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Variations on the concept of topological transitivity
by

ETHAN AKIN (New York), JOSEPH AUSLANDER (College Park, MD)
and ANIMA NAGAR (New Delhi)

Abstract. We describe various strengthenings of the concept of topological transi-
tivity. Especially when one departs from the family of invertible systems, a number of
interesting properties arise. We present the architecture of implications among ten rea-
sonable notions of transitivity.

1. Introduction. For us a dynamical system (X, f) is a pair with X
a compact metric space, f : X — X a continuous map and the dynamics
given by iteration. While we do not explicitly assume it, our main interest
is in systems (X, f) with f not invertible.

For subsets A, B C X we define the hitting time set

N(A,B)={neN: f{(A)NB#0}={neN:An f(B) # 0},

where N is the set of positive integers. We identify a singleton with its unique
element, writing N (z, B), for example, for N({z}, B). We call the system
topologically transitive when for every opene (= open and nonempty) set U,
U2, f*(U) is dense in X, or equivalently if for every opene pair U,V C X,
the set N(U,V) of hitting times is nonempty. A point x € X is called a
transitive point when for every opene V' C X the hitting time set N (z, V) is
nonempty. This is equivalent to saying that the orbit O(xz) = {f™(z) : n € N}
is dense in X . We denote by Trans( f) the set of transitive points. Transitivity
is equivalent to a kind of indecomposability of the phase space with respect
to the acting semigroup.

There are a number of slightly different versions of topological tran-
sitivity, which are surveyed in [AC]. The one we have chosen implies, by
compactness, that f is surjective. Furthermore, either X is finite, and so
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consists of a single periodic orbit, or it is perfect, i.e. it has no isolated
points. Our definition serves to exclude compactifications of the translation
map on N or on Z. On a perfect space all of the definitions agree.

Here we study some stronger forms of transitivity:

topological transitivity (TT),

strong transitivity (ST),

very strong transitivity (VST),
minimality (M),

weak mixing (WM),

exact transitivity (ET),

strong exact transitivity (SET),
strong product transitivity (SPT),
mixing, or topological mixing, (TM),
locally eventually onto (LEO).

These concepts are not new to literature. Parry [Pa] had defined “strongly
transitive systems” which we here call “very strongly transitive systems”.
The concept of “strongly transitive” that we define here has been studied
as property “(B)” by Nagar and Kannan [NK] and by Akin, Auslander and
Nagar [AAN]. The concept of “locally eventually onto” was introduced by
Denker and Urbanski in [DU|] where they called such systems “exact”. We
follow Kaminiski et al. [K] who use the label “exactness” for a somewhat dif-
ferent property, and then use “locally eventually onto” for the earlier notion.

It is known that the properties of strongly transitive, very strongly tran-
sitive and locally eventually onto are observed in the dynamics of piecewise
monotonic maps, subshifts of finite type, S-shifts, and Julia sets.

If we consider the induced dynamics on 2%, the space of nonempty
closed subsets of X given the Hausdorff topology, then it has been shown in
Akin, Auslander and Nagar [AAN] that for the induced system the concepts
“strongly transitive” and “local eventually onto” are equivalent (and so they
are equivalent to very strongly transitive, strongly product transitive and
strong exact transitive as well). Furthermore, these occur exactly when the
original system (X, f) is locally eventually onto.

Our purpose here is to define these concepts and list various equivalent
conditions and properties. In the process we will show that the following
implications hold:

LEO = ET,TM = WM = TT;
(1.1) LEO = SPT = SET = ET,ST = TT,;
LEO,M = VST = ST= TT.

We will also show that these properties are distinct by showing that various
reverse implications fail.
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The reader may note the absence of any discussion of sensitive depen-
dence on initial conditions, i.e. semsitivity. Any topologically transitive sys-
tem (X, f) which admits an equicontinuity point is almost equicontinuous
and uniformly rigid and so f is a homeomorphism [AAB|, [GW]. Hence,
the topologically transitive, noninvertible systems which are our primary
concern are all sensitive.

2. Transitivity properties. For a dynamical system (X, f) and a point
x € X the orbit of xis O(z) = {f"(x) : n € N}, regarded either as a sequence
in, or as a subset of, the state space X. Notice that 2 = f°(x) need not be
an element of O(z). We let w(z) be the set of limit points of the orbit so that

w@)= () TF"@ :n= N} and O(x)Uw(x) = O(),
NeN
the orbit closure of z.
A point zx is called recurrent when = € w(z).
We denote

0 (x) = U fT(x)={ye X : f"(y) =z for some n € N}.
neN
and call it the negative orbit of x. We also define the partial orbit sets. For
N e N,

On(z) ={f"(x):1<n <N} and Oy(x)= |J f (.
1<n<N
A subset A C X is called Yinvariant if f(A) C A (or equivalently
A C f7Y(A)), Zinvariant if f~1(A) C A and invariant if f(A) = A. For
example, O(z) is Tinvariant and O~ (z) is ~invariant. Clearly, A is Tinvariant
iff z € A implies O(z) C A, and A is ~invariant iff z € A implies O~ (z) C A.
For every x € X the set w(x) of limit points is invariant. Notice that

y € w(x) if and only if it is the limit of a subsequence of the orbit sequence
{f™(z) : n € N}. It easily follows that

(2.1) flw(@)) = w(z) = w(f(z)).

Clearly, a set is Tinvariant if and only if its complement is ~invariant.

We call a set A C X weakly “invariant if A C f(A), or equivalently if
for all z € A there exists x; € A such that f(z1) = x. Thus, A is weakly
“invariant if and only if f(AN f~1(4)) = A.

LEMMA 2.1. Let A C X.

(a) If A is “invariant and f is surjective, then A is weakly ~invariant.

(b) A is invariant, i.e. A= f(A), if and only if A is both Vinvariant and
weakly ~invariant. A = f~Y(A) if and only if A is both Tinvariant
and “invariant, and in that case it is invariant.
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(c) If A is either Tinvariant, weakly ~invariant or invariant then the
closure A has the corresponding property.

(d) Assume A is closed and nonempty. If A is either Tinvariant or weakly
“invariant then A contains a closed, nonempty invariant set. If A
is “invariant then it contains a closed, nonempty subset which is
“invariant and invariant.

(e) Assume f is an open map. If A is Tinvariant then the interior A° is
tinvariant. If A is “invariant then A is “invariant.

Proof. (a) If z€ AC f(X) then there exists x1 € X such that f(z;)==.
Because A is Tinvariant, 1 € A.

(b) Obvious from the definitions since f is surjective.

(c) By compactness, f(A) = f(A). The results follow from the mono-
tonicity of the closure operator.

(d) If A is Tinvariant, let Ag = A and A, = f"(A) for n € N. This
is a decreasing sequence of nonempty closed sets with f(A,) = A,41. Let
B = (), An, a nonempty closed set by compactness. For all n, f(B) C
f(A,) = A,i1. So Bis tinvariant. If 2 € B then z € A, 41 implies f~1(z)N
Ap # 0. Hence, N, f~Hx) N An, = f~1(z) N B is nonempty by compactness
again. Hence, B is ~invariant and so is invariant by (b).

