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Abstract. We study the regularity properties of functions that can be represented on a

positive Weyl chamber A+ by generalized Harish-Chandra expansions. We adopt the approach

of Heckman and Opdam by allowing arbitrary Weyl-group-invariant complex multiplicities. The

generalized Harish-Chandra expansions that we consider are associated with arbitrary parabolic

system Θ of roots and a root multiplicity function. They are given as sum over the Weyl group
of Θ of generalized hypergeometric functions. They are analytic on A+ and meromorphic in the

spectral parameter λ. We prove that they extend as WΘ-invariant holomorphic functions on a

tubular neighborhood of (WΘ · A+)0. The possible location of the λ-singularities is shown to
be the polar set of an explicit function naturally constructed from the fixed data. For reduced

root systems with even multiplicities we refine our result and show that the λ-singularities lie
on a specific finite family of affine hyperplanes. Finally, when all multiplicities are equal to 2, we
generalize the classical explicit formula for spherical functions on Riemannian symmetric spaces

with a complex structure.

Introduction. In this paper we study the regularity properties of certain functions

which are represented by generalized Harish-Chandra expansions. There are two impor-

tant special instances of these functions: (1) Harish-Chandra’s spherical functions on

Riemannian symmetric spaces of the noncompact type; (2) spherical functions on non-

compactly causal symmetric spaces.
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To introduce the notation and to motivate the general setting we are going to deal

with, let us start recalling the classical Harish-Chandra expansion for spherical functions

on Riemannian symmetric spaces of the noncompact type. General references are [Hel84]

and [GV88].

Let G/K be a Riemannian symmetric space of the noncompact type, with G a non-

compact connected semisimple Lie group with finite center and K a maximal compact

subgroup of G (One could in fact assume G of the Harish-Chandra class. See [GV88],

Chapter 2.) A complex-valued function f on G is called K-bi-invariant if f(k1xk2) = f(x)

for all x ∈ G and k1, k2 ∈ K. We will identify K-bi-invariant functions on G with func-

tions on G/K which are invariant by the left action of K. Let D(G/K) be the (com-

mutative) algebra of G-invariant differential operators on G/K. A spherical function is

a K-bi-invariant complex-valued C∞ function ϕ on G which is a joint eigenfunction of

all elements in D(G/K), normalized by the condition ϕ(e) = 1. Here e denotes the unit

element in G. Since the Laplace-Beltrami operator, which is elliptic, belongs to D(G/K),

all spherical functions are real analytic functions on G. The spherical functions are the

building blocks for the harmonic analysis of K-bi-invariant functions on G, that is ev-

ery K-bi-invariant L2 function on G can be expanded (in a suitable sense) in terms of

spherical functions.

In 1958 Harish-Chandra determined integral formulas for the spherical functions

[HC58]. Let g be the Lie algebra of G and k ⊂ g the Lie algebra of K. Then we have the

decomposition g = k ⊕ p into (+1)- and (−1)-eigenspaces of a Cartan involution θ. Let

a ⊂ p be a maximal abelian subspace and A = exp a the corresponding Cartan subgroup

of G. The inverse of the diffeomorphism exp : a → A is denoted by log. We denote by a∗

(respectively, a∗
C
) the set of real-valued (respectively, complex-valued) linear functionals

on a. Let ∆ be the set of (restricted) roots of (g, a) and W be the associated Weyl group.

We fix a choice ∆+ of positive roots in ∆ and consider the corresponding Iwasawa decom-

position G = KAN . Every x ∈ G can be written as x = k expH(x)n for unique H(x) ∈ a.

We denote the multiplicity of a root α ∈ ∆ by mα and we set ρ := 1/2
∑

α∈∆+ mαα.

Theorem 1 (Harish-Chandra). For λ ∈ a∗
C
let ϕλ be the function on G defined by

ϕλ(x) :=

∫

K

e(λ−ρ)(H(xk)) dk, x ∈ G,

where dk is the normalized Haar measure on K. Then {ϕλ : λ ∈ a∗
C
} exhausts the set of

spherical functions on G. Moreover ϕλ = ϕµ if and only if µ = wλ for some w ∈ W .

Because of the polar decomposition G = KAK, every K-bi-invariant function is

uniquely determined by its W -invariant restriction to A. We can therefore consider the

spherical functions as W -invariant functions on A. Their regularity properties are sum-

marized in the following theorem.

Theorem 2 (Harish-Chandra). ϕλ(a) is a real-analytic W -invariant function in a ∈
A and an entire W -invariant function in λ ∈ a∗

C
.

Theorem 2 is essential in the study of the spherical Fourier transform, which is defined

(for sufficiently regular K-bi-invariant functions f on G) by integration against spherical

functions: Ff(λ) :=
∫
G
f(x)ϕλ(x) dx for λ ∈ a∗

C
.
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The spherical functions are joint eigenfunctions of D(G/K), in particular of the

Laplace-Beltrami operator ω. Hence they satisfy the differential equation corresponding

to the radial part δ(ω) of ω on A+:

δ(ω)ϕλ = (〈λ, λ〉 − 〈ρ, ρ〉)ϕλ. (1)

Here 〈·, ·〉 denotes the bilinear form on a∗
C
induced by the Killing form of g.

