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Abstract

In this article, the authors introduce Hardy spaces with variable exponents, H*"? “(X ), on RD-
spaces with infinite measures via the grand maximal function. Then the authors characterize
these spaces by means of the non-tangential maximal function or the dyadic maximal func-
tion. Characterizations in terms of atoms or Littlewood—Paley functions are also established.
As applications, the authors prove an Olsen inequality for fractional integral operators and the
boundedness of singular integral operators and quasi-Banach valued sublinear operators on these
spaces. Finally, a duality theory of these spaces is developed.
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1. Introduction

The variable exponent Lebesgue space LP()(R"), with an exponent function
p(-) : R" = (0, 00),

is a generalization of the classical Lebesgue space, which can be traced back to Birnbaum—
Orlicz [4] and Orlicz [63] (see also Luxemburg [47] and Nakano [58| [59]). But the modern
development was started with the articles |[44] of Kovag¢ik and Rakosnik in 1991 and [19)
of Fan and Zhao, in which the authors investigated Sobolev spaces based on Lebesgue
spaces with variable exponents. The variable exponent function spaces have been widely
used in harmonic analysis and partial differential equations; see, for example, |10 |14} |49].

Based on the boundedness of the Hardy—Littlewood maximal operator (see, for ex-
ample, [9, 11, [13]) and other related operators (see, for example, [40, 51} |52, 64, 66])
on variable exponent Lebesgue spaces, the study of several function spaces with variable
exponents developed rapidly (see, for example, |2} |12} [15][56|[60H62, [79-81},/88,/89]). In par-
ticular, Nakai and Sawano |56] studied Hardy spaces with variable exponents, H?()(R"),
which are extensions of variable exponent Lebesgue spaces. Later, Sawano [68] gave more
applications of these variable exponent Hardy spaces, and Zhuo et al. [90] established
their equivalent characterizations in terms of intrinsic square functions. Independently,
Cruz-Uribe and Wang [12] also investigated variable exponent Hardy spaces with some
conditions weaker than those used in [56], which also extends variable exponent Lebesgue
spaces. Recall that the classical Hardy spaces H?(R™) with p € (0,1] and their duals are
well studied and play an important role in harmonic analysis and in partial differential
equations (see, for example, [8} 20} [53} {74]).

On the other hand, variable exponent Lebesgue spaces on (quasi-)metric measure
spaces seem to have appeared initially in [36], where Harjulehto et al. considered the
boundedness of the Hardy—Littlewood maximal operator M on Lp(')(X ), under the as-
sumption that X is a bounded doubling space and p(-) is locally log-Hélder continu-
ous. Later, several papers appeared dealing with operators in variable exponent spaces
on metric measure spaces (see, for example, [23] [27, [31} 41]); however, as was pointed
out by Adamowicz et al. [1], all these papers had some restrictions that either the un-
derlying space was bounded or an unnatural ball condition on p(-) was assumed. More
precisely, in [27], the boundedness of fractional integral operators in weighted variable ex-
ponent spaces with non-doubling measures was investigated and, in [41], Kokilashvili and
Samko considered the maximal operator in weighted variable exponent spaces on met-
ric measure spaces. Hajibayov and Samko [31] studied generalized potential operators
on bounded quasi-metric measure spaces with doubling measures satisfying the so-called
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6 C. Zhuo, Y. Sawano and D. Yang

upper Ahlfors N-regular condition. Moreover, very recently, Adamowicz et al. 1] stud-
ied the Hardy-Littlewood maximal operator M on LP()(X) when X is an unbounded
quasi-metric measure space with p being a doubling measure (or an arbitrary, possibly
non-doubling, Radon measure) and p(-) being log-Holder continuous.

Recall that a metric measure space

(X, d, )

is called a metric measure space of homogeneous type if p is a Borel regular measure
and satisfies the doubling property. It is well known that spaces of homogeneous type in
the sense of Coifman and Weiss |7] present a natural setting for the theory of Calderén—
Zygmund operators. In [8], Coifman and Weiss introduced the atomic Hardy space HE, (X)
with p € (0,1] and, when X is an Ahlfors 1-regular metric measure space, they estab-
lished a molecular characterization for H}, (X). Later, Macias and Segovia [48] obtained
a grand maximal function characterization for HY (X) with p € (1/2,1] via distributions
acting on certain spaces of Lipschitz functions; Han [32| established a Lusin-area func-
tion characterization for HY, (X); Duong and Yan [16] characterized these atomic Hardy
spaces in terms of Lusin-area functions associated with certain Poisson semigroups; Li [46]
also gave a characterization of HY,(X) by the grand maximal function defined via test
functions introduced in [35].

A metric measure space of homogeneous type X is called an RD-space if it has a
“dimension” n and satisfies some reverse doubling property (see Definition below),
which was originally introduced by Han, Miiller and Yang [34]. The Littlewood—Paley
theory of Hardy spaces on RD-spaces was established in [33], and the corresponding
maximal function characterizations were obtained in [29]. Moreover, in [34] these Hardy
spaces on RD-spaces were proved to coincide with Triebel-Lizorkin spaces on RD-spaces.
To develop a real-variable theory of Hardy spaces or, more generally, Besov spaces and
Triebel-Lizorkin spaces on RD-spaces, some basic tools, including spaces of test functions,
approximations of the identity and various Calderén reproducing formulas on RD-spaces,
were developed in [33] |34]. Now, it is well known that these basic tools play important
roles in harmonic analysis on RD-spaces (see, for example, |28} [30} 33| 34, |42, |43} [85. |87]).

In this article, we introduce Hardy spaces with variable exponents on RD-spaces,
denoted by H*P()(X), via the grand maximal function. We then prove that H*?()(X)
coincides with Hardy spaces with variable exponents defined via the non-tangential max-
imal function or via the dyadic maximal function. This generalizes both Hardy spaces on
RD-spaces with constant exponents HP(X') (see [29,[33]) and Hardy spaces on Euclidean
spaces with variable exponents HP()(R") (see [56]). Characterizations of H*P()(X) in
terms of atoms or Littlewood—Paley functions are also obtained in this article. As appli-
cations, we give an Olsen inequality for fractional integral operators, and consider the
boundedness of singular integral operators and quasi-Banach valued sublinear operators
on these Hardy spaces. Finally, we prove that the dual space of H*P()(X) is a special case
of the space BMO,(X') which is defined in Definition Recall that Xu [82, Problem
2.1] pointed out that a real-variable theory of Hardy spaces with variable exponents on
metric measure spaces was still unknown, and hence the results in this article make a
step in this direction.
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This article is organized as follows.

In Section[2] we first recall the notions of RD-spaces, including the space of test func-
tions and approximations of identity, and variable exponent Lebesgue spaces on metric
measure spaces. We then establish a Fefferman—Stein vector-valued inequality for the
Hardy-Littlewood maximal operator on LP()(X) (see Theorem and another inter-
esting inequality (see Proposition , which play important roles in this article.

In Section [3| we introduce the Hardy space H**()(X) with variable exponent on RD-
spaces via the grand maximal function. Then we establish the coincidence of H*P()(X)
with Hg(‘)(X ), the Hardy space with variable exponent defined via the non-tangential
maximal function (see Theorem , as well as with HY (‘)(X ), the Hardy space with
variable exponent defined via the dyadic maximal function (see Theorem .

Section [4] is devoted to atomic characterizations including infinite and finite atomic
characterizations (see Theorems and respectively). To this end, we first prove
that the subset LI(X) N H*P()(X) is dense in H*P()(X) by the Calderon-Zygmund
decomposition. We then show Theorem by using the Calderéon—Zygmund decompo-
sition and some argument similar to that used in the proof of |21, Theorem 3.28]. As
consequences of the above infinite atomic characterization, we show that the spaces

H*?O(x), HEO(X) and HEV(X)

are independent of the corresponding parameters (see Theorem. Moreover, we prove
that, when 1 < p_ < p, < oo, the space H*P()(X) coincides with LP()(X), where p_
and p4 are as in below. By using the constructive proof of Theorem we further
prove Theorem We point out that finite atomic characterizations of Hardy spaces
were first considered by Meda et al. [50], who established a finite atomic characterization
of HY(R™). We also point out that the approach used in the proof of Theorems is
different from that of |29, Theorem 4.16], in which the authors established an atomic
characterization of the Hardy space HP(X) with p being a constant exponent. Another
proof of Theorem ii), similar to that of |29, Theorem 4.16], is given at the end of
Section [} however, the atoms constructed in this way do not seem to be well suited for
establishing the finite atomic characterization of the Hardy space H*?()(X) with variable
exponent in the setting of this article.

In Section we mainly establish characterizations of H*?()(X) via Littlewood-Paley
functions, including the Lusin area function, the g3-function and the g-function. In fact,
we first introduce a Hardy space HP()(X) with variable exponent via the Lusin area
function, and then give its atomic characterization via (p(-), co)-atoms (see Theorem [5.3)
by using the Calderén reproducing formula from [33] (see also Lemma [5.10)); this space
is further proved to coincide with Hﬁt(')’q(é\f), where g € [1,00] N (p4, 00], and hence with
H*?P)(X) in Theorem We point out that the method used in the proof of Theo-
rem is similar to the one used in the proof of the constant exponent case (see [33|
Theorem 2.21]), with some subtle modifications in the construction of atoms and coeffi-
cients. Moreover, as a benefit of such subtle modifications, we obtain a characterization
of HP)(X) via (p(-), 00)-atoms, and not via (p(-), 2)-atoms, in Theorem 5.3, which, when
p(-) = p is a constant exponent, improves the result in |33, Theorem 2.21] where H?(X)
was characterized via (p, 2)-atoms.
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As applications, in Section [6] we obtain an Olsen inequality via the atomic charac-
terization established in Theorem investigate the boundedness of singular integral
operators by using the characterization via the Lusin area function obtained in Theorems
and and consider the boundedness of quasi-Banach valued sublinear operators on
H*P0)(X) via the finite atomic characterization presented in Theorem M

In Section[7] using the atomic characterization of these spaces, we consider their duals
when p(x) <1 for p-almost every z € X.

Finally, we point out that it would be interesting to see whether or not the results
of this article still hold true for spaces of homogeneous type or even for spaces of non-
homogeneous type in the sense of Hytonen [37] (see |22} |84] for developments of the theory
of Hardy spaces in this setting).

2. Preliminaries

We first give some notation which will be used in this article. Let N := {1,2,...} and
Zy := N U {0}. Throughout the article, we denote by C a positive constant which is
independent of the main parameters, but may vary from line to line. The notation A < B
means A < CB.If A< B and B < A, then we write A ~ B. For all a,b € R, let

aVb:=max{a,b} and aAb:=min{a,b}.

If F is a subset of X', we denote by x g its characteristic function. For a € R, |a] denotes
the largest integer m such that m < a.

In this section, we first recall the notions of RD-spaces and variable exponent Lebesgue
spaces, respectively, in Subsections and Then, in Subsection we consider the
boundedness of the Hardy-Littlewood maximal function on variable exponent Lebesgue
spaces on metric measure spaces of homogeneous type and, as a consequence, we obtain
Proposition which plays an important role in this article and is also of independent
interest.

2.1. RD-spaces. In this subsection, we recall the notions of metric measure spaces of
homogeneous type in the sense of Coifman and Weiss |7} |8], and RD-spaces in the sense
of [34] (see also |57}, |87]).

DEFINITION 2.1. Let (X,d, ) be a metric space with a Borel regular measure p such
that all the balls defined by p have finite and positive measures. For any x € X and
r € (0,00), denote by B(z,r) the ball centered at x with radius r,

B(z,r) :={y € X :d(z,y) <r}.

(i) The triple (X,d, ) is called a metric measure space of homogeneous type if there
exists a constant C; € [1,00) such that, for all x € X and r € (0, 00),

w(B(x,2r)) < Cyp(B(x,r)) (doubling property). (2.1)

(ii) Let 0 < kK < m < oo. The triple (X,d,u) is called a (k,n)-space if there exist
constants Cy € (0,1] and C3 € [1,00) such that, for all 0 < r < diam(X)/2,
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1 <A< diam(X)/(2r) and z € X,
CoX*u(B(z,r)) < u(B(x, Ar)) < C3s\"u(B(z, 1)), (2.2)
where diam(E) := sup,, ,cp d(7,y) for a subset £ C X.

A metric measure space of homogeneous type is called an RD-space if it is a (k, n)-space
for some 0 < k < n < oo, that is, if some “reverse” doubling condition holds true.

Recall that in |7} [8] a triple (X, d, 1) is called a space of homogeneous type if it satisfies
Definition [2.1(i) with d being a quasi-metric.

In this article, unless otherwise stated, we always assume that X is an RD-space and
p(X) = oo. Moreover, for all balls and a € (0,00), we use aB to denote the ball with the
same center as B but a times its radius. For any z, y € X and ¢ € (0, 00), let

Vs(2) = u(B(x,0)) and  V(z,y) := p(B(z,d(z,y))).

By (2.1)), we see that V(x,y) ~ V(y,x) for all z,y € X with implicit positive constants
independent of x and y.

REMARK 2.2. (i) In some sense, k and n measure the “dimension” of X. Obviously,
a (k,n)-space is a metric measure space of homogeneous type with Cy := C32". Con-
versely, a metric measure space of homogeneous type satisfies the second inequality of
with C3 := C; and n :=log, C1.

(ii) If p is doubling, then pu satisfies if and only if there exist constants ag, Co €
(1,00) such that, for all z € X and 0 < r < diam(X)/ay,

w(B(x, agr)) > Cop(B(z,r)) (reverse doubling property),

or, equivalently, for all 0 < r < diam(X)/ap and = € X, B(z,aor) \ B(z,r) # 0; see
[34, |57, [87] for some other equivalent characterizations of RD-spaces.

2.2. Variable exponent Lebesgue spaces. In what follows, a measurable function
p(+) : X = (0,00) is called a variable exponent. For any variable exponent p(-), let
p_:=essinfp(x) and py :=esssupp(z). (2.3)
TeX rEX
Moreover, let p := min{1,p_}. Denote by P(X’) the set of all variable exponents on X’
with 0 < p_ < p; < oco. For a measurable function f: X — R, define the modular of f
by setting

oo = [ 1F@P® dte),
and define the Luxemburg quasi-norm to be

£l o) 2y :=If{A € (0,00) = 0y (f/A) < 1}
Then the variable exponent Lebesgue space on (X, d, 1), denoted by LP()(X), is defined to
be the set of all measurable functions f such that g,.)(f) < oo, equipped with the quasi-
norm || f{| ¢ (x). For more properties of variable exponent Lebesgue spaces, we refer the

reader to |10, 14]. We point out that LP()(X) is a special case of Musielak-Orlicz spaces
(see [54]).
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For any ¢ € (0,00], let L{

loc

(X) be the space of locally g-integrable functions on X,
and L7(X) the space of all g-integrable functions on X.

REMARK 2.3. (i) Variable exponent Lebesgue spaces on (quasi-)metric measure spaces
have already been studied in several papers (see, for example, |1} 31} |36]).

(ii) Let p(-) € P(X). Then it is easy to see that || - [[z»()(x) is a quasi-norm.

(iii) (The Holder inequality) Let p_ € (1,00). Then, for all f € LPO)(X) and g €
P O(x),

J 1@t dua) < 2ol oo

here and hereafter p*(-) denotes the dual variable exponent of p(-) defined by 1/p(x) +
1/p*(z) =1 for all x € X (see [36]).

(iv) Let p(-) € P(X). Then, by an argument similar to that used in the proof of |10l
Proposition 2.21], we conclude that, for all non-trivial functions f € LP()(X),

QP(')(f/Hf||LP(~>(X)) =1

Recall that the variable exponent p(-) is said to be locally log-Hélder continuous in X
if there exists a positive constant ciog such that, for all z,y € X,
Clog

Ip(z) — p(y)| < log(e + 1/d(z, y))

and that p(-) is said to satisty the log-Hoélder decay condition with a basepoint x, € X if
there exist po, € R and a positive constant co, such that, for all z € X,

COO
= logle + d(z,2,))’
Moreover, the variable exponent p(-) is said to be log-Hélder continuous if p(-) satisfies
both the locally log-Hoélder continuous condition and the log-Hélder decay condition.

P(%) = poc| <

In what follows, we always fix the basepoint x,, which plays the same role as the
origin of R™. For 0 < a < b < oo, denote by Céng)(X) (resp., Céng]( )) the set of all
log-Holder continuous variable exponents p(-) such that p(X) is contained in a compact

interval in (a,b) (resp., (a,b]).
REMARK 2.4. Let p(-) € P(X). Then it is easy to see that p(-) € C’log (&) if and only

if 1/p(-) € Cige,) (X). Moreover, if p(-) € C(g&,_ (X)), then p*(-) € cgggoo)(X)
2.3. Boundedness of the Hardy—Littlewood maximal operator. In this subsec-
tion, we mainly consider the boundedness of the maximal operator on metric measure
spaces. Recall that, for any f € Ll (X), the Hardy-Littlewood mazimal function M(f)
of f is defined by setting, for all z € X,

1
M = _ d =: ;
(f)(x) TGS(I&I) ) /L(B(ZL’ﬂ”)) /B(:c,r) |f(y)‘ M(y) res(l(ip )mB(m,r)(|f|)7

here and hereafter, for any measurable set £ C & and any measurable function g, we
write

1
me(s) =~z /E o(z) du(x). (2.4)
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Obviously, by the Holder inequality for variable exponent Lebesgue spaces, we find that
LPO(X) C LL (X) as sets when p_ € [1,00). Therefore, for all f € LP()(X) with

loc

p_ € [1,00), M(f) is finite almost everywhere.
The following lemma is just |1, Corollary 1.8|.

LEMMA 2.5. Let (X,d,un) be a metric measure space of homogeneous type and let
p(-) € C’gcl)goo)(é’(). Then, for all f € LPO)(X),

IM(F)lzeer 2y < Cllfllrer a0y
where C' is a positive constant independent of f, but which may depend on the base-
point Tp.

REMARK 2.6. Let p(-) € Cécl’goo)()() and B be a ball of X. Then it is easy to see that, for

all A € (1,00) and r € (0, 0),
xas < (CAYYT M) and  [Ixaslro vy < CAYMIxsl o (1)
where C' is a positive constant independent of B and \.

By Lemma [2.5] and some duality argument, we obtain the following Fefferman—Stein
vector-valued inequality for the Hardy—Littlewood maximal operator.

THEOREM 2.7. Let (X,d, 1) be a metric measure space of homogeneous type (here u(X) €
(0,00]) and p(-) € Cé?goo)(X). Then there exists a positive constant C' such that, for all

u € (1,00] and measurable functions {f;}jen C LPO)(X),

1/u 1/u
K < |w .
H{Z[M(f])] } LG (x) — CH{ZUJ' } ‘LF(-)(X), (25)
JEN JjEN
where, when u = 0o, it is understood that (2.5) means
M(f; H < CH - ’ . 2.6
H?GIIN) Uil sy = IS Ml s 20)

REMARK 2.8. If p(-) = p € (1,00) is a constant exponent, the conclusion of Theorem
was proved in |30, Theorem 2.1].

