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The results presented in this paper are concentrated around the analysis of translation

invariant singular operators acting in the scale of Lp spaces (1 ≤ p ≤ ∞).

We study the operators acting on function spaces on abelian groups: d-dimensional

euclidean spaces Rd and d-dimensional tori Td. A linear operator T acting on the space

Lp(G) (where G is one of the groups mentioned above) is called invariant iff SaT = TSa
for every Sa where Sa denotes the operator of shift by a ∈ G. The invariant operator

T : Lp(G) → Lp(G) can be expressed in terms of the Fourier transform ”̂” and its
inverse ”∨”:

Tf = (mf̂)∨.

The function m appearing in this formula is called a multiplier. Conversely, the oper-

ator Tm corresponding to the multiplier m is called a multiplier transform of m. The

fundamental example of invariant operators are differential operators with constant coef-

ficients. Multipliers which they generate are rational functions of several variables. These

operators are our main object of study. They arise in the natural way in the theory of

Sobolev spaces and they are the main analytical tools to study their properties. The

behavior of such operators as p → 1 (we are going to study the dependence of their

Lp norm on p ∈ [0,∞]) is of particular interest. We stress that very often we deal

with the singularities stronger that those described by the Calderón–Zygmund condi-

tions (cf. [CZ], [St]).

The main class of operators which we study, as well as questions about their bounded-

ness, arise from the theory of anisotropic Sobolev spaces. We shall present the multiplier

theorems in this context, showing their natural motivations.

To describe more precisely this class we present briefly basic definitions concerning

the Sobolev spaces (cf. e.g. [BBPW], [P]).
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The symbol Rd denotes d-dimensional euclidean space, Td denotes d-dimensional torus

and Zd its dual group; Zd+ denotes the set of elements of Z
d with non-negative coordinates.

For α = (α1, . . . , αn) ∈ Zd+ by D
αf we mean the distributional derivative ∂α1x1 . . . ∂

αd
xd
f .

We put xα = xα11 . . . x
αd
d . A finite non-empty set S ∈ Zd+ is called a smoothness iff it

satisfies the following saturation condition: if α ∈ S and β ≤ α then β ∈ S (α ≤ β

means that αj ≤ βj for j = 1, 2, . . . , d). Symbol #S denotes the set of maximal elements

of S with respect to the relation ” ≤ ”. By LpS(R
d) we denote the Sobolev space of all

functions f : Rd → C satisfying Dαf ∈ Lp(Rd) for α ∈ S. We define a norm in LpS(R
d)

by the formula

‖f‖p,S =
∑

α∈S

‖Dαf‖p.

Similarly we define the Sobolev space LpS(T
d) of functions on the torus. The Sobolev

L
p
S(R

d) space has a very useful representation as a closed subspace of the space Lp(Rd, E)

where E is a euclidean space of dimension cardS. We define this representation using the

embedding

J : LpS(R
d)→ Lp(Rd, E)

given by the formula

J (f) = (Dαf)α∈S .

J (LpS(R
d)) is a closed subspace of the space Lp(Rd, E). For p = 2 this is a closed subspace

of a Hilbert space. We denote the corresponding orthogonal projection by

RS : L
p(Rd, E)→ J (LpS(R

d)).

Since J (LpS(R
d)) is a translation invariant subspace, RS is an invariant operator. It is

given by the Fourier multiplier MS :

RSf = (MS f̂)
∨

where f̂ denotes the Fourier transform of f and g∨ denotes the inverse transform. Since

f̂ is a vector valued function, MS is a square matrix of size cardS, whose elements are

scalar valued Fourier multipliers. It is not difficult to find the concrete form of entries of

MS . We have

MS = [mα,β]α,β∈S ,

where

mα,β(x) = i
|α|−|β| ·

xα+β

QS(x)
,

where

QS(x) =
∑

α∈S

x2α

is the so called fundamental polynomial of the smoothness S. The knowledge of a form

of the entries of MS allows us to extend the definition of RS , which is defined at the

moment only for p = 2, to the spaces LpS(R
d) with other values of p. It is not difficult

to check that the functions mα,β satisfy the condition (M1) of classical Marcinkiewicz’s

multiplier theorem (cf. [PS]).
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Definition. A function m ∈ L∞(Rd) satisfies condition (Mk) iff

r
|α1|−1
1 r

|α2|−1
2 . . . r

|αd|−1
d

∫

Yr

|Dαm(ξ)| dξ < C,

for every α = (α1, . . . , αd) ∈ Zd+ such that |α
j | ≤ k and r = (r1, r2, . . . , rd) ∈ Rd+, where

Yr = {ξ ∈ Rd : ri < |ξi| < 2ri for i = 1, 2, . . . , d}.