Let H̃α denote the unique element in a satisfying α(H) = 〈H, H̃α〉 for all H ∈ a.

We fix an orthonormal basis {Hi}ri=1 of a. Elements of a will be regarded as differential

operators on A. Then equation (1) can be explicitly rewritten by means of the formula

δ(ω) =

r∑

i=1

H2
i +

∑

α∈∆+

mα
1 + e−2α

1− e−2α
H̃α.

A multidimensional variant of the classical method of Frobenius for determining local

solutions of differential equations with regular singularities led Harish-Chandra to look

for solutions of (1) of the form

Φλ(m; a) = e(λ−ρ)(log a)
∑

µ∈Λ

Γµ(m;λ)e−µ(log a), a ∈ A+. (2)

Here Λ := {∑l
j=1 njαj : nj integer ≥ 0} is the positive semigroup generated by the

system Π := {α1, . . . , αl} of simple roots in ∆+. Moreover m := {mα : α ∈ ∆} is the set

of multiplicities, and the coefficients Γµ(m;λ) are rational functions of λ ∈ a∗
C
obtained

by means of the recurrence relations

Γ0(m;λ) = 1,

〈µ, µ− 2λ〉Γµ(m;λ) = 2
∑

α∈∆+

mα

∑

k∈N

µ−2kα∈Λ

Γµ−2kα(m;λ)〈µ+ ρ− 2kα− λ, α〉,

for µ ∈ Λ \ {0}.
Theorem 3 (Harish-Chandra). 1. There is a set S (the union of a locally finite

family of affine hyperplanes in a∗
C
) so that for every λ ∈ a∗

C
\ S the series defining

Φλ(m; a) converges to a real analytic function on A+.

2. For every fixed a ∈ A+, the function Φλ(m; a) is meromorphic in λ ∈ a∗
C

with

singular set contained in S.
3. The set S in 1 can be chosen big enough so that for every fixed λ ∈ a∗

C
\ S, the

functions {Φwλ(m; a) : w ∈ W} form a basis for the solution space of (1). Moreover,

there is a meromorphic function c on a∗
C
so that for all λ ∈ a∗

C
\ S the spherical

function ϕλ admits the expansion

ϕλ(a) =
∑

w∈W

c(m;wλ)Φwλ(m; a), a ∈ A+. (3)

The function c occurring in (3) is Harish-Chandra’s c-function. An explicit formula for

c as product of ratios of gamma functions has been proven by Gindikin and Karpelevic

(cf. e.g. [GV88], Theorem 4.7.5, or [Hel84], Chapter IV, Theorem 6.14. See also part 1 of

Example 7 in Section 1). The set S in Theorem 3, part 3, is given by
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S =
⋃

µ∈Λ\{0}
w∈W

{λ ∈ a∗C : 2〈µ, λ〉 = 〈µ, µ〉}

∪
⋃

µ∈Λ\{0}
w,v∈W

{λ ∈ a∗C : wλ− vλ = µ} ∪
⋃

α∈∆

{λ ∈ a∗C : 〈λ, α〉 = 0}

(cf. e.g. [GV88], Theorem 4.4.10 and (4.4.8)). We will say that λ is generic if λ ∈ a∗
C
\ S.

Example 4. Let G = SL(2,R) and K = SO(2). Then G/K can be identified with the

upper half-plane H = {z = x + iy ∈ C : Im z > 0} endowed with the hyperbolic metric

y−2(dx2 + dy2). Let L = 1
2

(
1
0

0
−1

)
. The diagonal matrices at = exp(tL) (t ∈ R) form a

Cartan subgroup A and the root system of (g, a = RL) is ∆ = {±α} with α(L) = 1. The

differential equation (1) is

d2ϕ

dt2
+ coth t

dϕ

dt
−
(
λ2 − 1

4

)
ϕ = 0 (4)

and becomes a hypergeometric differential equation with the substitution z = − sinh2 t.

The spherical functions are therefore the hypergeometric functions

ϕλ(at) = 2F1

(
1/4 + λ/2, 1/4− λ/2; 1;− sinh2 t

)
.

They admit the integral representation ϕλ(at) = 1/2π
∫ 2π

0
(cosh t + sinh t cos θ)λ−1/2 dθ.

For λ ∈ C \ {1, 2, 3, . . .} the basic solution of (4) with exponent λ− 1/2 at ∞ is

Φλ(at) = (2 sinh t)λ−1/2
2F1

(
1/4− λ/2, 1/4− λ/2; 1− λ;−1/ sinh2 t

)

= (2 cosh t)λ−1/2
2F1

(
1/4− λ/2, 3/4− λ/2; 1− λ; 1/ cosh2 t

)
, t ∈ (0,∞).

