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Traces of functions of L1
2 Dirichlet spaces on the

Carathéodory boundary

by

Vladimir Gol’dshtein and Alexander Ukhlov (Beer Sheva)

Abstract. We prove that any weakly differentiable function with a square integrable
gradient can be extended to the Carathéodory boundary of any simply connected planar
domain Ω 6= R2 up to a set of conformal capacity zero. This result is based on the notion
of capacitary boundary associated with the Dirichlet space L1

2(Ω).

1. Introduction. Let Ω be a domain in R2. The trace (extension) prob-
lem for univalent analytic functions was first considered by C. Carathéodory
[6] in 1913. He introduced the notion of an ideal boundary ∂CΩ in terms of
so-called prime ends. The Carathéodory prime ends represent a compactifi-
cation of the planar domain in the relative distance introduced by Lavren-
tiev [19]. The main result of [6] states: if Ω is a simply connected planar
domain whose boundary ∂Ω is a Jordan curve, then every univalent analytic
function f from Ω onto the unit disc D extends continuously to ∂Ω. A more
applicable version of this theorem is the following. Let g : D→ Ω be a uni-
valent analytic function. Then g extends continuously onto the boundary if
and only if the boundary of Ω is locally connected [38].

Univalent analytic functions f : Ω → D have a square integrable gradi-
ent. From this point of view it is natural to consider the trace problem for
weakly differentiable functions with ∇u ∈ L2(Ω).

These functions are elements of the Dirichlet space (a uniform Sobolev
space) L1

2(Ω), the space of locally integrable functions with square integrable
weak gradient ∇u ∈ L2(Ω), equipped with the seminorm

‖u|L1
2(Ω)‖ = ‖∇u|L2(Ω)‖.

By the standard definition, L1
2(Ω) functions are defined only up to a

set of measure zero, but they can be redefined quasi-everywhere, i.e. off
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a set of conformal capacity zero. Indeed, every function u ∈ L1
2(Ω) has

a unique quasicontinuous representative ũ ∈ L1
2(Ω). Here a function ũ is

termed quasicontinuous if for any ε > 0 there is an open set Uε of conformal
capacity less than ε such that ũ is continuous on Ω \ Uε (see, for example,
[15, 22]). The concept of quasicontinuity can be obviously extended to the
closure Ω of Ω.

In this paper we deal only with quasicontinuous representatives of func-
tions u ∈ L1

2(Ω).
One of the main results of the paper is the following:

Theorem A. Let Ω ⊂ R2, Ω 6= R2, be a simply connected domain which
is locally connected at any x ∈ ∂Ω. Then for every u ∈ L1

2(Ω) there exists a
quasicontinuous function ũ : Ω → R such that ũ|Ω = u.

Remark 1.1. The function ũ is defined at all points of ∂Ω except a set
of conformal capacity zero (i.e. quasi-everywhere).

The proof is based on extension of weakly differentiable functions with
a square integrable gradient to the Carathéodory boundary ∂CΩ.

Theorem B. Let Ω ⊂ R2 be a simply connected domain, Ω 6= R2. Then
every u ∈ L1

2(Ω) has a quasicontinuous extension ũ on the Carathéodory
boundary ∂CΩ. The function ũ is defined quasi-everywhere (everywhere ex-
cept on a set of conformal capacity zero) on ∂CΩ.

The main ingredient of our method is the well-known concept of confor-
mal capacity and the less known concept of conformal capacitary boundary
introduced by V. Gol’dshtein and S. K. Vodop’yanov [12] for quasiconformal
homeomorphisms.

We prove that in the planar case, “points” of the conformal capacitary
boundary coincide with the Carathéodory prime ends. This allows us to con-
sider traces of weakly differentiable functions on the classical Carathéodory
boundary ∂CΩ.

The main properties of the space L1
2(D) where D ⊂ R2 is the unit disc are

well known. The Dirichlet spaces L1
2(Ω) are conformal invariants. Therefore

the Riemann Mapping Theorem permits us to transfer necessary information
about boundary behavior from L1

2(D) to simply connected domains Ω.
More precisely, we extend the concept of quasicontinuity to a “capac-

itary” completion of a domain Ω. We construct a conformal capacitary
boundary as the completion {Ω̃ρ, ρ} of a metric space {Ωρ, ρ} for a con-
formal capacitary metric ρ (see Section 1). Roughly speaking, an “ideal”
capacitary boundary point is a boundary continuum of conformal capacity
zero.