If A is weakly “invariant, let Ag = A and, inductively, let A, = A,_1 N
f1(A,_1). This is a decreasing sequence of nonempty closed sets with
f(An) = Ap—1. Let B =), A, and proceed as before.

If Ais “invariant, let A9 = A and, inductively, 4, = f~!(A,_1). Again,
this is a decreasing sequence of nonempty closed sets with f(A,) = A,—_1.
Let B = (), A, as before and observe that f~%(B) = (), f1(4,) =
ﬂn An+1 = B.

(e) If f is open then f(A°) is an open subset of f(A). If also A is
Tinvariant then

f(A%) C f(A)° C A°
The ~invariance result follows by taking complements. =

REMARK 2.2. (a) The constructions in part (d) yield the maximum in-
variant subset in each case.

(b) The closure of a ~invariant set need not, in general, be ~invariant.
Let X = {0} U{1/n : n € N}. Define f on X by 0,1 — 0 and 1/(n+ 1)
— 1/n for n € N. The set A = {1/(n+1) : n € N} is ~invariant but its
closure is not.

A subset A C X is called e-dense if it meets every open e-ball in X.

LEMMA 2.3. Let {A,} be a sequence of subsets of X .

(a) Uy An is dense if and only if for every e > 0 there exists N € N
such that UiV:1 Ay, is e-dense.
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(b) If each A, is open and \J,—, An = X then there exists N € N such
that U;V:l A, =X.

Proof. (a) Because X is compact it has a finite cover by €/2 balls. A set
which meets each of these is e-dense.

(b) This follows from compactness. m

DEFINITION 2.4. A system (X, f) is called ezact if for every pair of opene
subsets U,V C X there exists n € N such that f*(U) N f*(V) # 0.

We call the system fully exact if for every pair of opene subsets U,V C X
there exists n € N such that (f™(U) N f™(V))° # 0.

The definition of exactness follows [K]. Thus, (X, f) is exact (or fully
exact) if and only if for every pair of opene subsets U,V C X we have
U (f" @) 0 fr (V) # 0 (resp. U, (f"(U) N f*(V))® #0).

Clearly, if f is an open map then exactness and full exactness are equiv-
alent.

THEOREM 2.5.

(a) If (X, f) is exact and f is injective then X is a singleton, i.e. the
system is trivial.
(b) (X, f) is fully exact if and only if for every pair of opene subsets

U,V C X we have (I, f"(U) N fM(V))° # 0.

Proof. (a) If X is not a singleton then it contains a pair of disjoint opene
sets U, V. Since f™(U) N f*(V) # ) for some n, the map f is not injective.
(b) If the system is fully exact then

Uur@yngv (Uf" )N 1))
implies that the latter set is nonempty.

Let A C U and B C V be closed sets with nonempty interior. If the
open set G = (U, f"(4) N f*(B))° is nonempty then it is a Baire space
with a countable, relatively closed cover {G N f*(A) N f*(B) : n € N}. So
by the Baire Category Theorem some f(A)N f"(B) has nonempty interior
in G, and so in X. In fact, |J,,(f"(A)N f*(B))° is dense in G. It follows that
(X, f) is fully exact. m

We note that these two notions are different and in general far away from
the property of transitivity.

EXAMPLE 2.6. There exist systems which are exact but not fully exact
and which are fully exact and surjective but not topologically transitive
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Consider the system ([—1,1], f) with

—(242z), —-1<z<-1/2,
f(z) =< 2z, —-1/2<z<1/2,
2 — 2z, 1/2<xz<1.

Then any interval contained in [—1,0] or [0, 1] eventually covers [—1,0] or
[0, 1] respectively with intersection {0}. This system is exact but not fully
exact.

On the other hand, consider the system ([—1, 1], g) with

—(2+422), —1<z<-1/2
g(z) = < 2z, —-1/2<z<1/2,
3 — 4, 1/2<xz<1.

Then any interval contained in [—1,0] or [0, 1] eventually covers [—1,0] or
[—1, 1] respectively with intersection [—1,0]. This system is fully exact.

The reader can refer to Theorem below to see that these systems are
not transitive.

We now introduce the formal definition of various transitivity concepts.
For completeness and contrast, we include the (already defined) concept of
topological transitivity itself.

DEFINITION 2.7. (X, f) is called:

e topologically transitive (TT) if for every opene U C X, Jo7, f™(U) is
dense in X;

e strongly transitive (ST) if for every opene U C X, o, ["(U) = X;

e very strongly transitive (VST) if for every opene U C X there is a
N € N such that U, f*(U) = X;

e minimal (M) if there is no proper, nonempty, closed invariant subset
of X;

o weakly mizing (WM) if the product system (X x X, f x f) is topolog-
ically transitive;

e czact transitive (ET) if for every pair of opene sets U,V C X, the set
UoZ (f™(U) N f(V)) is dense in X;

o strongly exact transitive (SET) if for every pair of opene sets U,V C X,
U, (F7(U) 0 £ (V) = X;

e strongly product transitive (SPT) if for every positive integer k the
product system (X*, f*)) is strongly transitive;

e mizing or topologically mizing (TM) if for every pair of opene sets
U,V C X, there exists an N € N such that f*(U) NV # § for all
n > N;
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e locally eventually onto (LEO) if for every opene U C X, there exists
N € N such that f¥(U) = X, and so f*(U) = X for all n > N.

In the case of the property SPT, we rejected the obvious label Strongly
Weak Mizing.

We now provide equivalent descriptions of these properties.

For topological transitivity there are many equivalences in the literature:

see e.g. [AC, NK| KS| IS].

THEOREM 2.8. For a dynamical system (X, f) the following are equiva-
lent:

(1) The system is topologically transitive.
(2) For every pair of opene sets U and V in X, there exists n € N such
that f~™(U)NV #0.
(3) For every pair of opene sets U,V C X the set N(U, V') is nonempty.
(4) For every pair of opene sets U,V C X the set N(U,V) is infinite.
(5) There exists x € X such that its orbit O(x) is dense in X, i.e. the
set Trans(f) of transitive points is nonempty.
(6) The set Trans(f) equals {x : w(x) = X} and it is a dense, G5 subset
of X.
(7) For every opene set U C X, Uy—, f™(U) is dense in X.
(8) For every opene set U C X, and € > 0, there exists N € N such
that UnN:1 f™(U) is e-dense in X.
(9) For every opene set U C X, (U2, f™(U) is dense in X.
(10) For every opene set U C X, and € > 0, there exists N € N such
that ngl f™(U) is e-dense in X.
(11) If U C X is opene and ~invariant, then U is dense in X.
(12) If E C X is closed and Tinvariant, then E = X or E is nowhere
dense in X.