To prove Theorem [2.7] we need the following technical lemma, whose proof is similar
to that of [10, Theorem 2.34| (see also |39, Theorem 9.2]), in which the corresponding
result on the Euclidean space is considered; the details are omitted.

LEMMA 2.9. Let (X,d, ) be a metric space with a Borel regular measure p (here p(X) €
(0,00]) and p(-) € Cé(l)goo)(X). If f € LPO(X), then there exists a positive constant C
such that

CHIfllzrer 2y < 1l Lecr 2y < CSfllLrer )
where

Fllooge = sup{‘ | r@ate) duto

Proof of Theorem[2.7, It suffices to show (2.5), since (2.6)) is obviously true. To this end,
let 1 < v < p_. Then, by Lemma [2.9]

9 € L7O0) and gl <1
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K1}y = (IS0 )

JEN
A [ (Spren) " st dute)

jEN

1/v

for some non-negative measurable function g such that ||g[| ;w)/0* (x) < 1. By Remark
and Lemma we know that, for all h € LEPO)/V)" (X)),

IM(R)| Lo () < NIl Lo (2
for some N € (1,00) independent of h. Define

1 k

keN

where MF* denotes the k-fold iteration of the Hardy-Littlewood maximal operator M.
Then

M(G) < 2NG (2.7)

and
1/v

(e} ), = L (@) ) duto |

JEN jEN
Notice that, for all j € N and z € X,

1
M(f;)(x) Sreiggo) Tocaom G () /B(M) £ (WG (y) duly) = Ma(f;)(x)

from (2.2) and (2.7). Therefore, from |67, Theorem 1.3] with p replaced by Gdu, we

deduce that
) = { (St

v/u 1/v
<{/ 1] "e@ua |

which, combined with the Hélder inequality and the fact that ||| e 0=y < 1, implies

that " L
o) ., <)

This finishes the proof of Theorem L]

v/u

G(a) du(m)}l/v

Lr()(X)

We transform Theorem 2.7 to the form we need in this article.

COROLLARY 2.10. Let 0 < f < 1, u € ((n+ f)/n,00), (X,d, 1) be a metric measure
space of homogeneous type (here u(X) € (0,00]) and r(-) € Céff/(mm OO)(2{), Then there
exists a positive constant C such that, for any sequence { f;};en of p-measurable functions,

H%WUJ‘N“ o CH%IEI"

. 2.8
LT () (28)
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Proof. Notice that (2.8)) is equivalent to
1/u 1/u
\u < u
| (o) oy < [ (1807)
JEN JEN

Since (r(-)u)— > 1 by assumption, we are in a position to apply Theorem with
p(+) replaced by r(-)u to (2.9), and hence (2.8) holds true. This finishes the proof of

Corollary n

Thanks to Lemma we obtain the following conclusion, which plays an important
role in this article and is also of independent interest.

. 2.9
LrOu(x) (2.9)

PROPOSITION 2.11. Let (X,d, ) be a metric measure space of homogeneous type (here
w(X) € (0,00]), let r(-) € P(X) be a log-Hélder continuous variable exponent and let

€ [1,00]N(r4, o0]. Suppose that {\;};jen C C, {B;}jen and{a;}jen are given collections
of balls and L1(X)-functions, respectively, such that, for all j € N, suppa; C B; :=
B(zj,r;) for some x; € X and r; € (0,00), and

[1(B;)]"/4

a q =~
|| JHL (X) ||XB ||Lr()(X)
and that
rN 1/r
(e (B e = [TV
r(-) JJIEN, jSjeEN) - — HXB” o XBj , .
Gen Lo () L) (X)
Then

Ary (A} jem {Bj}jen),

[{Z s} ™

JEN

LrO)(x)
where C' is a positive constant independent of A;, B; and a;.

Proof. By Lemmam we find g € L(r()/n)" (X) with norm not greater than 1 such that

H{Zl/\ ls } LX) HZ| il ’LT()/T(X)
/ZM a3 () £ 9(2)] dyu(z).

jEN

From the Holder inequality, we deduce that

| X Was@Pla@) dute )< 3 il B

|| H ||g||L(‘Z/“")*( )
jEN jen IXBsllLror X)

[Aj[Fn(B *\11 )*
< inf [M(\g|(‘1/£) )] /(a/1)
jeZN s, HW )zeB,.

/Z [Aj=x B, ( [ (9] @D ) ()] /D" qpu(z),

2 xs, HW

which, together with Lemma [2.5 the Holder inequality in Remark [2.3(iii) and the fact
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that ¢ € (r4, 0c], implies that

[ 3 W) Plata) dua)
Z |Aj[=xB;

jEN ”XB ||L7‘( )(X)
H{ |)‘ |- ~XB; } /,H, Il *
- jEN ||XB ||L7() (x) Lr() gllLeO/o* (x)-

This finishes the proof of Proposition 2.11] =

||[M (|g] <@/ 2/ (a/n)”
Lr()/r(Xx)

LOO/D (X)

3. Hardy spaces with variable exponents

Based on the viewpoints of |29, [33], in Subsection we introduce the Hardy space
H*P()(X) via the grand maximal function. Then a non-tangential maximal function
characterization for H*P()(X) is presented in Subsection and, in Subsection we
consider another characterization of H*?()(X) in terms of the dyadic maximal function.
As an application of these characterizations, in Subsection [3.4] we investigate relations
between the spaces of test functions with different parameters.

3.1. Hardy spaces with variable exponents via the grand maximal function.
Let us first recall the notion of test functions which suits RD-spaces and was introduced
in [29]. Observe that this kind of test functions is a slight variant of the test functions
originally introduced in [33] (see also [34]).

DEFINITION 3.1. Let z € X, r,y € (0,00) and 8 € (0,1]. A function ¢ on X is called a
test function of type (z,7,[5,v) if, for all z € X,

1 T K
< 1
0| < C gy i) 31
and, for all z,y € X satisfying d(z,y) < [r + d(z,2)]/2,
d(z,y) s r v 1
— <

lp(@) =yl < C [r +d(z, a:)] r+d(z,x)| p(Blx,r+d(z,2)))’

where C' is a positive constant independent of x, y and z.

Denote by G(z,r,3,7) the set of all test functions of type (z,7,5,7). For any ¢ in
G(z,r,3,7), define its norm by

lellgz,rp,y) = inf{C : (3.1) and (3.2 hold true}.

The space G(z,r, 3,7) is called the space of test functions.

(3.2)

REMARK 3.2. In [33| Definition 2.2] or [34, Definition 2.8|, another space of test functions

was introduced in the same way as in Definition but with u(z,r + d(z, z)) replaced
by V,.(z) + V(z,x). Observe that, by (2.2),

N(‘TJ' + d(ZE, Z)) ~ V7~(Z) + V(Z,SL‘).
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It follows that the spaces of test functions in Definition and in [33| Definition 2.2]
or [34, Definition 2.8] coincide with equivalent norms.

Let 1 be a fixed point of X. Then define

g(ﬁa,y) = g(xla 1aﬂ77)

Let € € (8 A~,1]. Observe that G(e,e) C G(8,7). Define G§(53,7) to be the completion of
G(e,e) in G(B,7). The topological dual of G§(,~) is denoted by (G§(5,7))’. We fix the
point x; throughout the present article. It turns out that x; plays the same role as the
origin of R™.

Keeping the above definition of test functions, let us recall the notion of the grand
maximal function.

DEFINITION 3.3. Let (X,d, 1) be an RD-space, € € (0,1] and f € (G§(8,~))" with some
B,7 € (0,¢). For any = € X, the grand maximal function of f is defined by

f*(l‘) = Sup{‘<f7 <P>‘ tp e gg(ﬁa’}/)v ||<P||g(:1:,r,ﬁ,'y) <1 for some r € (0,00)}
REMARK 3.4. It was established in [29, (3.4)] that, for all z € X, f*(z) < M(f)(x).

In the present setting, we fix 8,7 € (n(1/p— — 1),¢). Now we introduce the Hardy
space H*P()(X) by using the grand maximal function.

DEFINITION 3.5. Let (X,d, ) be an RD-space, p(-) € Cézg/(nﬂ) ooy (X) and € € (0,1]
satisfying € > n(1/p_—1), and 8, € (0, 00) be such that 3,7 € (n(1/p——1),¢). Then the
Hardy space H*PC)(X) with variable exponent is defined as the set of all f € (G§(8,7))’

for which the quasi-norm || f|| g+rc)(x) := [|f*[| rc) (x) 18 finite.

Obviously, when p(-) is a constant p € (0,00), we have H*P()(X) = H*P(X), the
space studied in 29} [33]. Similar to H*P(X), we need to show that H*P()(X) is inde-
pendent of the choice of € and 8,y € (n(1/p— — 1),¢). This will be proved in Theorem
Here let us content ourselves with checking the following fundamental inclusion.

LEMMA 3.6. Let p(-), €, B and ~ be as in Deﬁnition. Then, in the sense of continuous
embedding, H*PC)(X) < (G§(B,7))’, namely,
I(fs o) < Cllellgg e, 1,81 | epe (2

forall f € H*vp(‘)(X) and ¢ € G§(B,7), where C is a positive constant independent of f
and .

Proof. Let ¢ € G§(3,7) be a test function. Then it is easy to see that, for all z € B(x1, 1),

lellgez.6) S lellgeer,1,8.4)s
where 21 € X is the fixed point described above. Thus, for all z € B(z,1),

I(fs @) S Mlellge @ 1.80) f (),
which, combined with the Holder inequality, implies that

I @) S Mlellge 1,80 | F1 et (2
This finishes the proof of Lemma [3.6] w
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3.2. Hardy spaces with variable exponents via the non-tangential maximal
function. In this subsection, we first introduce the Hardy space with variable exponent
via the non-tangential maximal function with aperture a, denoted by Hg(') (X), and then
prove the coincidence of H*?()(X) and Hg(')(X).

The following notion of approximations of the identity on RD-spaces was first intro-
duced in [34]; see also [33].

DEFINITION 3.7. Let €1 € (0,1], €2,€e3 € (0,00) and {Sk}rez be a sequence of bounded
linear integral operators on L?(X). Assume that Si(-,-) : X x X — C is the integral
kernel of Sy, for each k € Z. Then {Sk}rez is called an approzimation of the identity of
order (e1,€s,€3) (for short, (e1,€2,€3)-AOTT) if there exists a positive constant C' such
that, for all k € Z and all z,2',y,y’ € X,
S o 2" !
. < )
(ii) when d(z,2") < [27% +d(z,y)]/2,
|Sk(x7y) - Sk(xlvy)‘
<c 2 ke2 [d(x,x")]e 1 )
T 2R tdy)]e 278 +d(z )] Vaor(z) + Vak(y) + Vi, y)
(iii) property (ii) holds true with = and y interchanged;
(iv) when d(z,2') < [27F +d(x,%)]/3 and d(y,y') < [27F +d(z,y)]/3,

|[Sk(x7y) - Sk(xvy/)] - [Sk(xlvy) - Sk(x/7y/)]‘

9~ kes [d(x, ")
R PR ey e e
dly, )] 1

2+ d(z, y)|* Vo (@) + Var(y) + V(w,y)

) [ S dut) =1= [ Sy duto).
Before we go further, a helpful remark may be in order.

REMARK 3.8. (i) Let €1, €2 and {S }xez be as in Deﬁnition and € € (0,¢1 Aea). Then
it was pointed out in |29, p.2258] that, for any fixed x € X, we have Si(z,-) € G5(5,7)
with 8,7~ € (0,¢).

(ii) According to Definition (i), Se(z,-) € LN(X) and [|Sk(x,-)||1(x) S 1 with the
implicit positive constant independent of . Indeed, by using (i), we have

/X k()] du(y)
N /B(a:,Qk) Sk, y)l duly) + ;/B Sk (2, y)| dua(y)

(2,2!=F)\B(z,2lk—1)

N

€T —k © —eal
M(l‘iz(;?x) ! - Z ngkfl(:c)u(B(xﬂl_k) \ Bz, 27" h) £ 1,

which implies that the above claim holds true.
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(iii) It was proved in [34, Theorem 2.6] that there exists an (1, €2, €3)-AOTI with
bounded support on X, which means that there exists a positive constant C' such that,
for all kK € Z and z,y € X with d(z,y) > 27F, we have Si(z,y) = 0. Here let us recall
the construction from the proof of [34, Theorem 2.6].

Let h € C1(R) be such that X[=3/2,3/2) < h < X[_2,9.- Forall ke Z, f € L .(X) and
r e X, let

Tf(w) = [ h@taGe0) ) duty)
and, for all z,y € X, let
1 1

k k
Sk(z,y) = W/ h(2%d(x, 2))h(2 (d(yaz))m dpu(z).

In addition to properties (i) through (v) of Definition Sy, also satisfies
1 C
<,
Vyr(m) = W Sy
for all z,y € X with d(z,y) < 27F, where C is a positive constant independent of x, y
and k.

(3.3)

DEFINITION 3.9. Let €1 € (0,1], €2,€e3 € (0,00), € € (0,€1 ANea), B, € (0,€) and {Sk }rez
be an (€1, €2, €3)-AOTI.

(i) For any k € Z, f € (G§5(B,7)) and z € X, define
Sk(F)(@) = (f, Sk(x,-)).
(ii) Let o € (0,00) and f € (G§(B,7))'. Then the non-tangential mazimal function of f
with aperture « is defined by setting, for all x € X,
Ma(f)@)i=sup| s [Sk(HW)].

k€Z ~ye B(z,a2—k)

(iii) Let p(-) € Cézg/ (n41),00)(X) satisfy p_ € (n/(n 4 €),00). In particular, let p() €
C(lzg/(n+€) Oo)( ). Then the Hardy space HEt )(X) with variable exponent via the non-
tangential mazimal function is defined as the set of all f € (G§(8,~))’ for which the

quasi—norm Hf”Hg()(X) = ||.Ma(f)||Lp(-)(X) is finite.

REMARK 3.10. Let {Si}ren be an (€1, €2,€3)-AOTI as above. Then, for any f € LI(X)
with ¢ € (1,00), we have [|Sk(f)||za(x) — 0 as k — —oo (here we need u(X’) = oo) and
1Sk (f) = fllLacx) = 0 as k — oo; see, for example, [29, Lemma 3.1].

Now let us show that the above two notions of Hardy spaces with variable exponents
are equivalent.

log
THEOREM 3.11. Let o € (0,00) and p(-) € Cong(nt1),00)

H*’p(')()() = Hg( )(X)

(X). Then

with equivalent quasi-norms.
Proof. Let € € (0,1] and 8,7 € (0, 00) satisfy € € (n[1/p— —1],1] and
B,y € (n[l/p- —1],e).
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Observe that, by [29, Remark 2.9(ii)|, there exists a positive constant C(,), depending
on a, such that, for all f € (G§(5,7)) and x € X,

Ma(f)(x) < C(a)f*('r)

Then we have
HPO@X) € HEOWX) and (| fll 0 ) S 10000

Conversely, by [29, (3.13)], we see that, for all 8 € (n/(n+ B8 A7Y),1], f € (G§(B,7))
and z € &,

Fr(@) < Clo {M((Ma(H)))(@)}7, (3.4)
where C(g) is a positive constant depending on ¢, but independent of f and x. From (3.4)
and Lemmaﬁ, we further deduce that Hg(')(X) c H*P()(X) and

Hf”H*,p(-)(X) S ||fHHg<l>(X)~
This finishes the proof of Theorem L]

We point out that there is no restriction on « in Theorem [3.11} Moreover, from the
proof of Theorem [3.11] we easily deduce the following conclusion.

COROLLARY 3.12. Let a1, as € (0,00) and p(-) € C1°% (X). Then HE(X) and

0 (n/(n+1),00)
HEY (X)) coincide with equivalent quasi-norms.

3.3. Hardy spaces with variable exponents via the dyadic maximal function.
As further applications of the (ey, €2, €3)-AOTI, we consider Hardy spaces with variable
exponents in terms of the dyadic maximal function. The definition is based on the fol-
lowing dyadic cubes introduced in [6]. Here we are still fixing €, 3, v as in Definition

LEMMA 3.13. Let X be a metric measure space of homogeneous type. Then there exist a
collection {Q% C X : k € Z, 7 € I} of open subsets, where Iy, denotes some index set,
and constants C, D € (0,00) such that

(i) p(X\ Urelk QF) =0 for each fized k and, if T, € Iy and T # n, then Q¥ N QZ =0;
(ii) for any b,k € Z with £ > k, 7 € I, and n € I, either Qfl C QF or Qf, Nk =10;
(iil) for alll,k € Z with ¢ < k and T € I, there uniquely exists n € I, such that Q’ﬁ - Qf];
(iv) for each k € Z,

diam(Q%) < D27%; (3.5)

(v) each Q¥ contains some ball B(zF,C27%) with 2F € X.

Indeed, for each k € Z and 7 € I, we can roughly regard Q¥ as a dyadic cube with
diameter roughly 2% centered at 2 as if we were placing ourselves in R™. In what follows,
let jo be a positive integer large enough such that

270D < 1/3. (3.6)

For all k € Z and 7 € Iy, we denote by Q%", v € {1,...,N(k,7)}, the set of all dyadic
cubes QF7° C Q. For all k € Z, define Dy, := S), — Sj_1.
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Now we introduce Hardy spaces with variable exponents via the dyadic maximal
function as follows.

DEFINITION 3.14. Let 3,7 € (0,1), €1 € (0,1] and €3, €35 € (0, 00) satisfy
€1 Neg € (BAy,00).
Assume that € € (8 A7y, €1 A €a) and {Sk}rez be an (e, €2, €3)-AOTI.
(i) Let f € (G§(B,v))". Then the dyadic mazimal function of f is defined by setting
Ma(f)(x) = sup mr(|Sk(f))xqs(x), =€,

keZ, T€l,

where {Q¥}rez. rez, is as in Lemma and mes is defined as in (2.4).

(ii) Let p(-) € Cézg/(nﬂ) OO)(./'\’) and 8,7 € (n(1/p— — 1),¢). Then the Hardy space
Hg(')(?( ) with variable exponent via the dyadic maximal function collects all f in

(G§(8,7))" for which the quasi-norm ||f||H§(.)(X) = |IMa(f)ll re)(x) is finite.

The notion of Hardy spaces with variable exponents via the dyadic maximal function
coincides with that via the non-tangential maximal function, as indicated by the following
theorem.