Our method allows us to treat the general case of simply connected
planar domains Ω ⊂ R2. We prove that any function u ∈ L1

2(Ω) has a



Boundary values of functions of Dirichlet spaces 211

quasicontinuous extension onto the conformal capacitary boundary Hρ =

Ω̃ρ \Ωρ. The main result in terms of ideal capacitary boundary is:

Theorem C. Let Ω ⊂ R2 be a simply connected domain, Ω 6= R2. Then
for every u ∈ L1

2(Ω) there exists a quasicontinuous function ũ : Ω̃ρ → R
defined quasi-everywhere on Hρ such that ũ|Ω = u.

Remark 1.2. The concepts of conformal capacitary metric and confor-
mal capacitary boundary were proposed in [12]. By quasi-invariance of con-
formal capacity under (quasi)conformal homeomorphisms, any such homeo-
morphism ϕ : Ω → Ω′ is a bi-Lipschitz homeomorphism ϕ : (Ω, ρ)→ (Ω′, ρ)
for the corresponding conformal metrics and can be extended to a homeo-
morphism ϕ̃ : (Ω̃, ρ)→ (Ω̃′, ρ) of the capacitary completions [12].

There is a vast literature concerning “ideal” boundaries of planar do-
mains in the context of conformal homeomorphisms. We discuss a few such
concepts in the last section.

The paper is organized as follows:

The main properties of conformal capacitary metrics are proved in Sec-
tion 2. The focus is on the local properties of the metrics at boundary points
and their dependence on the local topological properties of the boundary. In
Section 3 we discuss an analog of the Luzin property for capacitary metrics.
We call it the strong Luzin property. We prove this condition for fairly
large classes of domains that include extension domains for L1

2(Ω). In Sec-
tion 4 we apply the abstract construction of Section 3 to simply connected
planar domains and we prove the main results about extension of L1

2(Ω)
functions to the capacitary boundary. In Section 5 we give a short historical
sketch of the “ideal” boundary concept and its connection to the capacitary
boundary.

In the terminology of the theory of Sobolev spaces we solve the classical
trace problem for the space L1

2(Ω) in the case of simply connected planar
domains.

Remark 1.3. The classical trace problem for Sobolev spaces is of great
interest, mainly due to its important applications to boundary value prob-
lems for partial differential equations. Boundary value problems can be spec-
ified with the help of traces on ∂Ω of Sobolev functions.

There is an extensive literature devoted to the trace problem for Sobolev
spaces: we mention the monographs of P. Grisvard [14], J.-L. Lions and
E. Magenes [21], V. G. Maz’ya and S. Poborchi [22], [27], and the papers
[1]–[5], [8], [16]–[18], [24]–[23], [31], [32], [40], [42], [43].

For smooth domains the traces of Sobolev functions are in Besov spaces.
In the case of Lipschitz domains the traces can also be described in terms
of Besov spaces. For arbitrary non-Lipschitz domains the trace problem is
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open. For cusp type singularities a description of traces can be found in [11]
in terms of weighted Sobolev spaces.

2. Conformal capacitary metric. Let Ω be a planar domain and let
F0, F1 be disjoint compact subsets of Ω. We call the triple E = (F0, F1;Ω)
a condenser.

The value
cap(E) = cap(F0, F1;Ω) = inf

�

Ω

|∇v|2 dx,

where the infimum is taken over all nonnegative functions v ∈ C(Ω)∩L1
2(Ω)

such that v = 0 in a neighborhood of F0, and v ≥ 1 in a neighborhood of F1,
is called the conformal capacity of E.

For 0 < cap(F0, F1;Ω) < ∞ there exists a unique function u0 (an ex-
tremal function) such that

cap(F0, F1;Ω) =
�

Ω

|∇u0|2 dx.

An extremal function is continuous in Ω, monotone in Ω \ (F0 ∪ F1), equal
to zero on F0 and to one on F1 [15, 41].

Definition 2.1. A homeomorphism ϕ : Ω → Ω′ between planar do-
mains is called K-quasiconformal if it preserves orientation, belongs to the
Sobolev class L1

2,loc(Ω) and satisfies the distortion inequality

max
|ξ|=1
|Dϕ(x) · ξ| ≤ K min

|ξ|=1
|Dϕ(x) · ξ| for almost all x ∈ Ω.

Infinitesimally, quasiconformal homeomorphisms carry circles to ellipses
with eccentricity uniformly bounded by K. If K = 1 we recover conformal
homeomorphisms, while for K > 1 planar quasiconformal mappings need
not be smooth. The theory of quasiconformal mappings can be found, for
example, in [39].

