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Hilbert C∗-modules over Σ∗-algebras

by

Clifford A. Bearden (Houston, TX)

Abstract. A Σ∗-algebra is a concrete C∗-algebra that is sequentially closed in the
weak operator topology. We study an appropriate class of C∗-modules over Σ∗-algebras
analogous to the class of W ∗-modules (selfdual C∗-modules over W ∗-algebras), and we are
able to obtain Σ∗-versions of virtually all the results in the basic theory of C∗- and W ∗-
modules. In the second half of the paper, we study modules possessing a weak sequential
form of the condition of being countably generated. A particular highlight of the paper is
the “Σ∗-module completion,” a Σ∗-analogue of the selfdual completion of a C∗-module
over a W ∗-algebra, which has an elegant uniqueness condition in the countably generated
case.

1. Introduction. Hilbert C∗-modules (also called Hilbert modules, and
which we simply call C∗-modules) are simultaneous generalizations of
C∗-algebras, Hilbert spaces, and certain types of vector bundles. They are
an amazingly versatile tool used in a broad range of subfields of operator al-
gebra theory—for example, the theory of Morita equivalence, Kasparov’s
KK-theory and its applications in noncommutative geometry, quantum
group theory, and operator space theory (see [7, Section 8.6] for the latter).

An important subclass of C∗-modules is the class of selfdual C∗-modules
(see Definition 2.3) over W ∗-algebras, i.e. the W ∗-modules. Historically,
W ∗-modules (introduced in 1973 by Paschke [22]) were among the first
C∗-modules to appear, but today they seem less well-known and perhaps
under-exploited. Compared to the general theory of C∗-modules, the theory
of W ∗-modules is much more elegant and similar to that of Hilbert spaces, in
large part due to powerful “orthogonality” properties automatically present
in W ∗-modules.

Between the classes of C∗-algebras and W ∗-algebras is the class of
Σ∗-algebras—first studied by Davies [12]; these are defined as concrete
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C∗-algebras that are sequentially closed in the weak operator topology (ab-
breviated WOT from here on). It is the purpose of this paper to explore
the “appropriate” class of C∗-modules over Σ∗-algebras in analogy with
the way that W ∗-modules are the “appropriate” class of C∗-modules over
W ∗-algebras.

This paper is broken up into three sections. In the first, we quickly survey
some background facts about C∗-modules, W ∗-modules, and Σ∗-algebras.

In the second, we define our class of “Σ∗-modules” and prove general re-
sults analogous to many of the basic results in C∗- and W ∗-module theory.
In particular, we show that Σ∗-modules correspond with the ternary rings
of operator (TROs) that are WOT sequentially closed and with corners of
Σ∗-algebras in the same way that C∗-modules (resp. W ∗-modules) corre-
spond with norm-closed (resp. weak∗-closed) TROs and with corners of
C∗-algebras (resp. W ∗-algebras). The other main highlight of this section is
the “Σ∗-module completion” of a C∗-module over a Σ∗-algebra, in analogy
with the selfdual completion of a C∗-module over a W ∗-algebra.

In the final section, we study the subclass of “Σ∗B-countably generated”
Σ∗-modules, and are able to prove many satisfying results about these—
for example, that all Σ∗B-countably generated Σ∗-modules are selfdual. As
expected, there is also a weak sequential version of Kasparov’s stabilization
theorem that holds in this case.

This work was inspired in large part by Hamana’s paper [18], in which
he studies selfdual C∗-modules over monotone complete C∗-algebras. The-
orems 1.2, 2.2, and 3.3 of that paper indicate that selfdual C∗-modules are
the “appropriate” class of C∗-modules over monotone complete C∗-algebras
(and his interesting “conversely” statement in Theorem 2.2 seems to in-
dicate that monotone complete C∗-algebras are the “appropriate” class of
coefficient C∗-algebras over which to consider selfdual C∗-modules). We do
not have in the case of Σ∗-modules the existence of an “orthonormal basis,”
which is Hamana’s main technical tool in [18], so most of his proof techniques
do not work for us, but the overarching philosophy of what we have tried to
accomplish is very much in line with that of Hamana’s work. For more work
on the subject of C∗-modules over monotone complete C∗-algebras, see the
paper [15] by M. Frank.

Also somewhat related to the present work is the noncommutative semi-
continuity theory initiated by Akemann and Pedersen [1] and developed
further by Brown [8] (see also [10, 9]). Though the present work has seem-
ingly little to do with this theory (we do not deal with monotone limits, and
in this work, the universal representation is mentioned only as an example
setting), we were first drawn into this investigation by Brown’s mentioning
in [9] that the monotone sequentially closed C∗-algebra generated by the set
of semicontinuous elements in the second dual of a C∗-algebra is seemingly
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the most natural noncommutative analogue of the space of bounded Borel
functions on a locally compact Hausdorff space. See Note 2.9 for a short
discussion of some related interesting open problems.

2. Background. In this section we fix our notation and review the ba-
sic definitions and results for C∗-modules, W ∗-modules, and Σ∗-algebras.
Since the basic theory of C∗-modules is well-known and covered in many
texts, we will be brief here. We generally refer to [7, Chapter 8] for nota-
tion and results; other references include [19], [25], [27, Chapter 15], and
[2, Section II.7].

Loosely speaking, a (right or left) module X over a C∗-algebra A is called
a (right or left) C∗-module over A if it is equipped with an “A-valued inner
product” 〈·|·〉 : X×X → A and is complete in the canonical norm induced by
this inner product. If X is a right C∗-module, the inner product is taken to
be linear and A-linear in the second variable and conjugate-linear in the first
variable, and vice versa for left modules. When unspecified, “C∗-module”
should be taken to mean “right C∗-module.”

If X and Y are two C∗-modules over A, BA(X,Y ) denotes the Banach
space of boundedA-module maps fromX to Y with operator norm; BA(X,Y )
denotes the closed subspace of adjointable operators; and KA(X,Y ) denotes
the closed subspace generated by operators of the form |y〉〈x| := y〈x|·〉
for y ∈ Y, x ∈ X. If X = Y , the latter two of these spaces are C∗-
algebras, and in this case, X is a left C∗-module over KA(X) with inner
product |·〉〈·|.

In this paper, we will be concerned with modules over Σ∗-algebras, a
class of C∗-algebras with an extra bit of structure that may be viewed ab-
stractly, but is most easily captured by fixing a faithful representation of
a certain type on a Hilbert space. Reflecting this view, C∗-modules over
Σ∗-algebras are also most easily studied when viewed under a representa-
tion induced by a fixed representation of the coefficient Σ∗-algebra. There is
a well-known general procedure for taking a representation of the coefficient
C∗-algebra of a C∗-module and inducing a representation of the C∗-module
and many of the associated mapping spaces mentioned in the previous para-
graph. The following paragraph and proposition describe this construction
and its relevant features.

If A is a C∗-algebra represented nondegenerately on a Hilbert space
H and X is a C∗-module over A, we may consider H as a left module
over A and take the algebraic module tensor product X �A H. This vector
space admits an inner product determined by the formula 〈x ⊗ ζ, y ⊗ η〉 =
〈ζ, 〈x|y〉η〉 for simple tensors (see [19, Proposition 4.5] for details), and we
may complete X �AH in the induced norm to get a Hilbert space X ⊗AH.
If we consider A as a C∗-module over itself and take the C∗-module direct
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sum X⊕A, there is a canonical corner-preserving embedding of BA(X⊕A)
into B((X ⊗A H)⊕2 H) which allows us to concretely identify many of the
associated spaces of operators between X and A with spaces of Hilbert space
operators between H and X⊗AH—this is the content of the following prop-
osition. All of the pieces of this proposition can be found in the textbooks
mentioned above.

Recall that for a nondegenerately-acting C∗-algebra A ⊆ B(H), the mul-
tiplier algebra M(A) may be identified with the space

{T ∈ B(H) : TA ⊆ A and AT ⊆ A},
and the left multiplier algebra LM (A) with {T ∈ B(H) : TA ⊆ A}. For a
right C∗-module X over A, we write “X” to denote the adjoint C∗-module
(see [7, 8.1.1])—this is a left C∗-module over A.

Proposition 2.1. If X is a C∗-module over a nondegenerate C∗-algebra
A ⊆ B(H), then[

KA(X) KA(A,X)

KA(X,A) KA(A)

]
and

[
BA(X) BA(A,X)

BA(X,A) BA(A)

]
are canonically C∗-algebras,[

BA(X) BA(A,X)

BA(X,A) BA(A)

]
is canonically a Banach algebra, and there are canonical maps making the
following diagram commute:[

KA(X) KA(A,X)

KA(X,A) KA(A)

] [
KA(X) X

X A

]

[
BA(X) BA(A,X)

BA(X,A) BA(A)

] [
M(KA(X)) ∗

∗ M(A)

]

[
BA(X) BA(A,X)

BA(X,A) BA(A)

] [
LM (KA(X)) ∗

∗ LM (A)

]

[
B(X ⊗A H) B(H, X ⊗A H)

B(X ⊗A H,H) B(H)

]
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The top two horizontal maps are ∗-isomorphisms, and the horizontal map in
the third row is a Banach algebra isomorphism. All vertical maps are isomet-
ric homomorphisms, and in the diagram with the third row deleted, all verti-
cal maps are isometric ∗-homomorphisms. All maps are corner-preserving.

Note 2.2. We will use the proposition above many times, often without
mention and without distinguishing between a C∗-module operator and its
image as a Hilbert space operator. That said, we will sometimes have two
C∗-algebras A ⊆ B(K) and B ⊆ B(H) and a bimodule X that is a left
C∗-module over A and a right C∗-module over B; in this case, it is important
to distinguish whether we are viewing X as embedded in B(H, X ⊗BH) or
in B(X ⊗A K,K) (see Note 3.3).

Definition 2.3. A right C∗-module X over a A is called selfdual if
every bounded A-module map X → A is of the form 〈x|·〉 for some x ∈ X.
A W ∗-module is a selfdual C∗-module over a W ∗-algebra.

There are many beautiful characterizations of W ∗-modules among C∗-
modules. Most elegantly, a C∗-module over a W ∗-algebra is a W ∗-module if
and only if it has a Banach space predual (this was originally proved in [28]
and [14]; see also [5, Corollary 3.5] for another proof). For the purposes of
this paper, the following characterization may be taken as motivation:

Proposition 2.4. AC∗-moduleY over a von Neumann algebraM⊆B(H)
is a W ∗-module if and only if the canonical image of Y in B(H, Y ⊗M H)
is weak∗-closed.

Proof. (⇒) Assume Y is a W ∗-module. By the Krein–Šmulian theorem,

it suffices to prove that if (yλ) is a bounded net in Y such that yλ
w∗
−−→ T in

B(H, X⊗MH), then T ∈ Y . If we have such a net (yλ) and operator T , then
for any x ∈ Y, 〈yλ ⊗ ζ, x ⊗ η〉 = 〈ζ, 〈yλ|x〉η〉 is convergent for all ζ, η ∈ H,
hence 〈yλ|x〉 converges WOT to some ax ∈ M , and since the WOT and

weak∗ topology on B(H) coincide on bounded sets, we have 〈yλ|x〉
w∗
−−→ ax.

Since Y is a W ∗-module, the map x 7→ ax has the form 〈y|·〉 for some y ∈ Y,
and it follows easily that T = y in B(H, Y ⊗M H).

(⇐) Assume the latter condition, let ϕ ∈ BM (Y,M), and let (et) be a cai
(contractive approximate identity) for KM (Y ). For each t, ϕet ∈ KM (Y,M),
and so there is a yt ∈ Y such that ϕet = 〈yt|·〉 (by the top right isomorphism
in Proposition 2.1). By assumption, Y is a dual Banach space, and so (yt)

has a weak∗-convergent subnet yts
w∗
−−→ y.

Using Cohen’s factorization theorem [7, A.6.2] to write any x ∈ Y
as x = Kx′ for K ∈ KM (Y ) and x′ ∈ Y, we have et(x) = et(Kx

′) =
(etK)(x′) → Kx′ = x in norm in Y , so (ϕet)(x) = ϕ(etx) → ϕ(x) in
norm in M. Hence (ϕet)(x ⊗ ζ) = (ϕet)(x)(ζ) → ϕ(x)(ζ) = ϕ(x ⊗ ζ) in H
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for all x ∈ Y and ζ ∈ H. Since (ϕet) is bounded and the simple tensors are
total in Y ⊗M H, a triangle inequality argument shows that (ϕet) converges
in the SOT (strong operator topology), hence weak∗, to ϕ in B(Y ⊗MH,H).