THEOREM 3.15. Leta € (0,00) andp(-) € C (X). Then Hg(')(X) and Hg(')(X)

coincide with equivalent quasi-norms.

log
(n/(n+1),00)

Proof. Let f € Hg(')(.)c'). Then, by |29} p.2267], we know that, for all x € X,

Ma(f)(x) S Mao (f)(x)

for some oy € (0,00). This, combined with Corollary implies that Hg(')(,)() C
1" (X) and
d

||fHH§('>(X) S HfHHg()(X)

Conversely, let 8,7 € (0,1) and f € Hg(')(?(). We claim that, for all § € (
and z € &,

n+(7/§/\'y) ’ 1}

¥ (@) < Cop{M(IMa(H)*)(2)}?, (3.7)

where C/g) is a positive constant depending on 6, but independent of f and x. By com-
bining (3.7) and Theorem we obtain the desired result, namely,

HY () ¢ HEO(X) and (£l 00 ) S Il -

To complete the proof of Theorem it thus remains to show . To this end,
suppose that €, €| satisfy
n
n+ B Ay
Fix # € & and a test function ¢ € GG§(8,v) satisfying [|¢llg(z,r8,,) < 1 with some
r € (0,00). Let £y := | —logy ]. Then there exists a positive constant C, independent of
x and ¢y, such that

<f<e and nO'-1) < <BAY. (3.8)

1€llg(z,2-40,8,4) < C-
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According to the reproducing formula in |29, Theorem 3.3] (see also |34, Theorem
4.16)), if jo as in (3.6) is large enough, then we know that, for any fixed y** € Q¥ with
keN,7relyandve{l,...,N(k,7)}, and for all f € (G5(3,7))" with 8,~ € (0,¢),

=Yy [Ml“ L. Dy ) )| | S i

N(k,7)

+ Z ST w@F)Di(yE ) Dr(f)(WEY)

k=lo+1T€l, v=1

converges in (G§(5,7))’, where {Dy(-, )37, is a family of functions on X x X' satisfying,
for all z, 2,y € X,
< 1 1

~ Vi) + Valy) + Viw,y) [1+d(z,y))

~ ~ d(z,2") 1° 1 1
Do) =Dl 5 |55 | v e T T
when 2d(z,z') <1+ d(x,y), and

/ i) dpa(2) = xge0y (k) = / Bu(z, ) du(2).
X X

|5k(xay)

From this, we further deduce that, for any y** € Q%,

fo,‘l’)

S [/[OuDeo ¢y )d“(y)]M/go,u Sgo(f)(w)du(w)‘

7€l v= 1

N(k,T)

Y Y S w@BHAGE D)

k=lo+1T1€El), v=1

)

where 5,’; denotes the integral operator with kernel BZ (z,y) = Dy (y,z) for all z,y € X.
By |29, (3.17)], we find that, for all k € Z with k € [{y, 00),

1 € (n(1/9_1)7ﬂ/\7)
and for all y € X,

1 2ty
w(B(y,27% +d(z,y))) [27% +d(z, )]

Obviously, by Definition we have, for all y2ov € Q%

\M(Qi) [ S0 @) dutw)| < Ma(h) ")

and, when k > ¢, for any y&v €

IDi(p)(y)| S 27k

k,v

T

IDr(F) (e < 1Sk() )]+ 1Se-1 () ()]
< Ma(H) ().
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Altogether, we then see that
N(k,T) —00)e v
s Y T Y [l e
~ (7", 270 + d(z,y7")))

k=lo+1T€EIl, v=1

9—LoYy

kv
e g M)

Notice that

1

%
22 ) B A ) S AN )

pQr") . o
> — u(B(x,2=% 4 d(z,y2"))) ZEQ?V[Md(f)( )7

Since, due to (2.2)),
p(Bla,27% + d(a,yr"))) S 2 + 28d(x, yo)" n(QFY),

it follows that

N (k)
M(g;k > Ma(D xger ) (@)
>§N§§) Se—to +2k(§2(22]9 Y\ [n(1=0) [M(;(f;,ezQ—i:[f;(i);;?”]j>)]9
R Zz:kN:zk:lT 1'+ 263562 ;Vl yd(f))]i()l]fe) [u(B(:az[i(on;z]ﬂi yr)))e
R 2T ; Zl mfzzfii:zf;ff))(]ei}e (u(B(z ,;06;[+(§(:;]T )N

N(k,T) —t, » 0
> 9n(1-0)(k= eo){z 3 inf, e ge Mdif)(z)] 277 u(QF )k } |
200 +d(z,y=")]7  u(B(z,27% +d(x,y:")))

Tel, v=1

where we have used (3.8]) in the penultimate inequality and the fact that, for all {¢;}; € C
and 0 € (0, 1],

(ZI@\)J <2 160 (3.9)

in the last inequality. From the arbitrariness of y* in Q%" and (3.8)), we deduce that,
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for any 6 € (n/(n+ (B A 7)), 1],
N(k,T)

S 3 2t (35 gD )}

k={o T€l, v=1
< M(IMa())%) (@),
which further implies that (3.7) holds true, and hence completes the proof of Theo-
remls. 1ol =m

We point out that the proof of (3.7] is similar to that of (3.4)) (see [29] (3.13)]). As an
immediate consequence of Theorems 1] and [3:15] we obtain the following conclusion.

COROLLARY 3.16. Let o € (0,00) and p( ) e %8 (X). Then

(n/(n+1),00)
H*PO)(x) = HPO)(X) = Hg( )(X)

with equivalent quasi-norms.

3.4. Relations between (G5(51,71)) and (G§(B2,72))’. In this subsection, we clarify
the relations of the test function classes for different parameters by using the characteri-
zations of H*P()(X) obtained in Subsection

PROPOSITION 3.17. Let p(-) € Clog/(nH) ooy (X) and € € (0,1] satisfy p— € (n/[n +¢€],1).
Assume that f € (G5(B1,m))" with 1,y € (n(1/p— —1),€) and || || g+rc)(x) < 00. Then
€ (G5(B2,72)) for every Ba,v2 € (n(1/p— —1),¢).
Proof. For all ¢ € G§(B2,72), let

N(lo,7)

=3 3 ([ D) dnta) )| DI )

7€l v= 1
N(k,7)

Y YOS @ [ / gp(x)f)k(m,yf’y)dﬂ(l’)]Dk(f)(yf’u)

k=lo+171€I, v=1

— 1411,
where ¢, Dy are as in the proof of (3.7) and
1
D) =~ [ Su(f)w) du(w)
TR ot

Next, we show that, for all ¢ € G§(82,72),

‘<f7g0> ~ e(ﬂ2»'¥2)Hf||Hg(')(X)7
where o € (0,00). To this end, let 75 € (0,72). Then we have, for all k € Z,
~ 1 1
) Dy (x,y) du(x
[, #ePet ) T dler, )] Vi) + Vi)
and, for all k € Z\ Zy,

/X o(2) Dy (2, y) du(z)
see [34, (5.24) and (5.25)].

(3.10)

—k
g 2 ﬂz”@”@é(ﬁzﬂz) [

27 k72 1
Lt d(ay, y)P? Va-r(z1) + V(w1 y)’

S 2k72 H(p"gé(ﬁm’n) [
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To estimate II, by similarity, we only need to prove that

Z ZZ (@)

=(lo+1)VOTEL, v=1

/ (@) D, y*) dpa) || De (£ ()]

E(B2»'Y2)Hf||Hg(')(X)- (311)

Since we have (3.10), it suffices to show that

N(k,T)

Q) Dy(f) ()|
Z Z Z kB2 [Vy (1) + V (z1, yE)][L + d(zq, y&" )] S ||fHH§<«>(X). (3.12)

k=(Lo+1)VOTEL, v=1

To this end, let us first consider the case that p_ € (1,00). By the Holder inequality
and |33, Lemma 2.1(ii)], we easily find that, for each k € (0, o0),

Nk o o
Tezlk Vzl 2kB2 (1 xl)—&(—?/(mi,l;i( ))]ﬁ/; <)i|(a:1,y’:’”)]w
S T Ve T T e
> N(Z | inf, Ma(£)()| xgr- (2)du(@)
52’352 [Vl(xl)+V(a:1,1-)][1+d(m1,.)pz L,,*(,)(X)||f*IILp<.>(X)

< s I Mal) o o

Therefore, (3.12]) and hence (3.11]) hold true when p_ € (1, 00).
Suppose instead that p_ S 1. Let u be a positive constant slightly less than p_. Then
we shall prove that, for each k,

N(k,T)

Q)| Dk (f) (2" " < gkn(1-u
3 Z{ p(QE) D (f) (W) )}2} <P, L (313)

Tel, v=1 V1 ‘Tl +V(I1,y7- )][1_|_d(x17y7]fv” v

which is stronger than (3.12)) due to (3.9). By the definition of the grand maximal function,
the arbitrariness of y®v € Q** and Remark i), we have

N (k,T) .
p(Q") |1 D (f) (v
Tezlk ; { Vl (21 +V($1,yr )Hl—kd(xl,yf’”)}’yz}
N(k,7) )
V)] 1Dk (f) ()]
/;c uz:l @) ol ){[Vl(ﬂh)-&-V(xf, )][14_(1(3;1’3;)]%} dp(z)

N(k,T) [ Qﬂlﬁ,u)}uflx ];7,1/(:17) )
/ Z Z {Vi(z1) + V(21,2 )][13-d(ml,m)]vz}u[Ma(f)(x)] du(x).

Tel, v=1
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Now, for any = € X, let r(x) := p(z)/[p(z) — u] and

N(k,T) k,v\1u—1
Q7)™ xgrw ()
g;k ; {Vi(z1) + V (21, 2)][1 + d(zq, z)]72 }u

Then the proof of (3.13)) will be complete once we show that W € L"()(X). Indeed, since
diam(QF ") ~ 27%, we have, for all z € Q5|

B(zy, max{1,d(z1,2)}) € C2* max{1,d(z1,z)}Q""
for some positive constant 6’, which, together with (2.2]), implies that
p(B(xr, max{1,d(z1,2)})) S [2° max{1, d(z1,2)}]"(QF")-

Inserting this estimate into the definition of W, we obtain
N(k,T)

X k,u(x)
w < 2kn(1 u) QF
(z) Z Z Vi(z1) + V(xl, x)][1 + d(zy, z)]r2u—nl-u)

Tel, v=1

< 2kn(1 w)

[Vi(z1) + V(a, 96)][1 + d(@y, z)ree-nt=w)”
From the assumption that v > n(1/p_ — 1) and u is slightly less than p_, we further
deduce that you — n(1 — u) > 0. Due to this observation and [33, Lemma 2.1(ii)], we see
that W € L"0)(X).
It remains to handle term I. Indeed, we can prove

IS ellgg gz ma) 11l oo )

The proof is analogous, but simpler than that of (3.11)), because there is no need to sum
over k > {y + 1; the details are omitted. This finishes the proof of Proposition .

4. Atomic characterizations

In this section, we aim to establish an atomic characterization of the spaces H*?()(X) (see
Theorem |4.3)). To this end, in Subsection we introduce the atomic Hardy spaces with
variable exponents on RD-spaces. In Subsection [£:2] we present some auxiliary estimates
which are needed in the proof of Theorem [£.3] and in Subsection [£:3] we conclude the
proof of Theoremby some arguments similar to those used in the proof of [21, Theorem
3.28]. As consequences of the atomic characterization, in Subsection we prove that
the space H *’p(')(X ) is independent of the choice of the parameters 3, -, € appearing in
the space of test functions, G§(3,7), and then show that, when p_ € (1,00), H*P()(X)
and LP()(X) coincide with equivalent norms. Finally, in Subsection we establish a
finite atomic characterization of H*?()(X) (see Theorem |4.24)). At the end of this section,
we give another proof of Theorem (ii) by borrowing some ideas from |29, Lemma 4.15
and Theorem 4.16].

4.1. Atomic Hardy spaces with variable exponents. Again the parameters €, 3, v
are fixed till we prove Theorem Let us start with the notion of atoms.
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. log
DEFINITION 4.1. Let p(-) € C%, 11 o)

a € L1(X) is called a (p(-), q)-atom if

(A1) suppa C B(xg,r) for some o € X and r € (0,00);
(AQ) Ha”Lq(X) < [IU’(B(xOVT))]l/q .
= IxB@om e (a0

(X) and let ¢ € [1,00] N (p4,00]. A function

(A3) /X a(x)du(z) = 0.

When it is necessary to specify the ball B(xg,r), then a is called a (p(-), q)-atom supported
on B(xg,T).

Via atoms, we introduce the atomic Hardy spaces with variable exponents.

DEFINITION 4.2. Let p(-) € C’Ef/(nﬂ) ooy (X) and ¢ € [1,00] N (p+, o0]. Let € € (0,1] and

8,7 € (0,¢€). Then the atomic Hardy space with variable exponent, Hgt(')’q(.)(), is defined
to be the set of all distributions f € (G§(53,7))’ such that there exist {\;};en C C and
(p(+), q)-atoms {a;}jen such that f = 3.y Aja; in (G§(B,7))’, where, for any j € N,
a; is supported on Bj := B(xz;,r;) for some z; € X and r; € (0,00), and

Epy({Njajtien) = Ap(y({Aj } e, { B} jen)
g
. L lleeo

1l pgrcra ey = inf { A, ({A;}jen, {Bi}ien) },

where the infimum is taken over all the decompositions of f as above.

< 00.
Lp(-)(X)

Moreover, let

The Hardy spaces H*P()(X) with variable exponents have the following atomic char-
acterizations.

THEOREM 4.3. Lete € (0,1] and p(+) € CEZ‘“’}(HH) oo (X) satisfy € > n(1/p——1). Assume

that the parameters q, (3, v satisfy q € [1,00] N (p4, 0] and B,v € (n(1/p— —1),€). Then
(i) HYD9(x) < H*PO(X). More precisely, suppose that {\;};en C C and (p(-),q)-
atoms {a;}jen satisfy B
Ep() ({Aja;}jen) < oo.
Then f =73 cnAjaj in (G5(8,7))" and f belongs to H*PO)(X). Furthermore, there
exists a positive constant C, independent of f, such that
115002 < CEpy ({Asashsent).
(i) H*PO)(X) — H:t(')’OO(X). More precisely, if f € H*PO)(X), then there exist {\;};en
C C and (p(-),00)-atoms {a;}jen such that

F=> Na; i (G5(8,7) (4.1)

jeN

Ep(y(INja}ien) < Cllfllgrenoo )

with C a positive constant independent of f.

and
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4.2. Auxiliary estimates for the proof of Theorem [4.3] To prove Theorem [4.3] we
need some auxiliary estimates. We begin with the following estimate.

LEMMA 4.4. Let e, p(-), ¢, B and v be as in the assumptions of Theorem and a be
a (p(+), q)-atom supported on B(xzg,r) for some xg € X and r € (0,00). Then the grand
maximal function of a satisfies, for all x € X,

0 (@) £ Oy o (@) M (a) () ¢

+
||XB(x0,r) ”LP(')(X)

[M (X B (wo,)) (@))P/ 7

where C' is a positive constant independent of x and a.

Proof. Let €, 8 and «y be as in the assumptions of Theorem [£.3] We distinguish two cases:
x € B(xo,3r) and z € X \ B(xg,3r).
Suppose first that 2 € B(zg, 3r). Then

a*(z) = sup{|(a, )| : ¢ € G5(8,7), l|#llg(a.r,p,4) < 1 for some 7 € (0,00)}

by Definition Let v € G§(8,7) satisfy |¢llg(,r,8,,) < 1 for some r € (0,00). Then,

by and (3.1)), we obtain
1
a2} 2 /B(ro,r) W(Blyr + d(y.2)
S ;/ la(y)| du(y)
~ ,U(B(l’o,?ﬂ’)) B(zo,r)
1
~ BT /B o la@)lda) S M)

So, the estimate for x € B(x¢, 3r) is complete.
Now suppose instead that © € X \ B(xg, 3r). Observe that, when y € B(x,r), we
have d(y,zo) < [r+ d(z,y)]/2, and it follows from (3.2)) that

d(y, o) 1 r !
p(y) = ¢(zo)| S Lde(x’y)} u(B(y,r + d(y,z))) [r—kd(x,y)} '

Then, by the vanishing moment condition on a and (2.2)), we conclude that

/ a(®)lo(y) — o (x0)] du(y)
B(zo,r)

la(y)| du(y)

(@, )| =

2 B r Y
S oo 0] R AT L ) o)

r B 1
< /Bm,r) { TG, m)] A(Bleo,r + dlao,a)) W W)

§ { " r u(Bao, 1)) 1
~ L+ d(z,we) | p(B(wo,r + d(wo, x))) [IXB(wo,m |l Lre) ()
~ || ! [M(XB(J;O,T'))(‘T)]B/n+13
XB(zo,r) ||LP(‘)(X)
which implies the desired estimate in the case when x € X'\ B(xo, 3r). This finishes the
proof of Lemma [4.4] =
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The following two lemmas are just [29, Lemma 4.6] and [29, Lemma 4.8], respectively.
LEMMA 4.5. Let Q2 be an open proper subset of X and, for all x € X, let
d(z, Q) :=inf{d(z,y) : y ¢ Q}.
For any A € [1,00) and x € X, let
r(z,Q) :=d(z,Q)/(24).

Then there exist a positive number L, independent of Q, and a sequence {xp}reny C X
such that

(i) {B(zk,71/4)}ken are pairwise disjoint, where vy, := r(xy, Q);
(i) UkeN B(wg, i) = Q;
(iii) for any given k € N, B(zy, Arg) C Q;
(iv) Arp < d(z,Q) < 3Ary, whenever k € N and © € B(xy, Arg);
(v) for any given k € N, there exists a y, ¢ Q such that d(zk, yr) < 3Arg;
(vi) for any given k € N, the number of balls B(x;, Ar;) which have non-empty intersec-
tions with the ball B(xy,ry) is at most Lg.