If (X, f) is topologically transitive, then f is surjective and either X is a
single periodic orbit or it is a perfect space, i.e. with no isolated points.

Proof. Notice that (7) is the definition of TT and so, of course, (1)< (7).
Condition (7) clearly implies that f(X) is dense and so equals X by com-
pactness, i.e. f is surjective.

We first show that if Trans(f) # 0 then either X is a periodic orbit or
it is perfect. Furthermore, x € Trans(f) implies w(z) = X.

Assume O(z) is dense. If x € O(z) then z is a periodic point with finite
orbit O(x) dense in X and so X = w(x). That is, X is a periodic orbit. If
x & O(zx) then the dense set O(z) is not closed, and so is infinite. Thus, the
points of the orbit are all distinct. This implies that if y € X \ O(z) then it
is the limit of some sequence f"i(x) with n; € N and n; — oco. In particular,
there is such a sequence (n;) with f™(z) — x, and so f%+*(x) — f*(x) for
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all £k € N. Thus, no point of X is isolated and every point is contained in
w(x).

Each of [(2), (7), (9)] & (3) is an easy exercise. (9)<(11) since
Uy2, f7™(U) is ~invariant and equals U if U is ~invariant. We have (7)< (8)
and (9)<(10) from Lemma [2.3(a), and (11)<(12) by taking complements.

This leaves (4), (5) and (6).

(6)=-(5) and (4)=-(3) are obvious.

(9)=(6): It is clear that

),

n=1

Trans(f) = ﬂ
U

with U varying over a countable base. By assumption (9) each |J;~, f~"(U)
is a dense open set. The Baire Category Theorem then implies that Trans(f)
is a dense G set. By our initial argument, Trans(f) = {z : w(z) = X }.

(5)=(4): (4) is obvious if X is a periodic orbit. Otherwise, (5) and our
initial argument imply that X is perfect. If O(z) is dense then it meets every
opene set in an infinite set because X is perfect. It then follows that N (U, V)
is infinite for every opene pair U,V . u

REMARK 2.9. Clearly, (12) implies that if (X, f) is topologically transi-
tive then X is not the union of two proper, closed, Tinvariant subsets. If X
is perfect then the converse is true as well (see [AC]).

COROLLARY 2.10. For a system (X, f) the set Trans(f) is invariant and
“invariant. Every transitive point is recurrent.

Proof. Since Trans(f) = {z : w(z) = X} by (6), and w(x) = w(f(x))
by it follows that the set of transitive points is invariant and ~invariant.
In particular, x € w(z) says that every transitive point is recurrent. m

PROPOSITION 2.11. Let (X, f) be a topologically transitive system with
X infinite. For any x € X and n € N, f~"(x) is nowhere dense, and so
O~ (z) is of first category.

Proof. Suppose U C f~"(z) is opene. There exists y € U N Trans(f).
Since Trans(f) is invariant, = € Trans(f). Hence, f*(x) € U for some k € N,
This implies that f*+"(z) = z, and so z is a periodic point which is also
a transitive point. It follows that X consists exactly of the orbit of x, and
so it is finite. Contrapositively, if X is infinite then the closed set f~"(x) is
nowhere dense for all n € N. As the countable union of nowhere dense sets,
O~ (z) is of first category. m

Recall our identification of a singleton with the point it contains. In
particular,

NUz)={neN:xze f"(U)}={neN: fT"(x)NU # 0}.
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THEOREM 2.12. For a dynamical system (X, f) the following are equiv-
alent:

(1) The system is strongly transitive.

(2) For every opene set U C X and every point x € X, there ewists
n € N such that x € f*(U).

(3) For every opene set U C X and every point x € X, the set N (U, x)
18 monempty.

(4) For every opene set U C X and every point v € X, the set N(U,x)
is infinite.

(5) For every x € X, the negative orbit O~ (x) is dense in X.

(6) For every x € X and € > 0, there exists N € N such that Oy (z) is
e-dense in X.

(7) If E C X is nonempty and “invariant, then E is dense in X.

If (X, f) is strongly transitive, then f is topologically transitive.

Proof. That each of (1), (3) and (5) is equivalent to (2) are easy exercises.
Moreover, (5)«<>(6) by Lemma [2.3(a).

(4)=-(3): Obvious.

(5)=(4): If n € N(U,z) then there exists y € U with f"(y) = z. Because
O~ (y) is dense there exists k € N(U,y). That is, there exists z € U such
that f*(z) =y, and so f¥+"(z) = 2. Hence, k +n € N(U, z). Thus, the set
N (U, ) is unbounded.

(5)<(7): O~ (z) is “invariant and if x € E and FE is ~invariant then
0~ (x) C E.

Condition (3) implies condition (3) of Theorem [2.8, Hence, strongly tran-
sitive implies topologically transitive. m

Recall that a subset L C N is syndetic if there exists N € N such that
every interval of length IV in N meets L.

THEOREM 2.13. For a dynamical system (X, f) the following are equiv-
alent:

(1) The system is very strongly transitive.
(2) For all € > 0, there exists N € N such that Oy(x) is € dense in X
for every x € X.

If (X, f) is very strongly transitive then for every opene set U C X and
every point € X, the set N(U,x) is syndetic.

Proof. (1)=(2): Cover X by €/2-balls V1, ..., V,,. There existsan N € N
large enough that ngl (Vi) = X for i = 1,...,m. Fix an z € X; then
for any y € X, we have y € V; for some i and z € f*(V;) for some n with
1 <n < N. Therefore Oy (x) is e-dense.
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(2)=(1): Suppose that N € N is such that Oy (z) is e-dense for every
x € X. Let W be an e-ball in X. For z € X there exists ' € W with
f*(2') = 2 where 1 < n < N. Hence, z € J_, f*(W). Since z is arbitrary,
Unor £1(W) = X

If X =)L, f*(U) then for every k € N, X = f*(X) = UNHE, ().
Thus, for every x € X, the set N(U,z) meets every interval of length N
inN. m

COROLLARY 2.14. If (X, f) is very strongly transitive then for any opene
U,V C X, the set N(U,V) is syndetic.

Proof. If x € V, then N(U,z) C N(U,V).
THEOREM 2.15. If f is an open map then the following are equivalent:

(1) The system is very strongly transitive.
(2) The system is strongly transitive.
(3) X does not contain a proper, closed ~invariant subset.

Proof. (1)=(2)=-(3) whether the map is open or not.

(2)=(1): If U is opene then each f™(U) is open, and so if { f*(U) : n€N}
covers X then it has a finite subcover.