Since yts
w∗
−−→ y in B(H, Y ⊗M H), we have

〈〈yts |·〉(x⊗ ζ), η〉 = 〈x⊗ ζ, yts(η)〉 → 〈x⊗ ζ, y(η)〉 = 〈〈y|·〉(x⊗ ζ), η〉.
Since (〈yts |·〉) is bounded, another triangle inequality argument as in the pre-

vious paragraph gives 〈yts |·〉
WOT−−−→ 〈y|·〉, so that 〈yts |·〉

w∗
−−→ 〈y|·〉 by bound-

edness again.

Since ϕet = 〈yt|·〉, we may combine the previous two paragraphs to
conclude that ϕ = 〈y|·〉.

Definition 2.5. A (concrete) Σ∗-algebra is a nondegenerate C∗-algebra
B ⊆ B(H) that is closed under limits of WOT-convergent sequences, i.e.
whenever (bn) is a sequence in B that converges in the weak operator topol-
ogy of B(H) to an operator T , then T ∈ B.

For Σ∗-algebras A ⊆ B(K),B ⊆ B(H), a ∗-homomorphism ϕ : A → B

is called a Σ∗-homomorphism if an
WOT−−−→ a in A implies ϕ(an)

WOT−−−→ ϕ(a)
in B. If additionally ϕ is a ∗-isomorphism and ϕ−1 is a Σ∗-homomorphism,
then ϕ is called a Σ∗-isomorphism.

The following simple observation is well-known. We do not directly apply
this result in the present work, but it provides an alternative definition for
Σ∗-algebras and seems noteworthy.

Lemma 2.6. A sequence in B(H) is weak∗-convergent if and only if it
is WOT-convergent. Hence a C∗-algebra A ⊆ B(H) is a Σ∗-algebra if and
only if it is sequentially closed in the weak∗ topology of B(H).

Proof. One direction is obvious. The other follows by applying the uni-
form boundedness principle (twice) to see that a WOT-convergent sequence
is automatically bounded, hence also weak∗-convergent.

One may also discuss abstract Σ∗-algebras, i.e. C∗-algebras that admit
a faithful representation as a concrete Σ∗-algebra. In his original paper [12]
on Σ∗-algebras, E. B. Davies proved a characterization theorem for when an
abstract C∗-algebra A equipped with a collection of pairs ((an), a), each con-
sisting of a sequence (an) ⊆ A and an element a ∈ A, admits a faithful repre-
sentation as a Σ∗-algebra whose WOT-convergent sequences and their limits
are prescribed by the collection {((an), a)}. These abstract Σ∗-algebras may
also be described by replacing the collection {((an), a)} with an appropriate
subspace of the dual space A∗, or an appropriate closed convex subset of
the state space S(A). The latter perspective was mentioned by Davies in
the original paper and is the underlying point of view in Dang’s paper [11].
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More explicitly, Dang defines a Σ∗-algebra to be a pair (A,S), where A is a
C∗-algebra and S is a subset of S(A) such that:

(1) if ϕ ∈ S and a ∈ A with ϕ(a∗a) = 1, then ϕ(a∗ · a) ∈ S;
(2) if ψ is a state on A such that ψ(an) converges for all sequences (an)

in σS = {(an) ∈ `∞(A) : ϕ(an) converges for all ϕ ∈ S}, then ψ ∈ S;
(3) if a ∈ A is nonzero, then ϕ(a) 6= 0 for some ϕ ∈ S;
(4) if (an) ∈ σS, then there is an a ∈ A such that ϕ(an) → ϕ(a) for all

ϕ ∈ S.
Elementary operator-theoretic arguments show that if A is WOT sequen-
tially closed, then the collection of WOT sequentially continuous states
meets these requirements. Conversely, as Dang points out, one may use
a slight modification of the polarization identity (b∗xa = 1

4

∑3
k=0 i

k(a +

ikb)∗x(a + ikb) for a, x, b ∈ A) to check that if (A,S) is a Σ∗-algebra in
Dang’s sense, then (A, σS) is aΣ∗-algebra in Davies’ sense, so that by Davies’
result, A admits a representation as a Σ∗-algebra in our sense.

A similar class of C∗-algebras was studied by Pedersen in several papers
(see [23, Section 4.5] for the main part of the theory and more references).
He studied “Borel ∗-algebras,” which are concrete C∗-algebras closed un-
der limits of bounded monotone sequences of selfadjoint elements. In some
ways, Borel ∗-algebras are more technically forbidding (e.g. compare Propo-
sition 2.7 below to [23, Theorem 4.5.4]), but in other ways they seem nicer—
for example, it seems to be an open question whether or not a ∗-isomorphism
between Σ∗-algebras is always a Σ∗-isomorphism, but it is easy to see that
the analogous statement for Borel ∗-algebras is true.

For any subset S ⊆ B(H), denote by B(S) the smallest WOT sequen-
tially closed subset of B(H) containing S. Such a set exists since the intersec-
tion of any two WOT sequentially closed subsets is also WOT sequentially
closed. If there is ambiguity (for example if we represent a C∗-algebra on
two different Hilbert spaces), we add a subscript: BH(S). These closures
provide many examples of Σ∗-algebras:

Proposition 2.7. If A ⊆ B(H) is a nondegenerate C∗-algebra, then
B(A) is a Σ∗-algebra.

Proof ([12, Lemma 2.1]). Fix a∈A, and let S = {b∈B(A) : ab∈B(A)}.
Clearly S is WOT sequentially closed and contains A, so S = B(A). Hence
ab ∈ B(A) for all a ∈ A and b ∈ B(A). Similar tricks show that bc ∈ B(A)
for all b, c ∈ B(A) and that B(A) is a ∗-invariant subspace of B(H). Since
B(A) is also evidently norm-closed, the result follows.

Example 2.8. (1) Every von Neumann algebra is clearly a Σ∗-algebra.
Conversely, if H is separable, then it follows from Pedersen’s up-down theo-
rem [23, Theorem 2.4.3] that every Borel ∗-algebra, hence every Σ∗-algebra,
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in B(H) is a von Neumann algebra. (Kadison first proved this fact for Σ∗-
algebras in an appendix to [12].)

(2) If H is a Hilbert space, then the ideal S of operators in B(H) with
separable range is the Σ∗-algebra B(K(H)), which is of course not unital if
H is not separable. Indeed, it is a short exercise to see that every operator
with separable range is a SOT-limit of a sequence of finite rank operators.
Conversely, by basic operator theory, every compact operator has separable
range. To see that S is WOT sequentially closed, suppose (Tn) is a sequence
in S converging in the WOT to T ∈ B(H). Then P :=

∨
n r(Tn) (where

r(Tn) denotes the projection onto Ran(Tn)) is a projection with separable

range, and Tn = PTn
WOT−−−→ PT. Hence PT = T, so T has separable range.

(3) Let A be a C∗-algebra considered as a concrete C∗-algebra in its
universal representation A ⊆ B(Hu). The Σ∗-algebra Σ∗(A) := B(A) ob-
tained here is called the Davies–Baire envelope of A (following the termi-
nology of [26]). It was proved by Davies [12, Theorem 3.2] that Σ∗(A) is
Σ∗-isomorphic to BHa(A), where A ↪→ B(Ha) is the atomic representation
of A.

(4) ([12, Corollary 3.3]; [23, 4.5.14]) Let X be a locally compact Haus-
dorff space. By basic C∗-algebra theory, the atomic representation of the
commutative C∗-algebra C0(X) is the embedding of C0(X) into B(`2(X))
as multiplication operators. By the last statement in the previous example,
Σ∗(C0(X)) may be identified with the WOT sequential closure of C0(X) in
B(`2(X)). This closure is evidently contained in the copy of the space of
all bounded functions on X, `∞(X), in B(`2(X)). Since WOT-convergence
of sequences in `∞(X) ⊆ B(`2(X)) coincides with pointwise convergence
of bounded sequences of functions, we may identify Σ∗(C0(X)) with the
space of functions known classically (sometimes) as the bounded Baire func-
tions on X (in the sense of [24, 6.2.10] or [17]). Recall two well-known
classical facts about the Baire functions: (1) if X is second countable,
then Baire functions and Borel-measurable functions on X coincide, and
(2) X is σ-compact if and only if constant functions are Baire. Thus
Σ∗(C0(X)) for non-σ-compact X provides another example of a nonuni-
tal Σ∗-algebra.

(5) If A is a separable C∗-algebra and φ is a faithful state on A, then
the GNS construction gives a faithful representation of A as operators on
a separable Hilbert space Hφ. By (1) above, BHφ(A) is the weak∗-closure
of A in B(Hφ). In particular, if A = C(X) for a second countable compact
Hausdorff space X, and µ is a finite positive Borel measure on X such that	
f dµ > 0 for all nonzero positive f ∈ C(X) (e.g. take µ to be Lebesgue

measure on X = [0, 1]), then by basic measure theory (see e.g. [21, Ex-
ample 4.1.2]), BL2(X,µ)(C(X)) = L∞(X,µ).
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Note 2.9 (Open questions, cf. [23, 4.5.14], [26, Section 5.3.1]). Though
we do not address these in the present work, there are some interesting and
natural open questions about Σ∗-algebras and similar classes of C∗-algebras.

As mentioned above Proposition 2.7, it appears to be unknown whether
or not every ∗-isomorphism between Σ∗-algebras is a Σ∗-isomorphism (or
even if ∗-isomorphic Σ∗-algebras are necessarily Σ∗-isomorphic).

Related to (3) in Example 2.8, if A ⊆ B(Hu) is a C∗-algebra in its uni-
versal representation, it is unknown whether or not one must have B(A) =
Bm(A), where the latter refers to the monotone sequential closure of A (that
is, Bm(A) = Bm(Asa) + iBm(Asa), where Bm(Asa) is the smallest subset
of B(Hu)sa containing Asa and closed under limits of bounded increasing
sequences). Clearly the inclusion Bm(A) ⊆ B(A) always holds. Pedersen
proved that Bm(A) is always a C∗-algebra [23, Theorem 4.5.4] and that the
equality B(A) = Bm(A) does hold if A is type I [23, Section 6.3].

One may also replace the monotone sequential closure Bm(A) in the
paragraph above with a number of variants—for example, the SOT sequen-
tial closure of A, Bs(A). Clearly Bs(A) lies between Bm(A) and B(A), but
as far as we know, the questions of whether or not Bs(A) always equals
B(A) or Bm(A) are still open. (Note that by Lemma 2.6 the weak∗ sequen-
tial closure of A coincides with B(A).)

In fact, as far as we can tell, there is no known example of any monotone
sequentially closed C∗-algebra that is not WOT sequentially closed (or a
WOT sequentially closed C∗-algebra that is not SOT sequentially closed).

Somewhat similar in spirit is the interesting open question of whether
or not Amsa (the set of limits in A∗∗sa of bounded increasing nets in Asa) is
always norm-closed. Brown [8, Corollary 3.25] proved that this does hold if
A is separable. See [10] for an insightful discussion on this problem.

We now briefly record a few basic facts about Σ∗-algebras that we will
use later.

Proposition 2.10. Let T be an operator in a Σ∗-algebra B ⊆ B(H). If
T = U |T | is the polar decomposition of T , then U ∈ B.

Proof. See [13, Lemma 2.1] or [23, Proposition 4.5.16].

Proposition 2.11. If B ⊆ B(H) is a unital Σ∗-algebra and x is a
selfadjoint element in B, then f(x) ∈ B for all bounded Borel functions
f : R→ C.

Proof. This may be proved by using a mild modification of [23, Propo-
sition 4.5.7].

Proposition 2.12. If B ⊆ B(H) is a nonunital Σ∗-algebra, then its
unitization B1 is a Σ∗-algebra in B(H), and for (bn), b ∈ B and (λn), λ ∈ C,
we have bn + λnIH

WOT−−−→ b+ λIH if and only if bn
WOT−−−→ b and λn → λ.
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Proof. If (bn + λnIH) is a sequence in B1 converging WOT to T in
B(H), then (λn) is bounded, hence has a subsequence (λnk) converging to

some λ ∈ C. So bnk
WOT−−−→ T − λIH, and thus T ∈ B1. The last claim is

a short exercise using the fact that a bounded sequence in C converges iff
every convergent subsequence has the same limit.

3. Σ∗-modules

Definition 3.1. A right (resp. left) C∗-module X over a Σ∗-algebra
B ⊆ B(H) is called a right (resp. left) Σ∗-module if the canonical image of
X in B(H,X ⊗B H) (resp. in B(X ⊗B H,H)) is WOT sequentially closed.
As with C∗-modules, “X is a Σ∗-module” means “X is a right Σ∗-module.”
We usually only explicitly prove results for right Σ∗-modules, but in these
cases there is always an easily translated “left version.”

Note the evident facts that every Σ∗-algebra is a Σ∗-module over itself
(this will be generalized in Theorem 3.10) and that a Σ∗-module X over a
nonunital Σ∗-algebra B is canonically a Σ∗-module over B1 (indeed, the
algebraic module tensor products X�BH and X�B1H coincide, so we have
equality of the Hilbert spaces X⊗B H = X⊗B1 H).