It is well known that conformal capacity is quasi-invariant under planar
quasiconformal homeomorphisms.

2.1. Definition of conformal capacitary metrics. A connected and
closed (with respect to Ω) set is called a continuum. Fix a continuum F in
the domain Ω ⊂ R2 and a compact domain V such that F ⊂ V ⊂ V ⊂ Ω,
and the boundary ∂V is the image of the unit circle S(0, 1) under some
quasiconformal homeomorphism of R2.

Definition 2.2. Choose x, y ∈ Ω ⊂ R2 and join them by a rectifiable
curve l(x, y) ⊂ Ω. Define the conformal capacitary distance between x and
y in Ω with respect to the pair (F, V ) as

ρ(F,V )(x, y) = inf
l(x,y)
{cap1/2(F, l(x, y) \ V ;Ω) + cap1/2(∂Ω, l(x, y) ∩ V ;Ω)}

where the infimum is taken over all curves l(x, y) as above.
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This definition was first introduced in [12] (see also [41]) where it was
proved that ρ(F,V )(·, ·) is a metric in Ω and that the topology induced by

this metric in Ω ⊂ R2 coincides with the Euclidean topology. This metric is
quasi-invariant under quasiconformal homeomorphisms and invariant under
conformal ones.

Let {Ω̃, ρ(F,V )} be the standard completion of the metric space {Ω, ρ(F,V )}
and denote byHρ the set {Ω̃\Ω, ρ(F,V )}. We callHρ the conformal capacitary
boundary of Ω. The set Hρ of boundary elements does not depend on the
choice of the sets F and V in the definition of ρ [12, 30, 41]. Moreover, the
sets of boundary elements corresponding to different choices of (F, V ) are
homeomorphic under the identity mapping. This justifies the notation Hρ

for the conformal capacitary boundary.

The topological properties of Hρ were studied in [12, 41]. For the reader’s
convenience we reproduce here the detailed proof of these properties.

Definition 2.3. For h ∈ Hρ we denote by D(h, ε), ε > 0, the disc about
h in the metric ρ(F,V ).

Call the set

sh =
⋂
ε>0

D(h, ε) ⊂ R2

the realization (or impression) of h ∈ Hρ.

Recall that a domain Ω is called locally connected at z0 ∈ ∂Ω if z0 has
arbitrarily small connected neighborhoods in Ω.

Lemma 2.4. Let a domain Ω be locally connected at a point x ∈ ∂Ω and
suppose x ∈ sh for some h ∈ Hρ. Then for every sequence {xm ∈ Ω} such
that |xm − x| → 0 we have ρ(F,V )(xm, h)→ 0 (as m→∞).

Proof. Since Ω is locally connected at x ∈ ∂Ω, any two points xk, xm
can be connected by a geodesic path l(xk, xm) whose length tends to zero as
k,m→∞. Without loss of generality we can suppose that l(xk, xm)∩V = ∅.
Hence cap(F, l(xk, xm);Ω) tends to zero as k,m→∞, and therefore

lim
n→∞

ρ(F,V )(xn, h) = 0.

Lemma 2.5. Let the realization sh of h ∈ Hρ be a single point. Then
for every sequence {xm ∈ Ω}, ρ(F,V )(xm, h) → 0 implies |xm − sh| → 0 (as
m→∞).

Proof. Suppose that ρ(F,V )(xm, h)→ 0. Because sh is a single point, we
have

diam
(
D(h, ε)

)
= sup

x,y∈D(h,ε)

|x− y| → 0 as ε→ 0.
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The sequence {xm} belongs to the boundary element h ∈ Hρ that is a class
of equivalent sequences. So

|xm − xn| → 0 as m,n→∞.
Thus, {xn} is a Cauchy sequence in the Euclidean metric, and consequently
|xm − sh| → 0 as m→∞.

From these lemmas we will deduce:

Theorem 2.6. Let a domain Ω be locally connected at any point x ∈ ∂Ω.
Then the identity mapping i : Ω → Ω can be extended to a homeomorphism
ĩρ(F,V )

: Ω → Ω̃ρ(F,V )
if and only if the realizations sh of all boundary ele-

ments h ∈ Hρ(F,V )
are single points.

Proof. Suppose that the identity mapping i : Ω → Ω can be extended
to a homeomorphism ĩρ(F,V )

: Ω → Ω̃ρ(F,V )
. Then every boundary element

h ∈ Hρ(F,V )
coincides with a point x ∈ ∂Ω and so has a one-point realization.