The Weyl group is {±1} acting on a∗
C

≡ C by multiplication, and for λ ∈ C \ Z the

Harish-Chandra expansion is given by the classical transit relation (cf. [Er+53], 2.9 (34))

1√
π

ϕλ(at) =
Γ(λ)

Γ(λ+ 1/2)
Φλ(at) +

Γ(−λ)

Γ(−λ+ 1/2)
Φ−λ(at).

The multiplicities m = {mα : α ∈ ∆} are nonnegative integers fixed by the geometry

of G/K. First Koornwinder for the rank-one case and then Heckman and Opdam for

the general higher-rank case observed that the differential equation (1) makes perfectly

sense without the geometrical restrictions on m. They considered therefore the following

general setting.

Let a be an l-dimensional real Euclidean vector space with inner product 〈·, ·〉. For
every non-zero α ∈ a∗, let H̃α ∈ a be determined by α(H) = 〈H, H̃α〉 for all H ∈ a,

and set Hα := 2H̃α/〈H̃α, H̃α〉. Let ∆ be a root system in a∗ and ∆+ a choice of positive

roots in ∆. We indicate with a+ the open Weyl chamber in a on which all elements of

∆+ are strictly positive. We denote by W the Weyl group of ∆ and by Π = {α1, . . . , αl}
the set of simple roots associated with ∆+. The complexification aC := a ⊗R C of a can

be viewed as the Lie algebra of the complex torus H := aC/2πiZ{Hα : α ∈ ∆}. The real

form A := a of H is an abelian subgroup of H with Lie algebra a. We write exp : aC → H

for the exponential map, with multi-valued inverse log, and set A+ := exp a+.
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A multiplicity function is a W -invariant C-valued function m on ∆: If we set mα :=

m(α), then mwα = mα for all w ∈ W and α ∈ ∆. 1

Equation (1) can always be associated with the data (a,∆,m) and the basic solutions

Φλ(m; a) can be defined by means of formula (2). In general these functions are not

associated to symmetric spaces anymore. They are singular on the walls of A+, so a

priori the weighted average (3) is only well-defined on A+. Using monodromy arguments,

Heckman and Opdam proved the following fundamental result (cf. e.g. Theorem 4.4.2 in

[HS94]).

Theorem 5 (Heckman and Opdam). For a fixed multiplicity function m there is a

W -invariant tubular neighborhood U of A in H so that the function

ϕλ(m; a) :=
∑

w∈W

c(m;wλ)Φwλ(m; a), a ∈ A+,

extends to a W -invariant holomorphic function of (λ, a) ∈ a∗
C
× U .

Up to a normalizing constant, the functions ϕλ(m; a) are the so-called hypergeometric

functions associated with the root system ∆ (or Heckman-Opdam’s hypergeometric func-

tions). They are in fact common eigenfunctions of all differential operators in a certain

commutative algebra which is the analogue of D(G/K) in this non-geometrical context.

They are therefore the spherical functions for the data (a,∆,m), and reduce to Harish-

Chandra’s spherical functions when m is the multiplicity function corresponding to a

Riemannian symmetric space of the noncompact type.

One should remark that the extension to arbitrary complex multiplicities m is not

just a mere generalization. Heckman-Opdam’s hypergeometric functions turn out to be

meromorphically dependent on m. By studying the ϕλ(m; a) in suitable ranges of m

and then using analytical continuation, Heckman and Opdam could deduce very strong

properties for the ϕλ(m; a) which cannot be proven using standard methods.

Harish-Chandra-type expansions occur also for spherical functions on noncompactly

causal symmetric spaces G/H . Here G is (as before) a connected noncompact Lie group.

For simplicity of exposition, we also assume that G/H is irreducible. H is an open subset

of the set Gσ of fixed point in G of a nontrivial involution σ 6= θ which commutes

with the Cartan involution θ. Hence G/H is a non-Riemannian symmetric space of the

noncompact type. On the Lie algebra level, σ and θ induce the decompositions into (+1)-

and (−1)-eigenspaces g = h ⊕ q = k ⊕ p. Hence h is the Lie algebra of H and k the Lie

algebra of a maximal compact subgroup K of G. The symmetric space G/H is said to be

noncompactly causal (briefly, NCC) if p ∩ q contains a nontrivial Ad(H ∩ K)-invariant

vector Y 0. In this case Y 0 is uniquely determined up to constant multiples. We select

a maximal abelian subspace a ⊂ p ∩ q containing Y 0. Then a is automatically also

maximal abelian in p. Moreover the set ∆ of (restricted) roots of (g, a) decomposes as

∆ = ∆+ ∪ ∆0 ∪ ∆−, where ∆+ (respectively, ∆0 and ∆−) is the set of roots α ∈ ∆

satisfying α(Y 0) > 0 (respectively, α(Y 0) = 0 and α(Y 0) < 0). The set ∆0 is itself

1We have adopted the notation m for the multiplicities used in the theory of symmetric
spaces. To recover Heckman-Opdam’s notation k one needs to replace 2α with α and m2α

with 2kα.
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a root system with Weyl group W0 (⊂ W ). As a set of positive roots in ∆ we select

∆+ := ∆+
0 ∪∆+, where ∆

+
0 is a choice of positive roots in ∆0. It is important to remark

that for NCC symmetric spaces the root system ∆ is reduced, that is, 2α 6∈ ∆ for all

α ∈ ∆.

