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Abstract. Riesz products have been in use for constructing measures for a long time. Some-

times only a subset of the thus produced measures satisfy the desired properties. Here two such

cases will be examined. The first pertains to the uniform integrability of partial sums and consists

of examining the known three instances of Riesz-like products generating such measures.

The second—and more substantial part—investigates to what extent the Fourier–Stieltjes

transform of a Riesz product defines a Hankel–Littlewood multiplier on the space L(ℓ2(N)) of

operators.

Controlling partial sums for Riesz products. It has long been known that any

formal Fourier series ν ∼ ∑ ckeikθ with the property that the partial sums sNν =
∑N
−N ckek are uniformly bounded in L1-norm, must in fact be the Fourier–Stieltjes series

of a measure ν ∈ M0(T). For convenience the characters ek are defined by ek(θ) = eikθ.

The algebra M0(T) consists of all measures in the measure algebra M(T), whose Fourier

coefficients vanish at infinity. Let henceforth Mb denote the vector space of all measures

ν with supN ‖sNν‖1 finite. Clearly every ν ∈Mb is a continuous measure.

The above result was achieved by Helson [H] and settled a conjecture by Steinhaus.

The first to construct a singular measure in Mb was Weiss [W]. Next, Katznelson [K]

developed a variant with the added touch that all partial sums be positive. Later on also

Brown and Hewitt [Br-H] have given a general construction, producing singular measures

with positive partial sums and prescribed decay of Fourier coefficients. As known to

the present author, no further publication addresses the construction of measures with

L1-bounded partial sums.

It is the intent of this paper to display the fact that the above three papers produce

measures in the radical RadL1. More precisely the result is as follows.

Synopsis. The singular measures known in the literature to belong to Mb, do all have

the property ν ∗ ν ∈ L2(T).
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14 M. E. ANDERSSON

The three published constructions demand separate handling, so are confined to one

section each.

Analysis of Weiss’ construction. The result of Weiss’ deals with classical Riesz prod-

ucts and lacunary index sets. Recall that the original Riesz product concerns expressions

∞
∏

k=1

(1 + ak cosnkθ),

converging weak-∗ in M(T). Here −1 6 ak 6 1 and the integers 0 < n1 < n2 < . . . are

lacunary in the sense nk+1/nk > 3. This is the setting for Weiss’ contribution. General

facts of relevance to Riesz products are found in the monograph by Graham and McGehee

[G-M]. Later on, a generalised Riesz product will be described.

Theorem [W]. Let the real parameters {ak} of a Riesz product satisfy the condition

(†) |ak|(|a1|+ . . .+ |ak|) = O(1).

Then the resulting measure belongs to Mb.

This result was originally applied with ak = 1/
√
k, which clearly gives

∑k
1 aj ∼ 2

√
k

and
∑k
1 a
2
j ∼ log k. As is well known [G-M, Thm. 7.2.1], the divergence expressed by

the second relation makes the Riesz product a singular measure and it belongs to Mb by

Weiss’ theorem.

It should be observed that the stronger decay |ak|(|a1| + . . . + |ak|) = o(1) does

not improve the conclusion as far as producing an absolutely continuous measure. This

can be seen when studying bk = 1/
√
k log k, upon which

∑k
1 bj ∼ 2

√
k/
√

log k and
∑k
1 b
2
j ∼ log log k. Hence the resulting measure is still singular.

Proposition 1. Let the measure ν be constructed according to the preceding theorem.

Then ν ∗ ν ∈ L2(T) and sN (ν ∗ ν)→ ν ∗ ν in L2 as well as in L1. In contrast, sNν does
not converge in M(T), should

∑

a2k =∞ take place.

The last statement is clear, since the L1-functions sNν tend weak-∗ to the singular

measure ν, whence no convergence in norm is possible. It thus suffices to demonstrate

ν∗ν ∈ L2, from which the remaining claim follows. A simple case of real analysis prepares

for this.

Lemma 2. Consider sequences {xk}∞1 of positive numbers, such that for all indices
k > 1, the inequality xk(x1 + . . .+ xk) 6 1 holds. For any such sequence and p > 2, the

series
∑

xpk converges.

Observe first that the already mentioned example xk = 1/
√

2k shows the condition

p > 2 to be best possible.

Put now X(k) = [x1 + . . .+ xk]
2. Clearly the two identities

X(k) + x21 + . . .+ x2k = 2x1x1 + 2x2(x1 + x2) + . . .+ 2xk(x1 + . . .+ xk),

X(k)−X(k − 1) = 2xk

(

x1 + . . .+ xk−1 +
1

2
xk

)

,
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and the assumption on {xk}∞1 together imply

X(k) < 2k and 0 < X(k)−X(k − 1) < 2.

Let also γ = 1 + 2/x21. Then k > 2 provides

X(k)

X(k − 1)
= 1 +

X(k)−X(k − 1)

X(k − 1)
so γ−1X(k) < X(k − 1) < X(k).

By the mean value theorem applied to the square root function

n
∑

k=2

xpk =

n
∑

k=2

[
√

X(k)−
√

X(k − 1)]p <

n
∑

k=2

[

X(k)−X(k − 1)

2
√

X(k − 1)

]p

<

n
∑

k=2

γp/2

2

X(k)−X(k − 1)

X(k)p/2
.