Conversely, suppose that all realizations sh for h ∈ Hρ(F,V )
are single

points. Then extending the identity i : Ω → Ω to ĩρ(F,V )
: Ω̃ρ(F,V )

→ Ω by set-

ting ĩρ(F,V )
(h) = sh we obtain a one-to-one correspondence ĩρ(F,V )

: Ω̃ρ → Ω.

Let us check the continuity of ĩρ(F,V )
and ĩ−1ρ(F,V )

.

Suppose that xk → x in Ω. Because the realizations sh of h ∈ Hρ are
single points and x ∈ sh, Lemma 2.4 implies ρ(F,V )(xm, h)→ 0 as m→∞.

Hence ĩρ is continuous.

Suppose hk → h0 in Ω̃ρ(F,V )
. Because Ω is locally connected, the real-

izations of hk and h0 are one-point sets and we can identify hk and h0 with
their realizations. By Lemma 2.5, hk → h0 in Ω. Therefore ĩ−1ρ(F,V )

is also

continuous. Thus ĩρ(F,V )
is a homeomorphism.

2.2. Conformal capacitary boundary, extension domains and
Carathéodory prime ends

Definition 2.7. A domain Ω ⊂ R2 is said to be an L1
2-extension domain

if there exists a bounded linear operator E : L1
2(Ω) → L1

2(R2) such that
E(u)|Ω = u for any u ∈ L1

2(Ω).

We call the operator E an extension operator. It is known that a simply
connected domain Ω ⊂ R2 is an L1

2-extension domain if and only if Ω is a
quasidisc [13].

Recall that a domain Ω ⊂ R2 is called a quasidisc if there exists a
quasiconformal homeomorphism ϕ : R2 → R2 such that Ω = ϕ(D).

Theorem 2.8. If a bounded domain Ω ⊂ R2 is an L1
2-extension domain

then the identity mapping id : Hρ(F,V ) → ∂Ω is a homeomorphism for any
capacitary metric ρ(F,V ) in Ω.
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Proof. Because Ω is an L1
2-extension domain, there exists an extension

operator

E : L1
2(Ω)→ L1

2(R2)

such that E(u)|Ω = u for any u ∈ L1
2(Ω). Hence

1

‖E‖
‖E(u)‖L1

2(R2) ≤ ‖u‖L1
2(Ω) ≤ ‖E(u)‖L1

2(R2).

By the definition of the conformal capacity, for any condenser (F0, F1;Ω)
we have

1

‖E‖2
cap(F0, F1;R2) ≤ cap(F0, F1;Ω) ≤ cap(F0, F1;R2).

So, by the definition of the conformal capacitary metric, for any x, y ∈ Ω
and any pair (F, V ) we obtain

1

‖E‖2
ρ̂(F,V )(x, y) ≤ ρ(F,V )(x, y) ≤ ρ̂(F,V )(x, y)

where ρ̂(F,V ) is the conformal capacitary metric in R2 and ρ(F,V ) is the
conformal capacitary metric in Ω. This means that the metric ρ(F,V ) is

equivalent to ρ̂(F,V ) on Ω. The topology induced by ρ̂(F,V ) on R2 coincides
with the Euclidean topology, and so the topology of Hρ(F,V ) coincides with
the Euclidean topology of ∂Ω. Because the metrics ρ(F,V ) and ρ̂(F,V ) are
equivalent on Ω, the theorem is proved.

This theorem gives a simple proof that the sets of boundary elements
corresponding to different choices of the pair (F, V ) are homeomorphic under
the identity mapping.

Corollary 2.9. If a bounded domain Ω ⊂ R2 is an L1
2-extension do-

main then for any two capacitary metrics ρ(F,V ) and ρ(F1,V1) in Ω the cor-
responding capacitary boundaries Hρ(F,V )

and Hρ(F1,V1)
are homeomorphic.

Because any quasidisc is an L1
2-extension domain we immediately obtain

Corollary 2.10. Let Ω ⊂ R2 be a quasidisc. Then the capacitary
boundary Hρ of Ω is homeomorphic to its Euclidean boundary ∂Ω.

The notion of ideal boundary in terms of prime ends was introduced by
Carathéodory [6]. The Carthéodory prime ends represent a compactification
of the planar domains in the relative distance introduced by Lavrentiev
[19]. (A detailed historical sketch can be found in [28].) We prove that the
capacitary boundary is homeomorphic to the Carathéodory boundary.