We will show shortly (Proposition 3.5) that every selfdual C∗-module
over a Σ∗-algebra is a Σ∗-module, but the converse is not true. Indeed, if
B is a nonunital Σ∗-algebra (e.g. the bounded Baire functions on a non-
σ-compact locally compact Hausdorff space X, or B(K(H)) for nonsepar-
able H) viewed as a Σ∗-module over itself, then B is not selfdual since the
identity map on B is not of the form x 7→ y∗x for some y ∈ B. However,
we will show in Theorem 4.10 that these notions do coincide in the case of
Σ∗B-countably generated C∗-modules over Σ∗-algebras.

Lemma 3.2. Let X be a C∗-module over a Σ∗-algebra B ⊆ B(H). For

a sequence (xn) ∈ X and x ∈ X, we have 〈xn|y〉
WOT−−−→ 〈x|y〉 for all y ∈ X

if and only if xn
WOT−−−→ x in B(H, X ⊗B H).

Proof. (⇒) Suppose that 〈xn|y〉
WOT−−−→ 〈x|y〉 for all y ∈ X. For each n,

let ϕn : X → B be the bounded linear map defined by ϕn(y) = 〈xn|y〉.
Then for any y ∈ X, supn ‖ϕn(y)‖ = supn ‖〈xn|y〉‖ <∞ since the sequence
(〈xn|y〉) is WOT-convergent, hence bounded. By the uniform boundedness
principle, supn ‖xn‖ = supn ‖ϕn‖ <∞. Since

〈xn(ζ), y ⊗ η〉 = 〈xn ⊗ ζ, y ⊗ η〉 = 〈ζ, 〈xn|y〉η〉
→ 〈ζ, 〈x|y〉η〉 = 〈xn ⊗ ζ, y ⊗ η〉 = 〈x(ζ), y ⊗ η〉

for all ζ, η ∈ H and y ∈ X, and since elements of the form y⊗ η are total in

X ⊗B H, it follows from a triangle inequality argument that xn
WOT−−−→ x in

B(H, X ⊗B H).
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(⇐) Assume xn
WOT−−−→ x in B(H, X⊗BH), and take y ∈ X. Then for any

ζ, η ∈ H, we have

〈ζ, 〈xn|y〉η〉 = 〈xn(ζ), y ⊗ η〉 → 〈x(ζ), y ⊗ η〉 = 〈ζ, 〈x|y〉η〉,

so that 〈xn|y〉
WOT−−−→ 〈x|y〉.

Note 3.3. A similar result holds for left C∗-modules—namely, if X
is a left C∗-module over a Σ∗-algebra A ⊆ B(K) with A-valued inner

product 〈·|·〉A, then 〈xn|y〉A
WOT−−−→ 〈x|y〉A for all y ∈ X if and only if

xn
WOT−−−→ x in B(X ⊗A K,K). If X is both a left Σ∗-module over A and

a right Σ∗-module over B, there is thus the potential for confusion in an

expression like “xn
WOT−−−→ x.” To distinguish, we write:

xn
AWOT−−−−→ x iff 〈xn|y〉A

WOT−−−→ 〈x|y〉A for all y ∈ X
and

xn
WOTB−−−−→ x iff 〈xn|y〉B

WOT−−−→ 〈x|y〉B for all y ∈ X
where 〈·|·〉A denotes the A-valued inner product and 〈·|·〉B denotes the
B-valued inner product on X. Note that these notations make good sense
even if A and B are concrete C∗-algebras that are not necessarily WOT
sequentially closed.

The following proposition is often helpful when proving that a C∗-module
is a Σ∗-module, and we will use it for this purpose many times.

Proposition 3.4. Let X be a C∗-module over a Σ∗-algebra B ⊆ B(H).
The following are equivalent:

(1) X is a Σ∗-module;
(2) whenever (xn) is a sequence in X such that 〈xn|y〉 is WOT-conver-

gent in B(H) for all y ∈ X, then there is a (unique) x ∈ X such that

〈xn|y〉
WOT−−−→ 〈x|y〉 for all y ∈ X;

(3) the space X̂ := {〈x|·〉 : x ∈ X} is point-WOT sequentially closed in
BB(X,B).

Proof. (1)⇒(2). Assume X is a Σ∗-module, and let (xn) be a sequence
in X such that 〈xn|y〉 is WOT-convergent in B(H) for all y ∈ X. Then
〈xn(ζ), y ⊗ η〉 = 〈ζ, 〈xn|y〉η〉 is convergent for all ζ, η ∈ H and y ∈ X. Since
(xn) is a bounded sequence (as in the proof of the forward direction of
the previous lemma), it follows that 〈xn(ζ), ξ〉 converges for all ζ ∈ H and
ξ ∈ X⊗BH. It follows from a standard argument using the correspondence
betweeen operators and bounded sesquilinear maps that there is an operator
T ∈ B(H,X ⊗B H) satisfying 〈T (ζ), ξ〉 = limn〈xn(ζ), ξ〉 for ζ ∈ H and

ξ ∈ X ⊗B H. Thus xn
WOT−−−→ T , so by assumption, T ∈ X. By the backward

direction of the previous lemma, 〈xn|y〉
WOT−−−→ 〈T |y〉 for all y ∈ X. Uniqueness
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follows from the usual argument that the canonical map X → BB(X,B) is
one-to-one.

(2)⇒(1). Assuming (2), let (xn) be a sequence in X such that xn
WOT−−−→ T

in B(H,X⊗B H). Then

〈ζ, 〈xn|y〉η〉 = 〈xn(ζ), y ⊗ η〉 → 〈T (ζ), y ⊗ η〉

for all ζ, η ∈ H and y ∈ X. It follows that 〈xn|y〉 is WOT-convergent for all

y ∈ X, so by assumption there is an x ∈ X such that 〈xn|y〉
WOT−−−→ 〈x|y〉 for

all y ∈ X. By the forward direction of the previous lemma, xn
WOT−−−→ x, so

that T = x ∈ X.

The equivalence of (2) and (3) follows by noting that if (xn) is a sequence
in X such that 〈xn|y〉 is WOT-convergent in B(H) for all y ∈ X, then
y 7→WOT- limn〈xn|y〉 defines an operator in BB(X,B).

Proposition 3.5. If X is a selfdual C∗-module over a Σ∗-algebra B ⊆
B(H), then X is a Σ∗-module.

Proof. Let (xn) be a sequence in X such that 〈xn|y〉 is WOT-convergent
for all y ∈ X. Define ψ : X → B by setting ψ(y) = WOT- limn〈xn|y〉.
It is easy to check that ψ ∈ BB(X,B), so by assumption ψ = 〈x|·〉 for

some x ∈ X. But this means 〈xn|y〉
WOT−−−→ 〈x|y〉 for all y ∈ X, and so by

Proposition 3.4, X is a Σ∗-module.

One of the most basic results in the theory of C∗-modules (and one that is
fundamental in the theory of Morita equivalence) is the fact that a right C∗-
module X over a C∗-algebra A is a left C∗-module over KA(X). Analogously,
if Y is a right W ∗-module over a W ∗-algebra M , then BM (Y ) is a W ∗-
module, and Y is a left W ∗-module over BM (Y ). The following proposition
and theorem show that the obvious Σ∗-analogues of these statements are
true. (Note that the following proposition generalizes the easy fact that
the multiplier algebra and the left multiplier algebra of a Σ∗-algebra are
WOT sequentially closed. Indeed, in the special case X = B, Proposition 2.1
implies that BB(X) = M(B) and BB(X) = LM (B).)

Proposition 3.6. If X is a right Σ∗-module over a Σ∗-algebra B ⊆
B(H), then BB(X) and BB(X) are WOT sequentially closed in B(X⊗BH).

For a sequence (Tn) and element T in BB(X), Tn
WOT−−−→ T if and only if

Tn(x)
WOTB−−−−→ T (x) for all x ∈ X.

Proof. Let (Tn) be a sequence in BB(X) ⊆ B(X⊗B H) with Tn
WOT−−−→ T

for some T ∈ B(X⊗B H). Then for x, y ∈ X and ζ, η ∈ H,

〈ζ, 〈Tn(x)|y〉η〉 = 〈Tn(x)⊗ ζ, y⊗ η〉 = 〈Tn(x⊗ ζ), y⊗ η〉 → 〈T (x⊗ ζ), y⊗ η〉.
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Hence, for a fixed x ∈ X, 〈Tn(x)|y〉 is WOT-convergent for all y ∈ X. By
Proposition 3.4, there is a unique element, call it T̃ (x), in X such that

〈Tn(x)|y〉 WOT−−−→ 〈T̃ (x)|y〉 for all y ∈ X.

Doing this for each x ∈ X yields a map T̃ : X → X. Since ‖T̃ (x)‖ =
sup{‖〈T̃ (x)|y〉‖ : y ∈ Ball(X)} and ‖〈T̃ (x)|y〉‖ ≤ (supn ‖Tn‖)‖x‖ ‖y‖, we see

that T̃ is bounded, and further direct arguments show that T̃ ∈ BB(X). That
T̃ coincides with T in B(X ⊗B H) follows by combining the two displayed
expressions. Hence BB(X) is WOT sequentially closed.

Now we show that BB(X) is WOT sequentially closed. If (Sn) is a se-
quence in BB(X) converging weakly to S ∈ B(X ⊗B H), then by what we
just proved, S ∈ BB(X). Since the adjoint is WOT-continuous, we also have
S∗ ∈ BB(X), where S∗ denotes the adjoint of S as a Hilbert space operator
in B(X⊗B H). For x, y ∈ X and ζ, η ∈ H, we have

〈ζ, 〈S(x)|y〉η〉 = 〈S(x⊗ ζ), y ⊗ η〉 = 〈x⊗ ζ, S∗(y ⊗ η)〉 = 〈ζ, 〈x|S∗(y)〉η〉.

Hence 〈S(x)|y〉 = 〈x|S∗(y)〉, and so S ∈ BB(X).

For the final statement, we have proved in the first paragraph above

that if Tn
WOT−−−→ T in BB(X) ⊆ B(X ⊗B H), then 〈Tn(x)|y〉 WOT−−−→ 〈T (x)|y〉

for all x, y ∈ X, which is the same as saying Tn(x)
WOTB−−−−→ T (x) for all

x ∈ X. Conversely, if 〈Tn(x)|y〉 WOT−−−→ 〈T (x)|y〉 for all x, y ∈ X, then (Tn) is
bounded by the uniform boundedness principle, and 〈Tn(x ⊗ ζ), y ⊗ η〉 →
〈T (x⊗ ζ), y⊗ η〉 for all ζ, η ∈ H. A triangle inequality argument shows that

Tn
WOT−−−→ T in B(X⊗B H).

Hence BB(X) is a Σ∗-algebra in B(X ⊗B H), and so B(KB(X)), the
WOT sequential closure of KB(X) in B(X ⊗B H), is contained in BB(X).
Since X is a left C∗-module over BB(X) with inner product taking values
in KB(X), X is also a left C∗-module over the Σ∗-algebra B(KB(X)). We
show in Theorem 3.8 that X is in fact a Σ∗-module over B(KB(X)).

We will later show (Proposition 4.8), that B(KB(X)) = BB(X) in the
special case that X is “Σ∗B-countably generated.” We do not know of any
other example (outside the Σ∗B-countably generated case) in which equality
holds here, but note that equality does not hold in general—for example, if
B is a nonunital Σ∗-algebra, then B ∼= B(KB(B)) is not equal to BB(B)
since the latter is unital.

Lemma 3.7. Let X be a right Σ∗-module over a Σ∗-algebra B⊆B(H).

For a sequence (xn) and element x in X, xn
B(KB(X))WOT

−−−−−−−−−→ x if and only if

xn
WOTB−−−−→ x.



282 C. A. Bearden

Proof. The claim is that |xn〉〈w|
WOT−−−→ |x〉〈w| in B(X⊗BH) for all w ∈ X

if and only if 〈xn|z〉
WOT−−−→ 〈x|z〉 in B(H) for all z ∈ X. Assuming the former,

it follows from the uniform boundedness principle that (xn) is a bounded
sequence, and routine calculations give

〈〈w|y〉ζ, 〈xn|z〉η〉 = 〈|xn〉〈w|(y ⊗ ζ), z ⊗ η〉
→ 〈|x〉〈w|(y ⊗ ζ), z ⊗ η〉 = 〈〈w|y〉ζ, 〈x|z〉η〉

for all w, y, z ∈ X and ζ, η ∈ H. Our usual boundedness/density arguments
show that if P ∈ B(H) is the projection onto the closed subspace of H
generated by {〈x|y〉ζ : x, y ∈ X and ζ ∈ H}, then for any ξ, η ∈ H and
z ∈ X, we have

〈ξ, 〈xn|z〉η〉 = 〈Pξ, 〈xn|z〉η〉 −→ 〈Pξ, 〈x|z〉η〉 = 〈ξ, 〈x|z〉η〉.

