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On weak-star convergence in
product Hardy spaces on spaces of homogeneous type

by

Ming-Yi Lee (Chung-Li and Taipei), Ji Li (Sydney)
and Lesley A. Ward (Mawson Lakes)

Abstract. A classical theorem of Jones and Journé on weak-star convergence in the
Hardy space H1 was generalized to the multiparameter setting by Pipher and Treil. We
prove the analogous result when the underlying space is a product space of homogeneous
type. The main tools we use are from recent work by Chen, Li and Ward (2013) and by
Han, Li and Ward (2014).

1. Introduction. In this paper we extend to the setting of product
Hardy spaces H1 on spaces of homogeneous type the result that almost-
everywhere convergence of a sequence of uniformly bounded H1 functions
implies weak-star convergence. See [PT] for the history of this result and
its connections with commutators, singular integral operators, Riesz trans-
forms, BMO, div-curl lemmas, and the theory of compensated compactness
in partial differential equations.

Our main result is the following.

Theorem 1.1. Suppose that a sequence {fk} ⊂ H1(X1 × · · · ×Xn) sat-
isfies ‖fk‖H1 ≤ 1 for all k and fk(x) → f(x) for µ-almost every x ∈
X1 × · · · × Xn. Then f ∈ H1(X1 × · · · × Xn), ‖f‖H1 ≤ 1, and for all
φ ∈ VMO(X1 × · · · ×Xn),

(1.1)
�

X1×···×Xn

fk(x)φ(x) dµ(x)→
�

X1×···×Xn

f(x)φ(x) dµ(x).

To extend the Calderón–Zygmund singular integral operator theory to
a more general setting, in the early 1970s Coifman and Weiss introduced
spaces of homogeneous type. As Meyer remarked in his preface to [DH],
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One is amazed by the dramatic changes that occurred in analysis during
the twentieth century. . . . After many improvements, mostly achieved by
the Calderón–Zygmund school, the action takes place today on spaces of
homogeneous type. No group structure is available, the Fourier transform
is missing, but a version of harmonic analysis is still present. Indeed the
geometry is conducting the analysis.

We say that (X, d, µ) is a space of homogeneous type in the sense of
Coifman and Weiss if d is a quasi-metric on X and µ is a nonzero measure
satisfying the doubling condition. To be more precise, let us begin by recall-
ing these spaces. A quasi-metric d on a setX is a function d : X×X → [0,∞)
satisfying

(1) d(x, y) = d(y, x) ≥ 0 for all x, y ∈ X,
(2) d(x, y) = 0 if and only if x = y, and
(3) the quasi-triangle inequality: there exists a constant A0 ∈ [1,∞)

such that for all x, y and z ∈ X,

(1.2) d(x, y) ≤ A0[d(x, z) + d(z, y)].

We define the quasi-metric ball by B(x, r) := {y ∈ X : d(x, y) < r} for
x ∈ X and r > 0. Note that the quasi-metric, in contrast to a metric, may
not be Hölder regular, and quasi-metric balls may not be open. In this paper,
we assume that

(4) given a neighborhood N of a point x there is an ε > 0 such that the
sphere {y ∈ X : d(x, y) ≤ ε} with center at x is contained in N , and

(5) the sphere {y ∈ X : d(x, y) ≤ r} is measurable, and the measure
µ({y ∈ X : d(x, y) ≤ r}) is a continuous function of r for each x.

We say that a nonzero measure µ satisfies the doubling condition if there is
a constant Cµ such that for all x ∈ X and all r > 0,

(1.3) µ(B(x, 2r)) ≤ Cµµ(B(x, r)) <∞.

As noted by the reviewer of [PT] in Mathematical Reviews, since H1

is not reflexive, the fact that H1 is the dual of VMO does not lead to a
functional-analytic proof of Theorem 1.1 using known methods.

The paper is organized as follows. In Section 2 we present some back-
ground about spaces of homogeneous type. In Section 3 we prove the one-
parameter version of our result, and in Section 4 we prove the product
version.

2. Preliminaries. We recall the ingredients and tools that we will use
below to prove Theorem 1.1, namely systems of dyadic cubes, the orthonor-
mal basis and wavelet expansion of Auscher and Hytönen [AH], the spaces of
test functions and of distributions, the definitions from [HLW] (using these
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spaces) of H1, BMO and VMO on product spaces of homogeneous type,
and the duality relations between them. See [HLW] for a full account of this
material.