The last step uses 2−p[X(k)−X(k − 1)]p < 2−1[X(k)−X(k − 1)] < 1.

On the other hand, application of the mean value theorem to t 7→ t−p/2 produces

ξk ∈ [X(k − 1), X(k)], yielding

X(k − 1)1−
p

2 −X(k)1−
p

2 =

(

p

2
− 1

)

X(k)−X(k − 1)

ξ
p/2
k

>

(

p

2
− 1

)

X(k)−X(k − 1)

X(k)p/2
.

Thus
n
∑

k=2

xpk < γ
p/2(p− 2)−1

n
∑

k=2

[X(k − 1)(2−p)/2 −X(k)(2−p)/2] < γp/2(p− 2)−1x2−p1 .

This gives the claimed convergence.

Now the proposition can be completed. On grounds of the standard procedure in

constructing Riesz products, it is clear by identifying Fourier coefficients that if ν is

constructed with the parameters ak ∈ [−1, 1], then ν ∗ ν is also a Riesz product based

on the same independent set, but with parameters {a2k/2}∞1 . By assumption there is

ρ > 0 such that {ρ|ak|} satisfies the condition of the lemma, so one may conclude the

convergence of
∑

a4k. By known theory, this now says that ν ∗ ν ∈ L2. The proof of the

proposition has been completed.

Generalized Riesz products. Both papers [K] and [Br-H] consider measures arising

from weak-∗ convergence of products of a common kind

ν = ∗-lim
m→∞

m
∏

j=1

(1− Pj).

Here each Pj is a real-valued polynomial with a particular condition on its spectrum.

Write Rm for the mth partial product and Pj =
∑

k 6=0 pj,kek. Then it is demanded that

for each m, the spectra of

ekRm−1, for all k with pm,k 6= 0,

be pairwise disjoint. In particular, it follows that

ν̂(n) is a finite product (over j) with at most one factor from each of the non-zero

elements of {pj,k}k 6=0.
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Introduce now distance functions

σp(µ) = ‖µ̂‖pℓp =
∑

k

|µ̂(k)|p

for p > 1 and measures µ ∈M(T). In particular, σ1(f) = ‖f‖A(T) and σ2(f)
1/2 = ‖f‖L2.

Thus, by the spectral condition, the partial products obey

σp(Rm) = σp( [1 − Pm]Rm−1) = σp(Rm−1) +
∑

k 6=0

|pm,k|p σp(Rm−1)

= σp(Rm−1)[1 + σp(Pm)],

which by induction gives

σp(Rm) =

m
∏

j=1

[1 + σp(Pj) ].

Observe finally that

ν ∗ ν = ∗-lim
m→∞

Rm ∗Rm = ∗-lim
m→∞

m
∏

j=1

(1 + Pj ∗ Pj)

and

σ2(Rm ∗Rm) =

m
∏

j=1

[1 + σ2(Pj ∗ Pj)] =

m
∏

j=1

[1 + σ4(Pj)].

Thus it follows that ν ∗ν ∈ L2 as soon as
∏∞
j=1[1+σ4(Pj)] <∞. This will be achieved

for Katznelson’s construction as well as for Brown’s and Hewitt’s.

Analysis of Katznelson’s measure. In [K] the above-mentioned polynomials take the

form

Pj(θ) = Re γN
−1/2
j

Nj
∑

k=1

ein logneinλjθ,

where γ is a constant, the integers λj increase fast enough to provide spectral disjointness,

and Nj satisfies (see [K], relation (4))

22(j+2)
∥

∥

∥

j−1
∏

1

(1− Pj)
∥

∥

∥

2

A(T)
< Nj .

In particular, Nj > 22(j+2). Furthermore, it is clear that for a constant A

σ4(Pj) = 2Nj · (2−1γN−1/2j )4 < A · 4−j .

Thus

‖ν ∗ ν‖2L2 = lim
m→∞

σ2(Rm ∗Rm) 6
∞
∏

j=1

(1 + A · 4−j) <∞,

which is the claimed property ν ∗ ν ∈ L2.
It could be recalled that the singularity of ν is based on the value ‖Pj‖2 =

√

σ2(Pj) =

γ/
√

2 for all j > 1.
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The measures of Brown and Hewitt. In a sense the construction of Brown and Hewitt

builds on the idea of Katznelson’s, so this last analysis must of necessity resemble the

previous calculation.

This time the polynomials Pj are of a more intricate nature. Among other things

the non-zero coefficients |pj,k|, for k > 1, of Pj , form a non-increasing finite sequence.

In addition, |pj,k| 6 ω(|k|), where {ω(n)}∞n=0 is a given admissible sequence. The details

must be extracted from [Br-H]. For the present purpose, it is important that {ω(n)}∞n=0
is positive, non-increasing, and tends to zero.

In the inductive procedure of constructing Pm+1, one has to satisfy (see [Br-H], rela-

tion (7.2.6))

ω(l) ‖Rm‖A(T) < 2−m−2

by choosing l large enough. Thus one finds

ω(l) < 2−m−2σ1(Rm)−1 = 2−m−2
m
∏

j=1

[1 + σ1(Pj)]
−1

6 2−m−2.