3)=(2): If E is a nonempty ~invariant subset of X then by Lem-
ma (e), E is a nonempty, closed ~invariant subset, and so it equals X.
Thus, E is dense. This verifies condition (6) of Theorem [2.12] =

THEOREM 2.16. For a dynamical system (X, f) the following are equiv-
alent:

(1) The system is minimal.
(2) For every opene set U C X and every point x € X, there exists
n € N such that f*(z) € U.
(3) For every opene set U C X and every point x € X, the set N(x,U)
18 monempty.
(4) For every opene set U C X and every point x € X, the set N(z,U)
s syndetic.
(5) For every x € X, the orbit O(x) is dense in X.
(6) Trans(f) = X.
(7) For everyz € X, wf(z) = X.
(8) For every opene set U C X, Uy~ f~"(U) = X.
(9) For every opene set U C X, there exists N € N such that
Ui /(0) = X
(10) If E C X is nonempty, closed and invariant, then E = X.
(11) If E C X is nonempty, closed and “invariant, then E = X.
(12) If E C X is nonempty, closed and weakly ~invariant, then E = X.

If (X, f) is minimal, then it is very strongly transitive.
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Proof. Notice that condition (10) is the definition of minimality, and so,
of course, (1)<(10).

Again each of the equivalences [(2), (3), (8)] < (5) is an easy exercise.

(5)<(6) is obvious, and (6)<(7) by Theorem [2.8)(6).

(8)<(9) by compactness.

(4)=(3): Obvious.

(9)=(4): If X = [JY_, f™(U) then for every k € N, X = f~5(X) =
Ugjkkﬂ f7™(U). Thus, for every z € X, the set N(x,U) meets every interval
of length N in N.

(5)<(11): O(x) is closed and *invariant and if 2 € F with E *invariant
then O(z) C E.

[(11), (12)] = (10): Obvious.

(10) = [(11), (12)]: If F is nonempty, closed and either Tinvariant or
weakly ~invariant then by Lemma (d), E contains a nonempty, closed
invariant subset.

If (X, f) is minimal and U is opene then by (9) there exists N € N
such that (J_, f~"(U) = X. Since Trans(f) = X the system is topologi-
cally transitive, and so by Theorem f is surjective. Apply fV*1! to get
ngl f™(U) = X, that is, f is very strongly transitive. =

THEOREM 2.17. If f is a homeomorphism, then (X, f) is strongly tran-
sitive if and only if it is very strongly transitive if and only if it is minimal.

Proof. A homeomorphism is open and so strongly transitive < very
strongly transitive by Theorem In any case, minimal = very strongly
transitive by Theorem For a homeomorphism we can reverse the argu-
ment.

For very strongly transitive = minimal we see that Ui:[:l o) =X,
and apply f~V"! to get Uﬁle f"U)=X.n

Let h : X1 — X5 be a continuous surjection between compact spaces.
Then h is called irreducible if A C X; with A closed and h(A) = X5 implies
A = X;. We define

Inj, = {z € X1 : {z} = b (h(x))}.

We call h almost one-to-one when Inj, is dense in X;. An almost one-to-one
map is clearly irreducible, and if the spaces are metrizable then the converse
holds. Furthermore, if U C X; is open and = € U N Inj, then A(U) is a
neighborhood of h(z). For details see for example [AG, Lemma 1.1].

We recover a result from [KST].

COROLLARY 2.18. If (X, f) is minimal then f : X — X is an almost
one-to-one map. In particular, (X, f) is not fully exact unless it is trivial.
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Proof. Since the system is minimal, f is surjective. It suffices to show
that f is irreducible.

If AC X is closed and f(A) = X then A C f(A) and so A is a closed,
nonempty, weakly ~invariant subset. Hence, A = X by (9) of Theoremm

Assume that (X, f) is fully exact and nontrivial. Let U,V be disjoint
opene sets and let n € N and W opene such that f*(U) N f*(V) D W. Let
Uy =Unf™W)and Vi = VN f~™(W). These are disjoint opene sets
with f*(U1) = f*(V1). It follows that (U; U Vi) NInjpn = 0. Thus, f* is
not almost one-to-one, and so is not irreducible. Since the composition of
irreducible maps is irreducible, it follows that f is not irreducible. By the
above argument, (X, f) is not minimal. m

THEOREM 2.19. For a dynamical system (X, f) the following are equiv-
alent:

(1) The system is weakly mizing.

(2) For every triple of opene sets U, V,W in X, there exists N € N such
that f~N(U)YNV #0 and f~N(U)NW # 0.

(3) For every triple of opene sets U, V,W in X, there exists N € N such
that fN(U)NV # 0 and fNU)NW # (.

(4) For every N € N the product system (XN, f0N)) is topologically tran-
sitive.

(5) For every opene set U C X and € > 0, there exists N € N such that
fN(U) is e-dense in X.

(6) For every opene set U C X and € > 0, f~N(U) is e-dense in X for
infinitely many N € N.

(7) For every opene set U C X and € > 0, there exists N € N such that
N(U) is e-dense in X.

(8) For every opene set U C X, and e > 0, fN(U) is e-dense in X for
infinitely many N € N.

Proof. (1) < [(2), (3)] are characterizations of weak mixing given by
Petersen [Pe]. The equivalence (1)< (4) is a well-known consequence of the
Furstenberg Intersection Lemma. Both are reviewed, for example, in [AAN].

(5)=(2) and (7)=-(3): We choose ¢ > 0 small enough that both V" and
W contain e-balls.

(6)=(5) and (8)=(7): Obvious.

(4) = [(6), (8)]: Let Vi,..., Vi be a finite cover of X by €/2-balls. Be-
cause the product system (X*, f(k)) is topologically transitive, there ex-
ist infinitely many Nj, Ny such that Ny € N(U, Vi) N--- N N(U, V) and
Ny € N(Vi,U)N---N N(Vi,U). These conditions imply that ¥ (U) and
f~N2(U) are e-dense. m
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THEOREM 2.20. Let (X, f) be a dynamical system.

(a) If (X, f) is exact transitive then it is weakly mizing.
(b) The following conditions are equivalent:

(1) The system is strongly exact transitive.

(2) For every pair of open sets U,V , |, cn(f X f)™(U x V) contains
the diagonal idx .

(3) For every x € X, the negative f x f-orbit O (x,z) is dense in
X xX.

If (X, f) is strongly exact transitive then it is exact transitive and strongly
transitive.

Proof. (a) Condition (2) of Theorem [2.19]clearly holds for an exact tran-
sitive system.

(b) All three conditions say that for every x € X and opene U,V C X
there exists n € N such that x € f"(U) and x € f"(V). n

THEOREM 2.21.

(a) If (X, f) is exact transitive then it is topologically transitive and
exact.

(b) If (X, f) is topologically transitive and fully exact then it is exact
transitive.

(¢) If (X, f) is strongly exact transitive then it is fully exact.

Proof. (a) Obvious.

(b) Assume (X, f) is topologically transitive and fully exact. For an
opene pair U, V' there exists a transitive point « in the opene set (|J,, f*(U)N
f™(V))°. So there exists n such that x € f*(U) N f*(V). The orbit O(z) is
then contained in J,~,, f5(U) N f*(V), and so the latter set is dense.