2.1. Systems of dyadic cubes in a doubling quasi-metric space.
Let X be a set equipped with a quasi-metric d and a doubling measure µ;
in particular, (X, d, µ) is a space of homogeneous type. As shown in [HK],
building on [Chr], there exists a dyadic decomposition for X: There exist
positive absolute constants c1, C1 and 0 < δ < 1 such that we can construct
a set {xkα}k,α of points and families {Qkα}k,α of sets in X satisfying the
following properties:

if ` ≤ k, then either Qkα ⊂ Q`β or Qkα ∩Q`β = ∅;(2.1)

Qkα ∩Qkβ = ∅ for every k ∈ Z and α 6= β;(2.2)

X =
⋃
αQ

k
α for every k ∈ Z;(2.3)

B(xkα, c1δ
k) ⊂ Qkα ⊂ B(xkα, C1δ

k);(2.4)

if ` ≤ k and Qkα ⊂ Q`β, then B(xkα, C1δ
k) ⊂ B(x`β, C1δ

`).(2.5)

Here for each k ∈ Z, α runs over an appropriate index set. We call the set
Qkα a dyadic cube and xkα the center of the cube. Also, k is called the level
of this cube. We denote the collection of dyadic cubes at level k by Dk,
and the collection of all dyadic cubes by D. When Qkα ⊂ Qk−1β , we say Qkα
is a child of Qk−1β and Qk−1β is the parent of Qkα. Because X is a space
of homogeneous type, there is a uniform constant N such that each cube
Q ∈ D has at most N children.

2.2. Orthonormal basis and wavelet expansion. We recall the or-
thonormal basis and wavelet expansion of L2(X) due to Auscher and Hy-
tönen [AH]. To state their result, we first recall the set of reference dyadic
points xkα. Let δ be a fixed small positive parameter (for example, as pointed
out in [AH, Section 2.2], it suffices to take δ ≤ 10−3A−100 ). For k = 0, let
X 0 := {x0α}α be a maximal collection of 1-separated points in X. Induc-
tively, for k ∈ Z+, let X k := {xkα} ⊇X k−1 and X −k := {x−kα } ⊆X −(k−1)

be δk- and δ−k-separated collections in X k−1 and X −(k−1), respectively.
Lemma 2.1 in [AH] shows that, for all k ∈ Z and x ∈ X, the reference

dyadic points satisfy

(2.6) d(xkα, x
k
β) ≥ δk (α 6= β), d(x,X k) = min

α
d(x, xkα) < 2A0δ

k.

Now let c0 := 1, C0 := 2A0 and δ ≤ 10−3A−100 . Then there exists a
set {Qkα}k∈Z,α∈X k of half-open dyadic cubes associated with the reference

dyadic points {xkα}k∈Z, α∈X k . We consider xkα as the center of Qkα. We also

identify with X k the set of indices α corresponding to xkα ∈X k.
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Note that X k ⊆X k+1 for k ∈ Z, so that every xkα is also a point of the
form xk+1

β , and thus of all the finer levels. We denote Y k := X k+1\X k,

and relabel the points {xkα}α that belong to Y k as {ykα}α.

Theorem 2.1 ([AH, Theorem 7.1]). Let (X, d, µ) be a space of homoge-
neous type with quasi-triangle constant A0, and let a := (1 + 2 log2A0)

−1.
There exists an orthonormal basis ψkα, k ∈ Z, of L2(X), having exponential
decay

(2.7) |ψkα(x)| ≤ C√
µ(B(ykα, δ

k))
exp
(
−ν(δ−kd(ykα, x))a

)
,

Hölder regularity

|ψkα(x)− ψkα(y)| ≤ C√
µ(B(ykα, δ

k))

(
d(x, y)

δk

)η
exp
(
−ν(δ−kd(ykα, x))a

)(2.8)

for some η ∈ (0, 1] and for d(x, y) ≤ δk, and the cancellation property

(2.9)
�

X

ψkα(x) dµ(x) = 0, k ∈ Z, ykα ∈ Y k.

Moreover,

(2.10) f(x) =
∑
k∈Z

∑
α∈Y k

〈f, ψkα〉ψkα(x)

in the sense of L2(X).
Here δ is a fixed small parameter, say δ ≤ 1

1000A
−10
0 , and ν > 0 and

C < ∞ are constants independent of k, α, x and ykα. In what follows, we
also refer to the functions ψkα as wavelets.

2.3. Spaces of test functions and distributions. We refer the reader
to [HLW, Definitions 3.9 and 3.10 and surrounding discussion] for the
definitions of the space G̊ of product test functions and its dual space
(G̊)′ of product distributions on the product space X1 × X2. In [HLW],

G̊ is denoted by G̊(β1, β2; γ1, γ2), and (G̊)′ is denoted by G̊(β1, β2; γ1, γ2)
′,

where the βi and γi are parameters that quantify the size and smooth-
ness of the test functions, and βi ∈ (0, ηi) where ηi is the regularity ex-
ponent from Theorem 2.1. (In fact, in [HLW] the theory is developed for
βi ∈ (0, ηi], but for simplicity here we only use βi ∈ (0, ηi) since that is all
we need.) We note that the one-parameter scaled Auscher–Hytönen wavelets

ψkα(x)/
√
µ(B(ykα, δ

k)) are test functions, and that their tensor products

ψk1α1
(x)ψk2α2

(y)(µ1(B(yk1α1
, δk11 ))µ2(B(yk2α2

, δk22 )))−1/2 are product test functions

in G̊ for all βi ∈ (0, ηi] and all γi > 0, for i = 1, 2. These facts follow from
the theory in [HLW], specifically Definition 3.1 and the discussion after it,
Theorem 3.3, and Definitions 3.9 and 3.10 and the discussion between them.
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We have the following version of the reproducing formula in the product
setting X1 ×X2.