The construction then proceeds to build Pj from frequencies of order at least l, i.e., if

pm+1,k 6= 0, then |k| > l. Thus

|pm+1,k| 6 2−m−2, all k.

On the other hand, in the central result [Br-H, Thm. 6.3], the inequality (6.3.10) is

equivalently providing positive constants α and β with

α 6 ‖Pj‖22 = σ2(Pj) 6 β, all j > 1.

Hence there is an estimate for all m > 2

σ4(Pm) =
∑

k

|pm,k|4 6 2−2(m+1)
∑

k

|pm,k|2 6 β · 2−2m−2.

The partial products can now be estimated as

‖Rm ∗Rm‖22 = σ2(Rm ∗Rm) =

m
∏

j=1

[1 + σ4(Pj)] 6

m
∏

j=1

(1 + β · 2−2j−2).

Letting m→∞, it is clear that Rm ∗Rm converge in L2, so in fact ν ∗ ν ∈ L2(T), where

as before ν = ∗-limm→∞Rm. This was the intended property.

Concluding remarks. It is clear that not every measure in M0(T) belongs to RadL1.

A particular example is the Riesz product

µ = ∗-lim
m→∞

m
∏

k=2

[1 + (log k)−1 cos 3kθ].

This measure is very far from being in Mb. There is even a result of Salem–Zygmund:

Theorem [Z, page 287]. If µ ∈Mb, then

logn

n

n
∑

k=−n

|µ̂(k)| = O(1).
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This decay of Fourier coefficients is in fact obtained for the function ℓ ∈ L1 defined

by ℓ ∼ ∑∞n=2 cosnθlogn . Many more elements in Mb ∩ L1 may be constructed using Polya’s

concavity theorem.

There seem to be available only the above three constructions, for the purpose of

producing singular measures in Mb ∩Ms(T). Based on the just presented calculations, it

is thus natural to ask the following question.

Problem. Is Mb \ RadL1 non-empty?

Surrendering something to the radical, it seems more reasonable to come to terms

with the next question. For k = 2 examples are plentiful, as has just been demonstrated.

Problem. Are there other k > 3, such that some singular measure µ ∈ Mb has its
k-fold self-convolution µk ∈ L1(T), but still is such that µk−1 ∈Mb \ L1(T)?

Hankel–Littlewood multipliers. The intent in this main part of the paper is to

produce, via Riesz products, a particular kind of Schur multipliers. To be honest, every

measure on the circle group generates via its Fourier–Stieltjes coefficients a Hankel matrix

which is a Schur multiplier, see Bennett’s paper [Be].

The algebra of Schur multipliers V2(N) is the vector space with pointwise addition

and multiplication of all a :N × N → C such that every operator k ∈ L(ℓ2(N)) satisfies

‖a · k‖ 6 α ‖k‖. The minimal α is the norm of a.

The decisive property of Schur multipliers (see [Be]) is that

a ∈ V2(N) if and only if a : ℓ1(N)→ ℓ∞(N) can be factorized through a Hilbert space.

This suggests the following notion. For 1 6 p 6 2 it is clear by the Grothendieck inequality

that Tp ⊆ V2(N).

Definition. A function a ∈ ℓ∞(N×N) is called a Littlewood function of exponent p,

where 1 6 p < ∞, if it can be decomposed as a = b + c, with the summands b and c

inducing bounded operators b : ℓ1(N)→ ℓp(N) and c : ℓp′(N)→ ℓ∞(N).

The collection of such functions is denoted Tp and it becomes a Banach algebra with

the norm

‖a‖Tp = inf
{

α > 0 ; a = b+ c, ‖b‖ℓ1→ℓp 6 α, ‖c‖ℓp′→ℓ∞ 6 α
}

.

Varopoulos introduced T2 in [V] and the extended use with other exponents is found

in Bożejko [Bo] and Wysoczański [Wy]. The same three authors observed with increasing

explicitness that an equivalent norm is given by

‖a‖Tp = inf α with
[

∑

n∈E

∑

m∈F

|a(n,m)|p
]1/p

6 αmax(|E|, |F |)

for finite sets E,F ⊆ N.

The reader is urged to consider this notion and Schur multipliers put in relation to

the broader notion of complete boundedness. For this Pisier’s monograph [P] is an ideal

starting point, especially chapters 5 and 6.

Definition, A sequence c ∈ ℓ∞(N) is a Hankel–Littlewood function of type p in

case the function a(n,m) = c(n + m) defines a Littlewood function in Tp. The vector
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space, denoted THp , of all these sequences, with pointwise addition and multiplication,

corresponds via the Hankel matrix representation to a closed subalgebra of Tp.

It was proved by Bożejko [Bo] that a sequence a ∈ ℓ∞(N) belongs to THp , where the

proof in fact allows 1 6 p <∞, if and only if

sup
m

2m
∑

k=m

|ak|p <∞.

Remark. Following Duren [D, Thm. 6.7] (or with a different proof [Bo]), the elements

of TH2 correspond precisely to the multipliers from H1 into H2.