(c) This follows from Theorem [2.5(b). =

This shows that exact transitivity is a slight strengthening of the con-
junction of exactness and topological transitivity.

THEOREM 2.22. For a dynamical system (X, f) the following are equiv-
alent:

(1) The system is strongly product transitive.

(2) For e > 0 and every finite subset F' C X, there exists N € N such
that f~N(x) is e-dense in X for all x € F.

(3) For e >0 and every finite subset F' C X, there exist infinitely many
N € N such that f~N(z) is e-dense in X for all x € F.

(4) The collection of subsets {N(U,z) : x€ X and U opene in X} of N
has the finite intersection property (or equivalently it generates a
filter of subsets of N).

If (X, f) is strongly product transitive then it is strongly exact transitive.
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Proof. (1)=(3): Let {U; : i« = 1,...,K;} be a finite cover of X by
opene €/2-balls. Consider a finite set F' = {z; : j = 1,..., Ko} C X. Let
K = K, - K, and label the points of XX by index pairs ij. Define the point
r e XK by z;j; = xj. Let U;; = U; and let U be the opene subset of XK
which is the product of the Uj;;’s. Because the product system (X%, D)
is strongly transitive, Theorem (4) implies that there exist N arbitrar-
ily large such that for each such N, U N (f¥5))~N(z) # §. That is, there
exists z € U with (fE))N(2) = 2. So for each pair ij, z;; € U;; = U; and
fN(2i5) = zij = . Thus, f~N(z;)NU; # 0 for all 4, j. Hence, each = (z;)
is e-dense because a set which meets every element of a cover by €/2 balls
is e-dense.

(3)=(2): Obvious.

(2)=(4): Given N(U1,z1),..., N(Ug,xr) choose € > 0 so that each Uj;
contains an e-ball, and let F' = {x1,...,x%}. By (2) there exists N such that
f~N(x;) is e-dense for all 4. Thus, f~V(x;) meets U;, and so N € N(U;, x;)
for all 4.

(4)=(1): Let x = (x1,...,2) € X*. Let U contain U; x - -+ x Uy. Then
N(U,z) D NUy,z1)N--- N N(Ug, xx).

If the system is strongly product transitive then by Theorem m(5)
applied to (X x X, f x f), the negative orbit O~ (z,x) is dense in X x X.
By Theorem [2.20(b)(3) it follows that (X, f) is strongly exact transitive. m

THEOREM 2.23. For a dynamical system (X, f) the following are equiva-
lent:

(1) The system is topologically mixing.

(2) For every pair of opene sets U,V C X the set N(U,V') is cofinite.

(3) For every opene set U C X and € > 0, there exists N € N such that
f™(U) is e-dense in X for allm > N.

(4) For every opene set U C X and € > 0, there exists N € N such that
f™(U) is e-dense in X for alln > N.

If (X, f) is topologically mizing then it is weak mixing.

Proof. (1)<(2) and [(3), (4)] = (2) are obvious.

(2) = [(3),(4)]: Let Vi,..., Vi be a finite cover of X by €/2-balls. As
the intersections of cofinite sets, N(U,V;) N ---N N (U, Vi) and N(V1,U) N
-+ N N(Vg,U) are cofinite. =

THEOREM 2.24. For a dynamical system (X, f) the following are equiva-
lent:

(1) The system is locally eventually onto.
(2) For all € > 0, there exists N € N such that f~"(z) is e-dense in X
for every x € X.
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(3) For all € > 0, there exists N € N such that f~"(z) is e-dense in X
for every x € X and everyn > N.

If (X, f) is locally eventually onto then it is strongly product transitive and
topologically mizing.

Proof. Notice that if f¥(U) = X then f*(U) = X for all n > N.

(1)=(3): Let {Ui,...,Uy} be a cover by e/2-balls. There exists an N
such that n > N implies f"(U;) = X for i = 1,...,m. Then f~"(x) meets
each U; for all x € X and n > N. So all such f~"(x) are e-dense.

(3)=-(2): Obvious.

(2)=-(1): Given an opene U, let € > 0 be such that U contains an e-ball.
If f~N(z) is e-dense for all z then f~(z) meets U for every z. Thus,
ANU)=X. u

REMARK 2.25. It is clear that if (X, f) is locally eventually onto then
N(U, ) is cofinite in N for all opene U C X and all z € X. It is not clear
whether the converse holds even if f is an open map.

The various forms of transitivity that we have discussed can be best
illustrated in the case of symbolic dynamics. Hence, we consider when a
subshift satisfies these transitivity conditions.

For a finite set A with the discrete topology, let AN be the space of all
one-sided infinite sequences provided with the product topology, and let o
be the shift map, defined by o(z), = z,41 for all n € N.

Regarding A as an alphabet, a word, v, is a finite sequence consisting of
letters of A, and we write |v| for the length of the word v. If v is a word
and w is a word or an element of AN, we write vw € AN for the obvious
concatenation.

Let §2 be a closed, shift invariant subset of AN. The system (£2, o) is called
a subshift of (AN, o). The set {2 is completely determined by its “vocabulary”
(language) 'V, the collection of all finite words which appear in some z € (2.

If z € 2 and n > 0, then z[; ,; denotes the word consisting of the first n
entries of x.

Notice that as v varies over V, the cylinder sets

[U] = {LU € T jo|] = ’U}
comprise a basis of clopen sets for the topology on 2.
THEOREM 2.26. Let (£2,0) be a subshift with associated vocabulary V.

(a) (£2,0) is topologically transitive if and only if for all v € V and all
w €V, there exists a € V such that vaw € V.

(b) (£2,0) is strongly transitive if and only if for allv € V and all z € 12,
there exists a € V such that vax € (2.
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(c) (£2,0) is very strongly transitive if and only if whenever v € 'V, there
is a finite collection V,, C 'V such that for every x € {2, vax € {2 for
some a € V.

(d) (£2,0) is minimal if and only if whenever v € V then v occurs in x

for all x € (2.

(e) (£2,0) is weakly mizing if and only if whenever vi,ve € V with
lv1] = |ve|, for all w € V there exist aj,as € V with |a1| = |ag]
and viaqw, veasw € V.

(f) (£2,0) is exact if and only if whenever vi,vy € V with |vi| = |va],
there exist x € 2 and ay,a9 €V and with |ai|=|az| and viaiz, voasx
€ 0.

(g) (£2,0) is strongly exact transitive if and only if whenever vi,vy € V
with |v1| = |va|, for all x € 2 there exist a1,az € V with |ai| = |ag|
and via1x, veasx € §2.

(h) (£2,0) is strongly product transitive if and only if whenever vy, ..., v,
€ V with all of the same length, and x1,...,x, € (2, there exist
ai,...,an all of the same length such that viaizy,...,Vnapxy € §2.

(i) (£2,0) is topologically mizing if and only if whenever v,w € V there
erists N € N such that for all k € N there exists ap € V with
lag| = N + k with vapw € V.