The causal structure on G/H ensures the existence of a maximal regular Ad(H)-

invariant closed convex cone C in q containing Y 0. Here regular means that C ∩ (−C) =

{0} and C−C = q. The set S := H(expC) is a maximal H-bi-invariant subsemigroup in

G. The theory of spherical functions is developed on the interior S0 of S. We recall that

S0 = H(S0∩A)H , where S0∩A is W0-invariant and of the form S0∩A = (W0 ·A+)0. As

before, A+ denotes the positive Weyl chamber in A = exp a corresponding to the choice

of ∆+ as positive roots.

Similarly to the Riemannian case, the spherical functions on NCC symmetric spaces

are defined as common eigenfunctions of the (commutative) algebra D(G/H) of invariant

differential operators on G/H . They are parameterized by λ ∈ a∗
C
(modulo the small

Weyl group W0), and they also admit an integral formula for “sufficiently negative”

values of the parameter λ. We refer to [HÓ97] and [Óla97] for more details. Generalized

Harish-Chandra expansions for the spherical functions ϕλ on G/H have been determined

by the first author by means of Riemannian duality.

Theorem 6 (Ólafsson). Let Φλ(m; a) be the basic solution (2) on A+ of the differ-

ential equation (1) for the Riemannian dual space G/K of G/H. Let c0(m;λ) denote

Harish-Chandra’s c-function corresponding to the root system ∆0. Then there is a W0-

invariant meromorphic function cΩ(m;λ) on a∗
C
so that for generic λ ∈ a∗

C
the spherical

function ϕλ admits the Harish-Chandra-type expansion

ϕλ(a) = cΩ(m;λ)
∑

w∈W0

c0(m;wλ)Φwλ(m; a), a ∈ A+. (5)

An explicit product formula for the function cΩ has been proven by B. Krötz and the

first author [KÓ99] (see also Example 7, part 2, below). Adapting the monodromy argu-

ments of Heckman and Opdam, Ólafsson proved that the right-hand side of (5) extends

to a W0-invariant real analytic functions of a ∈ S0 ∩A and a W0-invariant meromorphic

functions of λ ∈ a∗
C
. The extension of formula (5) to the Heckman-Opdam’s setting of

arbitrary multiplicities has been done by Unterberger [Unt99]. However, the location of

the λ-singularities of the spherical functions has remained (even in the geometric setting

of NCC symmetric spaces) an open problem until [ÓP00].

1. Generalized Harish-Chandra expansions. We work in the general setting of

Heckman and Opdam. Let Π = {α1, . . . , αl} be the basis of simple roots in ∆+ and

consider any subset Θ ⊂ Π. Let WΘ be the subgroup of W generated by the reflections

wi := wαi
(αi ∈ Θ). We write 〈Θ〉 for the set of elements in ∆ which can be written as

linear combinations of elements of Θ. We set

〈Θ〉± := 〈Θ〉 ∩∆± and 〈Θ〉++ := 〈Θ〉 ∩∆++

for the positive, respectively positive and indivisible roots in 〈Θ〉. Then the following
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inclusions are easily checked:

WΘ(∆
± \ 〈Θ〉±) ⊂ ∆± \ 〈Θ〉± and WΘ(∆

++ \ 〈Θ〉++) ⊂ ∆++ \ 〈Θ〉++.

For a fixed multiplicity function m, we define the following c-functions associated with

〈Θ〉:

c+(Θ,m;λ) :=
∏

α∈〈Θ〉++

2−(λ(Hα)+mα)/2Γ(λ(Hα)
2 )

Γ(λ(Hα)
4 + mα

4 + 1
2 )Γ(

λ(Hα)
4 + mα

4 + m2α

2 )
,

c−(Θ,m;λ) :=
∏

α∈∆++\〈Θ〉++

Γ(−λ(Hα)
4 − mα

4 + 1
2 )Γ(−

λ(Hα)
4 − mα

4 − m2α

2 + 1)

2(λ(Hα)+mα)/2Γ(−λ(Hα)
2 + 1)

.

