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1. Introduction. Let kt(x, y) be the integral kernels of the semigroup of linear op-

erators {Tt}t>0 generated by a Schrödinger operator −A = ∆− V on Rd, d ≥ 3.
Throughout this paper we assume that V is a nonnegative potential onRd that belongs

to the reverse Hölder class RHq, q > d2 , that is, there exists a constant C > 0 such that

(1.1)

(

1

|B|

∫

B

V (y)q dy

)1/q

≤ C|B|

∫

B

V (y) dy, for every ball B.

Since V is nonnegative and belongs to Lqloc(R
d) the Feynman-Kac formula implies

that

(1.2) 0 ≤ kt(x, y) ≤ (4π)−d/2e−|x−y|
2/(4t) = pt(x− y).

We say that f is an element of the space HpA if the maximal function

(1.3) Mf(x) = sup
t>0
|Ttf(x)| = sup

t>0

∣

∣

∣

∫

kt(x, y)f(y) dy
∣

∣

∣

belongs to Lp(Rd).

For 0 < p ≤ 1 we define the quasi-norm ‖f‖p
Hp
A

by setting

(1.4) ‖f‖p
Hp
A

= ‖Mf‖pLp.
Our main result is about atomic decomposition of the elements of HpA for p ≤ 1,

p close to 1. The notion of HpA atom is determined by the following auxiliary function

m(x, V ) which is defined by

(1.5) m(x, V )−1 = ρ(x) = sup

{

r > 0 :
1

rd−2

∫

B(x,r)

V (y) dy ≤ 1
}

.
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A function a is an atom of the space Hpm associated with a ball B(y0, r) if

(1.6) supp a ⊂ B(y0, r),

(1.7) ‖a‖L∞ ≤ |B(y0, r)|−1/p,

(1.8) r ≤ ρ(y0),

(1.9) if r < 2−2ρ(y0) then

∫

a(x) dx = 0.

The atomic Hpm quasi-norm is defined by

(1.10) ‖f‖p
Hpm
= inf

∑

|λj |p,
where the infimum is taken over all decompositions f =

∑

j λjaj , aj being H
p
m and λj

being scalars.

Let δ = 2− dq , and δ′ = min{1, δ}. Our main result is the following
Theorem 1.11. Assume that d

d+δ′ < p ≤ 1. Then there exists a constant C > 0 such
that for every compactly supported function f ∈ L1(Rd) we have
(1.12) C−1‖f‖p

Hpm
≤ ‖f‖p

Hp
A

≤ C‖f‖p
Hpm
.

In the case where p = 1 and V satisfies (1.1) the space H1A was studied in [DZ2], where

the atomic and Riesz transforms characterizations of the space were proved. Therefore in

the present paper we shall consider the case where d
d+δ′ < p < 1.

Remark 1. The atoms for the HpA spaces satisfy the same size conditions as the

classical Hp(Rd) atoms. The main difference is that the mean-value zero condition for

HpA atoms is required only for these that are supported on small balls. Therefore, the

classical Hardy space Hp(Rd) is always a proper subspace of HpA for
d
d+δ′ < p ≤ 1.

Remark 2. Let us recall that in the classical theory of Hardy spaces Hp(Rd) the

condition
∫

a = 0 is required for all atoms and higher order cancellation conditions are

not needed provided d
d+1 < p ≤ 1. Therefore it is natural to ask if there is an atomic

decomposition of the elements of the space HpA for
d
d+1 < p ≤ d

d+δ′ . The answer is yes,

however, for these values of p’s different type cancellation conditions for atoms may occur.

This will be studied in a forthcoming paper.

The function m(x, V ) appeared in [Sh] where fundamental solutions and boundedness

of Riesz transforms associated with the operator A on Lp spaces, p > 1, were investigated.

2. Useful estimates. In this section we state some result concerning properties of

the function m(x, V ). Further we present a number of estimates of the kernels associated

with the semigroup {Tt}t>0.
Lemma 2.1. There exists a constant C > 0 such that for every 0 < r < R we have

1

rd−2

∫

B(x,r)

V (y) dy ≤ C
( r

R

)δ 1

Rd−2

∫

B(x,R)

V (y) dy.

Proof. See [Sh, Lemma 1.2].
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Corollary 2.2. If r < ρ(x) = m(x, V )−1 then
∫

B(x,r)

V (y) dy ≤ C(rm(x, V ))δrd−2.