Marcinkiewicz Theorem (cf. [S], VI.6.1). If m ∈ L∞(Rd) satisfies (M1) then Tm
is a bounded operator on Lp(Rd) for 1 < p <∞.

In general RS is not bounded on L
1(Rd, E). The complete characterization of smooth-

nesses S for which RS is L
1 bounded (i.e. mα,β are the Fourier transforms of bounded

measures for all α, β ∈ S) is known. This holds iff S contains exactly one maximal

element, i.e. S is of the form Sα = {γ ∈ Zd+ : γ ≤ α} (cf. [Si], [PS]).

A weak type (1,1) of the operator could be considered as a substitute of L1 bound-

edness. We say that the operator T defined on dense subset of L1(Rd, E) is of weak type

(1,1) if there exists C > 0 such that

|{x ∈ R
d : |Tf(x)|E > t}| < Ct

−1‖f‖1.

The importance of weak type (1,1) is based on the theorem of Stein (in the invariant

case) and Nikishin (in general) which says that every f ∈ L1(Td, E) has the image Tf

defined almost everywhere if and only if T is of weak type (1,1).

It appears that for many smoothnesses the canonical projection RS is of weak type

(1,1). The most important examples are isotropic smoothnesses Sk = {α ∈ Zd+ : |α| ≤ k}.

It is easy to check this, because the corresponding multipliers mα,β satisfy condition of

Hörmander–Mihlin multiplier theorem (cf. [H]).

Definition. A function m ∈ L∞(Rd) satisfies condition (Hk) iff

r2|α|−d
∫

r<|x|<2r

|Dαm(ξ)|2 dξ < C,

for every r > 0 and α ∈ Zd+ satisfying |α| ≤ k.

Hörmander–Mihlin Theorem. If m ∈ L∞(Rd) satisfies condition Hk where k is

the smallest integer greater than d2 , then Tm is of weak type (1,1).

A consequence of a weak type (1,1) of an operator is the estimation of the asymptotics

of its Lp norm which follows from the Marcinkiewicz interpolation theorem (cf. [Z], [St],

§1.4). If T is of weak type (1,1) and it is bounded on L2 then there exists C > 0 such that

‖T : Lp → Lp‖ < C(p− 1)−1 for p→ 1. The first example of smoothness S for which the

canonical projection is not of weak type (1,1) was based on this observation (cf. [P]). A

four-dimensional smoothness was constructed in [P] which was a tensor product of two

two-dimensional isotropic smoothnesses and clearly it has the asymptotics of the form

(p− 1)−2. This example was a base for the next two questions:

1) for which smoothnesses S the canonical projection RS is of weak type (1,1)?

2) what is the asymptotics of ‖RS : L
p → Lp‖ as p → 1 for a fixed d-dimensional

smoothness S?
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A partial answer to the first of these questions was given in [BBPW], where smooth-

nesses consisting of derivatives of order less than or equal to two, and two dimensional

smoothnesses are considered.

Theorem 1 ([BBWP]). For every two-dimensional smoothness the canonical Sobolev

projection is of weak type (1,1).

We call the smoothness S non-degenerate iff all its maximal elements are of order

greater than 1; we call S reducible iff xj divides all the symbols of maximal elements of

S for some j = 1, 2, . . . , d.

Theorem 2 ([BBPW]). For every non-degenerate smoothness S of order less than

or equal to two one of the following holds true:

(i) all maximal elements of S have order 1 and S is an isotropic smoothness, so RS
is of weak type (1,1);

(ii) S is reducible and RS is of weak type (1,1);

(iii) S is not reducible and all maximal elements of S are of order two - then RS is of

weak type (1,1) if and only if for every pair of different indices i, j ∈ {1, 2, . . .}

either ∂
2

∂x2
j

∈ S and ∂
2

∂x2
i

∈ S, or ∂2

∂xi∂xj
∈ S;

(iv) if S is not reducible and the set A consisting of all i such that ∂
1

∂xi
is a maximal

element of S is nonempty, then RS is of weak type (1,1) if and only if
∂2

∂x2
j

∈ S

for every j 6∈ A.