When ∆ is reduced the duplication formula
√
π Γ(2z) = 22z−1Γ(z)Γ(z + 1/2) gives

c+(Θ,m;λ) :=
∏

α∈〈Θ〉++

Γ(λ(Hα)
2 )

2
√
π Γ(λ(Hα)

2 + mα

2 )
,

c−(Θ,m;λ) :=
∏

α∈∆++\〈Θ〉++

√
π Γ(−λ(Hα)

2 − mα

2 + 1)

Γ(−λ(Hα)
2 + 1)

Recall the definition of generic λ ∈ a∗
C
given after Theorem 3. The generalized Harish-

Chandra expansion is the function on A+ defined for generic λ ∈ a∗
C
by

ϕλ(Θ,m; a) := c−(Θ,m;λ)
∑

w∈WΘ

c+(Θ,m;wλ)Φwλ(m; a), a ∈ A+. (6)

Example 7. 1. When Θ = Π, then c+(Π,m;λ) is a constant multiple of Harish-

Chandra’s c-function for the data (a,∆,m). Hence ϕλ(Π,m; a) reduces (up to a

multiplicative constant) to Heckman-Opdam’s hypergeometric function. In par-

ticular, for geometric multiplicities, we recover Harish-Chandra’s spherical func-

tions.

2. Suppose ∆ is the restricted root system of a NCC symmetric space (in particular

∆ is reduced). Let Π0 the basis of simple roots in ∆+
0 and set Θ := Π0. Then

〈Θ〉 = ∆0, WΘ = W0, and (up to constant multiples) c+(Θ,m;λ) = c0(m;λ) and

c−(Θ,m;λ) = cΩ(m;λ). In this case the generalized Harish-Chandra expansion re-

duces to Unterberger’s for arbitrary multiplicities, and to the spherical functions

on NCC symmetric spaces for geometric multiplicities.

3. When Θ = ∅, then ϕλ(∅,m; a) = c−(∅,m;λ)Φλ(m; a).

Our aim is to study the regularity properties of ϕλ(Θ,m; a). One can immediately ob-

serve that ϕλ(Θ,m; a) is a WΘ-invariant function of λ ∈ a∗
C
because WΘ(∆

++ \〈Θ〉++) =

∆++ \ 〈Θ〉++. The possible λ-singularities are described by the singularities of the nu-

merator of the function c−(Θ,m;λ):

n−(Θ,m;λ) :=
∏

α∈∆++\〈Θ〉++

Γ

(
− λ(Hα)

4
− mα

4
+

1

2

)
Γ

(
− λ(Hα)

4
− mα

4
− m2α

2
+ 1

)
.
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We also define the denominator d−(Θ,m;λ) of c−(Θ,m;λ) by

d−(Θ,m;λ) :=
∏

α∈∆++\〈Θ〉++

2(λ(Hα)+mα)/2Γ
(
− λ(Hα)

2
+ 1

)

(we set n−(Θ,m;λ) = d−(Θ,m;λ) ≡ 1 if ∆ = 〈Θ〉).
Theorem 8. For a fixed multiplicity function m, there is a WΘ-invariant tubular

neighborhood U of [WΘ(A+)] 0 in H so that the function

ϕλ(Θ,m; a)

n−(Θ,m;λ)
=

1

d−(Θ,m;λ)

∑

w∈WΘ

c+(Θ,m;wλ)Φwλ(m; a)

extends as a WΘ-invariant holomorphic function of (λ, a) ∈ a∗
C
× U .

Sketch of proof (cf. [ÓP00]). The proof relies heavily on the Heckman-Opdam theory.

The first fundamental result we need is Opdam’s description of the possible singularities

of Φλ(m; a) (cf. [Opd98], Lemma 6.5): For every fixed a ∈ A+ the function Φλ(m; a) is

meromorphic in λ ∈ a∗
C
with at most simple poles located along hyperplanes of the form

Hα,n := {λ ∈ a∗C : λ(Hα)/2 = n} (7)

where α ∈ ∆++ and n ∈ N. This proves the Theorem for Θ = ∅, so we can assume

Θ 6= ∅. Knowing the singularities of the Φλ(m; a), we can use the explicit formula for the

functions c to count the possible singularities occurring in the Harish-Chandra expansions.

It follows that the possible singularities are: (a) poles of n−(Θ,m;λ); (b) at most simple

poles along hyperplanes Hα,n with α ∈ 〈Θ〉++ and n ∈ Z. We claim that all singularities

in (b) are removable. Observe first that intersections of hyperplanes Hα,n for α ∈ 〈Θ〉
with hyperplanes Hα,n for α ∈ ∆ \ 〈Θ〉 are varieties of codimension ≥ 2. Hence Hartogs’

theorem guarantees that the singularities in (b) are removable exactly when so are those

of ∑

w∈WΘ

c+(Π,m;wλ)Φwλ(m; a), a ∈ A+.

If Θ = Π then this is the function considered by Heckman and Opdam. Applying their

argument to the smaller group WΘ, we can cancel the singularities along the hyperplanes

associated to each element in 〈Θ〉, that is, the singularities listed in (b). The extension

in the variable a is obtained by monodromy arguments.