Hence 〈xn|z〉
WOT−−−→ 〈x|z〉 in B(H) for all z ∈ X. The converse is similar.

Theorem 3.8. If X is a right Σ∗-module over a Σ∗-algebra B ⊆ B(H),
then X is a left Σ∗-module over the Σ∗-algebra B(KB(X)) ⊆ B(X⊗B H).

Proof. By the “left version” of Proposition 3.4, we need to show that if
(xn) is a sequence in X such that |xn〉〈y| is WOT-convergent inB(X⊗BH) for

all y ∈ X, then there is an x ∈ X such that |xn〉〈y|
WOT−−−→ |x〉〈y| for all y ∈ X.

If |xn〉〈y| is WOT-convergent in B(X ⊗B H) for all y ∈ X, then arguments
from the first paragraph of the proof of Lemma 3.7 show that 〈xn|z〉 is
WOT-convergent for all z ∈ X. By Proposition 3.4, there is an x ∈ X such

that 〈xn|z〉 → 〈x|z〉 for all z ∈ X, and by Lemma 3.7, |xn〉〈y|
WOT−−−→ |x〉〈y|

for all y ∈ X.

A ternary ring of operators (abbreviated TRO) is a subspaceZ ⊆B(H,K),
for Hilbert spaces H,K, such that xy∗z ∈ Z for all x, y, z ∈ Z; and a corner
of a C∗-algebra A is a subspace of the form pAq for projections p, q ∈M(A).
(This is slightly different from the usual definition of a corner as a subspace
of the form pAp⊥, but every corner in our sense can be identified with a
corner in the usual sense of a different C∗-algebra, so the two definitions are
not essentially different.) Note that if Z is a TRO in B(H,K), then there
is a canonical triple isomorphism (see [7, 8.3.1]) identifying Z with a TRO
in B(H, [ZH]). So, just as for C∗-algebras, there is no real loss in assuming
from the outset that a TRO is nondegenerate, i.e. [ZH] = K.

In analogy with the situation in C∗-module theory and W ∗-module the-
ory, Σ∗-modules are essentially the same as WOT sequentially closed TROs,
and essentially the same as corners of Σ∗-algebras. The next theorem gives
the details for how to move from one of these “pictures” to another. To
prepare for this, we first describe the Σ∗-version of the “linking algebra” of
a C∗-module.
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Proposition 3.9. If X is a Σ∗-module over a Σ∗-algebra B ⊆ B(H),
then

LB(X) :=

[
B(KB(X)) X

X B

]
is a Σ∗-algebra in B((X⊗B H)⊕2 H).

Proof. It is very easy to show that a sequence of 2×2 matrices in LB(X)
converges WOT to a 2× 2 matrix ξ ∈ B((X⊗BH)⊕2H) if and only if each
of the entries converges WOT to the corresponding entry in ξ. Since each of
the four corners of LB(X) is WOT sequentially closed, the result follows.

In the following theorem, when we say “X ∼= (1 − p)Cp and B ∼= pCp
under isomorphisms preserving all the Σ∗-module structure,” we mean that
there is an isometric isomorphism ϕ : X→ (1− p)Cp and a Σ∗-isomorphism
ψ : B → pCp such that ϕ(xb) = ϕ(x)ψ(b) and ψ(〈x|y〉) = ϕ(x)∗ϕ(y) for all

x, y ∈ X and b ∈ B. Note that these conditions imply that ϕ(xn)
WOTpCp−−−−−→

ϕ(x) whenever xn
WOTB−−−−→ x.

Theorem 3.10.

(1) If X is a Σ∗-module over B ⊆ B(H), then X is a WOT sequen-
tially closed TRO in B(H,X ⊗ H). Conversely, if Z is a nonde-
generate WOT sequentially closed TRO in B(K1,K2), then Z is a
Σ∗-module over B(Z∗Z) with the obvious module action and inner
product 〈z1|z2〉 = z∗1z2.

(2) If Y = pDq is a corner of a Σ∗-algebra D, then Y is canoni-
cally a Σ∗-module over qDq. Conversely, if X is a Σ∗-module over
B ⊆ B(H), then there exists a Σ∗-algebra C ⊆ B(K) and a pro-
jection p ∈M(C) such that X ∼= (1 − p)Cp and B ∼= pCp under
isomorphisms preserving all the Σ∗-module structure.

Proof. (1) The forward direction follows immediately from the definition
of Σ∗-modules. For the converse, we must first show that Z is closed under
right multiplication by elements in B(Z∗Z). For each z ∈ Z, the set Sz =
{b ∈ B(Z∗Z) : zb ∈ Z} contains Z∗Z since Z is a TRO, and an easy argument
shows that Sz is WOT sequentially closed, so that Sz = B(Z∗Z). So Z is
a right module over B(Z∗Z), and it is straightforward to show that it is a
C∗-module over B(Z∗Z) with the canonical inner product. To prove that Z
is a Σ∗-module, note that under the canonical unitary Z⊗B(Z∗Z)K1

∼= [ZK1]
= K2, the embedding Z ↪→ B(K1,Z⊗B(Z∗Z)K1) coincides with the inclusion
Z ⊆ B(K1,K2), so it follows from the definition that Z is a Σ∗-module
over B(Z∗Z).

(2) For the forward direction, first note the easy fact that if D is a
Σ∗-algebra in B(K) and q ∈ M(D) ⊆ B(K) is a projection, then qDq is a
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Σ∗-algebra in B(qK). Showing that Y is a Σ∗-module over qDq is then a
short exercise either using the definition as in the proof of (1), or employing
Proposition 3.4. The converse follows from Proposition 3.9 with C = LB(X)

and p =
[
0
0

0
1

]
.

It is an interesting and useful fact that a C∗-module over a W ∗-algebra
always admits a “selfdual completion,” that is, a unique W ∗-module con-
taining the original C∗-module as a weak∗-dense submodule. Hamana [18]
and Lin [20] also proved that a C∗-module X over a monotone complete
C∗-algebra admits a selfdual completion, and Hamana proved uniqueness
under the condition that X⊥ = (0). The proposition below gives existence
of a “Σ∗-module completion” analogous to the selfdual completion.

Note that an easy modification of Lemma 3.11 and Proposition 3.12 gives
another proof of the existence of the selfdual completion of a C∗-module over
a W ∗-algebra (this is surely known to experts though).

For a C∗-module X over a nondegenerate C∗-algebra B ⊆ B(H), recall
a few canonical embeddings from Proposition 2.1:

X ∼= KB(B, X) ↪→ B(H, X ⊗B H),

BB(X,B) ↪→ B(X ⊗B H,H).

In the following lemma, the definition of S implicitly uses the latter, and
the last few statements use the former.

Lemma 3.11. If X is a C∗-module over a Σ∗-algebra B ⊆ B(H), then

S := {T ∈ B(H, X ⊗B H) : T ∗ ∈ BB(X,B)}
is WOT sequentially closed in B(H, X ⊗B H) and contains X. Hence we
may view

X ⊆ B(X) ⊆ S ⊆ B(H, X ⊗B H),

where by B(X) we mean the WOT sequential closure of X in B(H, X⊗BH).

Proof. Suppose that (Tn) is a sequence in S and T ∈ B(H, X ⊗B H)

with Tn
WOT−−−→ T in B(H, X ⊗B H). Then T ∗n

WOT−−−→ T ∗ in B(X ⊗B H,H), so

〈T ∗n(x)ζ, η〉 = 〈T ∗n(x⊗ ζ), η〉 → 〈T ∗(x⊗ ζ), η〉 for all x ∈ X and ζ, η ∈ H,
and it follows that for each x ∈ X, the sequence (T ∗n(x)) converges WOT
in B ⊆ B(H). Define a map τ : X → B by τ(x) = WOT- limn T

∗
n(x). It is

direct to check that τ is in BB(X,B), and since 〈T ∗(x⊗ζ), η〉 = 〈τ(x)ζ, η〉 =
〈τ(x⊗ ζ), η〉 for all x ∈ X and ζ, η ∈ H, we may conclude that T ∗ coincides
with τ under the embedding BB(X,B) ↪→ B(X ⊗B H,H). Hence T ∈ S ,
and so S is WOT sequentially closed. All the other claims are evident.

Note that it follows quickly from the definitions that B(X) = X if and
only if X is a Σ∗-module. To see that B(X) and S may be different, take
X = B for a nonunital Σ∗-algebra B. Then B(X) = B 6= S since IH ∈ S .
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To explain some terminology that appears in the following theorem and
later on in this paper, a C∗-submodule X of a Σ∗-module X is said to be
WOTB sequentially dense if X is the only subset of itself that contains X
and is closed under limits of WOTB-convergent sequences. Note that this
may be different from saying that every element in X is the WOTB-limit of
a sequence in X.

Theorem 3.12. If X is a C∗-module over a Σ∗-algebra B ⊆ B(H), then
in the notation of the preceding lemma, B(X) has a B-valued inner product
making it into a Σ∗-module that contains X as a WOTB sequentially dense
submodule and has

〈τ |x〉 = τ∗(x) for all τ ∈ B(X), x ∈ X.

Moreover, the operator norm B(X) inherits from B(H, X ⊗B H) coincides
with this C∗-module norm.

Proof. We first show that B(X) is a right B-module with the canonical
module action coming from the inclusions B(X) ⊆ B(H, X ⊗B H) and
B ⊆ B(H). Fix b ∈ B, and let S = {x ∈ B(X) : xb ∈ B(X)}. Then S is
WOT sequentially closed and contains X, so S = B(X). Since b ∈ B was
arbitrary, we have shown that xb ∈ B(X) for all x ∈ B(X) and b ∈ B.

Now note that for anyK,L ∈ KB(B, X),K∗L is in KB(B) = B ⊆ B(H).
Using this, and arguments of the sort used in the previous paragraph (or in
Proposition 2.7), we deduce that S∗T ∈ B for all S, T ∈ B(X). Define a
B-valued inner product on B(X) by 〈S|T 〉 := S∗T. With this inner product
and the right B-module structure it inherits from B(H, X ⊗BH), it is easy
to check that B(X) is a C∗-module over B. It is also straightforward to
check that the centered equation in the claim holds.

To see that B(X) is a Σ∗-module, suppose that τn is a sequence in
B(X) such that 〈τn|σ〉 converges WOT in B for all σ ∈ B(X). In par-
ticular, 〈τn|x〉 = τ∗n(x) converges WOT to an element in B, call it τ∗(x),
for each x ∈ X. Routine arguments show that τ∗ : X → B thus defined

is in BB(X,B) and that τ∗n
WOT−−−→ τ∗ in B(X ⊗B H,H), so that 〈τn|σ〉 =

τ∗nσ
WOT−−−→ τ∗σ = 〈τ |σ〉 in B for all σ ∈ B(X). Hence B(X) is a Σ∗-module

by Proposition 3.4.

Note that we have demonstrated that WOTB-convergence of a sequence
in B(X) is the same as WOT-convergence in B(X) considered as a subset
of B(H, X ⊗B H). This fact combined with the definition of B(X) implies
that X is WOTB sequentially dense in B(X).

The last claim follows immediately from the definition of the inner prod-
uct: ‖〈τ |τ〉‖2B(X) = ‖τ∗τ‖B(H) = ‖τ‖2B(H,X⊗BH).
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Unfortunately, we have not been able in general to prove uniqueness of
the above construction with conditions as simple as those in the W ∗-case or
monotone complete case (but see Proposition 4.13 for a special case).

Definition 3.13. For a C∗-module X over a Σ∗-algebra B, a Σ∗-module
completion of X is any Σ∗-module X over B ⊆ B(H) such that:

(1) X contains X as a WOTB sequentially dense submodule;
(2) the B-valued inner product on X extends that of X;
(3) ‖ξ‖ = sup{‖〈ξ|x〉‖ : x ∈ Ball(X)} for all ξ ∈ X;
(4) if (ξn) is a sequence in X such that (〈ξn|x〉) is WOT-convergent for

all x ∈ X, then there is a ξ ∈ X such that ξn
WOTB−−−−→ ξ.

Proposition 3.14. If X is a C∗-module over a Σ∗-algebra B ⊆ B(H),
then the Σ∗-module B(X) of the previous theorem is the unique Σ∗-module
completion of X (up to unitary isomorphism).

Proof. It follows immediately from the previous theorem that B(X)
satisfies (1) and (2) in the definition of a Σ∗-module completion. To see (3),
for τ ∈ B(X), we have

‖τ‖B(X) = ‖τ‖B(H,X⊗BH) = ‖τ∗‖B(X⊗BH,H) = ‖τ∗‖BB(X,B)

= sup{‖τ∗(x)‖ : x ∈ Ball(X)} = sup{‖〈τ |x〉‖ : x ∈ Ball(X)}.
(The first equality here follows from the last claim in Theorem 3.12, the
third equality follows from Lemma 3.11 and the isometric embedding
BB(X,B) ↪→ B(X ⊗B H,H), and the final equality follows from the cen-
tered equation in Theorem 3.12.) The argument for (4) basically follows the
second paragraph of the proof of the previous theorem.