(G) (£2,0) is locally eventually onto if and only if whenever v € V, there
is a finite collection V,, C 'V all of whose elements are of the same
length such that if x € (2 there is an a € V,, with vax € (2.

Proof. (a) Given v,w € V assume there always exists a such that
vaw € V. Then there exists x € (2 which contains this word beginning
at position i + 1, so o'(x) € [v] and o™ (x) € [w] with n = |va|. Hence,
n € N([v],[w]). Thus, (§2,0) is topologically transitive.

Conversely, suppose {2 is topologically transitive and z is a transitive
point. Let v,w € V. Since o™(z) is also a transitive point for n > 0, it
follows that v and w appear infinitely often in x, so certainly a word of the
form vaw appears in 2.

(b) The given condition says exactly that for each v € V, every z € 2
occurs in some shift of the cylinder set [v]. Since the [v]’s form a basis, this
implies strong transitivity.

Conversely, if the system is strongly transitive then N([v],z) is infinite
for every v € V and z € X. If n € N([v],z) with n > |v| then there is a
word a of length n — |v| such that uaz € (2.

(c) Given any N € N there are only finitely many words of length less
than N. The given condition says exactly that for each v € 'V, every x € {2
occurs in some shift of the cylinder set [v] with an upper bound on the
number of shifts required. This implies very strong transitivity.
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Conversely, if the system is very strongly transitive, then given v € V
there exists N € N such that (JY_, o*([u]) = §2. For every x € §2, there

exists y € 2 such that ol*I*1(y) = 2. Then y € Ufle o*([u]), and so = €

i\f:'r‘}fll o"([v]). This means there exists a with |a| < N such that vax € £2.

(d) If (£2,0) is minimal, and v € V and z € {2, then the o-orbit of
enters [v] and so v occurs in z.

Conversely, if every word v € V occurs in every x € {2 then it occurs in
every o”(z) and so occurs in x infinitely often. This implies that w(z) meets
every [v], and so is dense. Hence, the closed set w(z) equals {2 for every x.
Thus, (§2,0) is minimal.

(e) The given condition implies that for every wj,vy,w € 'V with
|vi| = |va], the hitting time set N ([v1], [w]) N N ([v], [we]) is nonempty. Since
{[v1] x [ve] : |v1]| = |va|} is a basis for {2 x (2, this implies that the system is
weakly mixing by the Petersen criterion [Pe].

Conversely, if the system is weakly mixing then for every vi,vo,w € V
with |v1| = |vz], the hitting time set N([v1], [w]) N N([v2], [w]) is infinite.
If n > |v1] = |v2] is in the intersection then there exist a;,as € V with
|a1| = |az| = n — |v| such that viaiw, veag € V.

(f), (g) Proceed as in (e). We leave the details to the reader.

(h) Proceed as in (c). We leave the details to the reader.

(i) The condition is equivalent to the demand that N ([v], [w]) is co-finite
for every v,w € V.

(j) If the common length of the elements of V,, is n then o!*+7([v]) = £2.

Conversely, if the system is locally eventually onto then for all sufficiently
large N, o™¥([v]) = 2. If N > |v| then for every x € 2 there exists a € V
with |a] = N —|v| such that vaz € 2. Let V,, be all words of length N —|v|. m

Let (X, f) and (Y, g) be dynamical systems. If 7 : X — Y be a continuous
surjection such that mo f = gom, then 7w : (X, f) — (Y, g) is called a factor
map, (Y, g) is called a factor of (X, f), and (X, f) is called an extension of
(Y. 9).

In [AG] a property of a dynamical system is called residual when it
is inherited by factors, by almost one-to-one lifts and is preserved by in-
verse limits. It is shown there that topological transitivity, minimality, weak
mixing and mixing are residual properties. We now consider the remaining
properties.

THEOREM 2.27. Let w : (X, f) — (Y,g) be a factor map of dynamical
systems.
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(a) If (X, f) is strongly transitive, very strongly transitive, exact tran-
sitive, strongly exact transitive, exact, strongly product transitive or
locally eventually onto then (Y, g) has the corresponding property.

(b) Assume that 7 is almost one-to-one. If (Y, g) is very strongly tran-
sitive or locally eventually onto then (X, f) has the corresponding
property.

Proof. (a) Suppose (X, f) is strongly transitive. Then for any opene U

in Y, 771(U) is opene in X, and so X = |02, f*(7~1(U)). It follows that
oo
(2.2) Y =x(X)=Jnrf(=""(U))

n=1
= Jg'n=H ) = ().
n=1 n=1

Thus (Y, g) is strongly transitive.

If (X, f) is very strongly transitive, then we use the same proof with
U2, f™ replaced by U,]yzl f™ for sufficiently large N depending on 7 *(U)
and obtain the result with (J>2 ; ¢" replaced by Uﬁ;l g™ If (X, f) is locally
eventually onto, we replace by fV and g".

The remaining properties are similarly proved using

alf (@ O) N fHEH (V)] € gt (U) N gt (V).

(b) Now assume that 7 is almost one-to-one and that U is opene in X.
Let A be a closed set with nonempty interior. Let x € A° N Inj,.. Since
7 is open at x, there exists an open set V' C mw(A°) containing 7(z). If
(Y, g) is very strongly transitive then Y = Uﬁle g™ (V) for some N. Hence,
Vv = n(UN_, f*(A)). Because J)_, f*(A) is closed and 7 is irreducible,
X =UN, /(4) c UN, f(U). Thus, (X, f) is very strongly transitive.

If (X, f) is locally eventually onto we replace Ugil g (V) by ¢ (V) and
obtain X = fN(U) by the same proof. m

THEOREM 2.28.

(a) If (X XY, f x g) is strongly transitive, very strongly transitive, exact
transitive, strongly exact transitive, exact, strongly product transi-
tive or locally eventually onto then both (X, f) and (Y,g) have the
corresponding property.

(b) Assume (Y, g) is mizing. If (X, f) topologically transitive, weak mix-
ing, or mixzing then (X XY, f X g) has the corresponding property.

(c) Assume (Y, g) is locally eventually onto. If (X, f) strongly transitive,
very strongly transitive, exact, full exact, exact transitive, strongly
exact transitive, strongly product transitive or locally eventually onto
then (X x Y, f x g) has the corresponding property.
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Proof. (a) Each projection is a factor map.

(b) Let U;,Vi € X and U,V C Y be opene. Since (Y,g) is mixing,
N(U,V) is cofinal. Hence, N(U,Vi) N N(U,V) is infinite or cofinal if
N (Uy, V1) is. The product result follows for transitivity and mixing. Suppose
(X, f) is weakly mixing. Then (X x X, f x f) is topologically transitive and
(Y xY,g x g) is mixing. Hence, (X xY) x (X xY),(f xg) x (f x g)) is
topologically transitive. Thus, (X x Y, f x g) is weakly mixing.