Theorem 2.2 ([HLW]). The reproducing formula

(2.11) f(x1, x2) =
∑
k1

∑
α1∈Y k1

∑
k2

∑
α2∈Y k2

〈f, ψk1α1
ψk2α2
〉ψk1α1

(x1)ψ
k2
α2

(x2)

holds in both G̊(β1, β2; γ1, γ2) and (G̊(β1, β2; γ1, γ2))
′ with 0 < βi < ηi and

γi < ηi for i = 1, 2.

We recall from [HLW] the definitions of the Hardy space H1(X1 ×X2),
the bounded mean oscillation space BMO(X1×X2), and the vanishing mean
oscillation space VMO(X1 ×X2).

Definition 2.3 ([HLW]). The product Hardy space H1 is defined by

H1(X1 ×X2) :=
{
f ∈ (G̊)′ : S(f) ∈ L1(X1 ×X2)

}
,

where S(f) is the product Littlewood–Paley square function defined as

S(f)(x1, x2) :=
{∑

k1

∑
α1∈Y k1

∑
k2

∑
α2∈Y k2

|〈ψk1α1
ψk2α2

, f〉χ̃
Q
k1
α1

(x1)χ̃Qk2α2
(x2)|2

}1/2
,

where χ̃
Q
ki
αi

(xi) := χ
Q
ki
αi

(xi)µi(Q
ki
αi)
−1/2 and χ

Q
ki
αi

(xi) is the indicator func-

tion of the dyadic cube Qkiαi for i = 1, 2.
For f ∈ H1(X1 ×X2), we define ‖f‖H1(X1×X2) := ‖S(f)‖L1(X1×X2).

Definition 2.4 ([HLW]). We define the product BMO space as

BMO(X1 ×X2) :=
{
f ∈ (G̊)′ : C1(f) < L∞},

with

C1(f) := sup
Ω

{
1

µ(Ω)

∑
k1,k2∈Z,α1∈Y k1 ,α2∈Y k2 ,R=Q

k1
α1
×Qk2α2⊂Ω

|〈ψk1α1
ψk2α2

, f〉|2
}1/2

,

where Ω runs over all open sets in X1 ×X2 with finite measures.

Definition 2.5 ([HLW]). Let

E(Ω) :=

{
1

µ(Ω)

∑
k1,k2∈Z, α1∈Y k1 , α2∈Y k2 , Q

k1
α1
×Qk2α2⊂Ω

|〈ψk1α1
ψk2α2

, f〉|2
}1/2

We define the product vanishing mean oscillation space VMO(X1 ×X2) as
the subspace of BMO(X1 × X2) consisting of those f ∈ BMO(X1 × X2)
satisfying the three properties:

(a) lim
δ→0

sup
Ω:µ(Ω)<δ

E(Ω) = 0,

(b) lim
N→∞

sup
Ω: diam(Ω)>N

E(Ω) = 0,



256 M.-Y. Lee et al.

(c) lim
N→∞

sup
Ω:Ω⊂(B(x1,N)×B(x2,N))c

E(Ω) = 0, where x1 and x2 are any fixed

points in X1 and X2, respectively.

Theorem 2.6 ([HLW]). The following duality results hold:

(H1(X1 ×X2))
′ = BMO(X1 ×X2), (VMO(X1 ×X2))

′ = H1(X1 ×X2).

3. Proof of Theorem 1.1 for one parameter. We note that just
recently, a weak convergence result in the one-parameter setting was pro-
vided in [HKy]. However, for the convenience of proving our main result in
the product setting, we also provide our proof here. To prove Theorem 1.1,
paralleling the Euclidean one-parameter case, we will make use of several
properties of the Ap classes on spaces of homogeneous type. These properties
are collected in 3.1–3.5 below.

Let (X, d, µ) be a space of homogeneous type. A nonnegative locally
integrable function ω : X → R is said to belong to Ap(X), 1 < p <∞, if

sup
B

(
1

µ(B)

�

B

ω(x) dµ(x)

)(
1

µ(B)

�

B

ω(x)−1/(p−1) dµ(x)

)p−1
<∞,

and to A1(X) if

sup
B

(
1

µ(B)

�

B

ω(x) dµ(x)

)(
ess sup
x∈B

ω(x)−1
)
<∞.