A variation on Bożejko’s condition is more suitable to Riesz products. Consider two

families of integer intervals:

Ik = [2 · 3k, 4 · 3k] = [3k+1 − 3k, 3k+1 + 3k] and

Jk = [10 · 3k−1, 18 · 3k−1] = [3k+1 + 3k−1, 3k+2 − 3k+1].

Consideration of interval length and overlap makes the following a routine task:

Observation. a ∈ THp if and only if

sup
k

∑

m∈Ik

|am|p <∞ and sup
k

∑

m∈Jk

|am|p <∞.

Definition. Say that µ ∈M(T) is an H-L-measure of type p in case µ̂
∣

∣

N
∈ THp . The

full name is of course Hankel–Littlewood measure. The collection of these measures can

be denoted MHLp(T).

Lemma 3. Every H-L-measure belongs to M0(T).

Proof. Take any H-L-measure µ of type p. Then supm
∑2m
k=m |µ̂(k)|p is finite, so it

follows that N ∩ {k ; |µ̂(k)| > ε} is a Paley set for every ε > 0, i.e., a finite union of

lacunary sets (cf. [R, page 213]). In particular, the set {k ; |µ̂(k)| > ε} does not contain

the translation of any set being the support of the Fourier–Stieltjes transform of a Riesz

product. By the theorem of Host and Parreau [Ho-P], it follows that µ is a member of

M0(T).

Remark. 1) The best way to regard this is as the inclusion B(N) ∩ THp ⊆ B0(N) for

the two obvious restricted Fourier–Stieltjes algebras.

2) It is known that in general THp ⊆ WAP0
∣

∣

N
, where WAP0 is the space of weakly

almost periodic sequences on Z with zero von Neumann mean. This at least prevents

contributions from discrete measures.

With the aim of producing Riesz products being H-L-measures, the lemma suggests a

parameter set ak of complex numbers for k > 0 with |ak| 6 1/2 and ak → 0. The product

to consider is

ν =

∞
∏

k=0

(1 + ak exp[ i3kθ] + ak exp[−i3kθ]).

Each factor is positive and convergence is in weak-∗ sense. It is possible to determine

precisely the conditions for membership in THp of this Riesz product based on the set

{3k}. It is for this result that the sets Ik and Jk were introduced as above.
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Admittedly the choice of frequencies {3k} is restrictive, but once this first analysis

has been completed, the present paper will at the end of the text return to settle the

question for Riesz products based on lacunary sets replacing {3k}.
Every integer has a unique representation n =

∑∞
k=0 εk3

k as a finite sum with εk ∈
{0,±1}. The product structure provides

(∗) |ν̂(n)|p =
∏

εk 6=0

|ak|p.

A preparatory step towards the desired characterization comes first.

Proposition 4. A Riesz product based on the frequency set {3k}, and parameters ak
with |ak| 6 1/2, is an H-L-measure of type p if and only if two properties hold simulta-

neously:

(1) supk |ak|pApk <∞, where A
p
k =
∏k
l=0(1 + 2|al|p), and

(2) supk |ak|pmax{|ak+1|p, |ak+2|p}
∑k
j=1 |aj |pA

p
j <∞.

Remark. The property ak → 0 is clearly a consequence of (1).

Proof. It is clear from the definition of Ik that an index m can have ν̂(m) 6= 0 exactly

when either of four mutually exclusive possibilities occur:

(α) m = 3k+1 ± 3k,

(β) m = 3k+1 − 3k + 3j +
∑j−1
l=0 εl3

l, where 0 6 j 6 k − 1,

(γ) m = 3k+1 + 3k − 3j +
∑j−1
l=0 εl3

l, where 0 6 j 6 k − 1,

(δ) m = 3k+1 +
∑k−1
l=0 εl3

l.

The first step is to calculate
∑

m∈Ik
|ν̂(m)|p taking the product representation (∗) into

account. The case (α) is a triviality, whereas the contribution for the case (β) is

|ak+1|p|ak|p
k−1
∑

j=0

|aj |p
∑

E,F

∏

l∈E

|al|p
∏

l∈F

|al|p = |ak+1|p|ak|p
k−1
∑

j=0

|aj |p
j−1
∏

l=0

(1 + 2|al|p),

where the inner summation is taken over all pairwise disjoint subset of {0, . . . , j − 1}.
Here E is the set of indices with εj = 1 and F corresponds to εj = −1. By symmetry,

(γ) gives the same contribution.

The case (δ) supplements a further portion

|ak+1|p
∑

E,F

∏

l∈E

|al|p
∏

l∈F

|al|p = |ak+1|p
k−1
∏

j=0

(1 + 2|ak|p),

where this time E ∪ F ⊆ {0, . . . , k − 1}.
Defining Apk =

∏k
l=0(1+2|al|p) it is clear that supk

∑

m∈Ik
|ν̂(m)|p <∞ is equivalent

to

(I-bd) sup
k
|ak+1|pApk−1 <∞ and sup

k
|ak|p|ak+1|p

k−1
∑

j=1

|aj |pApj−1 <∞.