Lemma 2.3. For every C1 > 0 there exists a constant C2 > 0 such that

(2.4) C−12 ≤
m(x, V )

m(y, V )
≤ C2, for |x− y| ≤

C1
m(x, V )

Moreover, there exist constants C > 0, k0 > 0 such that

(2.5) m(y, V ) ≤ C(1 + |x− y|m(x, V ))k0m(x, V ),

(2.6) m(y, V ) ≥ m(x, V )

C(1 + |x− y|m(x, V ))k0/(1+k0) .

Proof. This is Lemma 1.4 of [Sh].

Lemma 2.7. There exists a constant C > 0 such that if r > ρ(x) = m(x, V )−1 then
∫

B(x,r)

V (y) dy ≤ (rm(x, V ))Cm(x, V )2−d.

Proof. See [Sh, Lemma 1.8].

We say that a function ω defined on Rd is rapidly decaying if for every N > 0 there

exists a constant CN such that

|ω(x)| ≤ CN (1 + |x|)−N .
Corollary 2.8. If ω is a rapidly decaying nonnegative function, then there exists a

constant C > 0 such that
∫

V (y)ωt(x− y)dy ≤
{

C
t (m(x, V )t

1/2)δ for t ≤ m(x, V )−2,
Ct−d/2(

√
tm(x, V ))Cm(x, V )2−d for t > m(x, V )−2,

where ωt(x) = t
−d/2ω(t−1/2x).

Proof. The estimate is a consequence of Corollary 2.2 and Lemma 2.7.

The corollary below follows from Lemma 2.3.

Corollary 2.9. For every rapidly decaying function ω there is a rapidly decaying

function ω̃ such that for every N ≥ 0 we have
ωt(x− y)

(1 +
√
tm(x, V ))N

≤ ω̃t(x− y)
(1 +
√
tm(x, V ) +

√
tm(y, V ))N

.

The Kato-Trotter formula asserts that

(2.10) pt(x− y)− kt(x, y) =
∫ t

0

∫

Rd

ps(x− z)V (z)kt−s(z, y) dz ds = qt(x, y).

Theorem 2.11. There exists a rapidly decaying function ω ≥ 0 such that for every
N > 0 there exists a constant CN such that

kt(x, y) ≤ CN
(

1 +
√
tm(x, V ) +

√
tm(y, V )

)−N
ωt(x− y).
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Proof. Let G(x, y) denote the fundamental solution of the operator A. Theorem 2.7

of [Sh] asserts that for every n ≥ 0 there exists a constant Cn such that

(2.12) 0 ≤ G(x, y) ≤ Cn
(

1 + |x− y|(m(x, V ) +m(y, V ))
)n|x− y|d−2

.

It is not difficult to check using (2.12) that for every positive integer l there exists a

constant Cl such that

(2.13) |m(x, V )2lA−lf(x)| ≤ ClMlf(x),
whereM is the classical Hardy-Littlewood maximal operator.

Since {Tt} is a holomorphic semigroup on L2(Rd) we have
(2.14) ‖∂nt Tt‖L2→L2 ≤ Cnt−n.
Now (1.2) combined with (2.14) leads to

|∂nt kt(x, y)| ≤
Cn
tn+d/2

.

Applying (2.13) we get

(2.15) |kt(x, y)| ≤
Cn

tn+d/2m(x, V )2n
.

Finally Theorem 2.11 follows from (1.2), (2.15) and symmetry of the kernel kt(x, y).

Proposition 2.16. There exists a rapidly decaying function ω ≥ 0 such that
qt(x, y) ≤ (

√
tm(x, V ))δωt(x− y).

Proof. By definition

qt(x, y) =

∫ t

0

∫

ps(x− z)V (z)kt−s(z, y) dz ds =
∫ t/2

0

∫

+

∫ t

t/2

∫

= I1 + I2.

Using Theorem 2.11, we have

I1 ≤
∫ t/2

0

∫

|z|≤|x−y|/2
ps(z)V (z + x)ωt(x− y) dz ds

+

∫ t/2

0

∫

|z|>|x−y|/2
s−d/2t−d/2e−c|x−y|/

√
se−c|z|/

√
sV (z + x) dz ds.

Applying Corollary 2.8, we obtain

I1 ≤ ωt(x− y)(
√
tm(x, V ))δ.

The estimates for I2 go in the same way by using Lemma 2.3.