The singularities of the the numerator n−(Θ,m;λ) are poles located along the hyper-

planes Hα,−mα/2+(2n−1) and Hα,−mα/2−m2α+2n for α ∈ ∆++ \ 〈Θ〉++ and n ∈ N. The

poles are simple when m2α is not an odd integer. In the symmetric case, it is known

that if 2α is a root, then m2α is odd. In this case the poles of n−(Θ,m; a) are simple

exactly when 2α is not a root for all α ∈ ∆++ \ 〈Θ〉++. This occurs when ∆ is reduced,

for instance in the case of Harish-Chandra expansions of spherical functions on NCC

symmetric spaces.

Corollary 9. If ∆ is a reduced system of roots, then

n−(Θ,m;λ) =
∏

α∈∆+\〈Θ〉+

√
π 2λ(Hα)/2+mα/2+1 Γ

(
−λ(Hα)

2
− mα

2
+ 1

)
.
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The singularities of ϕλ(Θ,m; a) are at most simple poles located along the polar set of

n−(Θ,m;λ).

In the case Θ = Π our theorem reduces to the original Theorem 5 of Heckman and

Opdam. If Θ ( Π, then the set of singularities described by the functions n−(Θ,m;λ) is

an infinite locally finite family of hyperplanes in a∗
C
. It gives exactly all singularities of the

Harish-Chandra expansion for instance in the case of the NCC space SL(2,R)/ SO(1, 1).

In fact, in this case (as well as for general rank-one NCC symmetric spaces) the singular-

ities can be checked directly from the known explicit formula for the spherical functions.

For at ∈ A+ ≡ (0,∞) the spherical functions on SL(2,R)/ SO(1, 1) are given as hyperge-

ometric functions

ϕλ(at) = nΩ(λ)
(2 cosh t)λ−1/2

Γ(1 − λ)
2F1

(
1/4− λ/2, 3/4− λ/2; 1− λ; 1/ cosh2 t

)

with

nΩ(λ) :=
√
πΓ(−λ+ 1/2).

On the other hand one can also see for rank-one NCC symmetric spaces with even multi-

plicities (or in the complex case) that the singularities of the spherical functions lie on a

finite family of hyperplanes (the “beginning” of the two families of singular hyperplanes

are the same). In the following section we will prove that the finiteness of the singular

hyperplanes is a general property of generalized Harish-Chandra expansions associated

with even multiplicities.

As already remarked, the choice of a non-geometric setting in which the multiplicities

are allowed to assume arbitrary complex values is the natural context for the application of

Heckman-Opdam’s methods. There is also another reason to keep our setting at this level

of generality. We have seen that spherical functions on Riemannian and NCC symmetric

spaces possess Harish-Chandra expansions which are particular instances of those we

considered. Both classes of spaces are Kε-spaces in the sense of Oshima and Sekiguchi

[OS80]: the Riemannian symmetric spaces correspond to a trivial signature ε, and the

NCC symmetric spaces to a signature which is trivial on Π0 and equal to −1 on the

simple root in ∆+ (the latter are the spaces KεI according to Kaneyuki). There are

many other Kε-spaces which are neither Riemannian nor NCC. On these spaces Oshima

and Sekiguchi have made the first steps for a theory of spherical functions. It would be

interesting to see if the choice of different subgroups WΘ of W could correspond to the

specification of Harish-Chandra type expansions on different Kε-spaces.

2. Even multiplicities. In this section we restrict our analysis to the case of re-

duced root systems ∆ with an even multiplicity function (that is, all root multiplicities

are even positive integers). In the context of symmetric spaces, this condition singles

out spaces G/K with the property that all Cartan subalgebras in the Lie algebra g

of G are conjugate under the adjoint group of g (cf. [Hel78], p. 429). According to

the classification, the irreducible Riemannian symmetric spaces with even multiplici-

ties are SO0(2n+ 1, 1)/SO(2n+ 1), SU∗(2n)/Sp(n), E6(−26)/F4(−52) and the irreducible

spaces of the form GC/U where U is a compact real form of GC. All the Kǫ-spaces

of Oshima-Sekiguchi [OS80] associated with these Riemannian symmetric spaces are
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further examples of symmetric spaces with even multiplicities. An interesting special

case consists of spaces with a noncompactly causal structure. Up to coverings, the irre-

ducible NCC spaces with even multiplicities are (cf. [AÓS00]) SO0(2n+1, 1)/SO0(2n, 1),

SU∗(2(p+q))/Sp(p, q), E6(−26)/F4(−20) and the irreducible spaces GC/G where G is Her-

mitian. We refer to [AÓS00] for additional details on NCC spaces with even multiplicities,

their spherical functions and applications of the spherical harmonic analysis on them.

The key tool for studying generalized Harish-Chandra expansions with even multi-

plicities is Opdam’s shift operator [Opd88]. See also [HS94], Section 3.1.