Proceeding, the membership in Jk categorizes into four distinct categories:
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(α′) m = 3k+1 + 3k−1 or m = 3k+2 − 3k+1,

(β′) m = 3k+1 + 3k−1 + 3j +
∑j−1
l=0 εl3

l, where 0 6 j 6 k − 2,

(γ′) m = 3k+2 − 3k+1 − 3j +
∑j−1
l=0 εl3

l, where 0 6 j 6 k,

(δ′) m = 3k+1 + 3k +
∑k−1
l=0 εl3

l.

Now the subcases in (α′) are trivially bounded. The contribution of case (β′) is seen

in

|ak+1|p|ak−1|p
k−2
∑

j=0

|aj |p
∑

E,F

∏

l∈E

|al|p
∏

l∈F

|al|p = |ak+1|p|ak−1|p
k−2
∑

j=0

|aj |pApj−1

where E and F are disjoint subsets of {0, . . . , j − 1}. Next, the similar (γ′) adds corre-

spondingly

|ak+2|p|ak+1|p
k
∑

j=0

|aj |pApj−1.

Lastly, the contribution from (δ′) is

|ak+1|p|ak|pApk−1.
It follows that supk

∑

m∈Jk
|ν̂(m)|p <∞ is equivalent to

(J-bd) max
l∈{0,1}

sup
k
|ak|p|ak+l|pApk−1 <∞, max

l∈{0,1}
sup
k
|ak−1|p|ak+l|p

k−2
∑

j=0

|aj |pApj−1 <∞.

Clearly the first condition in (J-bd) is weaker than its counterpart in (I-bd), which in

turn is almost condition (1) in the statement of the proposition. The difference is a factor

Apk+1/A
p
k−1 = (1 + 2|ak|p)(1 + 2|ak−1|p), which is uniformly bounded and hence causes

no problem whatsoever.

The combination of the two second parts of (I-bd) and (J-bd) obviously says

sup
k
|ak|pmax{|ak+1|p, |ak+2|p}

k−1
∑

j=1

|aj |pApj−1 <∞.

The deviation as compared to the claimed condition (2) is simply the introduction of

bounded factors Apj/A
p
j−1 = 1 + 2|aj |p and a, by (1), bounded term |ak|pApk. These

changes do not alter boundedness of the full expression, and this completes the proof.

It can be proved that in fact the condition (2) is a consequence of (1), but since

it is more convenient to give both conditions an exponential form, this variation is not

recorded here.

Lemma 5. Suppose the above Riesz product ν is an H-L-measure of type p. Then any

s > 1 implies
∑

k |ak|ps <∞.
Corollary 6. Any such Riesz product in MHLp(T) is for 1 6 p < 2 absolutely

continuous. In fact, the Radon–Nikodym derivative is an element of L2(T). In contrast,

the members in MHLp(T) of the above Riesz product type for 2l 6 p < 2l + 2 necessarily

have νl+1 absolutely continuous with Radon–Nikodym derivative in L2(T), whence these

ν belong to RadL1 although are possibly singular in themselves.
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Proof. In case 1 6 p < 2 one takes s = 2/p > 1 and applies the lemma. It appears the

fact that by necessity
∑

k |ak|2 <∞, so the condition of Brown and Moran [G-M, Thm.

7.2.1] gives the claimed absolute continuity.

On the other hand, an application of the lemma with s = 2(l+ 1)/p to ν ∈ THp gives
∑

k |al+1k |2 < ∞. Since the convolution power νl+1 is a Riesz product on the same set

{3k}, but now with parameters {al+1k }, an application of Brown’s and Moran’s theorem

shows the last claim of the corollary.

Proof of Lemma 5. The type p is taken fixed and and a parameter sequence {ak}
satisfying the conditions in Proposition 4 is considered. Write for convenience xk = 2|ak|p
and X(k) =

∑k
j=0 xk. Then 0 6 xk 6 1, so always exk > (1 + xk) > e

xk/2.

Take a positive number α and formulate condition (1) of Proposition 4 as follows:

(1′) xk

k
∏

j=0

(1 + xj) 6 α for all k > 0.

This implies that

xk exp

(

1

2

k
∑

j=0

xk

)

6 α.

The mean value theorem applied to ex provides real numbers ξk ∈ [X(k− 1), X(k)] such

that

exp
1

2
X(k)− exp

1

2
X(k − 1) =

1

2
xk exp

1

2
ξk 6

1

2
xk exp

1

2
X(k) 6

α

2
.

It follows that

exp
1

2
X(k) = exp

1

2
x0 +

k
∑

j=1

[

exp
1

2
X(j)− exp

1

2
X(j − 1)

]

6 2 + k · α
2
.

Hence
k
∑

j=0

xk = X(k) 6 2 log

[

2 +
αk

2

]

.

It is clear that in this argument, beginning at formula (1′), it is no loss of generality to

assume all xk to be strictly positive.

Consider now a permutation π:N → N such that k 7→ xπ(k) is non-increasing. Such

permutations always exist since all xk > 0 and xk → 0, according to the remark after

Proposition 4. Letting j = j(k) = max{π(l); 0 6 l 6 k} for fixed k, clearly xπ(k) 6 xj
and [0, j] contains every π(l) for 0 6 l 6 k. Therefore

xπ(k)

k
∏

l=0

(1 + xπ(l)) 6 xj

j
∏

l=0

(1 + xl) 6 α for each k > 0.