To prove uniqueness, suppose that Y is another Σ∗-module completion
of X, and denote its B-valued inner product by (·|·). Define maps V :
Y → BB(X,B) and U : Y → B(H, X ⊗B H) by V (ξ)(x) = (ξ|x) and
U(ξ) = V (ξ)∗ for ξ ∈ Y and x ∈ X. We will show that U is a B-linear
isometry with range equal to B(X), and so the result follows Lance’s result
[19, Theorem 3.5] that every isometric, surjective module map between C∗-
modules is a unitary.

Note first the formula

〈U(ξ)η, x⊗ ζ〉 = 〈η, V (ξ)(x⊗ ζ)〉 = 〈η, V (ξ)(x)ζ〉 = 〈η, (ξ|x)ζ〉
for ξ ∈ Y, x ∈ X, and η, ζ ∈ H. An easy calculation then shows that U is
linear and B-linear.

Thus, if z ∈ X ⊆ Y, then 〈U(z)η, x ⊗ ζ〉 = 〈η, (z|x)ζ〉 = 〈z ⊗ η, x ⊗ ζ〉
for all ζ, η ∈ H and x ∈ X. Hence U(z) = z in B(H, X ⊗BH), and we have
shown that X ⊆ U(Y).

Let T = {ξ ∈ Y : U(ξ) ∈ B(X)}. We have just shown that X ⊆ T ,
so if we can show that T is WOTB sequentially closed, it will follow by
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sequential WOTB-density of X in Y that T = Y. To this end, suppose

that (ξn) is a sequence in T with ξn
WOTB−−−−→ ξ in Y. By the centered line

above,

〈U(ξn)η, x⊗ ζ〉 = 〈η, (ξn|x)ζ〉 −→ 〈η, (ξ|x)η〉 = 〈U(ξ)η, x⊗ ζ〉

for all x ∈ X and η, ζ ∈ H, so that U(ξn)
WOT−−−→ U(ξ) in B(H, X ⊗B H).

Thus U(ξ) ∈ B(X), and ξ ∈ T . So we may conclude that T = Y, which
yields U(Y) ⊆ B(X).

Combining the previous two paragraphs, we obtain X ⊆ U(Y) ⊆ B(X).
So to have U(Y) = B(X), it remains to prove that U(Y) is WOTB se-
quentially closed in B(X). Suppose that (ξn) is a sequence in Y with

U(ξn)
WOTB−−−−→ τ in B(X). Then for ζ, η ∈ H and x ∈ X,

〈ζ, (ξn|x)η〉 = 〈U(ξn)(ζ), x⊗η〉 → 〈τ(ζ), x⊗η〉 = 〈ζ, τ∗(x)(η)〉 = 〈ζ, 〈τ |x〉η〉,

so that (ξn|x)
WOT−−−→ 〈τ |x〉 in B. By assumption (4) in the definition above the

proposition, ξn
WOTB−−−−→ ξ for some ξ ∈ Y, and the argument in the previous

paragraph shows U(ξn)
WOTB−−−−→ U(ξ), so that τ = U(ξ) ∈ U(Y).

It remains to prove that U is isometric. If ξ ∈ Y, x ∈ X, and η, ζ ∈ H,
then

〈〈U(ξ)|x〉ζ, η〉 = 〈x⊗ ζ, U(ξ)(η)〉 = 〈V (ξ)(x⊗ ζ), η〉 = 〈(ξ|x)ζ, η〉,

which gives 〈U(ξ)|x〉 = (ξ|x) for all x ∈ X. That ‖U(ξ)‖ = ‖ξ‖ now follows
from assumption (3) in the definition above.

To close this section, we provide a result that is used in the next sec-
tion and seems interesting when one dwells upon the similarities between
Σ∗-modules and W ∗-modules. For W ∗-modules Y and Z over M , we have
{〈y|·〉 : y ∈ Y } = BM (Y,M) and BM (Y,Z) = BM (Y,Z) and all the maps
in both of these spaces are weak∗-continuous. The following result is a Σ∗-
analogue of this fact, but with an additional condition that may be taken
as a weak type of the assumption of being “countably generated” (indeed,
we will see in the next section that all Σ∗B-countably generated Σ∗-modules
meet this condition). This condition cannot be removed in general—for ex-
ample, if B is a nonunital Σ∗-algebra considered as a Σ∗-module over itself,
then idB is in the right hand side of (1) below, but not in the left hand side.

Proposition 3.15. If X is a Σ∗-module over a Σ∗-algebra B ⊆ B(H)
such that B(KB(X)) = BB(X), and Y is any other Σ∗-module over B, then

(1) {〈z|·〉 : z ∈X} = {ξ ∈BB(X,B) : xn
WOTB−−−−→ x ⇒ ξ(xn)

WOT−−−→ ξ(x)},
(2) BB(X,Y) = {T ∈ BB(X,Y) : xn

WOTB−−−−→ x ⇒ T (xn)
WOTB−−−−→ T (x)}.
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Proof. The ⊂ inclusion of (1) is evident from the definitions. For the
other inclusion, fix a ξ in the right hand side of (1). Note that the condition
B(KB(X)) = BB(X) is equivalent to saying that BB(X) is generated as a
Σ∗-algebra by the “finite-rank operators,” that is, operators of the form∑n

i=1 |xi〉〈yi| for xi, yi ∈ X. Let

T = {T ∈ BB(X) : ξ ◦ T = 〈z|·〉 and ξ ◦ T ∗ = 〈w|·〉 for some z, w ∈ X}.
To see that T is WOT sequentially closed, suppose that (Tn) is a sequence

in T with Tn
WOT−−−→ T in BB(X) ⊆ B(X⊗BH). For x ∈ X, by Proposition 3.6

we have Tn(x)
WOTB−−−−→ T (x), so that ξ◦Tn(x)

WOT−−−→ ξ◦T (x) by the assumption
on ξ. Writing ξ ◦ Tn(x) = 〈zn|x〉, we may conclude by Proposition 3.4 that

ξ ◦ T = 〈z|·〉 for some z ∈ X. Since Tn
WOT−−−→ T implies T ∗n

WOT−−−→ T ∗, the
same argument shows that ξ ◦ T ∗ = 〈w|·〉 for some w ∈ X. So T is WOT
sequentially closed. It is easy to check that T is a ∗-subalgebra of BB(X)
containing all the finite-rank operators; hence T = BB(X). Since I ∈ BB(X),
we conclude that ξ = 〈z|·〉 for some z ∈ X.

For the ⊂ inclusion of (2), let S ∈ BB(X,Y), and suppose xn
WOTB−−−−→ x

in X. Then

〈S(xn)|y〉 = 〈xn|S∗(y)〉 WOT−−−→ 〈x|S∗(y)〉 = 〈S(x)|y〉

for all y ∈ X, so that S(xn)
WOTB−−−−→ S(x). For the other inclusion, suppose

that T is in the right hand side of (2). Then for any y ∈ Y, the map 〈y|T (·)〉
is in the right hand side of (1), so there is a z ∈ X such that 〈z|x〉 = 〈y|T (x)〉
for all x ∈ X. Hence T is adjointable.

Note 3.16. In principle, one could work out analogous theories to that
presented above for many different classes of C∗-algebras. For example, one
could define a Borel module to be a C∗-module X over a Borel ∗-algebra

B ⊆ B(H) such that
[Bm(KB(X))

X
XB

]
is monotone sequentially closed in

B((X ⊗B H) ⊕2 H), where Bm(·) denotes monotone sequential closure. It
would be interesting to try to work out the appropriate Borel analogues of
the results for Σ∗-modules we have proved, but it does not seem clear how
to do this even for the first few of our results.

4. Countably generated Σ∗-modules. Many of the most interest-
ing results in C∗-module theory require some type of “smallness” condition
on either the module or the coefficient C∗-algebra, e.g. that the module
is countably generated or that the C∗-algebra is separable or σ-unital. In
this section, we study a weak sequential analogue of the condition of being a
countably generated module. The more elegant results we obtain in this sec-
tion indicate that Σ∗-modules meeting this countably generated condition
are more similar to W ∗-modules than are general Σ∗-modules.
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The main highlights of this section are Proposition 4.7 (which is analo-
gous to some well-known equivalent conditions to being a (norm) countably
generated C∗-module (see [7, 8.2.5])), Theorem 4.10 (which says that in
the class of “Σ∗B-sequentially countably generated” C∗-modules over Σ∗-
algebras, the Σ∗-modules coincide with the selfdual C∗-modules); Proposi-
tion 4.17 (an interesting result about column spaces donated to us by David
Blecher); Theorem 4.19 (our analogue of Kasparov’s stabilization theorem);
and Proposition 4.21.

We now explain some potentially confusing terminology in the first part
of the definition following. If S is a subset of a right C∗-module X over a
C∗-algebra A ⊆ B(H), the relative WOTA sequential closure of S in X is
the smallest set T ⊆ X such that: (1) S ⊆ T , and (2) if (xn) is a sequence

in T and x ∈ X with 〈xn|y〉
WOT−−−→ 〈x|y〉 in B(H) for all y ∈ X, then x ∈ T .

Definition 4.1. A right C∗-module X over a C∗-algebra A ⊆ B(H) is
Σ∗A-countably generated if there is a countable set {xi}∞i=1 such that the rela-

tive WOTA sequential closure of {
∑N

i=1 xibi : bi ∈ A, N ∈ N} inX is all ofX.
For a nondegenerate C∗-algebra C ⊆ B(K), say that a sequence (en) in

Ball(C) is a sequential weak cai for C if enc
WOT−−−→ c for all c ∈ C. Since (en)

is bounded and [CK] = K, a triangle inequality argument shows that (en) is

a sequential weak cai if and only if en
WOT−−−→ IK. So in this case we also have

cen
WOT−−−→ c for all c ∈ C.

A Σ∗-algebra B ⊆ B(H) is Σ∗-countably generated (resp. Σ∗-singly gen-
erated) if there is a countable (resp. singleton) subset B of B such that B
generates B as a Σ∗-algebra, that is, B(C∗(B)) = B, where C∗(B) is the
C∗-algebra generated by B, and B(·) denotes WOT sequential closure (see
notation above Proposition 2.7).

Example 4.2. (1) If C ⊆ B(K) is a Σ∗-countably generated Σ∗-algebra
(e.g. the Σ∗-envelope of a separable C∗-algebra), and p ∈ M(C), then
(1−p)Cp is a right Σ∗-module over pCp (see Theorem 3.10(2)), and (1−p)Cp
is Σ∗pCp-countably generated. Indeed, one may deduce this quickly from the
following observation (which uses and is analogous to the fact that count-
ably generated C∗-algebras are separable): if aΣ∗-algebra B isΣ∗-countably
generated, then there is a countable subset D of B such that B(D) = B.

(2) It is immediate that if a Σ∗-algebra B, considered as a Σ∗-module
over itself, is unital, then it is Σ∗B-countably generated. We will show in
Corollary 4.11 that the converse of this is also true.

(3) For a unital Σ∗-algebra B, the column Σ∗-module Cw(B) described
above Corollary 4.15 is Σ∗B-countably generated.

The von Neumann algebra analogue of the following proposition is well-
known, and since the spectral theorem still holds in Σ∗-algebras (by Propo-



290 C. A. Bearden

sition 2.11), the proof is virtually the same. We thank David Blecher for
pointing this result out, and for the example following.

Proposition 4.3. If B is a Σ∗-countably generated commutative Σ∗-
algebra, then it is Σ∗-singly generated by a selfadjoint element.

Note 4.4. Related to (2) in Example 4.2, it is easy to see that every
Σ∗-countably generated Σ∗-algebra is unital (since a countable subset will
generate a σ-unital, WOT sequentially dense C∗-subalgebra), but the con-
verse is not necessarily true. Take for example the von Neumann algebra
`∞(I) ⊆ B(`2(I)) for a set I with cardinality strictly greater than that of R.
If `∞(I) were Σ∗-countably generated, then by Proposition 4.3 it would be
Σ∗-singly generated by a selfadjoint element x = (xi)i∈I . However, as the
map I → R, i 7→ xi, cannot be one-to-one, there must be k, l ∈ I, k 6= l,
with xk = xl. Since the set S of (yi)i∈I in `∞(I) such that yk = yl is WOT
sequentially closed in B(`2(I)) and contains x, we have the contradiction
`∞(I) ⊆ S .

The following simple lemma is a weak sequential version of some well-
known characterizations of σ-unital C∗-algebras (cf. [23, 3.10.5]).