(¢) Let Uy € X and U C Y be opene. There exists N such that n > N
implies ¢"(U) =Y. If L C N is such that | J{f"(U1) : n € L} = X and there
exists n € L with n > N then J{(f x ¢)"(U1 xU) :n € L} = X xY.
Using L = N we obtain the result for strong topological transitivity. Using
L = {1,...,N;} with N; sufficiently large, we obtain the result for very
strong topological transitivity. Using L = {N;} with N; sufficiently large,
we obtain the result for locally eventually onto.

We leave the others as (easy) exercises. =

REMARK 2.29. We note that the products of strongly transitive or very
strongly transitive systems need not be so. If (X, f) is nontrivial and minimal
with f a homeomorphism then it is very strongly transitive. The product
(X x X, f x f) is not minimal, and so by Theorem it is not strongly
transitive.

We do not know whether strong transitivity is preserved by almost one-
to-one lifts. On the other hand, most are not necessarily preserved by inverse
limits.

Recall that for a surjective system (X, f) the natural homeomorphism
lift (X , f ) is obtained by taking the inverse limit of the inverse sequence of
systems {pn : (Xpt1, fn) = (Xn, fn) 1 n € N} with each (X, fn) a copy
of (X, f) and each Pn being f. So # € X c XN with &, = f(&p41) for
all n € N. The map f is the restriction of the product map N on XN to
the closed invariant set X. Thus, f is a homeomorphism with inverse the
restriction of the shift map to X. Each projection m, : (X, f) = (X, f) is a
factor map.

Now let (X, f) be a nontrivial locally eventually onto system. So (X, f)
is fully exact, and so by Corollary 2.1§ it is not minimal. The inverse limit
system (X f ) is not exact since f is a nontrivial homeomorphism. The sys-
tem (X, f) is not minimal since its factor (X, f) is not. So by Theorem
it is not strongly transitive.

An f: X — X is called almost open if for every opene U C X, the
interior (f(U))° is nonempty. An almost one-to-one map is almost open,
and so Corollary implies that minimal maps are always almost open.

ExAMPLE 2.30. A locally eventually onto map need not be almost open.
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Let g be any continuous, surjective map on a compact perfect metric
space Z. Let F = gN on X = ZN. That is, F(z); = g(z;) for all i € N. Notice
that F is a continuous surjection on X and F' commutes with the shift map
o on X, since (oo F)(x); = g(xiy1) = (Foo)(x);. Let f=00F =Foo.
Then (X, f) is locally eventually onto, as for any cylinder [2] C X with
|z| = k, we have f*([2]) = X.

Now choose g so that it is not almost open, e.g. let Z = [0,1] and let
g(t) =2t for t € [0,1/2] and ¢(t) = 1 for t € [1/2,1].

For any such g there exists a closed set K with nonempty interior U such
that g(K) is nowhere dense. In the above example, K = [1/2,1] will work.
Consider in X the set K of 2 such that 5 € K. Observe that {z : x5 € U}
is open. We have f(K) = {z : #; € g(K)}. Since g(K) is nowhere dense
in Z, f(K) is nowhere dense in X.

Let (X, f) be any system. Then f is called iteratively almost open if for
every opene U C X, f™(U)° # () for infinitely many n € N.

PropoSITION 2.31. If (X, f) is strongly transitive, then f is iteratively
almost open.

Proof. Given an opene U choose a closed A C U with a nonempty in-
terior. Since X = (J;2; f"(A), the Baire Category Theorem implies that
for some n € N, f"(A) contains a closed set B with a nonempty interior.
Similarly, for some k € N, f¥(B) C f"**(A) contains a closed set with a
nonempty interior. Hence, f™(U) has nonempty interior for infinitely many
neN n

Let M be the collection of closed nonempty Tinvariant subsets of X
(note that X € M). A simple Zorn’s Lemma argument shows that any
M € M contains a minimal element of M. We call the minimal elements of
M negatively minimal sets. From Lemma [2.1{d) it follows that a negatively
minimal set is invariant. Clearly distinct negatively minimal sets are disjoint.

If x € X we let M(z) denote the intersection of all closed ~invariant
sets which contain x. While it is a minimum element among these sets it is
not necessarily negatively minimal invariant as in the previous paragraph.
The sets M (z) need not be disjoint. If f is an open map then M(z) is the
closure of O~ (z) by Lemma [2.1{e). If 2/ € M (z) then M (z') C M(x).

We observe that if M is a negatively minimal set, and x € M, then
M (z) = M. Moreover, if whenever ' € M (x) we have M (2') = M (x), then
M (z) is negatively minimal set.

Of course, if (X, f) is strongly transitive, then X is negatively minimal.
If the map f is open, then the converse holds by Theorem [2.15

Recall that point x is called recurrent when x € w(x), i.e. for every open
set U containing z there exist j € N such that f7(z) € U.
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THEOREM 2.32. If (X, f) is strongly transitive but not minimal, then
the set of nonrecurrent points is dense in X.

Proof. Let M be a minimal subset of X and y € M. Since (X, f) is not
minimal, U = X \ M is opene. Since O~ (y) is dense, it meets U. Let n be
the smallest positive integer such that f~"(y) NU # (), and let x be a point
of this intersection. Thus, z ¢ M, but f(z) € f~""V(y) C M. It follows
that w(z) = w(f(z)) C M, and so x is not recurrent. Since M is Tinvariant,
O~ (x) is disjoint from M. On the other hand, for every point z € O~ (z),
we have w(z) = w(z) C M, and so the points of the dense set O~ (z) are
nonrecurrent. m

COROLLARY 2.33. A strongly transitive (X, f) with all points recurrent
is minimal.

We say that (X, f) has dense periodic sets if for every opene U there
exist N € N and A C U closed such that fV(A4) = A.

THEOREM 2.34. If (X, f) is locally eventually onto then it has dense
periodic sets.

Proof. Given U opene, let V' C U be closed with a nonempty interior.
Since the system is locally eventually onto, there exists N € N such that
fN(V) = X D V. This says that for the system (X, fV) the set V is weakly
Tinvariant. By Lemma (d), V' contains a nonempty closed set A which is
invariant for fV. m

On the other hand, the following example was given to us by Elon Lin-
denstrauss.

ExAMPLE 2.35. A locally eventually onto map need not have any peri-
odic points.

Let (X, o) be an infinite minimal subshift of the full shift map ({1, 2}V, o).
Let (Xo,0) be the subshift of the full shift map ({0, 1,2}, o) consisting of
all sequences in which the word 00 does not occur. Thus, (Xo, o) is a subshift
of finite type and the map x — Z which excludes all the occurrences of 0
defines a continuous map 7 from Xy onto {1,2}". Similarly, for any finite
word u in the language of Xy we define u to be the finite word with alphabet
{1,2} obtained by excluding the 0’s. Let X = 7—*(X). While 7 is not an
action map, it is nonetheless clear that X is ajinvariant and “invariant
subset of Xj. For any word @ in the language of X we obtain words u in the
language of X by inserting 0’s arbitrarily but with no repeats.