Thus the argument just applied to {xk} may be performed verbatim for the altered

sequence {xπ(k)}. The outcome is

(k + 1)xπ(k) 6

k
∑

j=0

xπ(j) 6 2 log

[

2 +
αk

2

]

.
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Rewriting this as

xπ(k) 6
2 log[2 + αk/2]

k + 1

it is routine to determine for each s > 1 a more or less explicit, positive number γ(α, s)

such that

(3)

∞
∑

j=0

xsj 6 γ(α, s).

Inserting xk = 2|ak|p this is precisely the claim.

Remark. A useful point is that given an α > 0, there is a uniform control of the

Riesz products inMHLp(T) in the sense that any parameter sequence {ak} satisfying (1′)

has also to satisfy (3) with bound only depending on α and s > 1.

The Corollary 6 displays that a search for singular Hankel–Littlewood measures can-

not be successful when limited to 1 6 p < 2 and the present particular kind of Riesz

products. For p = 2 there is hope of a valid construction of a singular example, and in

fact two different kinds will be produced in a short while.

Theorem 7. The Riesz product ν considered above is an H-L-measure of type p if and

only if

sup
k
|ak|p/2 exp

k
∑

l=0

|al|p <∞.

Proof. Consider the elementary inequalities

1 + x 6 ex 6 ex
2

(1 + x) for all x > 0.

Still employing the notation xk = 2|ak|p it is immediate that

xk

k
∏

j=0

(1 + xk) 6 xk exp

k
∑

j=0

xj 6 exp
(

k
∑

j=0

x2j

)

xk

k
∏

j=0

(1 + xk).

According to (3) with s = 2

sup
k
xk

k
∏

j=0

(1 + xk) 6 α ⇐⇒ sup
k
xk exp

k
∑

j=0

xj 6 β,

with the interdependence

α 6 β 6 αeγ(α,2).

If this is applied to the conditions stated in Proposition 4, the property of ν being an

H-L-measure of type p is equivalent to the two conditions (since xk = 2|ak|p)

sup
k
xk expX(k) <∞, where X(k) =

k
∑

l=0

xl, and(A)

sup
k

max{xk+1, xk+2} · xk
k
∑

l=0

xl expX(l) <∞.(B)
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The simple, real inequality ab 6 (a2 + b2)/2 shows the estimate

2 max{xkxk+1, xkxk+2} 6 max{x2k + x2k+1, x
2
k + x2k+2},

where the left-hand side essentially appears in (B). Thus (B) is implied by

(C) sup
k

max{x2k, x2k+1, x2k+2}
k
∑

l=0

xl expX(l) <∞.

Assuming the validity of (A), the sum in this last relation can be supplemented with the

terms xk+1 expX(k + 1) and xk+2 expX(k+ 2) without altering the boundedness. Thus

(C) is a consequence of the simplified condition

(D) sup
k
x2k

k
∑

l=0

xl expX(l) <∞.

Observe next that

expX(l) = exl expX(l− 1) 6 e · expX(l− 1).

As in the proof of Lemma 5 there are numbers ξk ∈ [X(k−1), X(k)] allowing a calculation

with the mean value theorem for ex as the essential ingredient:

e−1 x2k

k
∑

l=1

xl expX(l) 6 x2k

k
∑

l=1

xl expX(l− 1) 6 x2k

k
∑

l=1

xl exp ξl

= x2k

k
∑

l=1

[expX(l)− expX(l − 1)]

6 x2k expX(k) = xk · xk expX(k) = o(1) · O(1) = o(1),

when applying (A) and its consequence xk → 0 as k →∞. The just displayed arguments

show that (B) is a consequence of (A), whence the claimed result follows simply by taking

square roots.

Example 8. Let ak = r/
√
k + ρ for a positive number r and where ρ is so large

that a0 6 1/2 but otherwise arbitrary. The corresponding Riesz product is a positive

measure νr. It is clear that
k
∑

l=0

al = r

k
∑

l=0

(l + ρ)−1/2 = r[2
√

k + ρ+ ω + o(1)]

for a positive constant ω. Thus

ak

k
∑

l=0

al = 2r2 + o(1) for all k > 0,

so by the theorem of Weiss’ mentioned at the beginning of the paper, every measure

νr ∈ Mb and so has uniformly L1-bounded partial sums. Since
∑∞
l=0 a

2
l = ∞ each νr is

singular.

On the other hand
k
∑

l=0

a2l = r2
k
∑

l=0

(l + ρ)−1 = r2[log(k + ρ) + τ + o(1)]
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for a constant τ . It follows that

ak exp

k
∑

l=0

a2l = rer
2τ (k + ρ)r

2−1/2[1 + o(1)].

By the characterization in Theorem 7, this says that νr is an H-L-measure of type 2 if

and only if the parameter r 6 1/
√

2.

The conclusion, properly recorded, is that

νr =

∞
∏

k=0

(

1 +
2r cos 3kθ√
k + ρ

)

∈Ms(T) ∩Mb, (where ρ makes r/
√
ρ 6 1/2),

is a singular measure with uniformly L1-bounded partial sums for all r > 0. It is a

Hankel–Littlewood measure of type 2 if and only if r 6 1/
√

2. In particular, the set of

measures (Ms(T) ∩Mb) \MHL2(T) is nonempty.