Lemma 3.1 ([C2, Lemma 4]). Let ω ∈ Ap, 1 ≤ p < ∞. There exists a
constant C > 0 such that, for any subset E of B,(

µ(E)

µ(B)

)p
≤ C

	
E ω(x) dµ(x)	
B ω(x) dµ(x)

.

The centered Hardy–Littlewood maximal operator M with respect to the
measure µ is defined by

Mf(x) := sup
r>0

1

µ(B(x, r))

�

B(x,r)

|f(y)| dµ(y).

Theorem 3.2 ([C2, Theorem 3]). If ω ∈ A1, then M is of ω-weak type
(1, 1) with respect to µ, that is, there exists a constant C > 0 such that, for
all λ > 0 and all f ∈ L1

ω(dµ),
�

{x∈X :Mf(x)>λ}

ω(x) dµ(x) ≤ C

λ

�

X

|f(x)|ω(x) dµ(x).

Similarly, the uncentered Hardy–Littlewood maximal operator M with
respect to the measure µ is defined by

M̃f(x) := sup
B3x

1

µ(B)

�

B

|f(y)| dµ(y).
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Lemma 3.3. The weight ω is in A1 if and only if there is a constant
C > 0 such that

Mω(x) ≤ Cω(x) for µ-almost every x ∈ X.

Proof. Suppose that there is a constant C > 0 such that M̃ω(x) ≤ Cω(x)

µ-almost everywhere. Since M̃ω(x) is equivalent to Mω(x), it is clear that

1

µ(B)

�

B

ω(y) dµ(y) ≤ Cω(x) for µ-almost every x ∈ B.

Hence ω ∈ A1. Conversely, Theorem 3.2 shows that there exists C > 0 such
that, for any λ > 0 and f ∈ L1

ω,

�

{x∈X : M̃f(x)>λ}

ω(x) dµ(x) ≤ C

λ

�

X

|f(x)|ω(x) dµ(x).

Suppose x ∈ B1 ⊂ B2. Let f = χB1 and z ∈ B2. Then

M̃f(z) ≥ 1

µ(B2)

�

B2

f(y) dµ(y) =
µ(B1)

µ(B2)
.

The above inequality shows that B2 ⊂ {x : M̃f(x) ≥ µ(B1)/µ(B2)}. Hence,

�

B2

ω(x) dµ(x) ≤
�

{x : M̃f(x)≥µ(B1)/µ(B2)}

ω(x) dµ(x) ≤ Cµ(B2)

µ(B1)

�

B1

ω(x) dµ(x).

By Lebesgue’s differentiation theorem, the lemma follows.

We will need the following generalization to spaces of homogeneous type
of one direction of a well-known result of Coifman and Rochberg [CR].

Lemma 3.4. Let f ∈ L1
loc(X) be such that Mf(x) <∞ µ-almost every-

where. Then (Mf)δ ∈ A1 for 0 ≤ δ < 1.

Proof. By Lemma 3.3, it suffices to show that there exists a constant C
such that, for any B and µ-almost every x ∈ B,

1

µ(B)

�

B

(M̃f)δ dµ ≤ C(M̃f(x))δ.

Fix B = B(x0, t0) and decompose f as f = f1 + f2, where f1 = fχ2B and

f2 = fχ(2B)c with 2B = B(x0, 2t0). Then M̃f(y) ≤ M̃f1(y) + M̃f2(y) and

(M̃f(y))δ ≤ (M̃f1(y))δ + (M̃f2(y))δ for 0 ≤ δ < 1.

Since M̃ is weak (1, 1) with respect to the measure µ, Kolmogorov’s inequal-
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ity shows that

1

µ(B)

�

B

(M̃f1(y))δ dµ(y) ≤ C

µ(B)
µ(B)1−δ‖f1‖δL1

≤ C
(

1

µ(B)

�

2B

f dµ

)δ
≤ C(M̃f(x))δ.

Now we estimate M̃f2. Given y ∈ B, for any B(y0, R) that contains y, we
have B ⊂ B(y0, A

2
0 max{t0, R}). If R < t0, then B(y0, t0)∩B(x0, t0) 6= ∅ and

hence B(y0, t0) ⊂ B(x0, A
2
0t0), which gives B(y0, t0/(2A

2
0)) ⊂ B(x0, 2t0).

Then the inequality
	
B(y0,R) |f2| dµ > 0 implies R > t0/(2A

2
0), which yields

B ⊂ B(y0, 2A
4
0R) when R < t0. It is clear that B ⊂ B(y0, 2A

4
0R) when

R ≥ t0. Thus,

1

µ(B(y0, R))

�

B(y0,R)

|f2| ≤
C

µ(B(y0, 2A4
0R))

�

B(y0,2A4
0R)

|f2| dµ ≤ CM̃f(x),

so that M̃f2(y) ≤ CM̃f(x) for all y ∈ B. Therefore,

1

µ(B)

�

B

(M̃f2(y))δ dµ(y) ≤ C(M̃f(x))δ.