Since X contains no periodic points, is obvious that that X does not.
We now show that (X, o) is LEO. It suffices to show that for any word w
in the alphabet of X, there exists N € N such that oV([u]) = X. We may
assume that v has length L at least two so that @ has length L > 0. Because
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~

(X,0) is minimal, there exists M € N such that

U @) =x.
0<k<M

Let z € X with m(z) = 2 € X. Since the shift is surjective on X, we can
choose @ € X such that o?M+L (%) = 2. There exists k with 0 < k < M
such that = o%(@) € [u]. Thus, 7 is the concatenation 402z where ¥ has
length between M + 1 and 2M. By inserting at most M 0’s without repeats
between the endpoints, we can define a word v in the language of X with
length exactly 2M. Thus, uvz € [u] C X with o%+2M (yvz) = 2. Since z was
arbitrary, o™V ([u]) = X with N = L +2M. u

We have established
= Mixing

Locally Eventually Onto = Strongly Product Transitive = Weakly Mixing = Transitive
= Exact Transitive

Strongly Product Transitive

4
Exact Transitive <= Strongly Exact Transitive
4 4 < Minimal

Very Strongly

Transitive ~= Strongly Transitive < Locally Eventually

Onto

Transitive

The reverse implications do not hold for most of these.
PROPOSITION 2.36. The following statements hold:

(1) Mizing # Strongly Transitive, Exact Transitive or Minimal.

(2) Very Strongly Transitive = Minimal.

(3) Minimal # FEzact Transitive or Weak Mizing.

(4) Strongly Product Transitive & Mizing # Very Strongly Transitive.
(5) Ezact Transitive & Mizing # Strongly Transitive.

(6) Weak Mixing # Mizing.

Proof. We prove each of these statements by providing examples.

(1)&(2) The full shift o on 2 = {0,1}” is a mixing homeomorphism
which is not minimal. Since it is injective, it is not exact. By Theorem [2.1
it is not ST because it is not minimal. The full shift on {0, 1}" is LEO and
so is VST but not minimal.

(3) Let R, be an irrational rotation on the unit circle S'. The map R,
is a minimal, isometric homeomorphism. Hence, it is VST but is not exact
or weakly mixing.

(4) Let (£2,0) be a subshift on the closure of all sequences of the form

0F1t103" 120%™ 180%™ .. 140%™ ..., k>0, t;,n; € N.
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in {0, 1}". This is SPT and Mixing but not VST. To see this, one shows
that if v is a word in the language of {2 and z € {2, then there exists N,
depending on v and z, such that for every n > N there exists a word a of
length n such that vax € (2. This implies SPT and Mixing. On the other
hand, as x varies, the minimum length N is not bounded and this implies
that the system is not VST.

(5) Let 8 = {ai,b; : i € Z} consist of two bi-infinite sequences in (0, 1),
with b;—1 < a; < b; < a;41 for all ¢ € Z and a;,b; — 0,1 as i — Foo. Let
J = lai,bi], J; = [bi,ai11] for i € Z, with Jii’o the corresponding open
intervals.

Define f on [0, 1] so that
0+ 0, a; — a;—1, bz — bi+1, 1—1

and f is linear on each Jii. The points 0 and 1 are fixed points with singleton
preimages.

Thus, f is increasing on each JZ-Jr , decreasing on each J; and the slope
on each interval has absolute value greater than one. Observe that f is
monotone on a closed interval J iff J° is disjoint from 8.

Clearly, f(J;) D J;" and

fai—ks birr]) D [@i—hg1)s bit(er1)] D [@iks bivi]
foralli € Z and £k =0,1,2,....
Thus, for each i € Z the sequence of intervals {f*(J;") : k=0,1,...} is
increasing with union (0, 1).

LEMMA. If J, K are closed, nontrivial intervals in (0, 1) then there exists
N € N such that f*(J) > K for all k> N.

Proof. If some iterate of J contains some b; and a; then it contains
either J; or J; 7, and the result then follows using the increasing sequence
{f¥(J;")}. If it contains either two b;’s or two a;’s then it contains some b;
and some a;. Thus, it suffices to show that some iterate of J meets 8 in at
least two points.

First we show that if G is a nonempty open interval in (0, 1) then some
iterate of G meets 8. Assume not. Then, inductively, each f¥(G) is an interval
contained in some JijE . and so it is an open interval on which f is monotone.
As the slopes have absolute value greater than one, the lengths are increasing.
On the other hand, for any € > 0 there are only finitely many Jii with length
greater than or equal to e. So with ¢ equal to the length of G, each f*(G)
is contained in one of this finite collection. On a finite collection of Jii’s the
absolute value of the slopes is bounded above one. Hence, the lengths must
be increasing at least at a geometric rate, and this is impossible in [0, 1].

Thus, we find that some iterate of G contains a nontrivial closed interval
[c, d] with either ¢ or d in 8. By the previous argument, f*((c,d)) meets 8
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for some k = 0,1,.... Let k£ be the smallest such nonnegative integer. Then
on [c,d] the map f* is injective. Hence, the point e € f*((c,d)) N8 is not
equal to either f¥(c) or f¥(d), one of which also lies in 8.

Thus, as required we have shown that some iterate of a nontrivial interval
meets S in at least two places.

It follows that f is exact transitive and topologically mixing. Since
07(0) = {0} and O~ (1) = {1}, the system is not ST.

(6) It is well-known that there are weakly mixing homeomorphisms which
are not mixing. For shift examples see [AG]. w

We are left with the following questions:

e Does Strongly Exact Transitive = Strongly Product Transitive?
e Does Strongly Product Transitive = Mixing?
e Does Exact Transitive = Mixing?

Our example in (5) above yields a transitive map on [0, 1] such that the
two endpoints have singleton backward orbits, whereas the backward orbits
of all other points are dense. This is similar to an example given in [BC].

The same example when restricted to the open interval (0, 1) can be used
to provide a transitive map on R with all points having dense backward
orbits. An example of a transitive map on R such that f~1(0) = {0} and all
other backward orbits are dense has been constructed in [NS]. It has been
also proved that there can be at most one such point, whose backward orbit
is not dense, for any transitive map on R in [NKS].

Towards the end, it would also be interesting to look into noninvertible,
minimal subshifts. Observe that given any minimal subshift ¥ C A%, where
A is a finite alphabet, we can define a subshift 2 ¢ AN by taking the
projection w : ¥ — (2 induced by the inclusion of N into Z. As a factor of
a minimal system, ({2, 0) is minimal. If this system is infinite, then it will
contain asymptotic pairs of points (see e.g. [Aul p. 19]).

Beginning with such a pair and shifting we can obtain u,v € {2 such that
ug # vg, but u, = v, for all n € N. Thus, ¢ is not invertible on §2.

We refer the reader to [KST] for more on noninvertible minimal maps.
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