Lemma 4.5. If A ⊆ B(H) is a C∗-algebra, the following are equivalent:

(1) A has an element a such that ψ(a) > 0 for all nonzero WOT se-
quentially continuous positive functionals ψ on B(A);

(2) A has a positive element a such that a(H) = H;
(3) A has a positive increasing sequential weak cai.

Proof. (1)⇒(2). Let a ∈ A be as in (1). Then 〈aζ, ζ〉 > 0 for all nonzero

ζ ∈ H, and hence Ker(a) = Ran(a)⊥ = (0)⇒ Ran(a) = H.
(2)⇒(3). Assume (2), and set en = a1/n. Then en ↗ s(a) in B(H),

where s(a) denotes the support projection of a. Since a has dense range,

s(a) is the identity operator on H. So en
WOT−−−→ IH.

(3)⇒(1). Let (en) be a positive increasing sequential weak cai in A. As
mentioned in the definition, this means that en ↗ IH. Set a =

∑∞
n=1 2−nen.

If ψ is a WOT sequentially continuous positive functional on B(A) with
ψ(a) = 0, then ψ(en) = 0 for all n since en ≤ a. But since ψ(en) ↗ ψ(IH)
= ‖ψ‖, we have ψ = 0.

Lemma 4.6. If X is a right C∗-module over a Σ∗-algebra B ⊆ B(H)
that is Σ∗B-countably generated by a subset {xi}, then

B
({ n∑

i,j=1

|xibij〉〈xj | : bij ∈ B
})

= B(KB(X)).

Proof. Set A := {
∑n

i,j=1 |xibij〉〈xj | : bij ∈ B, n ∈ N}. Clearly B(A) ⊆
B(KB(X)). It is easy to check thatA is a ∗-subalgebra of BB(X), so B(A) =
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B(A) is a C∗-algebra, and thus the inclusion B(KB(X)) ⊆ B(A) will follow
if we can show that |x〉〈z| ∈ B(A) for all x, z ∈ X. Fix k ∈ N and b ∈ B,
and set T = {x ∈ X : |x〉〈xkb| ∈ B(A)}. An easy calculation shows that∑N

i=1 xibi ∈ T for all bi ∈ B and N ∈ N, and it follows from Lemma 3.7
that T is WOT sequentially closed in X, so T = X. A similar argument
shows that {x ∈ X : |x〉〈z| ∈ B(A)} = X for all z ∈ X, and this proves the
result.

Proposition 4.7. Let X be a right C∗-module over a Σ∗-algebra B ⊆
B(H). Then the following are equivalent:

(1) X is Σ∗B-countably generated;
(2) KB(X) has an element T such that ψ(T ) > 0 for all nonzero WOT

sequentially continuous positive functionals ψ on B(KB(X));
(3) KB(X) has a positive element T with T (X ⊗B H) = X ⊗B H;
(4) KB(X) has a positive increasing sequential weak cai.

If additionally X is a Σ∗-module, these conditions imply that B(KB(X)) =
BB(X).

Proof. The equivalence of (2), (3), and (4) follows from Lemma 4.5.
(1)⇒(2). Suppose that X is Σ∗B-countably generated by {xi}∞i=1, and

that these are scaled so that the series
∑∞

i=1 |xi〉〈xi| converges in norm
to a positive element T in KB(X). Let A ⊆ KB(X) be as in the proof
of Lemma 4.6. By a calculation in the proof of [6, Theorem 7.13], if ϕ is
a positive functional on B(KB(X)) ⊆ B(X ⊗B H) such that ϕ(T ) = 0,
then ϕ(a) = 0 for all a ∈ A. Let ψ be a WOT sequentially continuous
positive functional on B(KB(X)) such that ψ(T ) = 0. By the calculation
just mentioned, Ker(ψ) contains A, and evidently Ker(ψ) is sequentially
WOT-closed. By Lemma 4.6, Ker(ψ) = B(KB(X)), so that ψ = 0.

(4)⇒(1). Let {en}∞n=1 be a weak cai for KB(X). For each n ∈ N, pick
xni , y

n
i ∈ X for i = 1, . . . ,mn such that ‖

∑mn
i=1 |xni 〉〈yni | − en‖ < 1/n and

‖
∑mn

i=1 |xni 〉〈yni | ‖ ≤ 1. We claim that fn :=
∑mn

i=1 |xni 〉〈yni | is also a weak

cai for KB(X). To see this, let K ∈ KB(X). Take two nonzero vectors
h, k ∈ X ⊗B H, let ε > 0, and pick N ∈ N such that

1

N
<

ε

2(‖K‖+ 1)‖h‖‖k‖
and |〈enKh, k〉−〈Kh, k〉| < ε/2 for all n ≥ N.

Then for n ≥ N,
|〈fnKh, k〉 − 〈Kh, k〉| ≤ |〈fnKh, k〉 − 〈enKh, k〉|+ |〈enKh, k〉 − 〈Kh, k〉|

≤ ‖fn − en‖ ‖K‖ ‖h‖ ‖k‖+ ε/2 < ε.

Hence fnK
WOT−−−→ K, and so {fn} is a weak cai for KB(X). By the final

assertion in Proposition 3.6, fn|x〉〈y|(z)
WOTB−−−−→ |x〉〈y|(z) = x〈y|z〉 for all
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x, y, z ∈ X. But fn|x〉〈y|(z) =
∑mn

i=1 x
n
i 〈yni |x〉〈y|z〉, and so we have shown

that every element in X of the form x〈y|z〉 is the WOTB-limit of a sequence
of elements from Span{xni b : b ∈ B, n ∈ N, i = 1, . . . ,mn}. Since the span
of elements of the form x〈y|z〉 is dense in X [7, 8.1.4(2)], it follows that X
is WOTB-generated by the countable set {xni : n ∈ N, i = 1, . . . ,mn}.

For the last assertion, it follows directly from (4) that I ∈ B(KB(X)),
and the assumption that X is a Σ∗-module implies that BB(X) is a Σ∗-
algebra in B(X ⊗B H), so that B(KB(X)) ⊆ BB(X). Since KB(X) is an
ideal in BB(X), it follows that B(KB(X)) is also an ideal in BB(X), and so
B(KB(X)) = BB(X).

Proposition 4.8. Let X be a Σ∗B-countably generated Σ∗-module over
a Σ∗-algebra B ⊆ B(H). Then BB(X) = BB(X) = B(KB(X)).

Proof. Suppose that T ∈ BB(X), and let (en) be a sequence in KB(X)
with en ↗ I in B(X ⊗B H). Viewing T as an operator in B(X ⊗B H),

we have Ten
WOT−−−→ T in B(X ⊗B H). Since each Ten is adjointable, and

BB(X) is WOT sequentially closed in B(X ⊗B H) by Proposition 3.6, we
have proved that T is adjointable. The last equality is the last assertion in
Proposition 4.7.

Lemma 4.9. If X is a right Σ∗-module over a Σ∗-algebra B ⊆ B(H),
then X is selfdual as a B-module if and only if it is selfdual as a B(〈X|X〉)-
module.

Proof. This follows directly from the general fact that for a C∗-module
X over A, BA(X,A) = BJ(X, J) for any ideal J in A containing 〈X|X〉 (see
[7, Lemma 8.5.2]).

Theorem 4.10. Let X be a Σ∗B-countably generated C∗-module over a
Σ∗-algebra B ⊆ B(H). Then X is a Σ∗-module over B if and only if X is
selfdual.

Proof. (⇒) By Lemma 4.9, we may assume without loss of generality
that B(〈X|X〉) = B. Let ϕ ∈ BB(X,B). Fix x0 ∈ X, and define T : X→ X
by T (x) = x0ϕ(x) for x ∈ X. It is easily checked that T ∈ BB(X), so
by Proposition 4.8, T is adjointable, and by the easy direction of Proposi-

tion 3.15(2), if xn
WOTB−−−−→ x in X and y ∈ X, then

〈y|x0〉ϕ(xn) = 〈y|T (xn)〉 WOT−−−→ 〈y|T (x)〉 = 〈y|x0〉ϕ(x).

Since x0 was arbitrary, we have shown that for any ζ, η ∈ H and y, z ∈ X,

〈ϕ(xn)ζ, 〈z|y〉η〉 → 〈ϕ(x)ζ, 〈z|y〉η〉.

Hence ϕ(xn)
WOT−−−→ ϕ(x), and so ϕ = 〈y0|·〉 for some y0 ∈ X by Proposi-

tion 3.15(1).
(⇐) Proposition 3.5.
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Corollary 4.11. Let B ⊆ B(H) be a Σ∗-algebra considered as a Σ∗-
module over itself. If B is Σ∗B-countably generated, then B is unital.

Proof. By Theorem 4.10, B is selfdual. Hence the identity map on B is
equal to x 7→ y∗x for some y ∈ B, so that y is a unit for B.

Lemma 4.12. If X is a WOTB sequentially dense subset of a Σ∗-mo-
dule X, then X⊥ = (0).

Proof. If w ∈ X⊥, then S = {ξ ∈ X : 〈ξ|w〉 = 0} is WOTB sequentially
closed and contains X, so S = X. Hence w ∈ S , so w = 0.

Proposition 4.13. If X is a (norm) countably generated C∗-module
over a Σ∗-algebra B ⊆ B(H), then the Σ∗-module completion B(X) from
Theorem 3.12 is the unique Σ∗-module containing X as a WOTB sequen-
tially dense submodule.

Proof (cf. [18, proof of uniqueness in Theorem 2.2]). Let Y be another
such Σ∗-module, and denote the B-valued inner product of Y by (·|·). As
in the proof of Proposition 3.14, define U : Y→ B(H, X⊗BH) by U(ξ)∗(x)
= (ξ|x) for ξ ∈ Y and x ∈ X. It follows just as in that proof that U is linear
and B-linear and that X ⊆ U(Y) ⊆ B(X). Also note that U is bounded:

‖U(ξ)‖ = ‖U(ξ)∗‖ = sup{‖U(ξ)∗(x)‖ : x ∈ Ball(X)}
= sup{‖(ξ|x)‖ : x ∈ Ball(X)} ≤ ‖ξ‖

for ξ ∈ Y. Now fix ξ ∈ Y, and consider the map Y→ B, η 7→ 〈U(ξ)|U(η)〉,
which is easily seen to be in BB(Y,B). Since X is countably generated and
WOTB sequentially dense in Y, Y is a Σ∗B-countably generated Σ∗-module,
and so is selfdual by Theorem 4.10. Hence there is a yξ ∈ Y such that

(yξ|η) = 〈U(ξ)|U(η)〉 for all η ∈ Y.

Define T : Y → Y by T (ξ) = yξ, which is easily seen to be in BB(Y) =
BB(Y). Consider Ker(idY−T ) = {y ∈ Y : T (y) = y}. This set contains X
and is WOTB sequentially closed since idY−T is adjointable, so idY = T.
Thus (ξ|η) = 〈U(ξ)|U(η)〉 for all ξ, η ∈ Y.

To prove that U is a unitary between Y and B(X), it remains to show
that U(Y) is WOTB sequentially closed in B(X). To this end, suppose that

(ξn) is a sequence in Y such that U(ξn)
WOTB−−−−→ τ in B(X). By what we have

just proved,

(ξn|η) = 〈U(ξn)|U(η)〉 WOT−−−→ 〈τ |U(η)〉 for all η ∈ Y.

By Proposition 3.4, there exists a ξ ∈ Y such that (ξn|η)
WOT−−−→ (ξ|η) for all

η ∈ Y. Thus 〈τ |U(η)〉 = (ξ|η) = 〈U(ξ)|U(η)〉; hence 〈τ − U(ξ) | U(η)〉 = 0
for all η ∈ Y. So τ − U(ξ) ∈ U(Y)⊥ ⊆ X⊥. By Lemma 4.12, X⊥ = (0), so
τ = U(ξ).
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In preparation for our analogue of Kasparov’s stabilization theorem, we
now present a direct sum construction for Σ∗-modules. Fix a Σ∗-algebra
B ⊆ B(H), and let {Xn} be a countable collection of Σ∗-algebras over B.
Define the direct sum Σ∗-module to be the set

⊕wXn :=
{

(xn) ∈
∏
n

Xn :
∑
n

〈xn|xn〉 is WOT-convergent in B
}
,

with the inner product 〈(xn)|(yn)〉 =
∑

n〈xn|yn〉 and obvious B-module
action. The proof below that this is a Σ∗-module follows [7, 8.5.26] pretty
closely.

Lemma 4.14. The space X := ⊕wXn defined above is aΣ∗-module over B.

Proof. It follows from the operator inequality

(y + ikx)∗(y + ikx) ≤ 2(x∗x+ y∗y)

and the polarization identity

x∗y =
1

4

3∑
k=0

ik(y + ikx)∗(y + ikx)

that 〈(xn)|(yn)〉 :=
∑

n〈xn|yn〉 does indeed define a B-valued inner product
on X. It is easy to check that 〈·|·〉 satisfies all the axioms of a C∗-module
inner product.