Lemma 3.5. If ω ∈ A2(X), then logω ∈ BMO(X).

We omit the proof of Lemma 3.5, which echoes the Euclidean version
(see for example [D]).

We are ready to show the main result in the one-parameter case. We
follow the proof in [JJ].

Proof of Theorem 1.1 for one parameter. Since H1(X) is a subspace
of L1(X), it follows from Fatou’s lemma that f ∈ L1(X). To show (1.1)
for all φ ∈ VMO(X), by density it suffices to consider φ ∈ G̊(β, γ). Fix δ ∈
(0, 1/(2A0)) and pick η > 0 such that η exp(δ−1) ≤ δC log2 δ

µ and
	
E |f | dµ ≤ δ

whenever µ(E) ≤ Cη exp(δ−1). Now choose k large enough so that

µ(Ek) := µ({x ∈ X : |fk(x)− f(x)| > η}) ≤ η.

We construct a bump function τ(x) on X as follows. Define

τ(x) := max{0, 1 + δ log(MχEk)(x)}.

It is clear that 0 ≤ τ(x) ≤ 1 and τ ≡ 1 µ-almost everywhere on Ek. Also,
‖τ‖BMO(X) ≤ 2δ‖log(MχEk)1/2‖BMO(X) ≤ Cδ due to Lemmas 3.4 and 3.5.
By the weak (1, 1) estimate for M with respect to µ,

µ(supp(τ)) ≤ Cµ(Ek) exp(δ−1) ≤ Cη exp(δ−1).
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Consequently, �

supp(τ)

|f | dµ ≤ δ.

We now write∣∣∣ �
X

(f − fk)φdµ
∣∣∣ ≤ ∣∣∣ �

X

(f − fk)φ(1− τ) dµ
∣∣∣+
∣∣∣ �
X

(f − fk)φτ dµ
∣∣∣

≤ η‖φ‖L1(dµ) +
�

supp(τ)

|f | dµ+
∣∣∣ �
X

fkφτ dµ
∣∣∣

≤ δ + δ +
∣∣∣ �
X

fkφτ dµ
∣∣∣.

The proof of (1.1) will therefore be established provided we verify

(3.1) ‖φτ‖BMO(X) ≤ Cδ.
Suppose B = B(y0, r0) with r0 < δ. The Hölder regularity of φ gives

1

µ(B)

�

B

|φτ − (φτ)B| dµ ≤
2

µ(B)

�

B

|φτ − φBτB| dµ

≤ 2

µ(B)

�

B

|φτ − φBτ | dµ+
2|φB|
µ(B)

�

B

|τ − τB| dµ

≤ Cδβ + 2‖φ‖L∞‖τ‖BMO(X) ≤ C(δβ + δ).

For r0 > δ and B(y0, δ) ∩B(x0, δ
−1) = ∅, the size condition of φ yields

1

µ(B)

�

B

|φτ − (φτ)B| dµ ≤
2

µ(B)

�

B

|φτ | dµ ≤ Cδγ .

For r0 > δ and B(y0, δ)∩B(x0, δ
−1) 6= ∅, we get B(y0, δ

−1) ⊂ B(x0, A0δ
−1),

and hence µ(B(x0, δ
−1)) ≤ µ(B(y0, A0δ

−1)). The doubling condition shows
that

µ(B(y0, A0δ
−1)) ≤ C log2(A0δ−2)

µ µ(B(y0, δ)).

Thus,

1

µ(B)
≤ C

log2(A0δ−2)
µ

µ(B(y0, A0δ−1))
≤ C

log2(A0δ−2)
µ

µ(B(x0, δ−1))
≤ C

log2(A0δ−2)
µ

V1(x0)
,

and so

1

µ(B)

�

B

|φτ − (φτ)B| dµ ≤
2

µ(B)

�

B

|φτ | dµ ≤ 2C
log2(A0δ−2)
µ

V1(x0)
µ(supp(τ))

≤ 2C
log2(A0δ−2)
µ

V1(x0)
η exp(δ−1) ≤ Cδ.
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Therefore,

1

µ(B)

�

B

|φτ − (φτ)B| dµ ≤ Cδ(3.2)

and (3.1) follows. By weak-star compactness of the ball in H1, there exists
a g ∈ H1 with ‖g‖H1 ≤ 1 and a subsequence {fkl}l∈N such that {fkl}l∈N
weak-star converges to g. By (1.1), we have

	
fφ =

	
gφ for all φ ∈ G̊(β, γ),

and hence f = g ∈ H1.