Theorem 2.11. Let Ω ⊂ R2 be a simply connected domain, Ω 6= R2.
Then the capacitary boundary Hρ is homeomorphic to the Carathéodory
boundary ∂CΩ.
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Proof. The Carathéodory boundary ∂CΩ is homeomorphic to the Eu-
clidean boundary of the unit disc, ∂D. By Corollary 2.10 the capacitary
boundary of the unit disc is also homeomorphic to ∂D.

On the base of this theorem we give some examples [7] of boundary
elements h ∈ Hρ of the conformal capacitary boundary.

Example 2.12. Let

X = {(x, y) : y = 1/3n for some n ≥ 1 and −1 ≤ x ≤ 2},
Y = {(x, y) : y = 2/3n for some n ≥ 1 and −2 ≤ x ≤ 1}.

Let Ω = (−2, 2) × (0, 1) \ (X ∪ Y ). Then h = {(x, 0) : −1 ≤ x ≤ 1} is a
boundary element of this domain.

Example 2.13. Let Ω=R2\K, where K is given in polar coordinates by

K = {(r, θ) : θ = 2πp/2n for some integer n ≥ 1 and some odd integer p

with 0 < p < 2n, 0 ≤ r ≤ 1/2n}.
A boundary element h ∈ Hρ of this domain at the origin is homeomorphic
to a Cantor set.

By C. Carathéodory [6] the domain Ω is locally connected at boundary
points if and only if every boundary element has a one-point realization.
Hence we have the following corollary of Theorem 2.6:

Theorem 2.14. Let Ω be a simply connected domain locally connected
at every point x ∈ ∂Ω. Then the identity mapping i : Ω → Ω can be extended
to a homeomorphism ĩρ : Ω̃ρ → Ω.

3. Strong Luzin property for the capacitary metric and bound-
ary values of Sobolev functions. Recall the notion of the conformal
capacity of a set E ⊂ Ω. Let Ω be a domain in R2, and F ⊂ Ω a compact
subset. The conformal capacity of F is defined by

cap(F ;Ω) = inf{‖u|L1
2(Ω‖2 : u ≥ 1 on F, u ∈ C0(Ω)}.

In a similar way we define the conformal capacity of open sets.
For an arbitrary set E ⊂ Ω we define the inner conformal capacity as

cap(E;Ω) = sup{cap(e;Ω) : e ⊂ E ⊂ Ω, e is a compact set},
and the outer conformal capacity as

cap(E;Ω) = inf{cap(U ;Ω) : E ⊂ U ⊂ Ω, U is an open set}.
A set E ⊂ Ω is called conformal capacity measurable if cap(E;Ω) =
cap(E;Ω); the value

cap(E;Ω) = cap(E;Ω) = cap(E;Ω)

is then called the conformal capacity of E.
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The classical Luzin theorem asserts that every measurable function is
uniformly continuous if it is restricted to the complement of an open set of
sufficiently small measure. It is reasonable to conjecture that every function
u ∈ L1

2(Ω) is uniformly continuous if it is restricted to the complement of
an open subset of Ω ⊂ R2 of sufficiently small conformal capacity. Unfortu-
nately this conjecture is not valid for arbitrary domains; it only holds under
additional conditions on Ω. A weak version of the Luzin theorem is valid for
capacity:

Theorem 3.1 (Weak Luzin theorem for p-capacity [22]). Let Ω ⊂ R2 be
an open set. For any u ∈ L1

2(Ω) and ε > 0 there exists an open set Uε ⊂ Ω
with cap(Uε;Ω) < ε such that u|Ω\Uε is continuous.

We discuss here a strong version of the Luzin property for capacity:

Definition 3.2. A domain Ω ⊂ R2 has the strong Luzin (F, V )-capacit-
ary property if for every u ∈ L1

2(Ω) and ε > 0 there exists an open set Uε ⊂ Ω
with conformal capacity less than ε such that the restriction of u to Ω \ Uε
is uniformly continuous for the conformal capacitary metric ρ(F,V ).

This property looks very restrictive, but, in reality, it holds for a large
class of domains. We prove in this section that any extension domain has
the strong Luzin capacitary property, and in the next section that any qua-
siconformal homeomorphism preserves this property.