Define Kn := Xn ⊗B H and K := ⊕2
nKn, and let Pn : K → Kn be the

canonical projection. Since each Xn is WOT sequentially closed in B(H,Kn),
it follows immediately that the space

W := {T ∈ B(H,K) : PnT ∈ Xn for all n}
is a WOT sequentially closed TRO. By Theorem 3.10, W is a Σ∗-module
over B(W ∗W ) ⊆ B. Hence W is a Σ∗-module over B. Define a B-module
map U : X→W by sending (xn) ∈ X to the SOT-convergent sum

∑
n P
∗
nxn

(indeed, for ζ ∈ H and N,M ∈ N with N ≥ M, a short calculation gives

‖
∑N

n=M P ∗nxn(ζ)‖2 =
∑N

n=M 〈ζ, 〈xn|xn〉ζ〉, and so by Cauchy’s convergence
test, the series

∑
n P
∗
nxn(ζ) converges). To check surjectivity of U , note that

{P ∗nPn}∞n=1 is a family of mutually orthogonal projections in B(K) with∑
n P
∗
nPn = IK. If T ∈ W, then

∑N
n=1〈PnT |PnT 〉 = T ∗(

∑N
n=1 P

∗
nPn)T ≤

T ∗T. Thus (PnT ) ∈ X, and U((PnT )) =
∑

n P
∗
nPnT = T. Finally, for

x, y ∈ X, the formula

U(x)∗U(y) = 〈x|y〉
is an easy exercise (first checking this when both x and y are “finitely sup-
ported,” then extending via WOT-limits to the general case).

So we have established the existence of a surjective inner-product-pre-
serving B-module map U : X → W, where W is a Σ∗-module over B. It
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follows immediately that X is complete, and a straightforward application
of Proposition 3.4 shows that X is also a Σ∗-module over B.

Letting Xn = B for all n, we obtain a Σ∗-module over B which we
denote as Cw(B).

Corollary 4.15. If B is a unital Σ∗-algebra, then the Σ∗-module
Cw(B) is selfdual.

Proof. Since B is unital, Cw(B) is Σ∗B-countably generated.

Early in this investigation, David Blecher proved an interesting general-
ization of Corollary 4.15, and we thank him for allowing it to be included
here.

For a cardinal number I, a C∗-algebra B ⊆ B(H) is said to be
I-additively weakly closed if whenever

∑
k∈I x

∗
kxk is bounded in B(H) for a

collection {xk}k∈I in B, then the WOT-limit of this sum is an element in B.
For an I-additively weakly closed B ⊆ B(H), define

CwI (B) =

{
(xk) ∈

∏
k∈I

B :
∑
k

x∗kxk is WOT-convergent in B

}
.

One may then show as in the first part of the proof of Lemma 4.14 that
〈(xk)|(yk)〉 :=

∑
k∈I x

∗
kyk defines a B-valued inner product on CwI (B). It

is easy to argue that this satisfies all the axioms of a C∗-module inner
product. Completeness of CwI (B) follows as in the second to last paragraph of
[7, 1.2.26], since CwI (B) clearly coincides with the (underlying Banach space
of the) operator space of the same notation there.

To see that Proposition 4.17 below generalizes Corollary 4.15, note that
an easy “telescoping series” argument shows that B is N-additively weakly
closed if and only if B is a Borel ∗-algebra (that is, closed under weak limits
in B(H) of bounded monotone sequences of selfadjoint elements). Hence
every Σ∗-algebra is N-additively weakly closed.

To set some notation for the following lemma and proposition, let B ⊆
B(H) be a nondegenerate I-additively weakly closed C∗-algebra. For each
j ∈ I, denote by εj : H → H(I) the canonical inclusion into the jth sum-
mand, and by Pj : H(I) → H the canonical projection from the jth summand
(so ε∗j = Pj). For b ∈ B and j ∈ I, denote by ejb the element in CwI (B) with
b in the jth slot and 0’s elsewhere.

Lemma 4.16. If B ⊆ B(H) is an I-additively weakly closed C∗-algebra,
then CwI (B)⊗B H ∼= H(I) via a unitary U : H(I) → CwI (B)⊗B H such that

U(εj(bζ)) = ejb⊗ ζ for all b ∈ B, j ∈ I, and ζ ∈ H,
U∗((bi)⊗ ζ) = (biζ) for all (bi) ∈ CwI (B) and ζ ∈ H.
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Proof. By Cohen’s factorization theorem [7, A.6.2], every element in H
can be expressed in the form bζ for some b ∈ B and ζ ∈ H. Using this,
define a map U0 : F → CwI (B) ⊗B H on the dense subspace F of finitely

supported columns in H(I) by

U0

(∑
j∈F

εj(bjζj)
)

=
∑
j∈F

ejbj ⊗ ζj

for (bjζj) ∈ F supported on a finite subset F ⊆ I. To see that this is
well-defined, suppose that b, b′ ∈ B and ζ, ζ ′ ∈ H with bζ = b′ζ ′. Then for
any (ci)⊗ η ∈ CwI (B)⊗B H,

〈ejb⊗ ζ− ejb′⊗ ζ ′, (ci)⊗η〉 = 〈ζ, b∗cjη〉− 〈ζ ′, (b′)∗cjη〉 = 〈bζ− b′ζ ′, cjη〉 = 0.

By totality of the simple tensors in CwI (B) ⊗B H, ejb ⊗ ζ − ejb′ ⊗ ζ ′ = 0.
It follows that U0 is well-defined. A direct calculation shows that U0 is
isometric, hence extends to an isometry U : H(I) → CwI (B) ⊗B H. To see
that U is surjective, let (bi) ∈ CwI (B), ζ ∈ H, take F ⊆ I to be finite, and
denote by (bi)F the “restriction” of (bi) to F . Then∥∥∥(bi)⊗ ζ −

∑
i∈F

eibi ⊗ ζ
∥∥∥2 = 〈ζ, 〈(bi)− (bi)F | (bi)− (bi)F 〉ζ〉

=
〈
ζ,
(∑
i∈I

b∗i bi −
∑
i∈F

b∗i bi

)
ζ
〉
.

If we interpret (
∑

i∈I b
∗
i bi −

∑
i∈F b

∗
i bi) as a net indexed by the collection of

finite subsets F of I, the last displayed quantity converges to 0. So

U
(∑
i∈F

εi(biζ)
)

=
∑
i∈F

eibi ⊗ ζ → (bi)⊗ ζ in norm,

where
∑

i∈F eibi ⊗ ζ is considered to be a net indexed by the collection of
finite subsets F of I. Since the set of simple tensors in CwI (B) ⊗B H spans
a dense subset, it follows that U is surjective. The first displayed equation
in the statement is obvious from the first displayed equation in this proof.
For the second, we need to show 〈(bi) ⊗ ζ, U((ζi))〉 = 〈(biζ), (ζi)〉 for all
(bi) ∈ CwI (B), ζ ∈ H, and (ζi) ∈ H(I), which we leave as an exercise (first
check for finitely supported (ζi)).

Proposition 4.17 (David Blecher). If B ⊆B(H) is a unital and I-ad-
ditively weakly closed C∗-algebra, then the C∗-module CwI (B) is selfdual.

Proof. We first fix some notation. Following [7, 1.2.26], denote by
MI(B(H)) the space of I × I matrices over B(H) whose finite submatri-
ces have uniformly bounded norm, and equip this space with the norm

‖u‖ = sup{‖uF ‖ : uF is a finite submatrix of u}.
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It is well-known (see e.g. the section in [7] just mentioned) that this is
a Banach space that is canonically isometrically isomorphic to B(H(I)).
Denote by MI(B) the subspace of MI(B(H)) consisting of matrices with
entries in B.

Fix j0 ∈ I. There is a canonical isometric embedding of CwI (B) onto the
subspace of MI(B) consisting of matrices supported on the j0th column (we
omit the routine details of this), and a canonical embedding of B onto the
subspace of matrices in MI(B) supported on the (j0, j0)-entry. Write

ρ : CwI (B) ↪→MI(B), σ : B ↪→MI(B)

for these embeddings.

We show that there is also a canonical embedding

π : BB(CwI (B)) ↪→MI(B).

Indeed, by Proposition 2.1, Lemma 4.16, and [7, (1.19)], we have the follow-
ing canonical embedding and isomorphisms:

BB(CwI (B)) ↪→ B(CwI (B)⊗B H) ∼= B(H(I)) ∼= MI(B(H)).

Using the unitary U from Lemma 4.16, we obtain

Pi ◦ U∗TU ◦ εj(ζ) = Pi(U
∗T (ej ⊗ ζ)) = Pi(U

∗(T (ej)⊗ ζ))

= (Tej)i(ζ) = 〈ei|T (ej)〉(ζ)

for all i, j ∈ I and ζ ∈ H. That is, under the embedding and isomor-
phisms just mentioned, T ∈ BB(CwI (B)) corresponds to the matrix [Tij ] ∈
MI(B(H)) with Tij = 〈ei|T (ej)〉 ∈ B.

It is straightforward (using the definitions of ρ, π, and σ as composite
maps involving the unitary U from Lemma 4.16) to show that for x, y ∈
CwI (B) and T ∈ BB(CwI (B)), we have

ρ(Tx) = π(T )ρ(x), σ(〈x|y〉) = ρ(x)∗ρ(y).

Note also that π(T )∗ρ(y) is a matrix in MI(B) supported on the j0th column,
so π(T )∗ρ(y) = ρ(z) for some z ∈ CwI (B). Hence

σ(〈Tx|y〉) = ρ(Tx)∗ρ(y) = (π(T )ρ(x))∗ρ(y)

= ρ(x)∗π(T )∗ρ(y) = ρ(x)∗ρ(z) = σ(〈x|z〉).

So 〈Tx|y〉 = 〈x|z〉, and this is enough to prove that T is adjointable.

Thus BB(CwI (B)) = BB(CwI (B)). To prove selfduality, let us choose τ ∈
BB(CwI (B), B) and fix an index k ∈ I. Define T ∈ BB(CwI (B)) by T (x) =
ekτ(x). Then

τ(x) = 〈ek|ekτ(x)〉 = 〈ek|T (x)〉 = 〈T ∗(ek)|x〉

for all x ∈ CwI (B), so that τ = 〈T ∗(ek)|·〉.
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The following lemma is a Σ∗-analogue of Lemma 2.34 from [25] or Propo-
sition 3.8 in [19]. Note that the simple proof presented in these books does
not seem to work in our setting, since it is unclear how to extend an isometry
from a WOTB sequentially dense subspace to the whole space. In the proof
below, we write B(S) to denote the WOTB sequential closure of a subset
S of a Σ∗-module over B. (Recall from Note 3.3 that for a sequence in a
Σ∗-module X over B, WOTB-convergence coincides with WOT-convergence
in B(H,X⊗BH), so this notation does not clash with our previous meaning
of B(·) as WOT sequential closure of subsets of B(H).)

Lemma 4.18. Let X,Y be Σ∗-modules over B ⊆ B(H). If T is an op-
erator in BB(X,Y) such that T (X) is WOTB sequentially dense in Y and
T ∗(Y) is WOTB sequentially dense in X, then X and Y are unitarily equiv-
alent.

Proof. Consider T as an element in the Σ∗-algebra

BB(X⊕Y) ∼=
[

BB(X) BB(Y,X)

BB(X,Y) BB(Y)

]
⊆ B

(
(X⊗B H)⊕ (Y⊗B H)

)
,

and take the polar decomposition[
0 0

T 0

]
= U

[
|T | 0

0 0

]
=

[
U11 U12

U21 U22

][
|T | 0

0 0

]
.

By Proposition 2.10, U ∈ BB(X ⊕ Y). We see that U11|T | = 0, and the
formula U∗T = |T | shows that U∗22T = 0. Consider the set T = {y ∈ Y :
T ∗(y) ∈ B(|T |X)}, where B(S) denotes the WOTB sequential closure of a
subset S ⊆ X. Since T ∗ is adjointable, it is WOTB sequentially continuous,
so T is a WOTB sequentially closed subset of fY containing T (X). Hence
T = Y, i.e. T ∗(Y) ⊆ B(|T |X), so X = B(T ∗(Y)) ⊆ B(|T |X) (using the
notation mentioned above the statement of the lemma). Since U11 is WOTB

sequentially continuous, its kernel in X is WOTB sequentially closed, and
since Ker(U11) contains the WOTB sequentially dense set |T |(X), we have
U11 = 0. A similar but shorter argument shows that U22 = 0 as well.

