y ∈ Cn
}
. Obviously Kc = S(GL(1,C)×GL(n,C)) and p− =

{(
0 X

0 0

)
: tX ∈ Cn

}
. Now

let
(

a b

c d

)
∈ G, with a (1 × 1), b (1 × n), c (n× 1) and d (n× n) matrices. Then we have,

following Lemma (1.1):
(
a b

c d

)
=

(
1 0

c/a 0

)(
a 0

0 d− a−1c · b

)(
1 b/a

0 1

)
.(54)

Furthermore, D ≃ {z ∈ C : |z1|
2 + . . .+ |zn|

2 < 1} and because
(
a b

c d

)(
1 0

z 0

)
=

(
a+ b · z b

c+ dz d

)
(55)

the action of G on D is given by

g.z = (c+ dz)(a+ b · z)−1.

Moreover, if g =
(

a b

c d

)
, then

J(g, o) =

(
a 0

0 d− a−1c · b

)
,(56)

and

k1(z, z) = (1− ‖z‖2)(n+1) = |a|−2(n+1) if z = g.o.(57)

4.2. The choice of τ . Clearly Kc acts on p− (see Section 4.1) by Ad(k)X = atd−1X

if k =

(
a 0

0 d

)
. Let us denote the associated representation of Kc on

∧r
p− ≃

∧r
Cn by

τr, 1 ≤ r ≤ n.

According to Pedon: τr is irreducible (Proposition 2.1 of [12]). Observe that Ad(m)en
= en for m ∈ M , moreover p1 = span{e1, . . . , en−1} is Ad(M)-invariant, M acting by

Ad(m)X1 = uv̄X1 (X1 ∈ p1) if m =

(
u 0 0

0 v 0

0 0 u

)
∈M .

Call σp the associated irreducible representation of M on
∧p

p1, 1 ≤ p ≤ n − 1. Let

σ0 = id. Then, according to [12], Proposition 3.1, we have:

Lemma 4.1.

τr|M = σr ⊕ σr−1 (1 ≤ r ≤ n− 1),

τn|M = σn−1.

Let us now consider the restriction of τr to SO(n) ≃ {1} × SO(n) ⊂ SO(1, n) and

maintain the same notation for this representation. Unfortunately, τr does not always

remain an irreducible representation of SO(n). The following is conveniently recollected

in [12], Proposition 3.2.

Lemma 4.2. (i) τr|SO(n) is irreducible if r 6= n
2 .

(ii) If n is even, then τn
2
|SO(n) ≃ τ+n

2
⊕ τ−n

2
, the two factors being irreducible and inequiv-

alent; they correspond to the decomposition
∧n

2 Cn =
∧n

2 Cn
+ ⊕

∧n
2 Cn

− into eigenspaces
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for the Hodge operator ∗. Precisely

∗ = ±i(
n
2 )

2

Id =

{
± Id for n

2 even

±i Id for n
2 odd

on
∧n

2
C

n
±.

(iii) The Hodge operator ∗ induces an equivalence τr|SO(n) ∼ τn−r|SO(n). We can therefore

restrict to 0 ≤ r ≤ n
2 .

About theMo-decomposition we have (Mo =

{(
1 0 0

0 v 0

0 0 1

)
: v ∈ SO(n− 1)

}
), according

to Pedon:

Lemma 4.3. Let 1 ≤ r ≤ n
2 .

(i) If r 6= n−1
2 , n2 then

∧r
Cn = (

∧r−1
Cn) ∧ en ⊕

∧r
Cn−1, so

τr|Mo = σr−1|Mo ⊕ σr|Mo .

The factors occurring in the decomposition are irreducible and inequivalent.

(ii) If r = n−1
2 then τr|Mo = σr−1|Mo

⊕ σ+
r ⊕ σ−

r is a decomposition into irreducible

inequivalent factors (σr |Mo
is the decomposition into eigenspaces for the Hodge operator).

(iii) If r = n
2 then τr|Mo = τ+r |Mo⊕̃ τ−r |Mo = σr−1|Mo⊕̃ σr|Mo are two decompositions

into equivalent irreducible factors.