Using the same arguments as in the proof of Proposition 2.16 and the fact that

qt(x, y) = qt(y, x) we can show the following

Proposition 2.17. For every 0 < δ′′ < δ′ there exists a rapidly decaying function
ω ≥ 0 such that for every C > 0 there exists a constant C′ such that for every h, x, y ∈ R

d,

|h| ≤ |x− y|/4, |h| ≤ Cρ(y) we have
(2.18) |qt(x, y + h)− qt(x, y)| ≤ C′(|h|(m(x, V ))δ

′′

ωt(x − y).
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3. Scale of atomic Hp spaces. Fix 0 < ε ≤ 1 We say that a is an atom for the
space Hpε;m associated to a ball B(y0, r) if

(3.1) supp a ⊂ B(y0, r),

(3.2) ‖a‖L∞ ≤ |B(y0, r)|−1/p,

(3.3) r ≤ ερ(y0),

(3.4) if r <
1

4
ερ(y0) then

∫

a(x) dx = 0.

The atomic Hpε;m quasi-norm is defined by

(3.5) ‖f‖p
Hpε;m
= inf

∑

|λj |p,
where the infimum is taken over all decompositions f =

∑

j λjaj, aj being H
p
ε;m atoms

and λj being scalars. Let us note that ‖f‖pHp
1;m

= ‖f‖p
Hpm
.

Obviously, there exists a constant C such that if ε′ ≤ ε then
(3.6) ‖f‖p

Hp
ε′;m

≤ C‖f‖p
Hpε;m
.

Moreover if ε′ ≤ ε ≤ 1 then there exists a constant Cε′,ε such that
(3.7) ‖f‖p

Hpε;m
≤ Cε′,ε‖f‖pHp

ε′;m

.

For fixed 0 < ε ≤ 1 we define the maximal operator P∗ε by the formula
(3.8) P∗ε f(x) = sup

0<t≤ε2ρ(x)2
|f ∗ pt(x)|.

Proposition 3.9. For every p ∈ ( dd+δ′ , 1) there exists a constant C > 0 independent
of ε ∈ (0, 1] such that for every compactly supported function f ∈ L1(Rd) we have
(3.10) C−1‖P∗ε f‖pLp ≤ ‖f‖pHpε;m ≤ C‖P

∗
ε f‖pLp.

Proof. First we prove that there is a constant C > 0 such that

(3.11) ‖P∗ε f‖Lp ≤ C‖f‖Hpε;m .
Let a be aHpε;m atom associated with a ballB(y0, r). If a has the cancellation condition

∫

a = 0, then ‖P∗εa‖Lp ≤ C. If
∫

a 6= 0 then, by the definition, 14ερ(y0) ≤ r ≤ ερ(y0).
Obviously ‖P∗εa‖Lp(B(y0,4r)) ≤ C. If x /∈ B(y0, 4r) = B(y0, r)∗ then, by Lemma 2.3,
ρ(x) ≤ Cmax(|x − y0|k0/(k0+1)ρ(y0)1/(k0+1), ρ(y0)). Therefore for 0 < t < (ερ(x))2, we
have

|pt ∗ a(x)| ≤ C‖a‖L1εM−dρ(y0)(M−d)/(1+k0)|x− y0|−(M+dk0)/(1+k0)

+C‖a‖L1εM−dρ(y0)M−d|x− y0|−M .
This leads to

∫

|x−y0|>4r(P
∗
ε a(x))

p dx ≤ C. Thus (3.11) is proved.
The proof of the second inequality in (3.10) is a combination of a number of lemmas.

Let ϕ(α) be a family of C∞ functions on Rd and Bα = B(yα, rα) be a family of balls
such that there exists a constant C > 0 such that

(3.12) suppϕα ⊂ B(yα, rα) = Bα, rα = ρ(yα),
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(3.13) #{α′ : B(yα′ , Rrα′) ∩B(yα, rα) 6= ∅} ≤ CRC for R > 2,

(3.14) 0 ≤ ϕα ≤ 1, ‖∇ϕα‖L∞ ≤ Cm(yα, V ),

(3.15)
∑

α

ϕα ≡ 1.

Lemma 3.16. There is a family of constants c(ε) > 0, limε→0 c(ε) = 0, such that

(3.17) ‖ sup
0<t<(εmax(ρ(yα),ρ(x)))2

|(fϕ(α)) ∗ pt(x)|‖pLp(B∗∗cα ) ≤ c(ε)‖fϕ(α)‖
p
Hpε;m
.

Proof. It suffices to prove (3.17) if fϕ(α) is replaced by an Hpε;m atom a associated

with a ball B(y0, r), where B(y0, r) ∩B∗α 6= ∅. Let us note that for x ∈ B∗∗cα , we have
max(ρ(yα), ρ(x)) ≤ C|x− y0|k0/(1+k0)ρ(y0)1/(1+k0).

Therefore, if the atom a does not satisfy the cancellation condition, then

|a ∗ pt(x)| ≤ CMεM−d‖a‖L1ρ(y0)(M−d)/(1+k0)|x− y0|−(M+dk0)/(1+k0).
Consequently, the left hand side of (3.17) is estimated by CMε

Mp−d.