Furthermore, it is now clear that also

ν′r =
∞
∏

k=0

(

1 + (−1)k
2r cos 3kθ√
k + ρ

)

has the same properties as mentioned for νr, but in addition νr ⊥ ν′r. This is easily seen

from Brown’s and Moran’s theorem.

An additional idea is needed to show that for some ν ∈Ms(T)∩MHLp(T) the criterion

of Weiss’ fails, so it is at least conceivable that this measure does not belong to Mb. A

sort of block-like description of the parameter sequence {ak} for a Riesz product will do

nicely once the type is larger than two.

Example 9. First a Riesz product in MHL2(T), but failing Weiss’ criterion, will be

constructed. Consider to this end the sequence {uk = 2−1k−1/2}∞k=1 and observe

k
∑

l=1

2u2l =
1

2
log k + η + o(1),

whence

U(k) = u2k exp

k
∑

l=1

2u2l = ξk−1/2 + o(1).

A new sequence {vk}∞k=1 will be created by modifying {uk}∞k=1 at an infinitude of indices

m(j) to have the value vm(j) =
√
j + 1/2

√

m(j). For all other indices the choice vk = uk
is applied.

Let us say that the modification is consistent as long as the inequality
∞
∑

j=1

j

m(j)
6 2

holds true.

Observe first that

sup
k
vk

k
∑

l=1

vl > sup
j

1

4

√

j + 1

(

1
√

m(j)

m(j)
∑

l=1

1√
l

)

=∞

independently of the specific choices of m(j). Thus Weiss’ criterion always fails.
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Write for bookkeeping ρ = supk U(k), which is finite. It is decisive to record the

inequality

v2k exp

k
∑

l=1

2v2l 6 U(k) exp

∞
∑

j=1

j

2m(j)
6 eρ

for all k not of the formm(j). This follows from the consistency condition and the relation

v2m(j) = u2m(j) + j/4m(j). Combining U(k) = ξk−1/2 + o(1) with

v2m(j) exp

m(j)
∑

l=1

2v2l 6 (j + 1) · U(m(j)) exp
∞
∑

r=1

r

2m(r)
6 (j + 1) · e U(m(j))

it is clear that {m(j)}∞j=1 can be chosen to increase so fast that the above last right-hand

side always is at most ρ and still the consistency condition holds. Thus, by Theorem 7,

the sequence {vk} can be used to produce a Riesz product in MHL2(T) ∩ Ms(T) and

which, as established above, does not satisfy Weiss’ criterion.

A different, somewhat weaker construction is also of value. Fix ε > 0 and choose α

in the open interval ]2−1(1 + ε)−1, 2−1[, whence 2α(1 + ε) ∈ ]1, 1 + ε[. Take nk to be the

integer closest to α(1 + ε)k2α(1+ε)−1. Then

k
∑

l=1

nll
−2α(1+ε) = α(1 + ε) log k +O(1).

Putting bk = k−α it is therefore clear that

b1+εk exp

k
∑

l=1

nlb
2(1+ε)
l = O(1).

Let finally the sequence {ak}∞k=0 consist of n1 copies of b1, then n2 copies of b2, and so

on. Clearly

sup
k
a1+εk exp

k
∑

l=1

a
2(1+ε)
l = sup

k
b1+εk exp

k
∑

l=1

nlb
2(1+ε)
l <∞.

This means that the Riesz product ν =
∏∞
k=0(1 + 2ak cos 3kθ) gives an H-L-measure of

type 2(1 + ε). On the other hand

sup
k
ak

k
∑

l=1

al = sup
k
α(1 + ε)k−α

k
∑

l=1

lα(1+2ε)−1 +O(1) =∞,

so ν fails the criterion of Weiss’.

Remark. These examples 8 and 9 illustrate that Weiss’ condition is independent

of the property determining Hankel–Littlewood measures. Whether or not the measures

thus constructed belong to Mb, although failing Weiss’ criterion, has not been decided

by me and I have found no relevant literature.

Example 10. Consider 1 6 p < 2. Thus 12 <
2
2+p and 1− 2p

2+p = 2−p
2+p > 0.

Choosing ak = (k + 1)−2/(p+2), the convergence of
∑∞
0 a
2
k follows. Hence the cor-

responding Riesz product ν is absolutely continuous with Radon–Nikodym derivative
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in L2(T). However,

k
∑

l=0

apl =
k
∑

l=0

(l + 1)−
2p

2+p =
2− p
2 + p

(k + 1)
2−p

2+p +O(1) as k →∞.

It follows that

a
p/2
k exp

(

k
∑

l=0

apl

)

= (k + 1)−
p

2+p exp
[2− p

2 + p
(k + 1)

2−p

2+p +O(1)
]

→∞.

In consequence, ν ∈ Mac(T) \MHLp(T) by Theorem 7. Clearly ν ∈ MHLq(T) for some

p < q < 2; in fact, as soon as 2q/(p+ 2) > 1.

Riesz products on more general lacunary sets. Now the time has come to deal with

more general spectral sets than {3k}. Consider to this end a lacunary sequence {nk}∞k=0
of positive integers with nk+1 > 3nk. The sequence is still dissociate, so the Riesz product

construction is perfectly legal.