4.3. Spherical functions of type τ . Let τ be an arbitrary irreducible unitary repre-

sentation of K on the vector space Vτ . It is a general fact that τ|M splits multiplicity free

(cf. [10]). Let σ occur in τ|M . Then

Pσ = dσ

∫

M

τ(m−1)χ̄σ(m)dm,

where dσ =degree(σ), χσ is the character of σ and dm the normalized Haar measure of

M , is the projection of Vτ onto the subspace of vectors which transform under M like σ.

There is a general formula for spherical functions of type τ , based on the Iwasawa

decomposition G = NAK, g = n(g)at(g)κ(g) (g ∈ G).

For any irreducible representation σ contained in τ|M we define the spherical function

of type τ by

Φτ
µ,σ(x) =

dτ
dσ

∫

K

τ(κ(kx−1))−1Pστ(k)e
−µt(kx−1)dk,(58)

where x ∈ G,µ ∈ C, dτ = degree(τ). See Warner [16] (here G = KAN is used).

We refer to Pedon’s work for explicit formulæ [12]. Also Plancherel formulæ are given

for τ = τr in this paper.

Let f ∈ L1(G,End(Vτ )) satisfy f(kxk
′) = τ(k)f(x)τ(k′) for all x ∈ G and k, k′ ∈ K.

Later on we shall take f = ψτ
λ for λ ≥ 1.

The Fourier transform of f is given by

f̂(σ, µ) =

∫

G

f(x)Φτ
µ,σ(x

−1)dx.(59)

Since f̂(σ, µ) commutes with τ(k)(k ∈ K), it is a scalar operator, so f̂(σ, µ)= 1
dτ

tr f̂(σ, µ).



MATRIX-VALUED BEREZIN KERNELS 283

We get

f̂(σ, µ) =
1

dτ
tr

∫

K

∫

G

f(x)τ(κ(kx))−1Pστ(k)e
−µt(kx)dxdk

=
1

dτ
tr

∫

K

∫

G

τ(k−1)f(x)τ(κ(x))−1Pστ(k)e
−µt(x)dxdk

=
1

dτ
tr

∫

G/K

f(x)τ(κ(x))−1e−µt(x)dx · Pσ.

Finally, using G = NAK and the fact that a−2ρdndadk = dadndk, we have

f̂(σ, µ) =
1

dτ
tr

∫

N

∫ ∞

−∞

f(nat)e
−(µ+2ρ)tdtdn · Pσ.(60)

Observe that f̂(σ, µ) commutes with τ(m), m ∈ M , so f̂(σ, µ) is a scalar, depending on

σ and µ. Hence

f̂(σ, µ) =

∫

N

∫ ∞

−∞

f(nat)e
−(µ+2ρ)tdtdn · Pσ.(61)

4.4. The Fourier transform of ψτ
λ. We begin by determining the spherical Fourier

transform of ψτ
λ on G = SU(1, n), for τ = τ1, the representation of Kc = S(GL(1,C)×

GL(n,C)) on Cn given by τ
(

a 0

0 d

)
= atd−1. Then τ∗

(
a 0

0 d

)−1

= ā−1d̄. Hence

ψτ
λ

(
a b

c d

)
= |a|−2(n+1)λā−1(d̄− ā−1c̄ · b̄).(62)

To compute the Fourier transform of ψτ
λ we apply (61). The representation τ|M splits into

σo (on Cen) and σ1 (on span(e1, . . . , en−1)). We write down the expression for ψτ
λ(nat).

We have:

ψτ
λ(nat) =

∣∣∣∣ cosh t− e−t

(
w +

1

2
[z, z]

)∣∣∣∣
−2(n+1)λ

·

[
cosh t− e−t

(
w +

1

2
[z, z]

)]−1

(63)

·

{(
I −z̄e−t

z̄∗ cosh t+ e−t(w + 1
2 [z, z])

)
−

[
cosh t− e−t

(
w +

1

2
[z, z]

)]−1

·

(
z̄e−t

sinh t− e−t(w + 1
2 [z, z])

)
·

(
z̄∗, sinh t+ e−t

(
w +

1

2
[z, z]

))}
.