LEMMA 4.6. Let Q be an open subset of X with finite measure. Suppose that the sequences
{zk}ren and {ri}ren are as in Lemma with A = 15. Then there exist non-negative
functions {¢r tren such that

(i) for any given k € N, we have 0 < ¢ < 1, supp ¢ C B(wg,2ry) and ), oy bk = Xa;
(ii) for any given k € N and © € B(xy,ry), we have ¢r(x) > 1/Lg, where Lo is as in

Lemma [L5);

(iii) there exists a positive constant C independent of Q such that, for all k € N and
e € (0,1],

IDkllgwp ) < OV (@h)-

Let € € (0,1], p(+) € C(lzg/(n%)m)(%) and 3,7 € (0,00) satisfy € > n(1/p— — 1) and

B,y € (n(l/p— —1),¢). For f € H*P(X) and t € (0,00), let
Qi={zxeX: f*(z) >t}

Then p() < oo and € is open (see |29, Remark 2.9(iii)]). Denote by {¢%}ren the
partition of unity associated to €2; as in Lemma Let {®} }ren be the corresponding
linear operators defined by setting, for all ¢t € (0,00), k € N, ¢ € G§(5,7) and = € X,

B(0)@) = k(@) | ok au)] " [ @) - el aue)

Then @) is bounded on G§(3,v) with the operator norm depending on k (see |29,
Lemma 4.9]). For any ¢ € G§(8,7), define the distribution b} by setting

(ks ) == (f, h(9))-
The following Calderén—Zygmund type decomposition is just |29, Proposition 4.11].
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PROPOSITION 4.7. With the notation as above, there exists a positive constant C such
that, for allk € N, t € (0,00) and x € X,

(b)*(x) < C tVr, (1) [ Tk

w(B(wg, i + d(x,21))) [ + d(zg, 2
+ Cf*(2)XB(wy,10m,) (T)

B
)} X[B(wk710r,€)]'3(37)

and the series Y, .y bh converges in (G§(8,7))" to a distribution b satisfying, for all
€ (0,00) and z € X,

(B (@) <0ty

keN

Ve (@) [ Tk

B
( Bk, i + d(z, 1)) THd(xk,x)} +Of*(x)xa,(x);  (42)

moreover, the distribution g* := f —b' satisfies g* € (G§(B,7)) and, for all t € (0,00)
and x € X,

Vi (1) Tk g .
<Ctz [ )} + Cf (@)xe(@).  (4.3)

ol B(ag,re + d(z, x))) | e + d(zk,

LEMMA 4.8. Let q € (py,00) N [1,00). With the notation as in Propositz'on
gt € HPO(X) N LI(X)

and g* tends to f in H*PO)(X) ast — co. In particular, H*?)(X) N LI(X) is dense in
H*PO) (X)),

Proof. Thanks to (4.3) and (2.2), we have, for all ¢t € (0,00) and x € X,

) St I (B ) @)Y 4 1 (@)X 0,0 ().
keN

Then, by Theorem 2.7 and Lemma we obtain

16 ey S 1 I e i, + 15 X0
keN

S tHZXB(xk,m)
keN

< |lmin{t, f*}H|La(x)-

Lax) + 1 x @ ellzex)

Since
(mint, f*(2)}]¢ < t97PO[f*(@)PE) < (1977 41977 [f*(2)]P)

for all t € (0,00) and = € X, it follows that (g*)* € LI(X). Together with the fact that
H*1(X) = L1(X) (see |29, Corollary 3.11]), this implies g* € L%(X). Likewise, we can
prove gt € H*P()(X). To see that g tends to f in H*P()(X), from Proposition [4.7] and
Theorem [2.7] we deduce that
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1f = g ewcr ey = 16 remcr ey = 1009 | 2o )
< H Z XB zk Tk ]5/”"1‘1 + f*XQt
keN LrO(x)
e x| oy I Xm0

keN
S xalleo (x)-

By the dominated convergence theorem, we conclude that

lim ¢! = f in H*?O(X).

t—o0

This finishes the proof of Lemma [£.8 »

By an argument similar to that used in the proof of [48, Lemma (3.36)], we deduce the
following conclusion, which is a variant of |29, Proposition 4.13]; the details are omitted.

PROPOSITION 4.9. Lete € (0,1), p— € (n/(n+e¢),00), 8,7 € (n(1/p- —1),¢), q € (1,00)
and f € LI(X) N H*PO)(X). Assume that there exists a positive constant C such that,
forallx e X,

()] < Cf*(x).

With the same notation as above, there exists a positive constant C, independent of f, k
and t, such that

(i) if

= [ IEG du<s>} h [ rod@agec

then |nt| < Ct for all k and t;

(i) of oY, = (f — nh)oL, then suppdl, C B(xy,2ry) and the distribution on G§(83,~)
induced by bl coincides with b, in Proposition '

(iii) the series >, bi converges in LI(X); it induces a distribution on G§(B,v) which
coincides with bt in Proposition[d.7] and is still denoted by bt; moreover, supp bt C Q;

(iv) if gt := f —bt, then

g' = X + antcgb?c
k
and, for all z € X,
9" ()| < Ct; (4.4)

moreover, gt induces a distribution on G§(B3,7) which agrees with g appearing in
Proposition [£.7]

Going through an argument similar to that used in the proof of Lemma [£.8] we have
the following density result.

COROLLARY 4.10. Suppose that € € (0,1], p(-) € C((n/ (n-te),00) (X) and

57’)/ e (n(l/p_ - 1)a )
Then L*(X) N H**0(X) is dense in H*"0)(X).
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Proof. Since H*P()(X) N L'*P+(X) is dense in H*P()(X) according to Lemma we
have only to show that any element f € H*P()(X) N L'*P+(X) lies in the closure of
H*PO(X) N L>(X). Since f € L*P+(X), we are in a position to apply Proposition
in order to obtain a function ¢* satisfying (i) through (iv) of Proposition As in the
proof of Lemma we can show that gt — f in H*P()(X) as t — oo. Since gt € L>®(X)
according to Proposition [4.9(iv), it follows that f lies in the closure of H*?()(X)NL>®(X),
which completes the proof of Corollary [£.10] =

4.3. Proof of Theorem We now turn to the proof of Theorem Assume that
feLi(X)nH*P()(X). For each k € Z, let

OF i={zxecXx: f*(z)>2".
Then, by Lemmas [£.5] and [1.6] we immediately obtain the following Lemmas (.11} [£.12]
and {141

LEMMA 4.11. Let k € Z and QF be as above. Then there exist a positive number L and
sequences {x}}jen C X and {rf}jen C (0,00) such that
(i)
QF = U B(a:?,rf) =: U B;?
jeN jeN
and {B(z%, 75 /4)}jen are mutually disjoint balls;
(ii) for any j € N, B(w?, 157“;-“) N QL =0 and B(x§,45r§“) N Q) £ 0;
(iii) for any j € N, the number of balls B(x¥,15rF) satisfying
k k k k
B(xi,15r7) N B(x§,15r7) # 0
18 at most L.

LEMMA 4.12. Let k € Z. Then there exist non-negative functions {¢§}jeN satisfying, for
any j €N,
(i) 0< d)? <1, supp ¢k C B(x?,?rf) and ZJEN (,25? = XQk;
(ii) for any x € Bf = B(x?,rf), qﬁf(x) >1/L;
(iii) for any € € (0, 1), there exists a positive constant C, independent of j, k, such that,

forall j € N,
165 lgwh it ey < Cu(B(af, 7).

Jjri?

Moreover, we have the following conclusion.

REMARK 4.13. (i) If (2BJ*") N (2BF) # 0, then r§*" < 4rF and 2B C B(aF, 15rF).
Indeed, obviously, we have d(x?“, k) < 2(7”;-”1 +75). By Lemma and the fact
that QFt1 C QF, we see that

d("1, (QF)8) > (@, (QF8) > 1578+
Thus,
15K < d(ah ™ k) + d(ak, (QF)8) < 2054 k) + a5k,
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M1 < 470k < 47k On the other hand, for every y € 2B(x kH,r;iHl),

which implies that r; 5T

since
d(y,z¥) < d( )+ 27“;-€+1 < 15rF,

it follows that (2Bk+1) C B(ak, 15rF).
(ii) From (2.2) and Lemmas [4.12] n and [4.11f(ii), we deduce that there exists a positive
constant C such that, for all w € B(x¥, 15r ) N (QR)E,

|‘¢k||g wr J€,4€) < C:U’( ( j’ f))
For any given k € Z, as in Proposition [£.9] we let, for each 5,7 € N,

S k&) d BE = (f — pF)pF
T 6 o) /X FEOSE© due), bh=(f —nb)eh

and

e — /X [F(€) — nH10H (€6 (€) du(e).

195 1z )
Moreover, by Proposition .9} we have the following conclusion.

LEMMA 4.14. With the same notation as above, there exists a positive constant C, inde-
pendent of f, k and j, such that

(i) Injl < C2%;
(ii) supp bk C B(x 27’ );

(iii) the series deN ;
moreover, supp b* C QF;
(iv) if gF == f —b¥, then, for all z € X, |gF(z)| < C2F.

As an immediate consequence of Lemmas and Remark [£.13] we obtain
the following conclusion.

converges in L4(X) and induces a distribution b* on G§(B,7);

LEMMA 4.15.

(i) There exists a positive constant C, independent of f, i, j and k, such that
sup [ T ()] < C2M (4.5)

(ii) For every k € Z,

Z Z£k+1 k1 _ (4.6)

i€eN jeN

where the series converges pointwise and also in (G§(8,7))’.

Proof. We first show (i). Obviously, by Lemma we see that

1
m Xﬁfﬂﬁ(f)éb?“(f)dﬂ(f) §2k- (4.7)
' 1

On the other hand, by Lemma ii), we find that

1
165 22 ) = /B — OO dp(§) > 7 p(B(ay ™ vy ™). (4.8)
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Let o kil
¢ib;

[Can AYEON

Then, by (4.8, Remark |: ii) and the fact that 0 < ¢F < 1, we see that, for any
e €(0,1) and any w € B(z} !, 157511) 0 (QF+1)E,

p =

H(pHg(w’T;chl’E’e) S,
which further implies that

|W+”p/f OO (€ dul©)| = 11, 9] £ F(w) S (49)

From , and Lemma [4.12(i), we deduce that . ) holds true.
Next we show (ii). Since supp qﬁf“ C B(z f“ 2rf+1) it follows from Lemma m(iii)

that, for any given x € X, the number j satisfying d)?“(x) # 0 is at most L. Observe

that, for such fixed j, in order to have Kfjl

B(xy,2ry) N Bt 2rk ) £ 0 (4.10)
by the definition of éﬁ}'l. Moreover, by Lemma iii) again, we see that the number
i satisfying (4.10) is at most L. Thus, for any fixed z € X, the sum in (4.6]) is actually
finite and hence, by (i), we conclude that

ZZ‘ k+1¢k+1 | < L22k+1 (411)

1€N jEN

= 0, 1 must satisfy

namely, the series in (4.6) is absolutely convergent. Therefore,
Y ) = (S Aok (112
€N jEN jEN ieN

Since, for each j € N, the sum »; Kf;“ is actually finite, by Lemma (1) and the
facts that Q1 c QF and

supp ¢ ' C B(zh ! 20kt c @F (4.13)
we find that
ety = [ e - { S st fof @ aute
i€eN

:AU@ P e ()85 (€) du€)

:/U@ ﬁﬂ#“@m@:/@“@wwzm
X X

which, combined with (4.12)), implies that 1) converges pointwise.
On the other hand, by (4.11]) and , we have

XEQ/W““*|wm<ﬁ“mm“» (1.14)

i€N jeN

From (4.14) and the Lebesgue dominated convergence theorem, we deduce that (4.6)
holds true in L'(X) and hence in (G§(3,7))’. This finishes the proof of Lemma "
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Finally, we give the proof of Theorem [{.3|by using some ideas from [21} Theorem 3.28].
Proof of Theorem [{.3 To prove (i), let {\;};en C C and {a;}en be a sequence of
(p(+), ¢)-atoms, with suppa; C B; := B(xj,r;) for some z; € X and r; € (0,00) and
each j € N, satisfying

Ap(y ({Aj}jem, {Bj}jen) < oo
We first assume that A\; = 0 when j > Ny + 1 for some Ny € N and g := Z;V:ol Ajaj. By
Lemma and (3.9)), we find that, for all z € X,

Ny No )
70 S 3 WM 0,30 (5) + 3 [ (MO, )
Mo 1/p
< {2 INIM @) @i,y @]

! {%03 [M[M(ng)(x)}ﬁ/nﬂr}l/p

= LlIxallzeo x)
= Il + IQ.
For the first term I, since [M(a;)]2 € LY2(X) for all j € N, we are in a position to use
Proposition with r(-) = p(-)/p to obtain
I S Ay ({012 B ).
Since 8 € (n/(n+1),¢), it follows that we are in a position to use Theorem for the
second term to obtain the same estimation as for I;. Therefore,
gl e+ 2y = 19" o> () S Apy ({Ai 15205 (B3 }520),

which implies that g € H*P()(X).
To consider the general case, for all N € N, let

N
fN = Z )\jaj.
j=1

Then, from what we have proved above, we deduce that, for all Ny, No € N with N; < No,

N 1/p
|>"|XBj B\R
I = Sl <[ (2 [ )

J=N1+1 X8, |l e 2

This implies that { fx }3_, is a Cauchy sequence in H*?()(X). Therefore, by Lemma
we find that >,y Aja; converges in (G5(3,7))', with 3 and v as in Theorem and
denote its limit by f. Finally, we go through the same argument as in the case where the
sum is finite to obtain (i) for the general case.
Next, we show (ii). We first assume that f € LI(X) N H*P()(X). In the remainder of
the proof, we shall use the same notation as in Lemmas [.11] [£.12] [£.14] and [£.15] Then
F=g"+) b in(G5(8,7)

jeN

Lp(-)(X).
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with 8 and v as in Theorem Observe that g¥ — f in H*P()(X) as k — co by Lemma
and ¢g¥ — 0 uniformly as k — —oo by Lemma [4.14{iv). Thus, we have

o0

f=3 (""" =g" in(G5(8,7))-

k=—o0

By Lemma ii) and the fact that
Z b;€+1¢7{€ _ Xﬂkb§+1 — b?+17
ieN

we know that

gk+1 _ gk — bk _ bk+1 — Z bi@ _ Z b?-i-l + Z Zei;—lqﬁgﬁ-l

ieN jeN i€N jEN

_ k k41 k gkl k41y]| . k

=S et - ] =
ieN jeN ieN

where the series converge in (G§(3,7))’. Moreover,
hi = (f =)ok = I — it Hef — e eyt
jEN
= Folxarme —nfol + b D onf et 4y eyt (4.15)
jEN JEN
Now, let
A= 28X gt asety vy and af i= AF]7TAE.
Then we have the following decomposition of f:
f=2_) Xaf i (G5(8.)"
kEZ ieN

We claim that a¥ is a (p(-), 00)-atom up to a constant multiple. Indeed, from the first
equality of (4.15)), we deduce that [, h¥(¢)du(€) = 0. Let {Sk}rez be as in Definition
By Remarks i) and the Riesz lemma and the definition of Q*+1, we find that
there exists {k;};en C N such that k; — oo as | — oo and, for almost every = € (Q””l)c,

()] = Jim Sy, (D@ S () S 2,

which, together with Lemma [4.14{i), the fact that ZjeN d)?“ < L, Lemma Ml) and
the second equality of (4.15]), further implies that

||hf||L°°(X) 5 2k+1 + 2k +L2k+1 +L2k+1 5 2]{:.
Finally, since Kfjl = 0 unless (2B§“+1) N (2BF) # 0, it follows from Remark m that

supp (Z Efjlgbfﬂ) C B(x¥, 15rF).

JEN
From this and the second equality of (4.15)), we deduce that
supp h¥ C B(xF, 15rF). (4.16)

Therefore, for each k € Z and i € N, a¥ is a (p(-), c0)-atom up to a constant multiple,
and the above claim holds true.
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Moreover, by Theorem and Lemma ii), we conclude that

~ 1/2
5p(~)({)‘fa§}kez, ieN) ~ {ZZ 2 XB(ak,15rk } Lot
keZ ieN PO(X)
1/p
< 2 *‘
- {;zg Xp(etrt /o) } LrO (%)
< ok p1/p
- {kez; X
1/p
{k%[ Xomant] o)
< f*{Z[Xm Qk+l]g}1/ﬂ
h keZ ' LrO()
S Nwor ey ~ Il -
Thus,
LI(X) N H**O(X) ¢ HY™(X)
and

||f||H§§'>*°°(X) N gp(-)({/\faf}kez,ieN) S e )
Now, we let f € H*’p(')()('). Then, by virtue of Lemma there exists a sequence
{fitien C LX) N H*PO(X) such that f =Y, fi in H*PO)(X) and
1 fill ey < 227l om0y
For each [ € N, by the conclusion above, we find that f; has an atomic decomposition
= D Nt i (G5(8.))
kEZ ieN

where {)\i’kaé’k}kez’ieN are constructed as above and hence {ai’k}kez’l,ieN are (p(-), 00)-

atoms. Thus, we have
F=300 > Nt i (G

leN k€Z ieN
and

Ep(y (NPl * Y ez, ien) < {ZHleH*p() } 7<||f|‘1{*p()(){)7

leN
which further imply that f € H”)">°(X) and
100 ey S Wl
This finishes the proof of (ii) and hence of Theorem "

Before we further investigate atomic Hardy spaces, one remark, which is useful for
later considerations, may be in order.

REMARK 4.16. (i) Thanks to Theorem [4.3(i), the convergence in (4.1) takes place in
H*PO)(X) as well.
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(ii) The construction in the proof of Theorem [£.3{ii) does not depend on p(-). This
means that if f € H*P1()(x) N H*P>()(X) for some p;(-) and po(-) satisfying the same
assumptions as p(+), then the convergence in takes place in H *”’1(')(2\,’ ) and also in
H*P2()(X). In particular, since LI(X) ~ H(X) with ¢ € (1, 00) (see |29, Corollary 3.11]),
it follows that if f € L9(X) N H*P)(X) with ¢ € (1,00), then the summation in
converges in L9(X) and also in H*?()(X) according to the construction above.

4.4. Some consequences of the atomic characterization. Now we harvest some
conclusions of the atomic decomposition theorem. Here we consider a problem left open:
do the spaces depend on €, «, 8 and 7 For this problem, we have the following answer.

THEOREM 4.17. The spaces H*P)(X), Hg(')(X) and Hg(')(/'\,’) are independent of the
parameters €, «, B, v satisfying the assumptions of Theorem [3.11]

To prove Theorem [I.17} we need the following several lemmas.
LEMMA 4.18. Let R € (1,00) be fized and, for all x € X,
Ap(z) == min{1, max{R™'d(z1,z) — 1,0} }. (4.17)

Then
6d(z,y)
R+ d(zy,x)

for all z,y € X satisfying d(z,y) < [1 4+ d(z1,x)]/2.

|ARr(z) — Ar(y)| < (4.18)

Proof. Observe that, by the triangle inequality, we have, for all z,y € X,
|Ar(z) — Ar(y)| < R™d(z, y).

Hence, to prove this lemma, we may assume that d(zq,2) > 5R. Then it follows from
d(z,y) < [1+ d(z1,x)]/2 that
d(zy,z) — 1 S 5R—1

2 - 2
In this case, we have Ap(z) =1 = Ar(y), and hence (4.18) holds true. This finishes the
proof of Lemma [I.18 w

d(z1,y) 2 d(z1,2) — d(z,y) > > 2R.