Two different methods of proof of the lack of weak type (1,1) can be used. One is

based on the estimation from below of the asymptotics of the norm ‖RS : L
p → Lp‖ as

p→ 1 which contradicts Marcinkiewicz interpolation theorem. For some smoothnesses we

were not able to find such an estimation and another method was developed which does

not give a satisfactory information about the asymptotics of the Lp norm. An example

is a three-dimensional smoothness S with #S = {(2, 0, 0), (0, 1, 1)}. The corresponding

multiplier which is not of weak type (1,1) has the form m(x, y, z) = x2yz
x4+y2z2+y2+z2+1 .

Using the fact that ”weak (1,1) norm” of the Fourier multiplier does not change under

composition with a linear transformation, and the closedness of the class of weak type

(1,1) operators with respect to the pointwise convergence, we derive that weak type (1,1)

of Tm implies weak type (1,1) of the operator Tn where

n(x, y, z) = lim
λ→∞
mλ(x, y, z) = lim

λ→∞
m(λx, λy, λz) =

x4yz

x4 + y2z2
.

Then, using the transference theorem for weak type (1,1) operators (cf. [ABG], [Woz]), we

get the that two-dimensional multiplier which is the restriction of n to the plane {x = 1}

φ(y, z) =
yz

1 + y2z2

is of weak type (1,1). This function depends on the product of variables. In [BBPW] it

was shown that under some regularity conditions the corresponding multiplier transform

is an integral operator with kernel depending on the product of variables. It is not difficult

to show that such an operator may not be of weak type (1,1). The proof of the fact that
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the kernel exists is sophisticated. In [W3] an alternative method of proof of the lack of

weak type (1,1) was presented. It can be applied to a much wider class of multipliers,

since it does not use the algebraic properties of multipliers and it does not require passing

through the Fourier transform.

Theorem 3 ([W3]). Let φ : Rd → C be a continuous function. Suppose that there

exist a ∈ Rd, a sequence (aj)
∞
j=1 ⊂ Rd and C > 0 such that

lim
j→∞
|〈a, aj〉| =∞,

|φ(aj)| > C for j = 1, 2, . . .,

lim
j→∞
φ(x± aj) = 0 for x 6= λa.

Then Tφ is not of weak type (1, 1).

Theorem 3 immediately implies that non-zero multipliers of the form φ(x, y) = g(xy),

where lim|t|→∞ g(t) = 0, are not of weak type (1,1).

One has to stress that the method of proof of Theorem 3 also does not give satisfactory

information on the asymptotics of the Lp norm.

The next result on which several estimations for anisotropic Sobolev spaces are based

concerns the Fourier multipliers on Hardy spaces on product domains. We need some

definitions to formulate it (cf. [ChF1], [ChF2], [F1], [F2]).

Denote by Rj (j = 1, 2, . . . , d) the multiplier transform of the function x 7→
xj
|x| defined

on Rd. The operators Rj are called the Riesz transforms. We put

Hp(Rd) = {f ∈ Lp(Rd) : Rjf ∈ L
p(Rd) for j = 1, 2, . . . , d}.

We define the norm on Hp(Rd) by the formula

‖f‖Hp =

d∑

j=1

‖Rjf‖p.

Since the Riesz transform is a bounded operator on Lp for 1 < p <∞, we have Hp(Rd) =

Lp(Rd) and the norms ‖ · ‖p and ‖ · ‖Hp are equivalent with the constant (p− 1)
−1. The

space H1 differs from L1, but for many applications it plays the role of a useful substitute

of L1.

Let A ⊂ {1, 2, . . . , d}. We define hA : R
d → R by hA(x) =

∏
j∈A sgnxj . Let RA denote

the multiplier transform of the function hA i.e. RAf = (hAf̂)
∨. We define the space

Hp(R× . . .×R) as the set of all those functions f ∈ Lp(Rd) for which RAf ∈ L
p(Rd) for

all A ⊂ {1, 2, . . . , d}. The norm in Hp(Rd × . . .× R
d) is given by

‖f‖Hp(Rd×...×Rd) =
∑

A⊂{1,2,...,d}

‖RAf‖p.

Since ‖RA : L
p → Lp‖ ∼ (p − 1)−#A for p → 1, we have Hp(R × . . .× R) = Lp(Rd) for

1 < p < 2 and the norms ‖ · ‖p and ‖ · ‖Hp(Rd×...×Rd) are equivalent with the constant

(p− 1)−d.