Since ψ̂τ
λ(σ, µ) is a scalar operator, it is sufficient to compute the action on one vector. If

σ = σo we take en, if σ = σ1 we take e1. We have:

〈ψτ
λ(nat)en|en〉 =(64)

∣∣∣∣ cosh t− e−t

(
w +

1

2
[z, z]

)∣∣∣∣
−2(n+1)λ [

cosh t− e−t

(
w +

1

2
[z, z]

)]−1

·

{[
cosh t+ e−t

(
w +

1

2
[z, z]

)]
−

[
cosh t− e−t

(
w +

1

2
[z, z]

)]−1

·

(
sinh t− e−t

(
w +

1

2
[z, z]

))(
sinh t+ e−t

(
w +

1

2
[z, z]

))}
.(65)

〈ψτ
λ(nat)e1|e1〉 =(66)
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∣∣∣∣ cosh t− e−t

(
w +

1

2
[z, z]

)∣∣∣∣
−2(n+1)λ [

cosh t− e−t

(
w +

1

2
[z, z]

)]−1

·

{
1 +

[
cosh t− e−t

(
w +

1

2
[z, z]

)]−1

· |z2|
2e−t

}
.(67)

Now we do the same for τ = τr, 1 < r < n. Then τ |M splits into σr−1 and σr. We get

for σr−1:

〈ψτ
λ(nat)(en−r+1 ∧ . . . ∧ en)|(en−r+1 ∧ . . . ∧ en)〉 =

∣∣∣∣ cosh t− e−t

(
w +

1

2
[z, z]

)∣∣∣∣
−2(n+1)λ [

cosh t− e−t

(
w +

1

2
[z, z]

)]−r

·

{
det

(
I −rz̄e

−t

r z̄ cosh t+ e−t(w + 1
2 [z, z])

)
−

[
cosh t− e−t

(
w +

1

2
[z, z]

)]−r

· det

[(
r z̄e

−t

sinh t− e−t(w + 1
2 [z, z])

)
·

(
r z̄

∗, sinh t+ e−t

(
w +

1

2
[z, z]

))]}

where t
rz = (zn−r+2, . . . , zn). The value of the first determinant is , by induction, seen to

be equal to

cosh t+ e−t

(
w +

1

2
[z, z]

)
+ (|zn−r+2|

2 + . . .+ |zn|
2)e−t (r > 1),

while the second determinant vanishes for r > 1. Hence

〈ψτ
λ(nat)(en−r+1 ∧ . . . ∧ en)|(en−r+1 ∧ . . . ∧ en)〉 =(68)

=

∣∣∣∣ cosh t− e−t

(
w +

1

2
[z, z]

)∣∣∣∣
−2(n+1)λ [

cosh t− e−t

(
w +

1

2
[z, z]

)]−r

·

{
cosh t+ e−t

(
w +

1

2
[z, z]

)
+ (|zn−r+2|

2 + . . .+ |zn|
2)e−t

}

In case τn, we can just take r = n. And finally for σr (1 < r < n) we have:

〈ψτ
λ(nat)(e1 ∧ . . . ∧ er)|(e1 ∧ . . . ∧ er)〉 =(69)

∣∣∣∣ cosh t− e−t

(
w +

1

2
[z, z]

)∣∣∣∣
−2(n+1)λ [

cosh t− e−t

(
w +

1

2
[z, z]

)]−r

.

Now we have to integrate these expressions (65)-(70) times e−(µ+2ρ)t over n = n(z, w)

and t (−∞ < t <∞), where µ ∈ C is such that Φτ
µ,σ is positive definite. Here z ∈ Cn−2,

w ∈ iR. By making some successive changes of variables we reduce the initial expressions

to a combination of the following integrals:

F (α, β, γ, δ) =

∞∫

0

∞∫

−∞

∫

Cn−1

vα(1 + v2(1 + |z|2))2 + 4v4|w|2)−β |w|2γ |z|2δdvdwdz

= 2−2γ−3S2n−2Γ(n+ δ − 1)B

(
2γ + 1

2
, 2β −

2γ + 1

2

)

