STUDIA MATHEMATICA 236 (1) (2017)

Rigged modules II: multipliers and duality
by

Davip P. BLECHER (Houston, TX)

Abstract. In a previous paper with Kashyap (2011) we generalized the theory of
W*-modules to the setting of modules over nonselfadjoint dual operator algebras on a
Hilbert space, obtaining the class of weak™ rigged modules. The present paper and its
contemporaneous predecessor comprise the sequel which we promised at that time would
be forthcoming. We give many new results about rigged and weak™ rigged modules and
their tensor products, such as an Eilenberg—Watts type theorem.

1. Introduction. Rigged modules over a (nonselfadjoint) operator al-
gebra are the generalization from [I} 12] of the important class of modules
over C*-algebras known as Hilbert C*-modules. A W*-module is a Hilbert
C*-module over a von Neumann algebra which is ‘selfdual’ (see e.g. [16, 3]),
or equivalently which has a Banach space predual (a result of Zettl, see e.g.
[11, Corollary 3.5] for a proof). The weak* rigged or w*-rigged modules, in-
troduced in [7] (see also [9]; or [11, Section 5] for an earlier variant), are a
generalization of W*-modules to the setting of modules over a (nonselfad-
joint) dual operator algebra. By the latter term we mean a unital weak*
closed algebra of operators on a Hilbert space.

In [7] we generalized basic aspects of the theory of W*-modules, and
this may also be seen as the weak™ variant of the theory of rigged modules
from [2] (see also [12]). The present paper and its contemporaneous pre-
decessor comprise the sequel which we promised at the time of [7] would
be forthcoming. In the present paper we discuss rigged modules and ‘corre-
spondences’ using the concept of the operator space left multiplier algebra
of Y in the sense of [4, Section 4.5]. We also discuss a connection between
rigged and weak* rigged modules, the exterior tensor product, orthogonally
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complemented submodules, and other topics such as an Eilenberg—Watts
type theorem characterizing functors between categories of rigged or weak*
rigged modules.

In the course of this work we noticed several things that were missed,
or not stated (or proved), or which could be simplified, from the time the
earlier work on rigged and weak* rigged modules was done. We take the
opportunity to correct/present/simplify these things here.

Turning to background, we will use the notation from [6l [7, 15 &], and
perspectives from [I]. We will assume that the reader is familiar with ba-
sic notions from operator space theory which may be found in any cur-
rent text on that subject. The reader may consult [10] as a reference for
any other unexplained terms here. We assume that the reader is famil-
iar with basic Banach space and operator space duality principles such as
the Krein-Smulian theorem. We often abbreviate ‘weak™’ to ‘w*’. A right
dual operator M-module is a nondegenerate M-module Y, which is also
a dual operator space, such that the module action is completely contrac-
tive and separately weak™ continuous. We use standard notation for module
mapping spaces; e.g. CB(X, N)y (resp. CB?(X,N)y) are the completely
bounded (resp. and weak® continuous) right N-module maps from X to N.
We often use the normal module Haagerup tensor product Y ®‘]’fo Z, and
its universal property from [14], which loosely says that it linearizes com-
pletely contractive M-balanced separately weak* continuous bilinear maps
(balanced means that u(za,y) = u(z,ay) for a € M). We assume that the
reader is familiar with the notation and facts about this tensor product
from [6l, Section 2]. Although we shall not use it here, in passing we remark
that the module tensor product facts in that section work even without
assuming all of the constituents of the definition of Y being a dual oper-
ator M-module, so long as it is a dual operator space and an M-module.
For any operator space X we write C,(X) for the column space of n x 1
matrices with entries in X, with its canonical norm from operator space
theory.

DEFINITION 1.1 ([7]). Suppose that Y is a dual operator space and a
right module over a dual operator algebra M. Suppose that there exists a
net (n(a)) of positive integers, and w*-continuous completely contractive M-
module maps ¢q 1 Y — Cpoy (M) and 14 : Cpyo) (M) — Y, with 14(0a(y))
converging to y in the weak® topology on Y for all ¥ € Y. Then we say that
Y is a right w*-rigged module (or right weak® rigged module) over M.

We remark that the fact that w*-rigged modules are dual operator mod-
ules seems not to have been proved in the development in [7, Section 2 and
the start of Section 3] but seemingly assumed in the proof. We give a proof
of this early on in [§].
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As in [7, p. 348], the operator space structure of a w*-rigged module Y
over M is determined by [[yis]las,(v) = 5uPe ll[6a(yis) ]l for i) € Mu(Y).

The rigged modules of [1] may be defined similarly to Definition but
with the words ‘dual’ and ‘w*-continuous’ removed, and the weak* topology
replaced by the norm topology, and M now an approximately unital operator
algebra. This simpler reformulation of the definition of a rigged module, and
its equivalence with the definitions in [I], may be found in [5, Section 3]. The
operator space structure of a rigged module Y over M is determined by the
same formula as at the end of the last paragraph, but for the appropriate
¢q in this case. See [1] for details.