4. Proof of Theorem 1.1 in the product case. We begin by re-
calling several key tools we will use to pass from the product Euclidean
setting to the setting of product spaces of homogeneous type. These tools
are the random dyadic lattices, the dyadic product BMO space, the av-
eraging theorem relating the dyadic and continuous product BMO spaces,
several properties of product bmo (“little BMO”), and the construction of a
product bump function τ(x1, x2) on X1 ×X2. Then we prove Theorem 1.1
for product spaces of homogeneous type.

In [HK, Theorem 5.1] Hytönen and Kairema constructed random dyadic
lattices on spaces of homogeneous type, extending an earlier result of Naza-
rov, Treil and Volberg [NTV]. Specifically, there exists a probability space
(Ω,P) such that for each ω ∈ Ω there is an associated dyadic lattice
D(ω) = {Qkα(ω)}k,α related to dyadic points {xkα(ω)}k,α with the properties
(2.1)–(2.5) above, and the following smallness property holds: there exist
absolute constants C, η > 0 such that

P({ω ∈ Ω : x, x∗ are not in the same cube Q ∈ Dk(ω)}) ≤ C
(
ρ(x, x∗)

δk

)η
for all x, x∗ ∈ X, where Dk(ω) is the set of all dyadic cubes at level k
in D(ω).

Fix ω ∈ Ω. For a cube Q ∈ D(ω), let ch(Q) denote the set of all children
of Q ∈ D(ω). From (2.1) and (2.2), we know that Q =

⋃
I∈ch(Q) I. For a

cube Q ∈ D(ω), define the averaging operator EωQ by

EωQf = E
D(ω)
Q f :=

( �
Q

f dµ
)
χQ,

where as usual
�
Q f dµ = µ(Q)−1

	
Q f dµ and χQ is the characteristic func-

tion of Q. (We reserve the more usual name of expectation operator for
the expectation Eω over random dyadic lattices, defined below.) Define the
difference operator ∆ω

Q by

∆ω
Qf = ∆

D(ω)
Q f :=

( ∑
J∈ch(Q)

EωJ f
)
− EωQf.
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For convenience, we sometimes write EQ and ∆Q instead of EωQ and ∆ω
Q.

Note that for every x ∈ X, at each level k there exists exactly one cube
Qk(x) ∈ Dk(ω) such that x ∈ Qk(x). So for each k ∈ Z we can define

Ekf(x) :=
∑
α

EQkαf(x) = EQk(x)f(x),

∆kf(x) :=
∑
α

∆Qkα
f(x) = Ek+1f(x)− Ekf(x).

For j = 1, 2, let (Ωj ,Pj) be a probability space for (Xj , ρj , µj) such
that for each ωj ∈ Ωj there is an associated dyadic lattice Dj(ωj) satisfying
properties (2.1)–(2.6). We define the dyadic product BMO(X1 ×X2) space
via the difference operator. Let ∆ω := ∆ω1

Q
ω1
1

∆ω2

Q
ω2
2

where Qω1
1 ∈ D1(ω1) and

Qω2
2 ∈ D2(ω2). Let Rω denote the rectangle Qω1

1 ×Q
ω2
2 .

Definition 4.1. Let fω(x) = f (ω1,ω2)(x1, x2) be a locally integrable
function on X1×X2. We say that fω belongs to the dyadic product bounded
mean oscillation space BMOω1,ω2 := BMOD1(ω1)×D2(ω2)(X1 × X2) if there
exists a constant C > 0 such that for every open set A ⊂ X1 ×X2,

1

µ(A)

∑
Rω⊂A

�

X̃

|∆ωfω|2 dµ ≤ C2.

We define the dyadic product BMO norm ‖fω‖BMOω1,ω2
of fω to be the in-

fimum of C such that the inequality above holds.

Theorem 4.2 ([CLW]). Let (X1, d1, µ1) and (X2, d2, µ2) be spaces of
homogeneous type. For j = 1, 2, let (Ωj ,Pj) be a probability space, and
{D(ωj)}ωj∈Ωj a collection of random dyadic lattices on Xj such that prop-

erties (2.1)–(2.6) hold. Let {fω}, ω := (ω1, ω2) ∈ Ω1 × Ω2, be a family of
functions with fω ∈ BMOD(ω1)×D(ω2)(X1×X2) for each ω ∈ Ω1×Ω2, such
that

(i) ω 7→ fω is measurable, and

(ii) ‖fω‖BMOD(ω1)×D(ω2)
(X1×X2) ≤ Cd for some constant Cd independent

of ω.

Then the function f defined by the expectation

f(x) := Eωfω(x)

belongs to BMO(X1 ×X2), and ‖Eωfω‖BMO(X1×X2) ≤ CCd.