Since U is a partial isometry, it follows now that U21 is as well. The
relation U21 = U21U

∗
21U21 implies that U21(X) is WOTB sequentially closed

in Y. (Indeed, suppose U21(xn)
WOT−−−→ y in Y. Then U21(xn) = U21U

∗
21U21(xn)

WOT−−−→ U21U
∗
21(y) since U21 and U∗21 are adjointable, hence WOTB sequen-

tially continuous. Thus y = U21U
∗
21(y) ∈ U21(X).) Since T = U21|T |, U21(X)

contains the WOTB sequentially dense set T (X), and so U21 is surjective.
Similarly, U∗21 is a partial isometry with U∗21(Y) = X, and it follows that
U21 : X→ Y is a unitary.
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It is quite surprising that (given Lemma 4.18) the obvious Σ∗-analogue of
Kasparov’s stabilization theorem now follows from only a slight modification
of the proof presented in [19, Theorem 6.2] and [25, Theorem 5.49] for the
original stabilization theorem.

Theorem 4.19. If B ⊆ B(H) is a Σ∗-algebra and X is a Σ∗B-countably
generated Σ∗-module over B, then X⊕ Cw(B) ∼= Cw(B) unitarily.

Proof. Using the second comment in the paragraph under Definition 3.1
to make sense of the reduction to the unital case, apply the argument
in [19, Theorem 6.2] or [25, Theorem 5.49], changing “generating set” to
“Σ∗B-generating set,” “dense” to “WOTB sequentially dense,” and the
C∗-module direct sum of countably many copies of B to Cw(B). Finish
off the argument by invoking Lemma 4.18.

We now discuss more generally orthogonally complemented submodules
of Σ∗-modules, and then make a connection between a Σ∗-analogue of the
C∗-module theory of quasibases and orthogonally complemented submod-
ules of the Σ∗-module Cw(B).

Definition 4.20. A closed submodule X of a C∗-module Y over a
C∗-algebra A is said to be orthogonally complemented in Y if there is an-
other closed submodule W in Y such that W +X = Y and 〈w|x〉 = 0 for all
w ∈W and x ∈ X. It is easy to see that this happens exactly when X is the
range of a projection P ∈ BA(Y ). (For one direction of this, check that if X
is orthogonally complemented in Y with W as above, then each element in Y
has a unique representation as a sum x+w with x ∈ X, w ∈W. Then show
that the map P : Y → Y defined by P (w + x) = x for w ∈ W and x ∈ X
satisfies 〈P (x+w) | x′+w′〉 = 〈x+w | P (x′+w′)〉 for w,w′ ∈W, x, x′ ∈ X.)

A closed submodule X of a Σ∗-module Y over B will be called a Σ∗-sub-
module of Y if X is a Σ∗-module with the C∗-module structure it inherits
from Y, and if X satisfies the following additional condition: whenever (xn)

is a sequence in X and x ∈ X such that 〈xn|z〉
WOT−−−→ 〈x|z〉 for all z ∈ X,

then 〈xn|y〉
WOT−−−→ 〈x|y〉 for all y ∈ Y (in other words, if a sequence converges

WOTB in X, then it converges WOTB in Y to the same limit).

Proposition 4.21. Let X be a closed submodule of a Σ∗-module Y over
a Σ∗-algebra B ⊆ B(H). Consider the following conditions:

(1) X is orthogonally complemented in Y;
(2) X is a Σ∗-submodule of Y;
(3) X is a Σ∗-module with the inner product and module structure in-

herited from Y, and X is WOTB sequentially closed in Y.

We have (1)⇒(2)⇔(3). If X satisfies (2) and B(KB(X)) = BB(X), then (1)
holds.
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Proof. (1)⇒(2). Let P ∈ BB(Y) be a projection with range X. Suppose
(xn) is a sequence in X such that 〈xn|w〉 is WOT-convergent for all w ∈ X.
Since Y is a Σ∗-module and 〈xn|y〉 = 〈xn|Py〉 for all y ∈ Y, it follows from

Proposition 3.4 that there is an x ∈ Y such that 〈xn|y〉
WOT−−−→ 〈x|y〉 for all

y ∈ Y. But then 〈xn|y〉 = 〈xn|Py〉
WOT−−−→ 〈x|Py〉 = 〈Px|y〉 for all y ∈ Y,

so x = Px ∈ X. This proves that X is a Σ∗-module. To see that X is a

Σ∗-submodule of Y, suppose that (xn), x ∈ X with 〈xn|w〉
WOT−−−→ 〈x|w〉 for

all w ∈ X. Then 〈xn|y〉 = 〈xn|Py〉
WOT−−−→ 〈x|Py〉 = 〈x|y〉 for all y ∈ Y.

(2)⇒(3). By definition, a Σ∗-submodule is a Σ∗-module with the inher-
ited structure. To show that X is WOTB sequentially closed in Y, suppose

that (xn) is a sequence in X converging WOTB to y in Y, i.e. 〈xn|w〉
WOT−−−→

〈y|w〉 for all w ∈ Y. In particular, 〈xn|z〉 is WOT-convergent for all z ∈ X,

so by Proposition 3.4, there is an x ∈ X such that 〈xn|z〉
WOT−−−→ 〈x|z〉 for

all z ∈ X. By the “additional condition” in the definition of Σ∗-submodule,

〈xn|w〉
WOT−−−→ 〈x|w〉 for all w ∈ Y. Hence y = x ∈ X.

(3)⇒(2). Assume (3). Note that we can canonically identify X⊗B H
with a closed subspace of Y ⊗B H. Indeed, the canonical inclusion of
{
∑n

i=1 xi ⊗ ζi ∈ X ⊗B H : xi ∈ X, ζi ∈ H} into Y ⊗B H is isometric,
hence extends to an isometry from X ⊗B H into Y ⊗B H. To see that
X is a Σ∗-module with the inherited C∗-module structure, suppose that

(xn) is a sequence in X viewed in B(H,X ⊗B H) with xn
WOT−−−→ T in

B(H,X ⊗B H). Note that there is a canonical WOT-continuous embed-
ding of B(H,X ⊗B H) into B(H,Y ⊗B H) making the following diagram
commute:

B(H,X⊗B H) B(H,Y⊗B H)

X Y

So xn
WOT−−−→ T in B(H,Y ⊗B H), and since Y is WOT sequentially closed

in the latter, T ∈ Y and xn
WOTB−−−−→ T in Y. By the assumption that X

is WOTB sequentially closed in Y, we have T ∈ X. Hence X is WOT
sequentially closed in B(H,X ⊗B H), and so by definition, X is a Σ∗-
module.

Now suppose that (xn), x are in X and 〈xn|z〉
WOT−−−→ 〈x|z〉 for all z ∈ X.

Fixing ζ, η ∈ H, we have

〈xn ⊗ ζ, z ⊗ η〉 = 〈ζ, 〈xn|z〉η〉 → 〈ζ, 〈xn|z〉η〉 = 〈xn ⊗ ζ, z ⊗ η〉
for all z ∈ X. Take y ∈ Y, and let ε > 0. Denote by P the projection in
B(Y⊗B H) with range X⊗B H. By the principle of uniform boundedness,

there is a K > 0 such that ‖xn‖ ≤ K for all n and ‖x‖ ≤ K. Pick
∑k

i=1 zi⊗ζi
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in X⊗B H with ∥∥∥P (y ⊗ η)−
k∑
i=1

zi ⊗ ζi
∥∥∥ < ε

3K(‖ζ‖+ 1)
,

and pick N ∈ N with∣∣∣〈xn ⊗ ζ, k∑
i=1

zi ⊗ ζi
〉
−
〈
x⊗ ζ,

k∑
i=1

zi ⊗ ζi
〉∣∣∣ < ε

3

for all n ≥ N. A triangle inequality argument then gives

|〈ζ, 〈xn|y〉η〉 − 〈ζ, 〈x|y〉η〉| = |〈xn ⊗ ζ, P (y ⊗ η)〉 − 〈x⊗ ζ, P (y ⊗ η)〉 < ε

for all n≥N. Since ζ, η ∈H were arbitrary, we have shown that 〈xn|y〉
WOT−−−→

〈x|y〉 for all y ∈ Y.

Now we prove the final claim of the proposition. Suppose that X is a
Σ∗-submodule of Y and that B(KB(X)) = BB(X). By definition of Σ∗-
submodule, the inclusion ι : X ↪→ Y is WOTB sequentially continuous, so
by Proposition 3.15(2), ι is adjointable. Since 〈ι∗ιx|x′〉 = 〈ιx|ιx′〉 = 〈x|x′〉
for all x, x′ ∈ X, we have ι∗ι = idX. It follows that P = ιι∗ ∈ BB(Y) is a
projection with range X.

Note 4.22. (We thank David Blecher for pointing this out.) To show
that (2)/(3) does not imply (1) in Proposition 4.21 in general, let B ⊆ B(H)
be a nonunital Σ∗-algebra, and take X to be B and Y to be the unitization
B1 ⊆ B(H), where we view these both as Σ∗-modules over B1. Clearly
X satisfies (3), but X is not orthogonally complemented in Y since it is a
proper subset and {y ∈ Y : 〈y|x〉 = 0 for all x ∈ X} = {c + µIH ∈ B1 :
b∗c+ µb∗ = 0 for all b ∈ B} = (0) by an approximate identity argument.

We now define a Σ∗-analogue of “quasibases” for C∗-modules (see
[7, 8.2.5 and relevant notes in 8.7]).

Definition 4.23. For a Σ∗-module X over a Σ∗-algebra B ⊆ B(H), a
countable subset {xk} of X is a called a weak quasibasis for X if for any
x ∈ X, the sequence of finite sums

∑n
k=1 xk〈xk|x〉WOTB-converges to x. In

other words, {xk} is a weak quasibasis iff
∑n

k=1 |xk〉〈xk| ↗ I in B(X⊗BH).

Remark 4.24. Quasibases are also called “frames” (it appears that
“quasibasis” is the older term for these and “frame” is the term most com-
monly employed in recent literature). Frank and Larson [16] initiated a sys-
tematic study of quasibases/frames for Hilbert C∗-modules, and what we
have called “weak quasibases” are essentially equivalent to “non-standard
normalized tight frames” in the terminology of their paper (see [16, Defini-
tion 2.1]). We also remark that Frank and Larson followed a similar approach
to ours in using Kasparov’s stabilization theorem to deduce the existence of
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quasibases/frames. (We thank the referee for drawing our attention to these
points.)

Proposition 4.25. Let B ⊆ B(H) be a Σ∗-algebra, and let X be a right
Banach module over B. If X is a Σ∗-module over B with a weak quasibasis,
then X is isometrically B-isomorphic to an orthogonally complemented sub-
module of Cw(B).

Conversely, if X is isometrically B-isomorphic to an orthogonally com-
plemented submodule of a Σ∗-module Y over B such that Y has a weak
quasibasis, then X is a Σ∗-module over B with the canonically induced in-
ner product, and X has a weak quasibasis.

Proof. For the first statement, if X is a Σ∗-module over B with a weak
quasibasis, then clearly X is Σ∗B-countably generated, and the result follows
from Theorem 4.19.

For the converse, note first that if X is isometrically B-isomorphic to
any Σ∗-module X0 over B via an isometric B-isomorphism U : X → X0,
then defining 〈x|y〉 := 〈Ux|Uy〉 for x, y ∈ X makes U a unitary between
C∗-modules and makes X a Σ∗-module over B (this can be seen either by
applying Proposition 3.4, or by invoking Definition 3.1, noting that U in-
duces a canonical unitary X ⊗B H ∼= X0 ⊗B H). Since every orthogonally
complemented submodule of Y is a Σ∗-module over B by Proposition 4.21,
and since unitaries between Σ∗-modules preserve weak quasibases, we may
assume without loss of generality that X is actually an orthogonally comple-
mented submodule of Y. In that case, let P ∈ BB(Y) be a projection with
range X, and let {ek} be a weak quasibasis for Y. Then for any x ∈ X,
n∑
k=1

P (ek)〈P (ek)|x〉 =

n∑
k=1

P (ek)〈ek|x〉 = P
( n∑
k=1

ek〈ek|x〉
)

WOTB−−−−→ P (x) = x,

so that {P (ek)} is a weak quasibasis for X.

We close by coalescing some of the main results of this section in the
case of a unital coefficient Σ∗-algebra:

Theorem 4.26. Let B ⊆ B(H) be a unital Σ∗-algebra, and let X be a
Banach module over B. The following are equivalent:

(1) X is a Σ∗B-countably generated Σ∗-module over B;
(2) X is a Σ∗B-countably generated selfdual C∗-module over B;
(3) X is a Σ∗-module with a weak quasibasis;
(4) X is isometrically B-isomorphic to an orthogonally complemented

submodule of Cw(B);
(5) X⊕ Cw(B) ∼= Cw(B).

Proof. (1)⇔(2). Theorem 4.10.
(1)⇒(5). Theorem 4.19.
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(5)⇒(4). Easy.

(4)⇒(3). Proposition 4.25, noting that if B is unital, then Cw(B) has
a canonical weak quasibasis.

(3)⇒(1). Easy.
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