In what follows, let C,(X') be the set of all continuous functions with bounded support.
LEMMA 4.19. Let e € (0,1] and 8,7 € (0,¢). Then Cy(X) is dense in G§(8,7)-

Proof. Since G§(f, ) is the completion of the space G(¢, €) in G(5, ), to prove this lemma
it suffices to approximate any ¢ € G(e, €) by Cp(X) functions.
We claim that

[Arellgs.r) = O(RT™), R — oo
By this claim, we find that
Aim [[(1 = Ar)e = ¢llgs) = lm [Arellges.q) = 0.
Since (1 — Ag)p € Cp(X) thanks to Lemma it follows that Cp(X) is dense in G(e, €).
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It remains to prove the above claim. Obviously, by (3.1) and (4.17)), we see that, for
all R € (0,00) and z € X,

1 1 7
[ } . (4.19)

/L(B(1'71+d(m,.’£1))) 1+d(x17x)

Meanwhile, for all R € (0,00) and z,y € X satisfying d(z,y) < [1 + d(z1, x)]/2, we have

o(2)[Ar(x) — Ar(y)]|

p(z)Ar(z)| < R7™°

< pre_d@y) L { ! ]W. (4.20)
~ 1+d(z1,2) p(B(z,1+d(z,21))) |1+ d(x,x)
To show , we may assume that either  or y lies outside B(z1, R); otherwise the left-
hand side becomes 0. If one lies outside B(x1, R), then the other lies outside B(z1, R/4).
So, we may assume that 2 and y lie outside B(z1, R/4). Then, by using and ([(.13),
we obtain . Likewise, by , we conclude that, for all R € (0,00) and z,y € X
with d(z,y) < [1 4 d(x1,2)]/2,

e d(z,y) p 1 1 v
AR o(@) — o) < R [Hd(W)] M(B(x’Hd(m)))[Hd(xhx)} ,

which, combined with (4.20) and the fact that 5 < e < 1, implies that

lp(x)Ar(z) — o(y) Ar(y)|
< |e(@)[Ar(z) — AR + [Ar(Y)p(z) — ¢(y)]|
€ el
<[] 1 ]
~ 1+d(zy,2)| w(B(x,1+d(z,z1))) |1+ d(x1,z)
From this and (4.19)), we further deduce that the above claim holds true, which completes
the proof of Lemma [£.19]

Proof of Theorem . Observe that the spaces Hg(')(X ) are independent of «; see
Corollary [3:12] So, let us now concentrate on the independence from e, 3, v. Let €1, 1,
~1 and €, B2, Y2 satisfy the same assumptions as in Theorem Let k € {1,2}. Denote
by Hj the Hardy space H*?()(X) defined via the grand maximal function generated by
(G5 (Br, k). We need to prove that Hy and Hy coincide with equivalent quasi-norms.
Let f € Hy. Then f € (G5'(B1,7))". By Lemma we find that flc, (1) can
be extended to an element in (G§(B2,72))’. According to Theorem [4.3(ii), f has an
expression f = ..y Aja; in (Gg' (B1,71))’, where each A; is a non-negative number and

a; is a (p(-), 0o)-atom supported on a ball B; satisfying

Apy ({Assens {Bj Yien) S 1 f L,
However, by Theorem [4.3|(i), we further know that
9=">_X\a;
jEN
converges in (G*(82,72))’, g € He and
gl S Apy (1 }sems {By }yen) S I1F Ly -
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Since g and f coincide on a dense space Cy(X), it follows that the mapping
feEH — g€ H,

is a continuous injection. Likewise, we can show that g € Hy — f € H; is a continuous
injection. Therefore, H; and Hs are isomorphic and have equivalent quasi-norms. This
finishes the proof of Theorem n

COROLLARY 4.20. Let p(-) € Céggoo)(X).

(1) If 1 <p_ <py < o0, then
H*PO(X) — LPO (). (4.21)

(ii) If 1 < p_ < py < 00, then H*PO)(X) = LPO)(X) with equivalent norms.
Proof. To prove (i), let € € (0,1], 8,7 € (0,¢) and f € H*P()(X). Then, by Theorem
ii), we find that f =) .y Aja; in (G§(B,7))", where {A;}jen C C and {a;}jen are
(p(+), c0)-atoms such that each a; is supported on a ball B; and

Apy (e {Bjtien) S Iflmewo x)-
By and Proposition we find that, for any L € N,

L L Y
HZL\#@\‘ LPO) (X) = H(Z ‘)\jaﬂf) ‘
Jj=1 Jj=1

S -Ap(~)({)‘j}gL:1a {Bj}le) S ||f||H*vP(')(X) < 0. (4.22)
This implies >,y [Aja;(z)| < oo for prae. x € X. Going back to (4.22)) and using the
absolute continuity of LP()(X), by letting L — oo, we see that g := > jenAjaj in LrO(X)
(= (G5(B,7))")- Since f =3 ey Aja; in (G5(8,7))', it follows that
F=gelPOX) and ||fllpeerae) S N aener a)-

Conversely, we need to prove LP()(X) ¢ H*PO)(X) in view of (4.21)). Let f € LPO)(X).
Then, by the fact that f* < M(f) (see |29, (3.4)]) and the Hardy—Littlewood maximal
operator M is bounded on LP()(X) (see Lemma, we see that f € H*P()(X) and

LP(')(X)

1l 2wy S Nl Lo ay-
This finishes the proof of Corollary L]

By combining Corollary [£:20] and Theorem [£.3] we obtain the following atomic char-
acterization of LP()(X).

REMARK 4.21. Let p(-) € CET?M)(X) and the parameters q, €, 8, v be as in Theorem
Then:

(i) H?O9(x) < LPO(X), namely, if {\;};en C C and {a;}jen are (p(-), q)-atoms
satisfying gp(.)({)\jaj}jeN) < oo, then f = 37, yAja; in (G5(B,7))" and f € L0 (x).
Furthermore,

[fllLre () < CE)({Ajas}jen),

where C is a positive constant independent of {\;},en and {a;};en.
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(i) PO (X) < HO*°(X). More precisely, if f € LP()(X), then there exist (p(-), 00)-
atoms {a;}jen and {A;}jen C C such that f =} .y Aja; in (G5(B,7))" and that

gp(-)({)‘jaj}jeN) = 5||f”LP(-)(x),

where C is a positive constant independent of f.

4.5. Finite atomic characterizations. In this subsection, we consider a finite atomic
characterization of H*?()(X).

DEFINITION 4.22. Let p(-) € Céggoo)(/'\’) with p_ € (5%, 00) and ¢ € [1,00] N (p4, o0].
Then the finite atomic Hardy space with variable exponent, Hgfl')’q()(), is the set of all

finite linear combinations of (p(+), ¢)-atoms, and for all f € Hgl(l')’q()( ), its quasi-norm is
defined as

N
”fHHgg)"I(x) = inf{gp(-)({)‘jaj}éyﬂ) D f= Z)\jaja N e N}7
=

where the infimum is taken over all decompositions of f such that, for some N € N,
N
f= ijl Ajaj, {/\j};v:l C C and {aj}j-vzl are (p(+), g)-atoms.

Obviously, Hﬁ?r(l')’q()() is a dense subspace of Hft(')’q(X), and hence of H*?()(X) by
Theorem [£.3]

For all ¢ € [1,00], let LE°(X) be the set of all functions f € L?(X) with bounded
support and zero average. We have the following lemma.

1
LEMMA 4.23. Let p(-) € O(‘;f/(nﬂ)m)

LiO(x) = Hy ()
as sets. Moreover, LV (X) is dense in H*P()(X).

(X) and q € [1,00] N (py,0]. Then

Proof. Let f € L¥°(X) with supp f C B. Then wB)' /e

supported on B. Thus, f € ng(l')’q(.){) and

HXBHLp(-)(X)HfHLq(X)f is a (p(-), g)-atom

1Al ey < (BB o> (L f | Ly

which implies that LI*(X) ¢ HE)(X) as sets.
Conversely, since each (p(-), ¢)-atom belongs to L{’(X), it follows that ng(l')’q(X ) C
LI(X) as sets. Therefore, LI°(X) = Hg(')’q(/'\f) as sets, and hence L{*(X) is dense in

n

H*P0)(X). This finishes the proof of Lemmam n

lo,
THEOREM 4.24. Let p(-) € C(0% 11 o0y (X).-

(i) If ¢ € (1,00)N(p4,0), then ||-||H5(.),Q(X) and ||| gr«.n) (x) are equivalent quasi-norms
on HPV(x),
(i) || - ”Hf"jfl')’“(?() and || - || vt (x) are equivalent quasi-norms on Hﬁ}.’r(l')’oo(X) NC(X),

where C(X) denotes the set of all continuous functions on X.

To prove Theorem [4:24] we need some auxiliary estimates.
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LEMMA 4.25. Let p(-) € Cézg/ (n41),00)(X): € €(0,1] and B,v € (n(1/p- —1),€). Letr €
(0,00) and f € H*PC)(X) supported on B(z1, R) for some R € (0,00). Then there exists
a positive constant Co such that, for all x € X and ¢ € G§(B,v) with ||o|lg@,rp,) <1,

(FAl<Co | inf f(u) (423)

moreover, for all z € [B(x1,16R)]C,
£(2) < Coll Loy Iescen ke (1.2

Proof. See [46, Lemma 2.2| for the proof of (4.23) with r > 4d(x1,z)/3. If r < 4d(z1,2)/3,
then we invoke [29, (5.10)] to prove (4.23). Indeed, let ¢ € C°°(R) be chosen so that

X[-1,1] < ¢ < X[—2,2- Define
~ 16d(z, x1)
) = ol (e
for z € X. Notice that ¢ and ¢ agree on B(z, R) because d(z,z1) > 16R. Since f is

supported on B(z, R), we have (f, ¢) = (f, ). According to |29, (5.10)], we find that, for
all y € B(xy,d(z1,x)),

”‘leg(y,r,ﬁﬁ) S ||90||Q(m,r,/57'¥)7
and hence |(f,0)| = [{f,?)| < f*(y), which implies that (4.23]) holds true also when
r < 4d(zy,x)/3.
By (4.23), Remark [2.6| and the fact that, when z € [B(z1, 16R)]S,
B(z1, R) C B(x,2d(x1,x)),
we further conclude that (4.24]) holds true. This finishes the proof of Lemma "
With these estimates in hand, let us prove Theorem

Proof of Theorem . To show (i), let f € Hgi')’q(X). Obviously, by Theorem (i),

we see that
HE(X) € HED(X) € H O ().
Then
1z v ey S W grpcr ey
Therefore, to complete the proof of (i) it suffices to prove that

1A gz ey S Nl x

Without loss of generality, we may assume that supp f C B(z1,R) for some R in
(0,00). According to the proof of Theorem [4.3(ii), we have an atomic decomposition

F=Y03THE i (G5(8.)

keZ ieN

we further deduce

7

with 3, v as in Theorem |4.3} . Moreover, from the construction of h¥
that

I Loy S 25, supphf € B(af,157f) and Y Xpeos sty S 1. (4.25)
ieN
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Denote by k' the largest integer k satisfying

Collfll zr+r) ()
IXB(21,R)

2k <

lLeer ()
where Cj is the constant in (4.23]). Then, by Lemma we know that QF C B(zy,16R)

for all kK > k’. Let
g:=Y_> hF and (¢:=> Y nf

k<k’ i€N k>k’ iEN

where the series converge in (G§(8,7))’. Obviously, f = ¢g + ¢. By (4.16) and Lemma
4.11)(ii), we easily see that

supp ¢ C U OF ¢ B(z1,16R), (4.26)
K>k

and hence supp g C B(z1, 16R). Since f € Lg’O(X) due to Lemma it follows that f
is a multiple of a classical H'(X)-atom (see |29, Definition 4.1]), and hence f* € L}(X).
Recall that a measurable function a is called an H'(X)-atom if suppa C B(zg, o) with
some aco E X and ro € (0,00), Ha/HLq(X) < [,u(B(a:o,rO))]l/q_l with ¢ € (1,00) and

Jra = 0. Therefore, by (4.25) and Lemma 11) we see that
/X IPIHGIEACEY I LD WERC LA

k>k’ 1€N k>k’ 1€EN
/ S 2 xue(€) dul€) S If sy < 00 (4.27)
X sk

From (4.27)) and the vanishing moment condition on hf, we further deduce that ( satisfies
the vanishing moment condition, and hence so does g by g = f — (. Moreover, by (4.25))
and Remark we find that

R i ey (Vi
lgll =y S D 28 ~ 2% < @) < @)

) ~IXB@Lr)llLeo ()~ IXB@16R) | Le0) ()
k<k

So far, we have proved that Hf”;;l*,p(-)(;()g is a (p(+), 00)-atom up to a constant multiple.

Next, we deal with (. We claim that, for all z € X, {(x) < f*(z). Indeed, for all
x € X, there exists j € Z such that = € 7 \ Q/*!. From this, (4.25) and the fact that,
for all k > j + 1, supp h¥ € QF € Q9+, we deduce that

@< DD @)D 2~ 2 S (),
k<k’ i€N k<j

so the above claim holds true. By this claim and the fact that f* € LI(X) (when ¢=1, it is
proved above, and when ¢ € (1, 00), this is a consequence of Remark and Lemma7

we conclude that
-y

k>k’ i€N

converges in L9(X). For any N € N, let
Fy:={(k,i):k€Z,k>Fk,icNandi+ |kl <N}
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and

> owk

(k,i)eEFN

Since 3, ey hF converges in L(X), it follows that there exists Ny € N large enough

€N 71
such that
[4(B(x1,16R))]*/9

~ IxB16R) e (2)

which, combined with (26) and (27, further implies that £l x) (¢ = Gxa) is 2
(p(+), g)-atom. Therefore,

f:g+CN0+(C—CNo)
Ccho
*,D A e N mremr (2
= 1f o000 () ||fHH o + Z ¥ A N e 20 7l

]{)l)EFND YP(.)(X)

1l e I = Sl <

is a finite linear combination of (p(-), ¢)-atoms. Moreover,

112000y S I e o)+ Epy (A e my) S 1F ooy,

which completes the proof of (i).

To prove (ii), we assume that f € Hst(')’oo(X) N C(X). Obviously, f is a uniformly
continuous and bounded function, and hence hf is continuous by its construction. Thus,
the fact that || f*[| e (x) < || f| o (x) (see Remark 3.4} implies that there exists an integer
k" > k' such that QF = ) for all k > k. Therefore,

> onk
k! <k<k" i€N
Since f is uniformly continuous, it follows that for any e € (0, 00), there exists § € (0, 00)
such that when d(z,y) <6, |f(z) — f(y)| <e. Let

> b and o= ) R
(k,i)€G1 (k,i)€CGs
where
G1:={(k,i) : 45rF > 6, kK <k <k}
and
Go = {(k,i) : 45rF < 6, k' < k < k"}.

Notice that {B(z%, ¥ /4)}ien are disjoint and supp k¥ C B(z¥,150F) C B(x1,16R). Then
the summation in (7§ is finite, and hence (§ is a continuous function by the fact that each
hk is continuous.

We claim that [|¢5]| e (x) S (K7 —k')e. Indeed, for each z € B(z¥, 15rF) with (k, i) € Ga,
there exists y € B(z¥, 45r%) N (Q)C such that d(z,y) < 45r% < §. Thus,

|1 ()] = |hf(x) = hi(y)] <e,
which, combined with (4.25)), implies that ||h¥|| x) < €, and hence the above claim

holds true. From this claim and the continuity of (§, we deduce that ¢ is continuous, and
hence g = f — ¢ and (5§ = ( — (5 are also continuous.
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Observe that ¢f = > j\eq, Aeak is a finite linear combination of (p(-),c0)-atoms
and

16 00 oy S 1 110t
From this and the fact that ¢ has the vanishing moment, we find that (5 also has the
vanishing moment. Moreover, supp (5 C B(x1,16R) and ||(5]|z~(x) S (B — k")e. Now,
choose ¢ € (0,00) small enough such that
1A o0 165 Nz ) < X Bor16m) | Lo (-

Then
f=g+e 4G

€0

G
+ Z Aa +||f||H*P()(X)W

= ||f||H*,p(->(X
(k)R p(-) X)

||f||H 20O (X)
is a finite linear combination of (p(-), co)-atoms, and moreover

1AW e ey S W lLazewcr ) + &y (INaF Y iyecy) S I Fllawo (v)-
This finishes the proof of (ii) and hence of Theorem "

PROPOSITION 4.26. Let p(-) € leﬁ(nﬂ) ooy (X). Then the subset ng(l')’oo(.)c') NC(X) is

dense in Hf’;fl')’oo(é\,’) under the quasi-norm || - || g+.»()(x), and hence in H*PO(X).
Proof. By |33, Theorem 2.6], we choose an (e1,€a,€3)-AOTI, {Sk}rez, with bounded
support on X as in Remark [3.§[iii). For any (p(-), c0)-atom a with support B := B(zo,)
for some zg € X and r € (0,00), let ag, := Si(a). Then, from the properties of Sy, it is easy
to deduce that Sy(a) is a continuous (p(-), o0)-atom with supp Si(a) C B(xg,r + c27%)
for some constant ¢ independent of a and k. By the identity approximation property of
{Sk}rez (see, for example, |29, Lemma 3.1(v)]), we find that, for all ¢ € [1, ),

lim [|Sk(a) — all o) = 0. (4.28)
k—oc0

Now, let f be any element of Hp ( ), °°(X), namely, f has a decomposition

N
F=> XNaj,

Jj=1
where {\; } ", C Cand {aj}] 1 are (p(+), 00)-atoms supported on balls {B(xj,rj)}évzl,
with {Jc]}J:1 C X and {r;}_; C (0,00), such that
Eny({Nja; 1) S £ 1 gzcroe (-

Then, for any € € (0,00), by (4.28)), we find that there exists a K € N such that, for all
j€{l,...,N} and k € N with k > K,

[M(B@JaQTJ))P/q c
XB(w;,2r;) ”L”( )(X)

[|Sk(a;) — aJ”L‘I x) S i
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which further implies that e[Sy (a;) — a;] is a (p(-), ¢)-atom supported on B(z;,2r;).

For k € N, let
N

Sk(a;)
Je = Z(f'?/\j) - =
Jj=1
Obviously, fi € Hgl(l')’oo(/\’) NC(X). Moreover, by Theorem (i)7 we conclude that
N
Sk(a;) —a;
Ifk = Fllaere ) ~ 2(5)\3‘)#
j=1 HE ()

< 55p(~)({>‘jaj}§y:1) S st”Hﬁf]')'O"(X)'

Therefore, f, — f in H*P()(X) as k — oo, and hence ng(l')’oo(.)() NC(X) is dense in
ng(l')’oo(ﬁc') in the quasi-norm ||| g7«.»( (x)- This, combined with the fact that ng(l-),oc()()
is dense in H*?()(X), finishes the proof of Proposition "

We end this section by giving another proof of Theorem ii) by borrowing some
ideas from the proofs of |29, Lemma 4.15 and Theorem 4.16]. To this end, we need the
following set-theoretical lemma.