If a satisfies the cancellation condition, then r < ερ(y0)/4 and

|a ∗ pt(x)| ≤ Crd+1−d/p|x− y0|−d−1.
Thus the left hand side of (3.17) is bounded by Cεdp+p−d.

Corollary 3.18. There exists 0 < ε0 ≤ 1 and a constant C > 0 such that for every
0 < ε ≤ ε0 we have
(3.19) ‖fϕ(α)‖p

Hpε;m
≤ C‖P∗ε (fϕ(α))‖pLp .

Proof. Since fϕ(α) is supported on B(yα, ρ(yα)) the theory of local Hardy spaces (cf.

[G]) asserts that

‖fϕ(α)‖p
Hpε;m
≤ C‖ sup

0<t<(ερ(yα))2
|(fϕ(α)) ∗ pt(x)|‖pLp

≤ C‖ sup
0<t<(ερ(yα))2

|(fϕ(α)) ∗ pt(x)|‖pLp(B∗∗α ) + C‖ sup
0<t<(ερ(yα))2

|(fϕ(α)) ∗ pt(x)|‖pLp(B∗∗cα ).

Using Lemma 3.16 we obtain

‖fϕ(α)‖p
Hpε;m
≤ C‖P∗ε (fϕ(α))‖pLp + c(ε)‖fϕ(α)‖pHpε;m .

This ends the proof of (3.19).

For ε ∈ (0, 1] we set

(3.20) T ∗ε f(x) =
∑

α

sup
0<t≤ε2ρ(x)2

∣

∣

∣

∫

(

ϕ(α)(x)− ϕ(α)(y)
)

pt(x− y)f(y) dy
∣

∣

∣
.

Lemma 3.21. There exists a family of constants c(ε) > 0, limε→0 c(ε) = 0 such that

(3.22) ‖T ∗ε f‖pLp ≤ c(ε)‖f‖pHpε;m
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Proof. Since 0 < p < 1 it suffices to show that

(3.23)
∑

α

∫
(

sup
0<t<(ερ(x))2

|ϕ(α)(x)Ptf(x)− Pt(ϕ(α)f)(x)|p
)

dx ≤ c(ε)‖f‖p
Hpε;m
,

where Ptf(x) = f ∗ pt(x).
Set

Jα,tf(x) = ϕ(α)(x)Ptf(x)− Pt(ϕ(α)f)(x) =
∫

[

ϕ(α)(x) − ϕ(α)(y)
]

pt(x− y)f(y) dy.

Let a be an Hpε;m associated with a ball B(y0, r). Let I1 = {α : B(y0, r)∩B∗∗α = ∅}, and
I2 = {α : B(y0, r)∩B∗∗α 6= ∅}. We note that the number of elements in I2 is bounded by
a constant independent of a. If α ∈ I1, then Jα,ta(x) =

∫

ϕ(α)(x)pt(x− y)a(y) dy. Thus,
by the same arguments as in the proof of Lemma 3.16, we get

∑

α∈I1

∫

sup
0<t<(ερ(x))2

|Jα,ta(x)|p dx ≤ c(ε).

Let us consider α being in I2. If x /∈ B(y0, ρ(y0))∗, then

Jα,ta(x) =
∫

pt(x− y)ϕ(α)(y)a(y) dy.

Since ‖ϕ(α)a‖Hpε;m ≤ C, where the constant C is independent of ε, a and α, the same
arguments as in the proof of Lemma 3.16 can be applied to obtain

∑

α∈I2

∫

B(y0,ρ(y0))∗c
sup

0<t<(ερ(x))2
|Jα,ta(x)|p dx ≤ c(ε).

If x ∈ B(y0, ρ(y0))∗, then ρ(x) ∼ ρ(y0). Thus

|Jα,ta(x)| =
∣

∣

∣

∣

∫

√
t

ρ(y0)
Ψt(x, y)a(y) dy

∣

∣

∣

∣

≤ Cε
∣

∣

∣

∫

Ψt(x, y)a(y) dy
∣

∣

∣
,

where Ψt(x, y) = ρ(y0)t
−1/2(ϕ(α)(x)−ϕ(α)(y))pt(x−y). We note that |Ψt(x, y) ≤ ωt(x−y)

and |∇xΨt(x, y)| ≤ t−1/2ωt(x− y) for 0 < t < Cρ(y0)2. Therefore the standard methods
can be used in order to show that

∑

α∈I2

∫

B(y0,ρ(y0))∗
sup

0<t<(ερ(x))2
|Jα,ta(x)|p dx ≤ c(ε).