Our main motivation for studying this property is the following result:

Theorem 3.3. Let Ω ⊂ R2 be a domain with the strong Luzin (F, V )-
capacitary property. Then for every u ∈ L1

2(Ω) there exists a quasicontinuous

function ũ : Ω̃ρ → R defined quasi-everywhere on Hρ such that ũ|Ω = u.

Proof. Because Ω has the strong Luzin (F, V )-capacitary property, for
every ε > 0 and u ∈ L1

2(Ω) there exists an open set Uε ⊂ Ω such that
cap(Uε) < ε and u is uniformly continuous for the conformal capacitary

metric on the closed (in Ω) set Ωε = Ω \Uε. Consider the closure Ω̃ε of Ωε

in the complete metric space (Ω̃ρ, ρ). Since u is uniformly continuous on

(Ωε
ρ, ρ), by the Tietze theorem there exists an extension ũε of u to Ω̃ε. Set

Ω̃0 =
⋃
ε>0 Ω̃

ε. Then u has an extension ũ to (Ω̃0, ρ) and cap(Ω̃ρ \ Ω̃0) = 0
because Ωε1 ⊃ Ωε2 if ε1 < ε2. Therefore ũ|Hρ is defined quasi-everywhere on
Hρ and represents the boundary value of u ∈ L1

2(Ω) on Hρ.

The definition of the strong (F, V )-capacitary property depends on the
choice of (F, V ) in the definition of ρ(F,V ). But because sets of capacity zero
do not depend on the continuum F , the extension ũ does not depend on the
pair (F, V ), and ũ is defined quasi-everywhere on Hρ in the following sense:
for any ε > 0 there exists an open set Uε ⊂ Ω such that u is uniformly
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continuous on Ω \Uε, cap(Ωρ \Uε) < ε, and the continuous extension of u :

Ω\Uε → R to the completion (Ω̃ \ Uε, ρ) coincides with ũ on Hρ∩(Ω̃ \ Uε, ρ).

Combining the previous theorem and Theorem 2.14 we immediately ob-
tain

Theorem 3.4. Let Ω ⊂ R2 be a domain with the strong Luzin (F, V )-
capacitary property and locally connected at any boundary point. Then for
every u ∈ L1

2(Ω) there exists a quasicontinuous function ũ : Ω → R defined
quasi-everywhere on ∂Ω such that ũ|Ω = u.

The strong capacitary property is valid for a large class of domains,
namely extension domains. The class of extension domains includes domains
with smooth or Lipschitz boundaries (see for example [22]).

Theorem 3.5. Let Ω ⊂ R2 be a bounded L1
2-extension domain. Then Ω

has the strong Luzin (F, V )-capacitary property for every capacitary metric
ρ(F,V ).

Proof. Choose u ∈ L1
2(Ω). Because Ω is an extension domain, there

exists an extension û ∈ L1
2(R2) of u. By Theorem 3.1 for any ε > 0 there

exists an open set Uε ⊂ R2 of conformal capacity less than ε such that û
is continuous on R2 \ Uε. As Ω is bounded, û|Ω\Uε is uniformly continuous
in the metric ρ(F,V ) for any continuum F ⊂ Ω and any compact domain V

such that F ⊂ V ⊂ V ⊂ Ω and ∂V is the image of the unit circle S(0, 1)
under some quasiconformal mapping.

Hence u is uniformly continuous on Ω \ Uε in the metric ρ(F,V ). By
monotonicity of conformal capacity, cap(Uε ∩ Ω) < cap(Uε) < ε. Hence by
Theorem 2.8, u is also uniformly continuous for any metric ρ(F,V ) in Ω\Uε.

Combining Theorems 3.3, 3.5 and 2.8 we obtain

Theorem 3.6. Let Ω ⊂ R2 be a bounded L1
2-extension domain. Then for

every u ∈ L1
2(Ω) there exists a quasicontinuous function ũ : Ω → R defined

quasi-everywhere on ∂Ω such that ũ|Ω = u.

Theorems 3.3, 3.5 and 2.8 can be easily extended to a more flexible class
of so-called quasi-extension domains:

Definition 3.7. A domain Ω ⊂ R2 is said to be an L1
2-quasi-extension

domain if for any ε > 0 there exists an open set Uε of conformal capacity
less than ε such that Ω \ U ε is an L1

2-extension domain.

Typical examples of such domains are domains with boundary singular-
ities of conformal capacity zero.

Theorem 3.8. If a bounded domain Ω is an L1
2-quasi-extension domain

then the identity mapping id : ∂Ω → Hρ is a homeomorphism.