Definition 4.3. A real-valued function f ∈ L1
loc(X1 × X2) is in the

space bmo(X1×X2) (called “little BMO” in the literature) if its bmo norm
is finite:

‖f‖bmo(X1×X2) := sup
R

�

R

|f(x1, x2)− fR| dµ1(x1) dµ2(x2) <∞.(4.1)
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Lemma 4.4. If f, g ∈ bmo, then max{f, g} ∈ bmo.

Lemma 4.5. Suppose Ω is an open set in X1 ×X2 with finite measure.
Let D1 and D2 be dyadic cubes in X1 and X2, respectively. Then∑
R=Q1×Q2∈D1×D2, R⊂Ω

‖∆Q1×Q2f‖22 ≤
�

X1

∑
Q2∈D2(ω2)

‖∆Q2f(x1, ·)‖22 dµ1(x1).

Proof. Let

f̃(x1, ·) =
∑

Q2∈D2(ω2)

∆Q2f(x1, ·) for x1 ∈ X1.

Then ∆Q2f(x1, ·) = ∆Q2 f̃(x1, ·). Since ∆Q1×Q2 = ∆Q2 ⊗∆Q2 , we get

∆Q1×Q2f = ∆Q1×Q2 f̃ ,

and so∑
‖∆Q1×Q2f‖22 =

∑
‖∆Q1×Q2 f̃‖22

≤ ‖f̃‖22 =
�

X1

∥∥∥ ∑
Q2∈D2(ω2)

∆Q2f(x1, ·)
∥∥∥2
2
dµ1(x1)

=
�

X1

∑
Q2∈D2(ω2)

‖∆Q2f(x1, ·)‖22 dµ1(x1).

Lemma 4.6. Suppose φ ∈ G̊(β1, β2, γ1, γ2) and b is a bounded function
with ‖b‖∞ ≤ 1. Then, for all α ∈ (0, 1), for each open Ω ⊂ X1 ×X2, and
for each rectangle R = Q1 ×Q2 ∈ D1(ω1)⊗D2(ω2), we have

(4.2)
∑

R⊂Ω, diam(R)≤α

‖∆R(φb)‖22 ≤ C(‖b‖bmo + α)µ(Ω).

Proof. The proof is by iteration. For one parameter, it suffices to prove
(4.2) for Ω = Q0, where Q0 is a dyadic cube in X1. Without loss of generality
we may assume that diam(Q0) ≤ α. Then∑

Q⊂Q0

‖∆Q(φb)‖22 =
�

Q0

|φb(x)− (φb)Q0 |2 dµ(x)

≤ 2
�

Q0

|φb(x)− (φ)Q0(b)Q0 |2 dµ(x)

≤ 2
�

Q0

|φb(x)− φ(x)(b)Q0 |2 dµ(x)

+ 2
�

Q0

|φ(x)(b)Q0 − (φ)Q0(b)Q0 |2 dµ(x)

≤ C(‖b‖2bmo + α)µ(Ω)
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by inequality (3.2). Applying Lemma 4.5, we obtain∑
Q1∈D1(ω1), Q2∈D2(ω2)

‖∆Q1×Q2f‖2

≤
�

X1

∑
Q2∈D2(ω2)

‖∆Q2f(x1, ·)‖2 dµ1(x1)

+
�

X2

∑
Q1∈D1(ω1)

‖∆Q1f(·, x2)‖2 dµ2(x2)

≤ C(‖b‖2bmo + α)
�

X1

µ2({x2 : (x1, x2) ∈ Ω}) dµ1(x1)

+ C(‖b‖2bmo + α)
�

X2

µ1({x2 : (x1, x2) ∈ Ω}) dµ2(x2)

≤ 2C(‖b‖2bmo + α)µ(Ω).

Next we construct a bump function τ(x1, x2) in the product setting.

Lemma 4.7. Let E be a subset of X1 ×X2 with finite measure, and let
δ ∈ (0, 1) be a given parameter. Then there exists a function τ ∈ bmo such
that τ ≡ 1 on E, ‖τ‖bmo < C1δ, and µ(supp(τ)) < C2e

2/δµ(E), where C1

and C2 are some absolute constants.

Proof. Let Ms be the strong maximal function, in which the averages
are taken over arbitrary rectangles in X1×X2. A weight w is in A1(X1×X2)
if there exists a constant C such that Msw(x) ≤ Cw(x) for µ-almost every
x ∈ X1 ×X2.

We define the following A1 weight, with M
(k)
s denoting the k-fold itera-

tion of the strong maximal function:

m(x1, x2) = K−1
∞∑
k=0

ckM (k)
s χE(x1, x2),

where K =
∑

k c
k and c > 0 is chosen to ensure the convergence of the

series. Then ‖m‖2 ≤ C‖χE‖2 = Cµ(E)1/2. Observe that m = 1 µ-almost
everywhere on E, and m ≤ 1 µ-almost everywhere outside E.