We say that w*-rigged modules are unitarily isomorphic if there exists a
completely isometric surjective weak® homeomorphic module map between
them. Similarly for rigged modules, with of course ‘weak* homeomorphic’
dropped.

Every right w*-rigged module (resp. right rigged module) Y over M gives
rise to a canonical left w*-rigged (resp. left rigged module) M-module Y,
and a pairing (-,-) : Y x Y — M (see [7, [1]). Indeed in the w*-rigged case,
Y turns out to be completely isometric to CB?(Y, M)y as dual operator

M-modules, together with its canonical pairing with Y. Also, Y = Y. The
morphisms between w*-rigged M-modules are the adjointable M-module
maps [7, [§], which turn out to coincide with the weak* continuous completely
bounded M-module maps (see [7, Proposition 3.4]). We write B(Z, W) for
the weak® continuous completely bounded M-module maps from a w*-
rigged M-module Z into a dual operator M-module W, with as usual
B(Z) =B(Z,Z). We also use this notation for the adjointable maps be-
tween rigged modules [1]. We write K(Y) 4 for the compact adjointable right
A-module maps on a right rigged A-module Y, that is, the closure of the span
of the maps on Y of the form y +— y/(x,y) for some 3/ €Y and z €Y (see [I]).

2. Rigged modules, multipliers, correspondences, and duality.
The following important facts about rigged modules do not appear to be in
the literature:

LEMMA 2.1. If Y is a rigged module over an operator algebra A, viewed
as an operator space, and if My(Y') is the operator space left multiplier alge-
bra of Y in the sense of [4, Section 4.5], then My(Y) = CB(Y)a completely
isometrically isomorphically. This also equals the left multiplier algebra of
K(Y) 4, where the latter is the compact adjointable maps on Y .

Proof. Tt is known (see e.g. [I, Theorem 3.6]) that K(Y)4 is a left ideal
in CB(Y)4. This gives a map CB(Y)a — LM(K(Y)4). Conversely, since
Y is a left operator K(Y) 4-module (by the same cited theorem), it is a left
operator LM (K(Y) 4)-module by [10] 3.1.11]. Hence we obtain a completely
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contractive homomorphism LM (K(Y)4) — CB(Y) 4. It is easy to argue that
these maps are mutual inverses, so that CB(Y )4 = LM (K(Y) 4) completely
isometrically isomorphically. (This argument may have originally been due
to Paulsen.)

By facts in the theory of operator space multipliers (see e.g. [10, Theo-
rem 4.5.5]), the ‘identity map’ is a completely contractive homomorphism
My(Y) — CB(Y). This maps into CB(Y') 4, since for example right multi-
plication by a € A is easily seen to be a right operator space multiplier, and
left and right operator space multipliers commute (see [10, 4.5.6]). From [I]
we know that CB(Y)4 is an operator algebra. Also, by the last paragraph,
Y is a left operator CB(Y') g4-module (with the canonical action). By the op-
erator space multiplier theory (see e.g. [10, Theorem 4.6.2(1) and (2)]) there
exists a completely contractive homomorphism 7 : CB(Y) 4 — My (Y) with
7(T)(y) =T(y) forally € Y and T € CB(Y ). That is, 7(T") = T. Thus
CBY)a=My(Y). =

The last result should have many consequences. In the remainder of this
section we give several.

COROLLARY 2.2. For any orthogonally complemented (in the sense of
[T, Section 7]) submodule W of a rigged module Y over an operator algebra A,
there is a unique contractive linear projection from Y onto W. The right
M -summands in the sense of [4] (see also [10) Sections 4.5 and 4.8]) in such
Y are precisely the orthogonally complemented submodules of Y.

Proof. The orthogonal projections in My (Y'), which by the previous re-
sult are the completely contractive idempotents in CB(Y)ys, are the left
M-projections on Y by [4], and the right M-summands are their ranges.
These ranges are just the orthogonally complemented submodules.

The first assertion is a general fact about right M-summands of an op-
erator space from [4]. m

An early prototype of the w*-rigged modules appeared in [11l Section 5].
We now connect these two notions. Some examples of the modules charac-
terized here may be found e.g. in [I1} p. 405]. For example every W*-module
(defined in the first paragraph of our paper) satisfies these conditions.

THEOREM 2.3. Let Y be a rigged module over a dual operator alge-
bra M. Suppose that' Y has a predual operator space, and that (z,-) is weak’
continuous for all x € Y. Then Y is a w*-rigged module, and Y is self-
dual (that is, CB(Y, M)y =Y wia the canonical map), and CB(Y )y =
CB?(Y)y =B(Y)nr. Thus Y belongs to the class of modules considered in
[11, Lemma 5.1 and Corollaries 5.2 and 5.5], and therefore satisfies all the
conclusions of those results.
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Proof. By Lemma and because left multipliers on a dual space are
known to be weak* continuous [10, Theorem 4.7.1], we have

CB(Y)m = My(Y) = CB7(Y ).