Boundary values of functions of Dirichlet spaces 219

Proof. Follows directly from Theorem 2.8 and the countable subadditiv-
ity of capacity.

Theorem 3.9. Let Ω ⊂ R2 be a bounded L1
2-quasi-extension domain.

Then Ω has the strong Luzin capacitary property for any capacitary metric
ρ(F,V ).

Proof. Follows directly from Theorem 2.8 and the countable subadditiv-
ity of capacity.

Combining Theorems 3.3, 3.9 and 2.8 we obtain

Theorem 3.10. Let Ω ⊂ R2 be a bounded L1
2-quasi-extension domain.

Then for every u ∈ L1
2(Ω) there exists a quasicontinuous function ũ : Ω → R

defined quasi-everywhere on ∂Ω such that ũ|Ω = u.

Proof. By Theorem 3.9, Ω has the strong Luzin capacitary property for
any metric ρ(F,V ). Combining Theorems 3.3 and 2.8 and using the countable
subadditivity of capacity we finish the proof.

4. Boundary values of Sobolev functions for simply connected
domains. Using the Riemann Mapping Theorem we can prove that any
simply connected domain Ω 6= R2 has the strong Luzin capacitary property,
which permits us to extend previous results to any simply connected domain
with nonempty boundary.

The unit disc D ⊂ R2 is an L1
2-extension domain and has the strong

Luzin capacitary property. Recall that the conformal capacity of condensers
is a quasi-invariant for quasiconformal homeomorphisms between planar do-
mains. Hence the conformal capacitary metric is also a quasi-invariant for
quasiconformal homeomorphisms. Moreover, this remark immediately yields

Proposition 4.1 ([12]). Any quasiconformal homeomorphism ϕ : Ω →
Ω′ between planar domains induces a quasi-isometry of Ω̃ρ and Ω̃′ρ.

Corollary 4.2. Let ϕ : D → Ω be a quasiconformal homeomorphism
of the unit disc D onto a domain Ω ⊂ R2. Then Ω has the strong Luzin
capacitary property for any capacitary metric ρ(F,V ).

Proof. Choose u ∈ L1
2(Ω) and ε > 0. We will prove that there exists a

set Wε of small conformal capacity such that u is uniformly continuous on
Ω \Wε in any capacitary metric ρ(F,V ). Because ϕ : D→ Ω is a quasiconfor-

mal homeomorphism, the composition v := u ◦ ϕ belongs to L1
2(D) (see, for

example, [10]). As D is an extension domain, it has the strong Luzin capaci-
tary property for the metric ρ(ϕ−1(F ),ϕ−1(V )). Hence there exists an open set
Uε of conformal capacity less than ε such that v|D\Uε is uniformly contin-
uous in the metric ρ(ϕ−1(F ),ϕ−1(V )). Conformal capacity is a quasi-invariant
for the quasiconformal homeomorphism ϕ. This means that there exists a
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constant Q which depends only on the quasiconformal distortion of ϕ and
such that the conformal capacity of Wε := ϕ(Uε) is less than Qε. By the

previous proposition, ϕ−1 induces a quasi-isometry of Ω̃ρ and D̃ρ. Therefore
u = v ◦ϕ−1 is uniformly continuous on Ω \Wε in the metric ρ(F,V ). We have
proved that Ω has the strong Luzin (F, V )-capacitary property.

The previous proposition and Theorem 3.3 immediately yield

Theorem C. Let Ω ⊂ R2 be a simply connected domain, Ω 6= R2. Then
for every u ∈ L1

2(Ω) there exists a quasicontinuous function ũ : Ω̃ρ → R
defined quasi-everywhere on the capacitary boundary Hρ such that ũ|Ω = u.

Theorems C and 2.11 immediately imply

Theorem B. Let Ω ⊂ R2 be a simply connected domain, Ω 6= R2. Then
for every u ∈ L1

2(Ω) there exists a quasicontinuous extension ũ of u on the
Carathéodory boundary ∂CΩ. The function ũ is defined quasi-everywhere on
∂CΩ.

For simply connected domains locally connected at any boundary point,
Theorems B and 2.6 imply

Theorem A. Let Ω ⊂ R2, Ω 6= R2, be a simply connected domain which
is locally connected at any x ∈ ∂Ω. Then for every u ∈ L1

2(Ω) there exists a
quasicontinuous function ũ : Ω → R such that ũ|Ω = u.

Remark 4.3. The quasicontinuous function ũ : Ω → R is defined on ∂Ω
up to a set of conformal capacity zero (i.e. quasi-everywhere).