LEMMA 4.27. Let L € (0,00) be fivred and {Q,,}35_, a sequence of subsets in X. Define

F = Z 27" LX Qo \ (21U UQ 1) -

m=2

Then -
sFxa < D2 "L, <2Fxxa,- (4.29)

m=2
Proof. If x € Qq or = ¢ Q,, for any m > 2, then there is nothing to prove, since every
term in (4.29) becomes 0. Let us suppose otherwise. Then we find the smallest mg > 2
such that x € Qp, \ (2 U-+- U Qy,,—1). In this case, we have

2L <Y 2 M Lxq, (v) < Y 2L =270
m=2 m=mo

and

27M0L =270 Lxq, \(@uUUy ) (@) S F(z) < Y 27ML =270t
m=mg

This finishes the proof of Lemma [£.27] =

Another proof of Theorem [{.§(ii). By Corollary without loss of generality, we may
assume that f € L=(X) N H*PO)(X). We let

L:=|fllgexy and fo:=f.
We then define f1,..., fi, and 64, ..., 6,,, inductively. For the time being, let us say that

01> > 0, | 0. First, we define f to be the function g* in Proposition associated
to f with ¢ = 6; L. Proceeding by induction, assume that f,,_; is defined. Then let

Qi ={zeX:(frn1)"(x) > 0,L}.
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Define f,, to be the function g¢ in Proposition associated to f,,—1 with t = 0,,L.
Notice that, by Lemma each ©,, has a decomposition

Q= {2 €X: (fm-1)"(2) > O L} = B(@m.is i)
Define the partition of unity, {¢n, ;}:, as in Lemma Then, according to our construc-
tion,
fm = fmfl - me,ia

where by, ; = (f—1m,)Pm,; s asin Proposition which, combined with Proposition
implies that there exists a positive constant K such that

. . ) B
fix) < fi_i(z) + Kb, Z B(&m,j,m.;)) [ T j

jGN xm]ﬂ"mj +d(l’m]7 ))) Tm7j+d(xm>j7x)

for all 2 € (Q,,)¢ and m € N. Observe that K is independent of {f,}2°_, and {6,,}°_,.
By the definition of f,,, and Proposition (iv), we know that || fo |z x) S OmL,
and hence
16m,ill oo (x) < Om DL,

where D € (1, 00) is a fixed constant which is used later. More precisely, by Lemma [4.6{1),

[bm.i(2)| < OmDLXB(a,,,; 20m.,) (T) (4.30)

for p-almost every « € X. Notice that f,, — frn_1 = — Zj by,; belongs to L>°(X’), thanks
to Lemma vi).
Since, for all n € N,

N
f:f0:f1+zb1,i:"': +ZZb
7 m=1 j
and
I fNnllesxy S ONL,

it follows that
N
7= 30 St = Il S L.
m=1 j

Therefore, assuming 0y | 0, we obtain
F=Y2 bm; inL®X),
m=1 j

and hence

F=Y2 bm; in(G5(B,7)) (4.31)

m=1 j

With these observations in mind, let

Amg = OmDL|X B ;20 e vy a0d em s = (M) b .
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Then each e, ; is a (p(-), 00)-atom. Furthermore, by Remark Theorem (i) and
(ii) of Lemma and Lemma we have

Sy [ e "
(Rt )
2 A L IXB g oo T s) Lr) ()
0o 1/p > 1/p
< O LXB s 2] [ Onixe, ]
~ {mz_:lzj:| mLXB(zp, ;, m,J)‘ Lo (x) ™ mz::l( m XQm) LrO)(X)
§ 91LX91 —+ Z omLXQm\(Qlu...UQm—l) LP(A)(X)'
m=2
For any N € N, we define
N
JN = HQILXQl +n12::29mLXQm\(Q1U---UQm71) LP(')(X).
We claim that, for all N € N,
1/p
Jn < (1 + N2> Jn_1 (4.32)

by choosing 6y < On_1. Once (4.32) is proved, we obtain

1/p

N 1 1/3 N 1 P
In < Ja H<1+k2> < ey H<1+k2> S F e
k=2 k=2

because [],—, (1 + 1/k?) is convergent. Thus,

J< H91LX91 + Z O LX 0,0\ (210U 1) LrO (%)
m=2

N —oc0

N
= lm HelLXQl + Z O LX 0\ (@102 1) LrO) (X)
m=2

< lim Iy S [flla=ro )
N —oc0

and we obtain the desired conclusion.
It remains to prove (4.32). We first notice that, for all N € N|

N
Int1 < H91LX91 + Z Om LX Q2 \ (21002 1) T 0N+1LXQN+1\(QIU“'UQN)’

LrO) (X))
m=2
Altogether, we obtain
p
(v )P < (NP + LN v1x@n\an 7o) 2y (4.33)
Choose {0x}nen such that, for each N € N, 0 < 20511 < 0y and

1/p
HL9N+1XQN+1\QNHLPM(X) < [(NW} ||91LXQI||LP<‘>(X)

< {M} . (4.34)
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Such a choice is possible. Indeed, we have (fy)* € LP()(X) and

Thus, the absolute continuity of the LP0)(X) norm, together with an induction argument,

allows us a choice of fy as in . This shows (| - thanks to and ( -, and
hence finishes the proof of T heorem -(11 L]

Before we conclude this section, let us compare the two proofs of Theorem (ii)
presented in this article.

REMARK 4.28. (i) The second proof invokes the absolute continuity of LP()(X), while
the first one does not. So, it is expected that the first proof can be readily transformed
into one when LP()(X) is replaced by the Morrey space My (X), whose norm is defined

by (6.3) below.

(ii) The second proof seems to have an advantage despite the fact that it is available
only when one can use the absolute continuity of the norm. Indeed, by adjusting {0y} ven
in the proof, that is, by replacing {0y } nen With a smaller one, one can control the growth
speed of {Jn}nen. This fact may be useful elsewhere.

5. Characterizations in terms of Littlewood—Paley functions

In this section, we establish characterizations of H*P()(X) in terms of the Littlewood—
Paley function. The main results of this section are stated in Subsection [5.1} and in
Subsection [5.2] we give their proofs.

5.1. Main results. We begin with the following definition, taken from [33, p.1510].

DEFINITION 5.1. Let €5 € (0,1] and €3 € (0,00). A family of bounded linear operators,
{Dt}ie0,00), 0N L?(X) is called a Calderdn reproducing formula of order (e, ez) (for
short, (e1,€2)-CRF) in L?(X) if, for all f € L?(X),

f:/wDﬂf)@ (5.1)

in L?(X), and moreover, for all f € L?(X) and z € X,

/Dtxy y) du(y),

where Dy(-,-) is a measurable function from X x X to C satisfying the following estimates:
there exists a positive constant C' such that, for all ¢ € (0,00) and all z,2',y,y’ € X with
d(z,2") < [t +d(z,y)]/2,

1 t 1"
(A1) |Ds(z,y)l <C Vi(z) + Vi(y) + V(z,y) |:t+d(may):| 7
(A2)

d(z,z") } ! [ t ] 62 1
Dy(z,y) — Di(2',y)| < C’[ ’ :
Do) = PAE = ey ] i) V@i vy
(A3) property (A2) still holds true with the roles of  and y interchanged;
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(A4) / Dy(x,2)du(z) =0 = / Di(z,y) du(z).
x X
In what follows, we define

Gler.r. B.7) = {f € Glorrp): [ Jw)dute) = o},

and the space QOS(B, 7) to be the completion of gﬂ(e7 €) in go(ﬁ,*y) when §,v € (0,¢).
Recall that the Littlewood—Paley S-function (also called the Lusin area function) S(f)
of f € LPO)(X) is defined by setting, for all z € X,

dp(y) dt}l/Q, 52)

st@ = { [ 1pnmE G
where
I(z) :={(y,t) € X x (0,00) : d(x,y) < t}.

DEFINITION 5.2. Let p(:) € Cé‘;g/ ni1),00)(X) and {Di}ie(o,00) be an (e1,€2)-CRF in

L?(X) as in Definition n Assume that the parameters €, €1, €2, 3, v satisfy ¢; € (0, 1],
€2 € [e1 +1/2,00), € € (0,¢1) and B, € (0,¢). Then the Hardy space H?)(X) via the
Lusin area function is defined by
HPO(X) = {f € (G5(8.7))": S(f) € L'V ()},
and its quasi-norm is given by ||f||Hp(.)(X) = HS(f)HLp(.)(X).
Let ¢ € [1,00] N (p,00]. Then define ﬁst(')’q(.)() in the same way as Hst(')’q(X) with
(G6(8,7))" replaced by (G§(5,7))"-

We first establish the atomic characterization of H”(')(X)7 which, when p(-) = p €
(0, 1], was obtained in [33, Theorem 2.21].

log
THEOREM 5.3. Let p(-) € C7 41y 1)

HYO(X) = HI ()

(X) and q € [1,00] N (py,0]. Then

with equivalent quasi-norms.

Comparing ﬁ;’t(‘)’q (X) with the atomic Hardy space corresponding to H*?()(X), we
have the following conclusion.

log
THEOREM 5.4. Let p(-) € C(n/ (n+1),1]

HEE () = HE()

(X) and q € [1,00] N (py,0]. Then

with equivalent quasi-norms.

As an application of Theorem @ we establish the g}-function characterization of
HPO(X). Let A € (0,00). Recall that the Littlewood—Paley g} -function of f € LPO)(X)
is defined by setting, for all z € X,

o= {[ ] oo i)
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THEOREM 5.5. Let €, €1, 3, v and p() be as in Definition[5.2] If X € (n+ 2n/p_,o0),
then f € HPO)(X) if and only if f € (G5(8,7)) and gi(f) € LPO)(X). Moreover,
11l mre ey ~ NgA (P rer )
with implicit positive constants independent of f.
REMARK 5.6. When p(-) = p € (0, 1], Theorem [5.5]is just [33, Proposition 3.4(ii)].

Let €; € (0,1], €2,e3 € (0,00) and {Sk}rez be an (e1,¢€2,€3)-AOTI. For all k € Z,
let Dy := Si — Si—1. Assume that € € (0,e; A e2) and 3,7 € (0,€). Recall that the
Littlewood—Paley g-function of f € (G§(8,7)) is defined by setting, for all x € X,

— (S ne} "

kEZ
see [34].
THEOREM 5.7. Let €5 € (0,1], e2,e3 € (0,00) and let € € (0,€e1 A €2). Assume that

p(-) € Clzg/(n+6) ooy (X) satisfies p— € (n/(n + €),1] and B,y € (n[l/p— —1],€). Then

f e HPO(X) if and only if f € (G5(B,7)) and g(f) € LPO)(X). Moreover,
C_1||g(f)||LP<'>(X) < Hf”HP(')(X) < CHg(f)HLP(')(X)

with C' being a positive constant independent of f.

REMARK 5.8. In the case of p(-) := p with p € (0, 00), Theorem was proved in [34]
Theorem 5.16].

5.2. Proofs of main results of Section[5.1, We begin with the proof of Theorem [5.4]
To this end, we first establish the followmg estimate.

LEMMA 5.9. Let py € (0,1] and 7y € [p4,1]. Then there exists a positive constant C such
that, for all {\;}jen C C and any sequence {B;} en of balls in X,

1/~ ~
(Z |>\j|7) < Ay ({Aj}jen, {Bj}jen). (5.3)
jeN
Proof. To prove (5.3)), let

A= (Z |>\j|7)1/w

JjEN
Then, by (3.9) and Remark iv), we see that

/{Z[ Ailxs, (@) r}“””” /Z[ Nilxs, (@ rm du(z)
x U )\HXB]‘”LP(‘)(X) AllxB, ”LP()(X)

jEN jEN

ZZMXJW /X [ X, () r‘”’du(x)

||XBj HLP(')(X)

which implies that (5.3) holds true. This finishes the proof of Lemma n
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Proof of Theorem . Let € € (0,1) and B,v € (0,€). Observe that

(G5(8.7))' < (G5(8. )"
Then it follows that H;’t(')’q (X) C ﬁlﬁf)’q (X). Thus, to prove this theorem it suffices to
show that ﬁgt(')’q(ék') C Hft(')’q(X). Let f € ﬁ;”t(')’q(x). Then, by Deﬁnitionm we know
that f € (G§(8,7))" and there exist sequences {A; };en C C and {a;};en of (p(), ¢)-atoms
such that f =3, yAja; in (G5(8,7))" and
Apoy (Dyiens {Bitsen) S 11l gz

where B; is the support of a; for all j € N. For any ¢ € G§(8,7), let
<fa 90> = Z)‘j<ajv 90>
JjEN
Observe that, for any j € N, we have a; € H;”f')"’(X) and ||ajHH,,(A>,q(X) < 1. Then, from
Theorem [£.3] and Lemma we deduce that, for any j € N,

[{aj, o) S llellgssmllail greracvy S lellgssq-
This, combined with Lemma [5.9] yields

1(F o) S lellgsean D IA]

JjEN

S llellgss Ay (i tiens {Bjien) S llellgss 1l greracays

which implies that [ € (G5(8,7)) and [ = ¥, Aja; in (G5(8,7))'- Moreover, f = f on
Ge(B,v), f € HI(x) and

”fHH;’t(')ﬂq(X) S Hf”]f]:t(')vq(x)'

Suppose that there exists another extension of f, say g € Hst(')’q(.)(). Then g = f on

C;S(B, 7). Thus, by |33, Lemma 5.2], f—ﬁ is a constant, denoted by C'. If C # 0, then this

contradicts the fact that no non-zero constant function belongs to H g(') (X) = Hgt(')’q(X ).

Thus, C = 0, which implies that fe Hft(')’q(.)() is the unique extension of f. This finishes
the proof of Theorem [5.4] w

To prove Theorem we need some general facts on the Lusin area function. Let
D :={QF: k € Z, 7 € I};} be the set of all dyadic cubes as in Lemma For all k € Z,
we set
Q= {z € X:S(f)(zx) > 2F}.

Observe that {Q}rez is a decreasing family. With this in mind, let
Dy :={Q € D: u(Q@N %) > 3u(Q) and u(Q N Ut1) < 3u(Q)}-
Let D be the positive constant in . For Q% € D, define
QF == Q" x (D27%, D27+,
Notice that i@t
e (2 0,00\ [J Q) =0 (5.4)

QeD
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thanks to Lemma [3.13(i). Define the set D¢ of maximal dyadic cubes by
D¢ ::{QeDk:if@QQandéeD, then@gél)k}.

Then D;¢ is the set of all dyadic cubes in Dy, which are maximal with respect to inclusion,
so that we discard cubes which are not maximal. Hence, by Lemma [3.13]i), we see that

w(xvU U @) =0
kEZ QeDe
and hence (5.4) can be rephrased as

®%<Xx(0,oo)\u U U a)-o

kEZ QUMeeDMe QEDy, QCQMe

~an = U @

QeDy, QCQy*
We invoke the following lemma from [33, Lemma 2.23].
LEMMA 5.10. Let {Di}ie(0,00) be an (e1,€2)-CRF in L*(X) with e, € (0,1] and €3 € (e1+
n/2,00), and let € € (0,e1) and B,v € (0,¢). If A € (0,e2], then for any f € (G§(3,7)),

f= Z? YOS [ et HLE

m c

kEZ QecDme

For all k € Z, let

n (goé(ﬁ,’y))’, where pq14(x,y) is an adjusted bump function in x associated with the ball
B(y,2'), which means that there exists a positive constant C such that, for all x,y € X,

(i) supp war (- y) C By, 2't);
(ii) [pge(z,y)| < C/Var(y);
(iii) for allmn € (0,€1),

*y - = sup —_— S C 2lt -
||(p21t( y)HC”I(X) e yeX. nty [d(.’l?,y)]n ( )

(iv) /X ore(a) dp(z) = 0.

For a fixed cube Q¢ € D;*°, we know that there exist kg € Z and fy € Iy, such that
= QEE’), and for all [ € Z, we set

B! = B(zf0, D22 k),

Now, let
)\ZQE‘C = 2_(A+K)l+k||XB£m,l HLp(-)(X),

where A is as in Lemma and for all z € X,

lk—k
2 /~mC oo (2, y)De(f) (y) M

l —
agme (z) := ;

HXB;?‘CJHLP(')(X)

LEMMA 5.11. Let ¢ € [1,00], | € Zy and Qp° = QZO for some ko € Z and By € Ij,.

mc,l

Then, for any f € (G5(53,7))’, a,ng,c is a (p(-), q)-atom supported on B, up to a constant

multiple.
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To prove Lemma [5.11] we need the following estimate.
LEMMA 5.12. Foralll € Z4 and k € Z,

{ v [ e BV < stotepu gt

QEDk QCch

where the implicit positive constant is independent of f, k and l.

Proof. Let QQ € Dy. We estimate
e [ IS dula)
Q\Qeta

from below. If we write out the definition of I in full, we obtain

_ 2dﬂ()dt .
1= s o PO it

D)) P dpfr) 2L
// /yt)ﬁ(Q\Qk_H Vi(z) t

Since Vi(x) ~ Vi(y) when d(z,y) < t, it follows that

I~/ b / sy TP O TS

(Q \ Qpt1)) 5 du(y)dt
,u( (y;t)ﬂ(Q\QkH)) 5 du(y) dt
2 /Q ooy ) ) AL

Notice that, when (y,t) € @, we have y € @ and ¢t > diam(Q), and when Q € Dy, we
further have 2(Q \ Qx+1) > (Q). Hence, by (2.2)), we find that

M@\ Qx41) o du(y) dt 5 dp(y)dt
z [ M e HOE 2 [ ipiek HOE 5

Let us suppose @ = Qgg € Dy, and Q C Q3¢ for some kg € Z and By € Ii,. Then, from

(5.5), we deduce that

{QEDkZQ:CQI'Ic/ [Dlf du(ij)dt}l/z o
< {ergcw /Q \QM[S(f)(m)]Qdu(x)}

< 28 [(@Qp))? < 2R e (B2
This finishes the proof of Lemma "

Proof of LemTa . Let us first show that angm is supported on B;Cnc,l. It (y,t) € Q;Cnc
then (y,t) € Q for some @ € Dy, such that Q C QP° := Qgg for some ko € Z and By € Iy, .
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Consequently, we obtain y € Q) C Q¢ = QZ“ and t < D2 %o+ If » € B(y, 2't), then
d(z, zﬁ 0) < d(z,y) —|—d(y, v) < D2*H1=ko,

mc,l

which implies z € B)™". Hence, supp agme.: C B,zﬂc’l by the support property of wai. (-, y).
k

To show the size condition on alem, it suffices to estimate HalQ;nc || Lo (x)- Observe that,
when (y,t) € @Z‘C, we have d(y,zgg) < D27 %0, Thus, for all £ € B(zlgg, D22+l=ko),
d(&,y) < d(&,250) + d(z52,y) < D2¥H R,

namely,
B(zf, D2*!7F0) C B(y, 2?1 ko),
From this, and the fact that t < D2 %+l we further deduce that, for all
(1) € Qp,
p(B(ze, D2*T17R0)) < u(B(y, D2%1 %)) < (D22~ *ot= )" u(B(y, 2't)) S n(B(y, 2't)).
Therefore, using condition (i) in Lemma [5.10} we find that

1/2
s [MB(ZES,Df“—’%))]”{ L. W}

< [(B(2h0, D22 ko)) =1/2,

~

From this, the Holder inequality and Lemma [5.12] we conclude that, for all z € X,

’/1 pore(,9) Di(f)(y )d#(t)dt‘

< {/~m D(f) ()] W}I/Q{/ém oz, )2 ‘W}W < gkg-tx,

which implies that HaéQ?CHLoo(X) < 1/||XB£,C,1HLP(.)(X).