Define the function

τ(x1, x2) := max{0, 1 + δ logm(x1, x2)}.

Then τ ∈ bmo, and τ = 1 µ-almost everywhere on E. By Lemma 4.4 and
the fact that logw ∈ bmo for every A1 weight w, which is proved exactly as
in the one-parameter Euclidean setting, we have ‖τ‖bmo ≤ Cδ.

The estimate for the size of the support of τ follows from Chebyshev’s
theorem and the estimate ‖m‖2 ≤ Cµ(E)1/2.
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We are ready to prove our main result for product spaces of homogeneous
type. We follow the lines of the product Euclidean proof from [PT].

Proof of Theorem 1.1 in the product case. First note that G̊(β1, β2, γ1, γ2)
is dense in VMO(X1 ×X2). To prove the theorem, it suffices to show (1.1)
for all φ ∈ G̊(β1, β2, γ1, γ2).

Next, note that as shown in [HLPW], H1(X1 × X2) is a subspace of
L1(X1 ×X2). Thus, since fn → f a.e., and ‖fn‖H1(X1×X2) ≤ 1, by Fatou’s

lemma we have f ∈ L1(X1 ×X2) with ‖f‖L1(X1×X2) ≤ 1.

Fix δ ∈ (0, 1/(2A0)) and pick η > 0 such that η exp(2/δ) ≤ δC
log2 δ
µ and	

E |f | dµ ≤ δ whenever µ(E) ≤ C2η exp(2/δ), where C2 is as in Lemma 4.7.
Now choose K0 large enough such that when k > K0,

µ(Ek) := µ
(
{(x1, x2) ∈ X1 ×X2 : |fk(x1, x2)− f(x1, x2)| > η}

)
≤ η.

Define
τ(x1, x2) = max{0, 1 + δ logm(x1, x2)},

where m(x1, x2) = K−1
∑∞

`=0 c
`M

(`)
s χEk(x1, x2) as defined in Lemma 4.7. It

is clear that 0 ≤ τ(x1, x2) ≤ 1 and τ = 1 µ-almost everywhere on Ek. By
Lemma 4.7, we have τ ∈ bmo with ‖τ‖bmo ≤ C2δ and

�

supp(τ)

|f | dµ ≤ δ.

For every k > K0, we now write�

X1×X2

(f − fk)φdµ =
�

X1×X2

(f − fk)φ(1− τ) dµ+
�

X1×X2

(f − fk)φτ dµ.

Note that τ = 1 µ-almost everywhere on Ek. In the complement of Ek we
have |f −fk| < η. Thus the first integral on the right-hand side of the above
equality is bounded by η‖φ‖L1(X1×X2), which is in turn less than δ if η is
sufficiently small. Further, the second integral is bounded by

�

supp(τ)

|fφ| dµ+
∣∣∣ �

X1×X2

fkφτ dµ
∣∣∣ ≤ δ +

∣∣∣ �

X1×X2

fkφτ dµ
∣∣∣.

The proof of (1.1) will therefore be established provided we verify

(4.3) ‖φτ‖BMO(X1×X2) ≤ Cδ.
We will show (4.3) by first proving that the dyadic BMO norm of φτ has
the required estimate, and then by using Theorem 4.2.

For every open set A ⊂ X1 ×X2 with finite measure and x ∈ A, there
exists a constant r(x) < δ/(3A0) such that B(x, r(x)) ⊂ A, and so

A =
⋃
x∈A

B(x, r(x)).
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By [C2, Lemma 3], there exists a countable subfamily of disjoint spheres
B(xi, r(xi)) such that each sphere B(x, r(x)), x ∈ A, is contained in
B(xi, 3A0r(xi)) for some i ∈ N. Hence,

�

A
|φτ |2 dµ ≤

∞∑
i=1

�

B(xi,3A0r(xi))

|φτ |2 dµ.

Since 3A0r(xi) < δ, we use Lemma 4.6 to get�

B(xi,3A0r(xi))

|φτ |2 dµ =
∑

R⊂B(xi,3A0r(xi))

‖∆R(φb)‖22

≤ C(‖τ‖bmo + δ)µ(B(xi, 3A0r(xi))).

Therefore,

�

A
|φτ |2 dµ(x) ≤

∞∑
i=1

�

B(xi,3A0r(xi))

|φτ |2 dµ(x) ≤ Cδ
∑
i

µ(B(xi, 3A0r(xi))).

Since µ(B(xi, 3A0r(xi))) ≤ Cµ(B(xi, r(xi))) and {B(xi, r(xi))}i∈N are dis-
joint, we have�

A
|φτ |2 dµ(x) ≤

∑
i

µ(B(xi, 3A0r(xi))) ≤ Cµ(A).

This completes the proof of (4.3).
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