For the reader’s convenience we repeat some basic facts about quasidiscs.

Definition 4.4. A domain Ω is called a K-quasidisc if it is the image
of the unit disc D under a K-quasiconformal homeomorphism of the plane
onto itself.

It is well known that the boundary of any K-quasidisc Ω admits a K2-
quasiconformal reflection, and thus, for example, any conformal homeomor-
phism ϕ : D→ Ω can be extended to a K2-quasiconformal homeomorphism
of the whole plane to itself.

Boundaries of quasidiscs are called quasicircles. It is known that there are
quasicircles for which no segment has finite length. The Hausdorff dimension
of quasicircles was first investigated by Gehring and Väisälä (1973) [9], who
proved that it can take all values in the interval [1, 2). S. Smirnov proved
recently [35] that the Hausdorff dimension of any K-quasicircle is at most
1 + k2, where k = (K − 1)/(K + 1).

Ahlfors’s 3-point condition [2] gives a complete geometric characteriza-
tion: a Jordan curve γ in the plane is a quasicircle if and only if for any two
points a, b on γ the (smaller) arc between them has diameter comparable to
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|a−b|. This condition is easily checked for the snowflake. On the other hand,
every quasicircle can be obtained by an explicit snowflake-type construction
(see [33]).

Because any quasidisc is an L1
2-extension domain, we can reformulate

the previous results in terms of quasidiscs.

Proposition 4.5. Let Ω ⊂ R2 be a quasidisc. Then the identity mapping
id : Hρ → ∂Ω is a homeomorphism.

Proposition 4.6. Let Ω ⊂ R2 be a quasidisc. Then Ω has the strong
Luzin capacitary property.

5. Historical sketch and conclusions. The concept of ideal bound-
aries is common for geometry and analysis. The Poincaré disc is a model
of the hyperbolic plane that provides a geometrical realization of the ideal
boundary of the hyperbolic plane with the help of a conformal homeomor-
phism.

By the Riemann Mapping Theorem any simply connected planar domain
Ω 6= R2 is conformally equivalent to the unit disc. However, the boundary
behavior of plane conformal homeomorphisms cannot be described in terms
of Euclidean boundaries but it can be described in terms of ideal boundary
elements (prime ends), introduced by C. Carathéodory. By the Carathéodory
Theorem any conformal homeomorphism ϕ : D → Ω induces a one-to-one
correspondence of prime ends.

M. A. Lavrentiev [19] introduced a metric (a relative distance) for prime
ends. G. D. Suvorov [37] constructed a counterexample that demonstrates
the failure of the triangle inequality for the Lavrentiev relative distance
and proposed a more accurate concept of relative distance that satisfies the
triangle inequality. In terms of this metric the Carathéodory prime ends are
a geometric representation of “ideal” compactification “boundary points”.
The detailed survey of different conformally invariant intrinsic metrics can
be found in the paper of V. M. Miklyukov [28].

For dimension more than two, by the Liouville theorem the class of con-
formal homeomorphisms coincides with the Möbius transformations. Even
for quasiconformal homeomorphisms nothing similar to the Riemann Map-
ping Theorem holds.

In our opinion two main constructions of a quasiconformally invariant
“ideal” boundary were proposed. The first one was in the spirit of Banach
algebras. Recall that the Royden algebra R(Ω) is a quasiconformal invariant,
as proved by M. Nakai [29] for dimension two and by L. G. Lewis [20] for
arbitrary dimension. As any Banach algebra, the Royden algebra produces
a compactification of Ω and any quasiconformal homeomorphism induces a
homeomorphism of such compactifications.
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The second construction is the capacitary boundary proposed by
V. Gol’dshtein and S. K. Vodop’yanov [12]. Its construction is based on
the notion of conformal capacity. Recall that conformal capacity is a quasi-
invariant of quasiconformal homeomorphisms. By [12], a quasiconformal
homeomorphism can be extended to a homeomorphism of domains with
capacitary boundaries.

The Royden compactification does not coincide with the Carathéodory
compactification. But for domains finitely connected at the boundary the
Carathéodory boundary and the set of components of boundary fibers in
the Royden boundary coincide (see e.g. [36, Theorem 7.4]).

The “ideal” elements of the capacitary boundary are Carathéodory prime
ends.

A necessary and sufficient condition for existence of continuous traces of
L1
p(Ω), p > 2, was obtained by Shvartsman [34] in terms of quasi-hyperbolic

metrics.
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