·
Γ(α2 + 1

2 − 2γ − n− δ)Γ(2β − α
2 − 1

2 )

Γ(2β − 2γ − 1)
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where Sn = (2π)[n/2]

(n−2)!! , we use here Lemma 8.10.15 from [15]. Finally, we have that the

spherical Fourier transform of (67) is equal to

p1(n, λ) ·
Γ((n+ 1)λ+ iν/2− ρ/2)Γ((n+ 1)λ− iν/2− ρ/2)

Γ(2(n+ 1)λ+ 1)
,(70)

where

p1(n, λ) = 22(n+1)λ−3S2n−2π
1
2
Γ(n− 1)Γ(2(n+ 1)λ+ 1

2 )

Γ(2(n+ 1)λ+ 2)

(
2(n+ 1)λ−

3

2

)
.

For (65) we have:

p2(n, λ) ·
Γ((n+ 1)λ+ iν/2− ρ/2)Γ((n+ 1)λ− iν/2− ρ/2)

Γ(2(n+ 1)λ+ 3)
,(71)

where

p2(n, λ) = 22(n+1)λ+n (2n− 3)

(2n)!!
πn− 1

2
Γ(n− 1)Γ(2(n+ 1)λ+ 3

2 )

Γ(2(n+ 1)λ+ 4)

·{−|ν|2((n+ 1)λ+ 1)(n+ 1)λ+Q(n, λ)}

with Q(n, λ) some polynomial in λ and n.

The generic case (τ = τr, r > 1) is more complicated. Namely, we have the following

expression for the Fourier transform of (70):

c
Γ((n1)λ+ iν/2− ρ/2)Γ((n+ 1)λ− iν/2− ρ/2)

Γ(2(n+ 1)λ− 1)
·

r∑

k=0

k∑

i=0

[i/2]∑

j=0

Ck
rC

i
kC

2j
i

·(−1)j
i−2j∏

α=1

(n− 1 + α)

j∏

β=1

(j − β +
1

2
)

r−j−1∏

γ=0

(2(n+ 1)λ+
3r − 1

2
+ γ)

·

∏r+k−i−1
r=0 ((n+ 1)λ− ρ/2 + iν/2 + r)

∏r−k−1
s=0 ((n+ 1)λ− ρ/2− iν/2 + s)

∏r−2j
t=0 (2(n+ 1)λ+ t− 1)

with

c =
22(n+1)λ+r−3S2n−2π

1
2Γ(2(n+ 1)λ+ 3r

2 − 1
2 )

Γ(2(n+ 1)λ+ 2r)
Γ(n− 1).

But this expression is not satisfactory. In this case we shall use the Cartan decomposi-

tion G = KA+K, the corresponding integral formula (see section 4.1) and the explicit

expressions for the scalar components of ψτ
λ(at) and the τ -spherical functions Φτ

λ(at).

Let us recall that by Schur’s Lemma any τj-radial function F is given by its scalar

components fσ such that

F (at) =
∑⊕

σ∈M̂(τj)

fσIdVσ .

Finally we have that the scalar components of ψτ
λ(at) are

ψr−1(t) = (cosh t)−2(n+1)λ−1,

ψr(t) = (cosh t)−2(n+1)λ−2.
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The scalar components of the τ -spherical functions Φτ
λ(at) are given by

φr−1(ν, t) = (cosh t)r+1

{
n

r
H(n−1,1+r)

ν (t)−
n− r

r
H(n,r)

ν (t)

}
,

φr(ν, t) = (cosh t)rH(n,r)
ν (t),

where H
(α,β)
ν (t) = 2F1(

α+β+1+iν
2 , α+β+1−iν

2 , α + 1,− sinh2 t), see [2], Theorem 4.13. In

fact, we slightly modified these formulæ because our representations τr differ from stan-

dard spinor representations by a some one-dimensional multiplicative factor, (see the

section 7 of [2] for more details).