A

Finally, by the vanishing moment condition on g, (-, y), we see that

/ ang,c (x) dp(z) = 0.
X
Thus, alQ?c is a (p(-),00)-atom supported on B,inc’l. This finishes the proof of Lem-
ma BTl =
We now turn to the proof of Theorem

Proof of Theorem . We first show that flgt(‘)’q(X) — HPO(X). Let f € Hp )q(X)
Then there exist {)\;}jeny C C and (p(-), ¢)-atoms {a;};jen, where, for j € N, suppa; C
Bj := B(zj,r;) for some z; € X and r; € (0,00), such that

Ay (e, {B)}jen) < LA oo e

and f =} . yAja; in (GE(B3,7)) with €, 3, v as in Deﬁnition
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By the triangle inequality, we have
S(f) <D INIS(a)xzs, + Y INIS(a)xa\28,) = T+1L
JjeN JEN
For I, by the boundedness of S on LI(X) (see [33, Proposition 2.17]), we obtain

[1(B;)]!/
HS(%)HLq(x) ~ ||%||Lq(x) S
x5, HLP() (X)

with €; € (0, 1] satistying p_ € (n+€1 , ), which, together with Proposition , implies
that, 110y S gy

For II, by an argument similar to that used in |33, pp. 1521-1522|, we see that, for
all z € X'\ (2B)),

a;)(x w(B;) " h 1
S(aj)(z) < ||XBjHLP(')(X) |:d(l',$j):| V(x,x;)’

which, together with (2.2), implies that, for all € X'\ (2B;),
! [ p(B;) r/”“
IxB, | Lo 2y L(B(, d(z, z;)))

1
S ———[M(xs,)(@)]*/". (5.6)
X8, Lre) (x)

From (5.6), Theorem and the fact that p_ € (n/(n + €;1),00), we deduce that

3 o e, )12

JEN
S Ay ({Ajjens 1Bj}jen) S 11 grera -

This implies ||S(f)||Lp<,>(X) < ||f||ﬁ§t(.>,q(x), and hence flgt(')’q(év) — HPO(X).

S(a;)(x) <

Il oo 2y S

||XB HLP() x) llLeO)(x)

Conversely, we prove HP()(X) — I;T:t(')’q (X). The proof follows an argument similar
to that used in the proof of |33, Theorem 2.21]. According to Lemmas and we
have an expression

PSS A

1=0 k€Z Qe eDme

in (G&(8,7))'- It thus remains to establish the norm estimate. Indeed, by the construction,
Theorem and the fact that Xgme! < ZZ”M(XQZIC), we find that

J = ./Zlv . ({)\égmc}lez+7 k€eZ, QzlcEfDmc, {Blz:nC7l}l€Z+7 kez, Q;:.ce'Drknc)

§H<ZZ T ey )1/p

1=0 kEZ QmCE'DmC

JET 5 premriger)”

=0 keZ QpeeDpe

LP(-)(X)

)
Lr()(Xx)



Hardy spaces with variable exponents on RD-spaces 55

which, combined with Theorem again and the fact that xgme < M(x@reno,) when
Qre € D, further implies that

1/p

U (ZZ Y [27tATeman XQ"wmk]E) -

LrC)(x
l 0 keZ QII]C E’DIHC ( )

= (izpilminin)zikxgk]> Lp<>(X)N H(ZQ 7XQ"> )

=0 keZ kEZ

_ 1/p
< (X2 2xanann) SISl -
keZ

Lp(‘)(X)

Lr()(X)

This shows that f € ﬁft(')’q(é\,’ ), and hence finishes the proof of Theorem "

By [34, Theorems 2.6 and 3.10] and an argument similar to that used in the proof of
Theorem we obtain the following conclusion, the details being omitted. In the case
of p(-) being a constant, we refer to [34, Theorems 5.13 and 5.16].

COROLLARY 5.13. Let €1 € (0,1], €2,e3 € (0,00) and € € (0,e1 A €2). Assume that

p() € Céig/(nﬁ),oo) (X) satisfies p— € (n/(n+¢€),1] and 8,7y € (n[l/p— — 1],€). Assume

in addition that q € [1,00] N (p4,00]. Then
HY () = HO(X)

with equivalent quasi-norms, where I?p(')()() is defined to be the set of all f € (g"g(ﬁ,y))/
such that ||f||ﬁp(_)(X) = [|S()llLecr(x) s finite; here, for all x € X,

s ,_ 2 dp(y)
8() () = {; Lo e

We now conclude the proof of Theorem as follows.
Proof of Theorem . Obviously, for all f € (g“g(ﬁ,y))' with €, 8, v as in Theorem

we have

11l zre ey ~ IS e a0y S NIAD oo ()
Conversely, let f € HP()(X). Then, by Theorem f has an expression
f=2 XNa; (G55,
jEN
where {);}jen C C and {a;};en are (p(-), ¢)-atoms supported on {B;}jen 1= {B(z;,7;) :
zj € X, 1; € (0,00)}jen satisfying

Apy (0 jem ABsYiew) S IF 1 ee ao)-

Thus,
g3 (F) < D INlgk(a)xes, + Y Nloa(a;)xan@s,) = T+1L
JEN jJEN
For I, by [33| Proposition 2.17(ii)], we find that
< [u(By)Me

lox(a)llLacxy S llajllpaxy S :
ML)~ BRI~ T
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From this and Proposition we deduce that

I ocr 2y S NN aeeo )

For II, we first observe that, for all z € X,

gi(a;)(@) S Y 2K V280 (a5) (). (5.7)
k=0

By an argument similar to that used in the proof of |33, Proposition 3.4(ii)], we conclude
that, for all z € X'\ (2B;),
Tj “ 1
z, ;)| Viw,ag)
which, combined with (2.2), implies that, for all € X'\ (2B;),
e1/n+1
(B, !
S (a)(@) 5 )]

~xs, llerer ) [M(B(x7d(x7xj)))
2k(n+61)

Bj)
Son(aj)(x) < 2hmten) 2 {
2e (a;) () X8, 1w ey L

2k(n+61)

S T [M(xg,)(@)]*/" .
||XBj ”LP(')(X)

By this, (5.7), Corollary and choosing €; € (n/p_ —n, 1) such that A > 3n + 2¢;, we

have

S5 v Ly s
JEN k=0 HXBj ”LP(')(X) J

S Apy(Aijem {Bitien) S lamer ays

which, together with the estimation of I, implies that

1] Loy () S
Lr()(X)

g3 (P oer ey S N e -
This finishes the proof of Theorem L]

By Theorems [£.3] [5.3] and [5.4] we deduce the following conclusion, the details being
omitted.

COROLLARY 5.14. Let p(-) € C
lent quasi-norms.

(lfbg/(nH) 1](X). Then H*PO)(X) = HPO(X) with equiva-

Finally, we prove Theorem

Proof of Theorem[5.7 For all x € X, we first observe that

N(k,T)

- 1/2
S ={S X X [ Dk 2

keZ el v=1 (w,y)<27F
N(k,T)

A S o e v} =10,

keZrel, v—1 2EB(zF",E@27F)
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where € is a positive constant such that B(z,27%) C B(zF?,c27%) for every z € Q*v.
By an argument similar to that used in the proof of [34, (5.18)], we conclude that

o) 5 {35 Ao

v ke N (k,7) 1/r1241/2
(X IDeE )@}
Fel, o=1

where r € (n/[n+¢€}],p-) and yi’ﬁ is an arbitrary point in Qig From this, the Minkowski
inequality and Theorem 2.7} we deduce that

N (k)

N 2/ry1/2
o S i xges)] T}
18Dl < [{X[4(X > Ip X g .
keZ TElL
N (kD) e o 1/2
< 5 kv 2 o
HEX X e Pxgee )
kezTElR v=1
Thus, by the fact that yzf_"a is an arbitrary point in QE’E, we obtain
N(k: ?) 2 1/2
< =~
IS ot )(X) H{Z Z Z [ m{ . | D( )(Z)@ XQ?'”} ‘ LrO) (X)

kez TEl; v=1

<|[{Zipecrr} ™

kEZ
which, together with Corollary implies that

Lr(O)(X) - Hg(f)HLP('NX)’

Hf”HP(')(X) S Hg(f)”LP(')(X)'
Conversely, to prove
19N rer ey S N lmrer 20y

we only need to use an argument similar to that used in the proof of |34, Theorem 5.13],
the details being omitted. The proof of Theorem [5.7]is complete. m

6. Applications

This section is devoted to giving some applications of the Hardy spaces H *’p(')(X ). More
precisely, in Subsection we establish Olsen’s inequality for fractional integral opera-
tors on H *’p(')(X ). Moreover, we consider the boundedness of singular integral operators
on H*P()(X) in Subsection and that of quasi-Banach valued sublinear operators in
Subsection [6.3

6.1. Fractional integral operators and Olsen’s inequality. Let {S;}rcz be an
(€1, €2,€3)-AOTI as in Definition and Dy := S; — Si_1 for each k € Z. In this
subsection, we are concerned with the fractional integral operator I, with o € (0,n),
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which was originally introduced in [83], and given by setting, for all f € (G§(5,~)) with
€, B, v as in Definition and z € X,

La(f)(@) = Y _n(B(e,27")]" Di(f) (). (6.1)

kEZ

LEMMA 6.1. Letp(-) € C’ézg/(nﬂ) ooy (X) and a be a (p(-), 00)-atom supported on B(z, 271

for some z € X andl € Z. Then there exists a positive constant C' such that, for allk € Z
and x € X,

1
”XB(Z’?”)HLP(')(X)
Proof. When k > 1, (6.2)) reads, for all z € X,

1

||XB(Z,2*’)||LP(')(X)

|Div(a) ()] < C2e0 =0V XB(z,2- (042 (7). (6.2)

|Dy(a)(z)] < C XB(z,2-1+2) (T)-
From the fact that for each k € Z, supp Sk(x,-) C B(z,27%), we deduce that, for each
k € Z, supp Di(a) C B(z,2-"R)+2) Thus, (6.2) is a consequence of the definition of
(p(+), c0)-atoms.

Let us suppose instead that k < [ and x € B(z,27%%2). Then (6.2)) reads

e1(k=1)
D)) < Cr—2

XB(z,2-1+2 (ZL’)
||XB(Z,2—’)||LP(')(X) B=2 )

The vanishing moment condition on a yields
De(a)(@) = [ [Dulay) = Dule: 2laly) du(y).
X
Observe that, when y € B(z,27),
2d(y,z) <2170 < 27F 4 d(a, y).
Then we are in a position to use Definition ii) to obtain
o) 302t e i
Dy(z,y) — Dp(z,2)| <
uen - Dute2) 5 =] | m] oG
< |: d(y,z) :| Pl ~ 261(k—l) 1 7
~27R+d(y, )] Vi(y) Vi(y)
which, together with the fact that, when y € B(2,27!), B(z,27!) C B(y,27%), implies
that (6.2) holds true in this case. This finishes the proof of Lemma "

As an immediate consequence of Lemma [6.1], we have the following corollary.
log
(n/(n+1),00)
constant C' such that, for any (p(-),c0)-atom a supported on B(z,27"), with z € X and
l€Z, and for any x € X,

COROLLARY 6.2. Let p(-) € C, (X) and a € (0,n). Then there exists a positive

1

IXB(z,2-1) | Lro) ()

L@@ <C S 29500l Bz 27

k=—o0

XB(Z’Q—(Z/\kH»’z)(x).
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Let 1 < ¢ < u < 0o be fixed. Recall that the Morrey space M (X) is defined to be
the set of all g € L{ (X) for which

lolm :=_ sup )MB(Z’rml/u_l/qH9||LQ<B<z,r>><00~ (6.3)

THEOREM 6.3 (Olsen’s inequality). Let p(-) € C’éfb&}(nﬂ) wo)(X) and e, €1, €2, €3 be as in
Deﬁmtwnn 3.7} Assume that the parameters o and q satisfy 0 < a<n,1 <g<1l/a < oo,
q € (p+7 ) and

€1p > n. (6.4)

Ifg e Ml/a( X), then the operator
f e LX) = gla(f) € Mo(X),

where Moy(X) denotes the set of all measurable functions on X, extends to a bounded
linear operator Ly, on H**’(')(X), and the operator norm of L satisfies the inequality

HLQ||H*’P(')(X)—>LP(-)(X) < CHQHM}/Q(X),
where C' is a positive constant independent of g.
Proof. Since by Lemmam Lg’o(é\,’) is dense in H*?()(X), we only need to prove
[ Lg(llLeerxy S ||g||M(11/‘1(X)Hf||H*=P(')(X)

for all f € LT (X). Thanks to Theorem |4.24] f admits a finite atomic decomposition,
namely, there exist N € Nand {)\;}}L, C (C and (p(-), q)-atoms {a;}}_, such that, for
je{l,...,N}, a; is supported in B(x],Q li) for some x; € X and l; € Z,

f= ZAJ‘%’
j=1
in (G§(8,7))" and
va()({/\j};\f:l» {B(xjﬂilj)};'v:l) S ||fHH*,p<->(X)-
By Corollary [6.2) m and m, we see that, for all x € X,
—k\\la
9@ (1) (2) Z I 3 et @O

||XB(mJ 2” J)”Lp( )(X)

k=—o00
[w(B(x;,27%))]*
* el 19(2) X5z, 2-ti+2y(T)
721 k;-l ” XB(z;,2 ‘)”LP(-)(X) B(z;,27377)

N j _
e ((B(xj,27%)]
<SSy Y gatety BBER2ZDN oy s (@)
i=1

k=—o0 X By 271 [l Lr ()

N [e%s)
e—ty)an (B(z5,271))]
+ N Y 2mkhes E 19(2) X p(a, 21542 (@)

=1 k=1, +1 ”XB(IJ-,Q*’J)”LP(')(X)

N lj _
ex( ((B(zj,27%)
<SSy Y gatety BBERZON oy s (2).
j=1

||XB(;EJ 2~ J)HLP( )(X)

k=—00
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Choose k! > 0 so that xTp > 1 and e; > nk' by using (6.4). For all z € X, let
[u(B(x5,2°~")))

190l pg2/o ey IXB (@, 270 42) [ Lo ()

Then supp G C B(z;,27%"2) and

[(B(@;, 227 )]l gll La(B(x, 2-++2)) o _n(B(x;, 227 M)

Gjr(x) = 19(2)IXB(z,,2-++2) (T)

Gy kllaxy = < .
191l 270 ey IXB(@s 2542 Iy T IXBGy 27442 oo ()
Observe that, for all x € X,
251 (k—1; )G ( )
l9(x) )| <) I N9l e o X B2y 2-54+2) | o) :
Z k;m Mg (X) i MLPO(X) X 5 1]72*1)HLP(‘)(X)

By Proposition m and Theorem [2.7] we conclude that

||Lg(f)HLP(->(X)

Nl |Aj]261 (k1) Py 1/p
Sy I [ -
MO ;kzz_ IXB (2,271l Lo () (=0, 2275) LrO)(X)
N l; er—nwt)(k=1;) 1/p
A|22£( 1—nk")( 3 : P
S gl gz { A M(X g0 p;)]"'®
M) ;k; ||XB(m_7,2_lJ)||LI’(-)(X)]£ Blws,2 ) LrO) ()
Sy I )
MO j=1k=—c0 HXB(m] 2_’J)||LP()(X)]p B( 32 J) Lo (X)
- Al 2y e
St otz }
Ma () ]; ||XB(g;j,2*lj)||LP<~>(X) Bles27) LrO) (X)

19l et ey Ao (A s LB 5, 20 10) S gl gy
which completes the proof of Theorem [6.3} w

In the following remark, we explain why Theorem [6.3] deserves its name and give an
example to which we can apply Theorem [6.3]

REMARK 6.4. (i) Recall that the fractional integral operator I, on R™, with 0 < a < 1,
is defined by setting, for all suitable functions f on R™ and all x € R"™,

_ fy)

Olsen’s inequality is an inequality of the form

lglafllz < Cliflixlglly,

where X, Y, Z are suitable quasi-Banach spaces and C' is a positive constant independent
of f and g. There exists an extensive literature on Olsen inequalities; see |17, [69H71} |73,
'75H78| for theoretical aspects, and |24H26| for applications to PDEs.

(ii) The restriction forces n < 1. We point out that there exists an RD-space such
that both n and k can be taken to be logs 2 < 1. Indeed, let K be the Cantor set on [0, 1]
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and g = H'°%32 where 7!°%32 denotes the log; 2-dimensional Hausdorff measure. Let
oo
X =JBz:zeK}CR
1=0
Then we claim that (X,|-|,u) is an RD-space with n = k = logs 2. More precisely,
w(XNI) ~ |I'°832 for any interval I intersecting X, where the implicit positive constants

are independent of I. Indeed, let I be a compact interval contained in [0, 3] for some
lo € Z4. Then, by noticing that € X if and only if 3z € X, we have

p(X N I) = 20 (K A [37%01]) ~ 2o|3~log]losa — |]loza?, (6.5)

where the implicit positive constants are independent of I.
To show the equivalence in (6.5)), we first observe that

p(K 0 300)) < (3702

from the definition of . To see the opposite inequality, we let J := 37'1. We may assume

that m := —logg |J| is an integer and inf ¢y z = 0. Then
gm
K= JEn),
k=1

where each J, is a translate of .J. Thus,
WK O B01]) = (K 1J) = 277 a(K) = []95 2u(K) = 3710 8 2y (K).
Since p(K) is known to be non-zero (see |18]), we obtain the desired claim.
(iii) Let f belong to L>°(X) with bounded support. Since, for all k € Z and = € X,

SLN@)] S 1l ey 5222

Vomi(2)
it follows that I,, given by has the following expression:
La(f)(w) = lim > (B2, 27)]" Du(f)()
k=—1L
Lo
= Jlim { lim_ k:Z (B, 27" De(f) () }
L2
= Jlim { lim_ 3 B 2N S (@) = Sk (f)(@)]}

lim  lim {[p(B(x,25))]*S_r, (f)(@) = (B2, 2772))]*Sp, 1 (F)(2) }

Ll—)OC Lz—)OO

+ lim Lm0 {[u(B(,27)) = [u(B(a, 27} Sk (f) (@)

L1 — 00 L2—>OO
k=—L1+1

Lo
= lim  Tim Y {[u(B(z,279)]" = [w(B(x, 275 )]* }Sk(f) ().