Consider the Weyl denominator δ defined on H by

δ(a) :=
∏

α∈∆+

sinhα(log a) =
∑

w∈W

det(w)ewρ(log a). (8)

Set Hreg := {h ∈ H : δ(h) 6= 0}, and let O(Hreg) denote the ring of holomorphic func-

tions on Hreg. Shift operators are certain differential operators on H with coefficients in

O(Hreg) which depend polynomially on the multiplicities. The adjective “shift” reflects

their property of mapping (for generic λ ∈ a∗
C
) the Harish-Chandra series Φλ(m; a) cor-

responding to the given multiplicity m into η(m;λ)Φλ(m+ l; a). Here Φλ(m+ l; a) is the

Harish-Chandra series with multiplicity shifted by an even multiplicity l and η(m;λ) is

a rational function of m and λ.

Let m be a fixed positive even multiplicity. Since Φλ(0; a) = eλ(log a), there exists a

shift operator D(m) so that for all a ∈ A+ and all generic λ ∈ a∗
C

D(m)eλ(log a) = [c+(Π,m;−λ)]−1Φλ(m; a) (9)

(cf. Corollary 3.4.4 in [HS94]). Let V be a tubular neighborhood of A in H for which the

function (λ, a) 7→ eλ(log a) is single-valued and holomorphic on a∗
C
× V . Setting V reg :=

V ∩Hreg, we conclude that (λ, a) 7→ D(m)eλ(log a) is holomorphic in a∗
C
× V reg.

Equality (9) will allow us to sharpen the result in Theorem 8 by showing that the

λ-singularities of generalized Harish-Chandra expansions corresponding to a reduced root

system with an even multiplicity function are located on a specific finite union of affine

hyperplanes.

Let us first make a simple observation. Consider the following functions depending on

α ∈ ∆:

cα+(m;λ) :=
Γ(λ(Hα)

2 )

Γ(λ(Hα)
2 + mα

2 )
,

cα−(m;λ) :=
Γ(−λ(Hα)

2 − mα

2 + 1)

Γ(−λ(Hα)
2 + 1)

.

Since mα is an even positive integer, the functional equation Γ(z + 1) = zΓ(z) implies

the equalities

cα−(m;λ) cα+(m;−λ) = (−1)mα/2 cα+(m;λ) cα+(m;−λ)

=

[
λ(Hα)

2

mα/2−1∏

j=−mα/2+1

(
λ(Hα)

2
− j

)]−1

. (10)
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Theorem 10. Let m be an even multiplicity function on a reduced root system ∆.

Define for λ ∈ a∗
C

e−(Θ,m;λ) :=
∏

α∈∆+\〈Θ〉+

mα/2−1∏

j=−mα/2+1

(
λ(Hα)

2
− j

)
. (11)

Then there is a WΘ-invariant tubular neighborhood U0 of [WΘ(A+)] 0 in H so that the

function

e−(Θ,m;λ) ϕλ(Θ,m; a)

extends as a WΘ-invariant holomorphic function of (λ, a) ∈ a∗
C
× U0.

Proof. Substitution of (9) and (10) in (6) gives for all generic λ ∈ a∗
C
, a ∈ A+, and for

some constant k

ϕλ(Θ,m; a) = k
[ ∏

α∈∆+\〈Θ〉+

cα−(m;λ)cα+(m;−λ)
]

×
∑

w∈WΘ

[ ∏

α∈〈Θ〉+

cα+(m;wλ)cα+(m;−wλ)
]
D(m)ewλ(log a)

= k(−1)

∑
α∈〈Θ〉+

ma/2
∏

α∈∆+\〈Θ〉+

[
λ(Hα)

2

mα/2−1∏

j=−mα/2+1

(
λ(Hα)

2
− j

)]−1

×
∑

w∈WΘ

∏

α∈〈Θ〉+

[
λ(Hw−1α)

2

mα/2−1∏

j=−mα/2+1

(
λ(Hw−1α)

2
− j

)]−1

D(m)ewλ(log a). (12)

Recall the notation Hα,n from (7). The right-hand side of (12) is holomorphic in a ∈ V reg

and meromorphic in λ ∈ a∗
C
with possible singularities located along

[ ⋃

α∈∆+\〈Θ〉+

mα/2−1⋃

j=−mα/2+1

Hα,j

]
∪
[ ⋃

w∈WΘ

⋃

α∈〈Θ〉+

mα/2−1⋃

j=−mα/2+1

Hw−1α,j

]
.

According to Theorem 8, the left-hand side of (12) is holomorphic in a ∈ U and mero-

morphic in λ ∈ a∗
C
with at most simple poles located along

⋃

α∈∆+\〈Θ〉+

∞⋃

j=−mα/2+1

Hα,j .

We conclude that for every fixed a ∈ U ∩V reg the generalized Harish-Chandra expansion

ϕλ(Θ,m; a) has at most simple poles located along

⋃

α∈∆+\〈Θ〉+

mα/2−1⋃

j=−mα/2+1

Hα,j .

The result extends to all a ∈ U0 := U ∩ V by Lemma 2.2.11 in [Hör66].