Theorem 4 ([W4]). If m ∈ L∞(Rd) satisfies condition (M2) then Tm is a bounded

operator on Hp(Rd × . . .× Rd).
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The proof of theorem 4 is based on the Littlewood–Paley theory, on the Stein theorem

about multipliers on H1(Rd) and on the Sobolev representation of function by means of

its derivatives. We stress that the advanced theory of the atomic decomposition of H1

functions on product domains (cf. [ChF1], [ChF2]) is not involved in the proof.

Theorem 4 could be applied also to the second question, i.e. to estimate the asymp-

totics of the norm of the canonical Sobolev projection on Lp(Rd, E) as p→ 1.

Corollary ([W5]). If m ∈ L∞(Rd) satisfies condition (M2) then there exists C > 0

such that ‖Tm : L
p → Lp‖ < C(p− 1)−d.

This is a good moment to compare Theorem 4 with the classical Marcinkiewicz the-

orem. The assumptions of Theorem 4 are stronger but one derives also a stronger result:

there are multipliers m satisfying the conditions of the Marcinkiewicz theorem for which

‖Tm : L
p → Lp‖ > C(p− 1)−

3

2
d (cf. [B]). In particular it follows that the Marcinkiewicz

theorem alone is not sufficient to study the asymptotics of the norm of the canonical

projection.

Since for any smoothness S the entries of MS satisfy (M2) we get

Theorem 5 ([W4]). For every d-dimensional smoothness S there exists C > 0 such

that ‖RS : L
p → Lp‖ < C(p− 1)−d.

In [BBPW] an example was shown of d-dimensional smoothness S, given by #S =

{(1, 0, 0, . . . , 0), (0, 1, 1, . . . , 1)}, for which ‖RS : L
p → Lp‖ > C(p−1)−(d−1). It remains an

open question whether the exponent in the inequality from Theorem 5 could be replaced

by d− 1.

For every smoothness for which we know the precise asymptotics of the norm of the

canonical Sobolev projection it is of the form (p− 1)−k as p → 1, where k is an integer

from the interval 1, . . . , d. We conjecture that this holds true for every d-dimensional

smoothness. To support this conjecture we formulate the following result from [W1].

Theorem 6 ([W1]). For every smoothness S either RS is bounded on L
1 or ‖RS :

Lp → Lp‖ > c(p− 1)−1.

Theorem 6 has in fact a wider domain of applications than smoothnesses—it remains

true for every multiplierm for which there exists a sequence of balls (Bn) with unbounded

sequence of radii such that supx,y∈Bn |m(x) − m(y)| → 0 for n → ∞ and the limit

limx→∞,x∈∪Bnm(x) does not exist.

The proof of Theorem 6 is based in one direction on the variant of the Boman method

of representation of a monomial as a combination of monomials with coefficients being

the Fourier transforms of bounded measures, and in the other direction on the Riesz

product technique and martingale inequalities.

At the end we indicate briefly an application of Theorem 4 to interpolation of aniso-

tropic Sobolev spaces. Namely we show that LqS(R
d) is an interpolation space for the

couple (L1S(R
d), LpS(R

d)) for 1 < q < p < ∞, where S is an arbitrary smoothness. For

suppose that a linear operator T acting from J (L1S(R
d)) ∩ J (LpS(R

d)) to some Banach

space X is bounded in norms L1 and Lp. Let f ∈ J (LqS(R
d)). Then clearly f ∈ Hq(R×

. . .×R, E) where dimE = #S. By the known interpolation results for the Hardy spaces of
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product domains (cf. [ChF1]), there exist g ∈ H1(R×. . .×R, E) and h ∈ Hp(R×. . .×R, E)

such that ‖g‖H1 + ‖h‖Hp < C · ‖f‖Hq (more precise estimations for the K-functional

are also available, cf. [Mu], but we use this just to show the idea). We have now f =

RSf = RSg + RSh and, by Theorem 4, RS is bounded both on H
1(R × . . . × R, E)

and on Hp(R× . . .×R, E). Thus ‖RSg‖1 + ‖RSh‖p < C1 · ‖f‖q, and we have ‖Tf‖X .

‖Tg‖X + ‖Th‖X . ‖g‖1 + ‖h‖p . ‖f‖q.
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