L1*)OO LQ*)OO
k=—L,+1

If C5 and & in (2.2)) satisfy Co2% < 1, then, in view of (3.3)), we find that, for all f € L>(X)
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with f > 0 p-a.e. and all x € X,

me ) () f(y)
/XZZ )]1,af(y) du(y) Z /X [M(B(it,d(l‘,y)))]l*a Cl/,é(y)7

where the implicit positive constant is independent of f and z. Therefore, the fractional
integral operator I, is closely related to the fractional integral operator dealt with in [72].

6.2. Singular integral operators. In this subsection, we consider the boundedness of
singular integral operators on the space HP(") (X). To this end, we first recall the definition
of singular integral operators studied in |33} |55].

Recall that Cy(X) denotes the space of all continuous functions on X with bounded
support. For n € (0, 1], let

Cr(X) = { J € () : fllegey 2= sup “ar—sm™

T#y
Assume that T is a bounded linear operator on L?(X). The operator is said to have a
distributional kernel K, which is locally integrable away from the diagonal of X x X, if
for any f,g € C'(X) with supp f Nsuppg = 0,

(Tf.g) = /X @)K @.9) 1 0) duly) du(z). (6.6)

First, we have the following conclusion, which is of independent interest.

PROPOSITION 6.5. Let e; € (0,1], p(-) € Cézg/ (nter), 1] (X) and T be a bounded linear
operator on L2(X) with distributional kernel K as in . Suppose that there exists a

positive constant C' such that, for all x,y,y € X with d(y, y') <d(x,y)/2 and x # y,

C K(za [d(y,y")]*
K (z,y) — K( ,y)ISCV(x’y)[d(%y)]q- (6.7)

Then there exists a positive constant C such that, for all (p(+),2)-atoms a,
ITallLecr 2y < C.
Proof. Let a be a (p(-),2)-atom supported on By := B(xg,79) for some zg € X and
7o € (0,00). Then we have
||Ta||Lp<->(X) S ||XQBUTaHLp(')(X) + HXX\(zBO)TaHLv(-)(X) =:1+1L
For I, by the boundedness of T on L?(X), we see that
[1(Bo)]'?
|Tallrexy S lallzy S 50—
HXBOHLP(')(X)

which, together with Proposition implies that I < 1. For II, from (6.7) and the
vanishing moment condition on a, we deduce that, for all z € X'\ (2By),

1 ‘1 (B,
Ta(2)] < ro'wlBo)
X Bo | Loer 2y [d(, 20)]V (2, 20)
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By this and (2.2), we further find that, for all z € X'\ (2By),

1 B e1/n+1 M e1/n+1
X BollLrer 2y LM(B(2, d(z,20))) X Bo ll Lre) ()
which, combined with Theorem implies that IT < 1. This finishes the proof of Propo-
sition [0.0] =

Let T be a bounded linear operator on L?(X). We say that T'1 = 0 if T satisfies, for

all g € C/'(X),
| 79t duta) =0,
X

where T* denotes the adjoint operator of T" on LQ(X), and that T*1 = 0 if T satisfies,
for all h € L?(X) with bounded support and [, h(x)du(z) =0,

/X Th(z)du(xz) = 0.

THEOREM 6.6. Lete; € (0,1], p(+) € CEZ“;/(TL_‘_Q)J](X) and T be a bounded linear operator

on L*(X) with distributional kernel K as in (6.6). Assume that there exists a positive
constant ¢ such that the kernel K of T satisfies the following conditions:

(i) for all x,y € X with x # vy,
|K(z,y)| < c/V(z,y);

(i) for all z,y,y' € X with d(y,y") < d(z,y)/2 and x # vy, is satisfied;
(iii) for all z,a',y € X with d(z,x") < d(z,y)/2 and x # vy,

N el < o L [d@a)]
()= Klal < e 55 )

(iv) for all x,2',y,y' € X with d(x,2") < d(z,y)/3 and d(y,y") < d(x,y)/3,
[d(z, )] [d(y, y")]!
V(z,y)[d(z, y)]*

If T1=0=T"1, then T extends to a bounded linear operator on Hp(')(/'\,’).

|[K(l‘,y) - K(I/,y)] - [K(Ivyl) - K(l‘/,y/)H <c

Proof. Let € € (0,¢1) and g“b(E, ) with E, 5 € [€,€1) be the set of all functions in Q’(E, )
with bounded support, namely,
Gu(B,7) = G(B.7) N ().

Then, from the proof of Theorem we deduce that G,(3,7) is dense in H?()(X) when
8,7 € [e,e1) and p_ € (n/[n+ e, ]

Let f € gb(ﬂ ¥). Since T1 = 0, it follows from |33, Lemma 2.9] that, for all g €
G§(8,7) with 8,7 € (0,¢),

T*g € G5(8,7)-
From this and Theorem [5.3] we further deduce that
<Tf7 > fvT* Z/\ a],Tg Z)‘j<Ta'jvg>

jEN JjEN
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where {\;};en C C and {a;},en are (p(-), c0)-atoms supported on
{Bj}jen = {B(zj,r5) : 7 € X, rj € (0,00) }jen
satisfying f = >,y Aja; in (Ge(B,7)) and
Ay (A tens {Bstien) S Il (6.8)
Let {D;}ie(0,00) be an (e1,€2)-CRF in L?(X) with e; € (0,00). Then D; € G5(83,7) for

all t € (0,00), and hence
= Z )\th(TCLj)

JEN
pointwise. From this, we obtain

ISl ) S | 3 MilSTay) e,

e Lp(‘)(){)
I Is@ane |, (6.9)
JEN
From |33, Proposition 2.17] and the L?(X)-boundedness of T', we deduce that, for all
JeN,
(B

18(Taz)lle2x) S lajlliexy S :
J (X) JIL2(X) ||XB ||LP<) )

which, together with Proposition and (| .7 implies that

|)\ |XB
HZ IAi|S(Taj)x2m,
JEN
Meanwhile, by the proof of |33, Propos1t10n 3.6], we know that, for all €] € (0,¢1), 7 € N
and z € X'\ (2B;),

S leoray- (6.10)

Lp()(X) Lr()(X)

1 rt u(B;
§(Ta)a) £ B
X5, | v (2 [d(, 25)]9V (2, 25)
which, combined with (2.2]), implies that
1 B. 6/1/”"‘1 M ) €l /n+1
§(Tay)(@) [RIL I LA i
IxB; || oo a0y LB, d(z, 5))) IxB; o) (x)
From this and Theorem [2.7] we further conclude that

IS vls(Ta) < 3oy B 2
JjeN

jeN

|>\ |XB
S e o lIx

5 Ixs; e

S I Evo 2y (6.11)
where we choose €] € (0,¢€1) such that p_ > n/(n + €}).

Combining (6.9)—(6.11), we obtain
”Tf”HP(')(X) ~ HS(Tf)HLP(')(X) S ”f”HP(')(X)
which implies that T is bounded on HP()(X). This finishes the proof of Theorem "

)

LrO(x) ™ ||XB] ||LP( (x) HLeG)(x)

Lp( )(X)
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REMARK 6.7. When p(-) := p with a constant p € (n/(n + €), 1], Theorem[6.6]is just [33]
Proposition 3.6].

6.3. Quasi-Banach valued sublinear operators. Recall that a quasi-Banach space
B is a complete space endowed with a quasi-norm || - ||z which is non-negative, non-
degenerate (namely, ||f||z = 0 if and only if f = 0), homogeneous, and obeys the quasi-
triangle inequality, namely, there exists a constant K € [1,00) such that, for all f,g € B,

If +9lls < Kl £z + llglls);

see, for example, [85| [86]. It is easy to see that, when p(-) € Céggoo)(zl’), the variable
exponent Lebesgue space LP()(X') and the variable exponent Hardy space H*?()(X) are
quasi-Banach spaces.

DEFINITION 6.8.
i) Let v € (0,1]. A quasi-Banach space B., with quasi-norm || - ||5. is called a ~y-quasi-
vy ¥

Banach space if there exists a constant K7 € [1,00) such that, for all m € N and
{f]};n=1 - B’ya

m y m
ISall = m> sk
j=1 K j=1

(ii) For any given y-quasi-Banach space B., with v € (0, 1] and linear space ), an operator
T from Y to B, is said to be B-sublinear if there exists a positive constant K such
that, for all m € N, {)\;}72, C C and {f;}]2; C V),

| (o), = ' riraiE, (6.12)
j=1 i j=1
and, for all f and ¢ in ),
1T(f) = T(9ls, < K T(f = 9)ll5,- (6.13)

REMARK 6.9. (i) The y-quasi-Banach spaces as in Definition have been investigated
in [45]; in the case of K7 = 1, they were introduced in [85] (see also |5, [86]).

(ii) Notice that any Banach space is a 1-quasi-Banach space, and the quasi-Banach
spaces ¢4, LI(X) and H4(X') with ¢ € (0, 1) are typical ¢g-quasi-Banach spaces. Moreover,
by the Aoki-Rolewicz theorem (see 3 65]), any quasi-Banach space is a y-quasi-Banach
space for some 7y € (0,1).

THEOREM 6.10. Let p(-) € Cézg/(n_s_l)’l](?(), v € [p+,1] and B, be a vy-quasi-Banach

space. Assume that one of the following is satisfied:
(i) g€ (1,00) and T : ng(l')’q(X) — By is a B,-sublinear operator such that
Ay = sup{||Tals, : a is a (p(-),q)-atom} < oo;
(i) T : Hgfl')’oo(X) NC(X) — B, is a B, -sublinear operator such that
Ay :=sup{||Tals, : a is a continuous (p(-),o0)-atom} < oc.

Then T uniquely extends to a bounded B.-sublinear operator from H*P(X) to B,.
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Proof. Assume first that (i) holds true. Let f € Hgl(j')’q(X). Then we have f = Z;vzl Ajaj,
where N € N, {\;}/L, € C and {a;}}_, are (p(-),q)-atoms satisfying

Epy (N ) Sl (- (6.14)
From (6.14), (6.12), assumption (i) and Lemma[5.9] we deduce that

N N 1/
IT(Pls, = [ (X Aes)] = {3 Pl itani, }

N 1/~ ~
S s &0 S Ifllso . (6.15)
j=1

Now, by the density of ng(l')’q()() in H*P()(X), together with a density argument,
we deduce that the desired conclusion holds true.

Finally, if assumption (ii) is satisfied, then, by the fact that ng(l')’oo(/'\f )N C(X) is
dense in H*?()(X) (see Proposition , we also obtain the desired conclusion in this
case. This finishes the proof of Theorem "

7. Duality of H*P)(X) with p, € (0,1]

In this section, we first introduce a kind of BMO spaces corresponding to a function
¢+ X x (0,00) = (0,00) on X, denoted by BMO,(X). Then we prove that, when
p+ € (0,1], the dual space of H*P()(X) is BMO,(X) for a special function ¢.

We begin with the following definition.

2

du(y)] 1/2

DEFINITION 7.1. For a function ¢ : X x (0,00) — (0, 00), the space BMOg4(X) is defined
to be the set of all h € LL _(X) such that
Il S -
BMO,(X) *= sup Yy Yy)—
+(%) z€X,re(0,00) QS(SQ T) B(z,r) B(z,r)
is finite, where, for all locally integrable functions f,
1

loc
]i@,ﬂf = B /B RCLICE

THEOREM 7.2. Let p(-) € C'°8 (X) and py € (0,1]. For allx € X andr € (0,00),

(n/(n+1),00)

define
L ||XB(Q:7’I‘)HL1’(')(X)
) = LBl
(i) For each h € BMO(X), the mapping
Ln: feI20X) = / W) f(z) da (7.1)
X

extends to a bounded linear functional on H*?)(X) such that

ILall(a=r0 )y < Rl[BMO, (2)-
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(ii) Any bounded linear functional L on H*P()(X) can be realized as above with some
function h € BMO4(X) and
[hllBMo, () < CILI (rrewey (2))+
with C' being a positive constant independent of L.

Proof. To prove (i), we first show that the functional L;, is well defined on all (p(-),2)-
atoms a. Indeed, if suppa C B for some ball B C X, then, by the vanishing moment of
the (p(-),2)-atom a and the Holder inequality, we see that

La(a |—\ [ i) duta)| = | [ [ne) - f nate)dute)

(B)]~ 1/2H><B||Lp<> ) lallz2x) 1hllByo, () < IllBMO, () (7:2)

Thus, the claim holds true. Moreover, Lj is well defined on L2 0 X) by (7.2 . Now, for
any f € Lzo(X) by Lemma we have f = Z] 1Aja; almost everywhere on X,
where N e N, {};}7X, cC and a;}, are (p(-),2)-atoms satisfying

gp(' ({Aaj}]=1) rS ||f||Hp(')’2(X)'
From this and Lemmas [2.9] and [4.23] - we deduce that

N
< [lhllBmo, () Z |z

j=1

() dp(x)

< Hh||BMo¢(X)||fHHgl<j«>,z(X).

Using this and the fact that L°(X) is dense in H*?()(X) (see Lemmal4.23), we conclude
that Lj, extends to a unique bounded linear functional on H*P() (X ) such that
I Lnll (grercr 20y < lIBllBMO, (1)

which completes the proof of (i).
Let us now prove (ii). To this end, let L be a bounded linear functional on H*P()(X).
Notice that, for any ball B(x,r) of X, with x € X and r € (0,0), and f € L?(B(z,r)),

[1u(B(z,7))]/? [f _]{3(“) f] XB(z,r)

2||f||L2(B(z,T‘) ||XB($,7") ||LP(‘)(X)
is a (p(+), 2)-atom. Then, by Theorem the mapping

1 € L3(B(a,r) L([f -£ - f} XB@J))

is a bounded linear mapping on L?(B(x,r)). Thus, by the self-duality of L?(B(x,7)), we
obtain a function bg(, ) € L*(B(z,r)) such that, for all f € L*(B(z,r)),

L({f ]{g(m) f} XB(“)) = /B(x,r) bp(a.r) (y)f(y) du(y) (7.3)

2[lf 2B X B, Lo ()
105(2,m 22(2) < IILll (70000 (20)) [1(B(z, 1)1/

and
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By choosing f := bp(s,) in , we see that

||bB(m,r) ||%2(B(x,r)) =1L ( |:bB(z,r) _]é bB(m,r):| XB(r,r))

S L aere (20« (@, 0B @) | L2 (B2,r)) -

(z,r)

Thus,
1082 2By S G@, T)IL (grepe) 20y - (7.4)
Let B(z,r) and B(Z,7) be balls in X' such that B(z,r) is contained in B(Z, ), where
z,Zz € X and 1,7 € (0,00). Then, by (7.3) with B(x,r) replaced by B(Z,7) and f replaced
by fXB(x,r), we find that

L([fxB(x,m - /. L) du(y)]xBW ) -/ b ) duty)

From this and (7.3)), we obtain

/ b () () duly) — / bitay (0)F(4) diu(y)
B(z,r)

B(a,r)
L[ [ 10w~ s [ swdnt)|xoien )

1
. b (2) {XB(x,m(Z)]i I =BG /B . fy) du(y)} dp(z)

(a:7’,‘)
[ sw|f  tmen—f bmen|a
B(x,r) B(z,r) B(z,7)
for all f € L?(B(z,r)). It follows that

bpEm(2) = bp(ar (2) +][
B(z,r)

b7 _]{BC 5 bpz,m

for p-almost every z € B(z,r). We let

CB(x,r),B(Z,7 ::][ bB(E,T _][ bB(E,r .
B(z,r) B(z,T)
Then
b7 (Y) = bB(e,r)(Y) + CBr),BEM (7.5)
for p-almost every y € B(x,r) if B(z,r) is contained in B(Z,7).
In particular, we can define, for all y € X,
h(y) = bB(xl,R)(y) — CB(x1,1),B(z1,R)

as long as max{1,d(z1,y)} < R despite the ambiguity of such R. Indeed, when R > R >
max{1,d(x1,y)}, for almost every y € B(x1, 1),

bB(zl,E) (y) = bB(:m,l)(?/) + CB(x1,1),B(z1,R)’ bB(zl,R) (y) = 53(11,1)(9) + CB(z1,1),B(z1,R)
and, for almost every y € B(z1, R),

bp(ar,)¥) = 0821, 0) () + Cp(ay ), Blar, )
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Therefore, it follows that

CB(x1,1),B(x1.R) T CB(2,.R),B(21,B) — CB(21,1),B(z1,R)’
and hence

bB(ml,R) ~CB(21,1),B(z1,R) bB(a1,R) + CB(21,1),B(x1,R)
= bp(a, ) ~ UB@1.R) ~ CB(ay,R),B(a1,7) = U

almost everywhere on B(z1, R).

By (7.5) and the definition of h, we see that, for each ball B(z,r) of X and almost
every y € B(z,r),

h(y) = bB(2,r) (Y) = bB(2y,R)(Y) = CB(21,1).B(z1.R) — [0B(21.R) (Y) — CB(2,r),B(21,R)]
= CB(z,r),B(z1,R) — CB(z1,1),B(z1,R)>

where R is large enough. Thus, for each B(x,7), we know that h — bg(, , is just the
constant ¢g(z.r),B(x1,R) — CB(x1,1),B(x1,R), Which depends on x and 7.

Let us show that h realizes L, or more precisely, let us show that, for any (p(-), 2)-atom
a with support B,

L(a):/Xh(x)a(x)d,u(m).

To this end, choose R > 1 so that B C B(x1, R). Then, since the integral of a is zero, we
have

[ i) duta) = [ a@hie) dutz) = [ ala)b(o) duto). (7.6)
X B B
By , we find that
[ atalbn(e) dut) - L([ - [aw) du(w} XB) ~ L(a),
which, combined with , implies that
L(a) = /Xh(:r)a(x) du(z).

On the other hand, observe that, for each ball B C X, h — bp is constant almost
everywhere on B. Then, by (7.4]), we conclude that, for every ball B := B(zp,rp) C X,

with xp € X and rg € (0, 00),
2 1/2
bp(x) — + bp d,u(x)}

{[Juor=fof ar} " ={ o~

S oslleexy S é(@s, )L (ere) (20))+»
which further implies that

[hllBMo, () S LN a2y
This finishes the proof of Theorem [

REMARK 7.3. Tt is still unclear how to obtain a description of (H*?P()(X))* when p; > 1
and p_ < 1; see [38].
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