Now we are in a position to finish the proof of the second inequality in (3.10). By

(3.15), Corollary 3.18, and Lemma 3.21, we obtain

‖f‖p
Hpε;m
≤ C
∑

α

‖ϕ(α)f‖p
Hpε;m

≤ C
∑

α

‖P∗ε (ϕ(α)f)‖pLp

≤ C‖P∗ε f‖pLp + C‖T ∗ε f‖pLp ≤ C‖P∗ε f‖pLp + Cc(ε)‖f‖pHpε;m .
Taking ε0 sufficiently small we get

‖f‖Hpε;m ≤ C‖P∗ε f‖
p
Lp

provided 0 < ε ≤ ε0. From (3.6) and (3.7) we conclude that (3.22) holds for 0 < ε ≤ 1.
This completes the proof of Proposition 3.9.
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We define the maximal function

Q∗εf(x) = sup
0<t<ε2ρ(x)2

∣

∣

∣

∣

∫

qt(x, y)f(y) dy

∣

∣

∣

∣

.

Proposition 3.24. Assume that d
d+δ′ < p ≤ 1. Then there exists a family of con-

stants γε > 0, γε → 0 as ε→ 0, such that
‖Q∗εf‖pLp ≤ γε‖f‖pHpε;m .

Proof. Let a be an Hpε;m atom associated with a ball B(y0, r). Applying Proposition

2.16, we get

Q∗εa(x) ≤ Cεδ|Br|1−
1
p .

Therefore
∫

B(y0,4r)

Q∗εa(x)p dx ≤ Cεpδ.

In order to estimate Q∗εa(x) outside the ball B(y0, 4r) we need to consider two cases.
If a satisfies the cancellation condition

∫

a = 0, then, by Proposition 2.17,
∣

∣

∣

∣

∫

qt(x, y)a(y) dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

(qt(x, y)− qt(x, y0))a(y) dy
∣

∣

∣

∣

≤ C(
√
tm(x, V ))δ

′′

t−δ
′′/2ωt(x− y0)rδ

′′+d−d/p.

Thus

Q∗εa(x) ≤ Cεδ
′′ |x− y0|−d−δ

′′

rδ
′′+d−d/p,

and, consequently,
∫

|x−y0|>4r
(Q∗εa(x))p dx ≤ Cεδ

′′p.

If
∫

a 6= 0, then r ∼ ρ(y0). Since t < ε2ρ(x)2, applying Proposition 2.16 and Lemma 2.3,
we get

∣

∣

∣

∫

qt(x, y)a(y) dy
∣

∣

∣
≤ (
√
tm(x, V ))δ

∫

|a(y)|ωt(x− y) dy

≤ Cn
(
√
tm(x, V ))δrd−d/p

m(y0, V )n|x− y0|d+n
.

Therefore
∫

|x−y0|>4r
(Q∗εa(x))p dx ≤ Cεδp.

4. Proof of Theorem 1.11. First we prove the first inequality in (1.12), that is,

(4.1) ‖f‖p
Hpm
≤ C‖f‖p

Hp
A

.

By (3.6) and (3.7) it suffices to show that there is ε > 0 such that

(4.2) ‖f‖p
Hpε;m
≤ C‖f‖p

Hp
A

.
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Applying Proposition 3.9 we have that there exists a constant C1 independent of ε

such that

‖f‖p
Hpε;m
≤
∑

α

‖ϕαf‖pHpε;m ≤ C1
∑

α

‖P∗ε (ϕαf)‖pLp

≤ C1‖T ∗ε f‖pLp + C1
∑

α

‖ϕα(P∗ε f)‖pLp .

By Lemma 3.21, we obtain

‖f‖p
Hpε;m
≤ C1c(ε)‖f‖pHpε;m + C1

∑

α

‖ϕα(P∗ε f)‖pLp

≤ C1c(ε)‖f‖pHpε;m + C1
∑

α

‖ϕα(Q∗εf)‖pLp + C1
∑

α

‖ϕα(Mf)‖pLp .

Finally, taking ε sufficiently small using (3.12)-(3.15) and Proposition 3.24, we obtain

(4.2).

For proving the converse inequality it suffices to show that

‖Ma‖Lp ≤ C
for every a being an Hpm atom. So, let a be such an atom associated with a ball B(y0, r).

Obviously it follows from (1.2) that

‖Ma‖pLp(B(y0,4r)) ≤ C.
In order to estimate Ma(x) for x /∈ B(y0, 4r) we use (2.10) combined with Proposition
2.17 if a satisfies the cancellation condition, and with Proposition 2.16 otherwise.
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