As an immediate corollary, we deduce the regularity properties of spherical functions

on NCC spaces with even multiplicities.
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Corollary 11. Let ϕλ (λ ∈ a∗
C
) denote the meromorphically continued spherical

functions on a NCC symmetric space G/H with even multiplicities. Define for λ ∈ a∗
C

eΩ(m;λ) :=
∏

α∈∆+

mα/2−1∏

j=−mα/2+1

(
λ(Hα)

2
− j

)
. (13)

Then there is a W0-invariant tubular neighborhood U0 of S0 ∩ A in the complexification

of A so that the function eΩ(m;λ) ϕλ(a) extends as a W0-invariant holomorphic function

of (λ, a) ∈ a∗
C
× U0.

In the geometric situation, the case of a symmetric space with all multiplicities equal

to 2 plays a special role. It occurs precisely when the group G has a complex structure.

The spherical harmonic analysis on Riemannian and NCC spaces with complex G is par-

ticularly simplified by explicit formulas for the spherical functions. We now extend these

formulas to generalized Harish-Chandra expansions. Our argument is an easy modifica-

tion of the procedure used in the Riemannian case (cf. [Hel84], p. 432). The formula also

allows us to give an independent proof of Theorem 10 where all multiplicities are 2.

Let ϕλ(Θ, 2; a) denote the generalized Harish-Chandra expansion associated with the

subset Θ ⊂ Π of simple roots with mα = 2 for all α ∈ ∆. Since Φλ(2; a) = δ(a)−1eλ(log a),

we have

δ(a)ϕλ(Θ, 2; a) = c−(Θ, 2;λ)
∑

w∈WΘ

c+(Θ, 2;wλ) ewλ(log a), a ∈ A+. (14)

Equation (14) extends by analyticity to a tubular neighborhood U of A in H .

The function c−(Θ, 2;λ) is WΘ-invariant because WΘ(∆
+ \ 〈Θ〉+) = ∆+ \ 〈Θ〉+.

Furthermore, replacing in (14) the variable a ∈ A with wa for w ∈ WΘ, we obtain

c+(Θ, 2;wλ) = det(w)c+(Θ, 2;λ) for all λ ∈ a∗
C
and w ∈ WΘ.

The assumption mα = 2 for all α ∈ ∆ yields for all a ∈ U and λ ∈ a∗
C

δ(a)ϕλ(Θ, 2; a) = c−(Θ, 2;λ)c+(Θ, 2;λ)
∑

w∈WΘ

det(w) ewλ(log a), (15)

with

c+(Θ, 2;λ) = k1
∏

α∈〈Θ〉+

1

λ(Hα)
and c−(Θ, 2;λ) = k2

∏

α∈∆+\〈Θ〉+

1

λ(Hα)

for some constants k1 and k2. Besides we consider the factorization

δ(a) = δ+(Θ; a)δ−(Θ; a) (16)

with

δ+(Θ; a) :=
∏

α∈〈Θ〉+

sinhα(log a) and δ−(Θ; a) :=
∏

α∈∆+\〈Θ〉+

sinhα(log a).

Theorem 12. Let ∆ be a reduced root system in a with multiplicities mα = 2 for all

α ∈ ∆. Then the generalized Harish-Chandra expansions can be written as

ϕλ(Θ, 2; a) =
c−(Θ, 2;λ)

δ−(Θ; a)
ϕ0
λ(Θ, 2; a), (17)
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where

ϕ0
λ(Θ, 2; a) :=

c+(Θ, 2;λ)

δ+(Θ; a)

∑

w∈WΘ

det(w) ewλ(log a) (18)

is the generalized Harish-Chandra expansion associated with Θ as set of simple roots and

multiplicities mα = 2 for all α ∈ 〈Θ〉. Moreover, there is a tubular neighborhood U0 of A

in H on which

ϕ0
λ(Θ, 2; a) and (

∏

α∈∆+\〈Θ〉+

λ(Hα))δ−(Θ; a) ϕλ(Θ, 2; a)

extend as WΘ-invariant holomorphic functions of (λ, a) ∈ a∗
C
× U0.

Proof. In view of (15)–(17) it suffices to prove the statement on the holomorphy of

ϕ0
λ(Θ, 2; a). Because of (18), the possible λ-sigularities of the function ϕ0

λ(Θ, 2; a) are

at most simple poles located along the hyperplanes Hα,0 with α ∈ 〈Θ〉+, but these

singularities are in fact removable by the WΘ-invariance in λ. Similarly, WΘ-invariance in

a proves that the possible simple poles located on the hyperplanes {h ∈ H : α(log h) = 0}
for α ∈ 〈Θ〉+ are also removable.

In the case of a Riemannian symmetric space G/K with G complex (i.e. Θ = Π),

formula (17) reduces to the classical formula (23) in [Hel84], p. 432. For a NCC symmetric

space G/H with G complex, (17) gives also the relation between spherical functions on

G/H and spherical functions on the Riemannian symmetric space Gθσ/(K ∩H).

References
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[HÓ97] J. Hilgert and G. Ólafsson. Causal Symmetric Spaces. Geometry and Harmonic Anal-

ysis, Academic Press, 1997.
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