Main Theorem. Let {ak}∞k=0 be complex numbers of modulus at most 1/2 and take

1 6 p <∞. Then the Riesz product measure

κ =

∞
∏

k=0

(1 + ake
inkθ + ake

−inkθ)

is a Hankel–Littlewood measure of type p if and only if

(‡) sup
k
|ak|p

k
∏

l=0

(1 + 2|al|p) <∞.

Proof. Suppose first that κ is an H-L-measure. Since the frequencies obey

2(nk − nk−1) > nk + 3nk−1 − 2nk−1 = nk + nk−1,

by lacunarity, the interval [nk − nk−1, nk + nk−1] is included in an interval of the form

[m, 2m]. Thus Bożejko’s characterization applied to κ̂
∣

∣

N
shows that

sup
k>1

nk+nk−1
∑

l=nk−nk−1

|κ̂(l)|p <∞.

This interval [nk − nk−1, nk + nk−1] can be used as a replacement for Ik in the first

half of the proof of Proposition 4. The calculation in that argument thus leading mutatis

mutandis to supk |ak|pApk−1, and this implies (‡) in the present statement.

Conversely, the assumption that (‡) holds must be used to control the decisive quantity

supm
∑2m
m |κ̂(l)|p.

Let to this end Nk and N ′k be the positive integers

N ′k = nk − nk−1 − nk−2 − . . .− n0 and Nk = nk + nk−1 + . . .+ n0.

Clearly

supp κ̂ ∩ Z+ =
{

m > 1 ; κ̂(m) 6= 0
}

⊆
⋃

k>0

[N ′k, Nk].
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In addition
∑

N ′
k
6l6Nk

|κ̂(l)|p = |ak|p
k−1
∏

l=0

(1 + 2|al|p),

which is uniformly majorized by the expression in (‡).

Claim. m ∈ [N ′k, N
′
k+1[ implies [m, 2m] ∩ supp κ̂ ⊆ [N ′k, Nk] ∪ [N ′k+1, Nk+1].

Given this claim it becomes obvious that supm
∑2m
m |κ̂(l)|p is at most twice the number

arising from the assumption of (‡). Thus it follows that κ indeed is an H-L-measure if

the claim can be verified.

This verification is indeed easy:

N ′k+1 − 2N ′k = nk+1 − 3nk + nk−1 + . . .+ n0 > 0

by lacunarity. This should be interpreted as

N ′k 6 m < N
′
k+1 =⇒ [m, 2m] ⊆ [N ′k, N

′
k+2[.

Since non-zero Fourier–Stieltjes coefficients of κ are only found for frequencies in some

[N ′l , Nl], the claimed result follows. This also ends the proof of the Main Theorem.

Corollary. Should condition (‡) hold for p < 2, then κ necessarily is absolutely

continuous. In case p > 2 this condition allows singular measures, but some convolution

power of κ will be absolutely continuous. In fact, 2l 6 p < 2l + 1 for some positive

integer l forces κl+1 ∈Mac(T), while at the same time κl ∈Ms(T) and κ ∈MHLp(T) can

be achieved.

Proof. The first claim follows by the same method as used in the first part of Corol-

lary 6.

When (‡) holds for 2l 6 p < 2(l+1), then Lemma 5 may be applied with s = 2(l+1)/p

to yield
∑

|al+1k |2 <∞. Thus κl+1 is absolutely continuous with derivative in L2(T).

The particular choice ak = [2(k + ρ)]−1/p for k > 0 and where ρ = 2p−1, gives by

calculations similar to Example 8 that (‡) holds. However, with this particular choice,

the divergence of
∑ |alk|2 obtains, whence this power κl is singular.

Remark. (i) The splitting into a detailed analysis of the ternary case and then the

general lacunary case is mostly a matter of formality, but avoids some inconvenience.

For instance, the intervals [N ′k, Nk] partition Z+ only for {3k}, as increasingly large gaps

arise with the more distant (non-ternary) lacunary structures.

The main reason for the preparatory analysis is that, in general, the intervals [nk −
nk−1, nk+nk−1] are not of the form [m, 2m]. This would have forced a more cumbersome

dissection of supp κ̂ in the development of Proposition 4, which would unnecessarily have

obscured the derivation of supk |ak|pApk−1 <∞, the decisive step in that result. Once the

basic case has been understood, the proof of the main theorem is elementary indeed.

(ii) Examples similar to the ones produced in Examples 9 and 10 are easily constructed

with the now more numerous choice of frequencies.
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[Bo] M. Bożejko, Littlewood functions, Hankel multipliers and power bounded operators on

a Hilbert space, Colloq. Math. 51 (1982), 35–42.

[Br-H] G. Brown and E. Hewitt, Continuous singular measures with small Fourier–Stieltjes

transforms, Adv. Math. 37 (1980), 27–60.

[D] P. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.

[G-M] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Sprin-

ger-Verlag, New York, 1979.

[H] H. Helson, Proof of a conjecture by Steinhaus, Proc. Nat. Acad. Sci. USA 40 (1954),

205–206.

[Ho-P] B. Host and F. Parreau, Ensembles de Rajchman et ensembles de continuité, C. R.
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