Applying the following formula (when it is well defined) (it can be obtained applying

the results of [6], section 20.9)
∫ ∞

0

(1 + x)−λxn−1
2F1(a, b, n+ 1,−x)dx =(72)

Γ(n)Γ(λ + b− n)

Γ(λ+ b)
3F2(n+ 1− a, n, b;λ+ b, n+ 1; 1).

we obtain the following expressions for the spherical Fourier transform of (69) and (70):

• φ̂r−1(ν) =
n

2r
πnΓ((n+ 1)λ− ρ

2 + 1
2 + iν

2 )Γ((n+ 1)λ− ρ
2 + 1

2 − iν
2 )

Γ((n+ 1)λ− r
2 )Γ((n+ 1)λ+ r

2 + 1)

−πn n− r

2r

Γ((n+ 1)λ− ρ
2 + 1

2 − iν
2 )

Γ((n+ 1)λ+ ρ
2 + 1

2 − iν
2 )

·3F2

(
ρ

2
+

1

2
−
r

2
−
iν

2
, n,

ρ

2
+

1

2
+
r

2
−
iν

2
, (n+ 1)λ+

ρ

2
+

1

2
−
iν

2
, ρ+ 1, 1

)
,

• φ̂r(ν) =
1

2
πnΓ((n+ 1)λ− ρ

2 + 3
2 − iν

2 )

Γ((n+ 1)λ+ ρ
2 + 3

2 − iν
2 )

·3F2

(
ρ

2
+

1

2
−
r

2
−
iν

2
, ρ,

ρ

2
+

1

2
+
r

2
−
iν

2
, (n+ 1)λ+

ρ

2
+

3

2
−
iν

2
, ρ+ 1, 1

)
.

4.5. Decomposition of Berezin kernels of restrictions. We use the results obtained in

the previous section (61)-(70). Notice that n(w, z) ∈ H if and only if w = 0 and z ∈ Rn−2.

We assume that r 6= n
2 , then τr|SO(n) is irreducible and no discrete series enters in the

Plancherel formula (see (4.2) and [11]). Finally, we have:

• 〈Ψ̂1
λe1| e1〉(ν)

= 2(n+1)λ−2Γ((n+ 1)λ/2 + iν/2 + ρ′/2 + 1
2 )Γ((n+ 1)λ/2− iν/2− ρ′/2 + 1

2 )

Γ((n+ 1)λ+ 2)

·Γ((n− 1)/2)Sn−2(2((n+ 1)λ+ 1) + (n− 1)(n− 3)/2),

• 〈Ψ̂1
λen| en〉(ν)

= 2(n+1)λ−2Sn−2
Γ((n+ 1)λ/2 + iν/2− ρ′/2)Γ((n+ 1)λ/2− iν/2− ρ′/2)

Γ((n+ 1)λ+ 1)

·Γ((n− 1)/2)

(
((n+ 1)λ− n+ 1) +

(n+ 1)λ+ 1
2 + n2−1

4 − n− |ν|2

(n+ 1)λ+ 1)

)
,
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• 〈Ψ̂r
λe1 ∧ . . . ∧ er| e1 ∧ . . . ∧ er〉(ν)

= 2(n+1)λ+r−2Sn−2

Γ((n+ 1)λ2 + iν
2 + r

2 − ρ′

2 )Γ((n+ 1)λ2 − iν
2 + r

2 − ρ′

2 )

Γ((n+ 1)λ+ r)

·Γ((n− 1)/2),

• 〈Ψ̂r
λen−1+r ∧ . . . ∧ en| en−1+r ∧ . . . ∧ en〉(ν)

= 2(n+1)λ+r−3Sn−2

Γ((n+ 1)λ2 + iν
2 + r

2 − ρ′

2 − 1
2 )Γ((n+ 1)λ2 − iν

2 + r
2 − ρ′

2 − 1
2 )

Γ((n+ 1)λ+ r)

·Γ((n− 1)/2)

(
(n+ 1)λ+ r −

n

2
−

1

2
) + 2(n− 1)(r − 2)

)
.

Here ρ′ is the half sum of the positive roots of SOo(1, n), so ρ
′ = n−1

2 .
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