Given a bounded net m; — m weak® in M, suppose that a subnet ymy,
converges to 3 weak* in Y. Then (x, ymy, ) converges to (z,y) forall z € Y.
However it also converges to (x,y)m, and so (x,y’ —ym) = 0. It follows that
y' = ym, so that by topology ym; — ym weak*. So the map m — ym is
weak* continuous by the Krein-Smulian theorem.

It follows that in the definition of Y being a rigged module (below Defini-
tion we may assume that the maps ¢, ¢, are weak® continuous. Indeed
in [I] the ‘coordinates’ of ¢, are usually assumed to be of the form (z,-) for
z €Y, hence are weak* continuous. For 1), this follows from the fact proved
in the last paragraph. So Y is a w*-rigged module.

Applying the relation at the end of the first paragraph of the proof to
the direct column sum Y @€ M (see [7]) we have CB(Y &°¢ M)y equal to
CB°(Y &° M)y, from which it is clear that

CB(Y,M)yr = CB(Y, M)y 2 Y.
So Y is selfdual. The other conclusions are easy. =

The last theorem may be viewed as a ‘nonselfadjoint variant’ of the result
of Zettl mentioned in the first lines of the paper.

REMARK. The condition in the theorem that (z,-) is weak™ continuous
may be automatic, although to get this one may need to assume that b — yb
is weak™® continuous on M for each y € Y. We were able to show without this
(z,-) condition that Y @y, H¢ and Y @$# H¢ are Hilbert spaces, and if these
two spaces coincide then the conclusions of the theorem hold. We were also
able to prove the theorem with the weak* continuity assumption on (z,-)
replaced by the weak® continuity of b — yb condition, if M acts faithfully
on the right on Y (that is, there is a unique b € M with Yb = 0). To see
this, let f € CB(Y, M), let y» — y be a bounded weak* convergent net
inY, and let yp € Y be fixed. By the first paragraph of the proof the map
y — yof(y) is weak* continuous on Y, so yof(y:) — vof(y). Suppose that
we have a weak* convergent subnet f(y,) — bin M. Then yof(y:,) — yob
weak™. Thus yob = yo fr(y) for all yo € Y, and we deduce that b = fi(y).
By topology f(y;) — fix(y) weak*. Hence by the Krein-Smulian theorem f
is weak*® continuous. It follows as in the proof that we may assume that the
maps @q, Po are weak* continuous, and Y is w*-rigged. Hence CB(Y, M)y =

CB°(Y, M)y =Y, s0Y is selfdual, and we may continue as before.

Recall that an approximately unital operator algebra is one which has a
contractive approximate identity.
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THEOREM 2.4. Suppose that A, B are approzimately unital operator al-
gebras, and that Y is a right rigged B-module which is a nondegenerate left
A-module via a homomorphism 0 : A — B(Y)p = M(K(Y)p). Then with
this action Y is a left operator A-module if and only if 0 is completely con-
tractive. If these hold then 0 is essential in the sense of [1, pp. 400-401].
In particular, there is a contractive approzimate identity (e;) for A with
ey =y and ey — x forally €Y andz €Y.

Proof. The first assertion may be deduced for example from Lemma [2.1
and the fact that the left operator A-module actions on Y are in bijec-
tive correspondence with the completely contractive homomorphisms into
M,y (Y') which give a nondegenerate left module action on Y. One direction
of this follows from e.g. [10, Theorem 4.6.2(1) and (2)]. The other direction
follows from [10, 3.1.12] and the fact that any operator space Y is a left
operator My(Y)-module (by [10, Theorem 4.5.5]).

Viewing M (K(Y)p) C (K(Y)p)**, we find that 6 extends uniquely to a
completely contractive homomorphism 6 : A** — (K(Y)g)** by [10, 2.5.5].
Since O(er)z — z for all z € K(Y)p and every contractive approximate
identity (e;) of A, it follows that any weak® limit point n of (f(e;)) satis-
fies nz = z. So n is a left identity for (K(Y)p)**, hence equals the iden-
tity 1 for that algebra (see [10, Proposition 2.5.8]). So f(e;) — 1 weak®,
by topology. Then z6(e;) — z weak® in K(Y)}; for z € K(Y)p, and hence
weakly in K(Y)p (note that K(Y)p is an ideal in B(Y)p). By Mazur’s the-
orem, taking convex combinations we get a norm bounded net satisfying
[T, Proposition 6.2(2)]. So € is essential. The last assertion follows from [1}
Proposition 6.3]. =

A bimodule satisfying the conditions in the last result will be called a
(right) A-B-correspondence. The last theorem shows that the original defi-
nition in [I, Proposition 6.3] can be substantially simplified.

The interior tensor product of right rigged modules from [I, pp. 400
401] is simply the module Haagerup tensor product (see [12, [10]) of a right
A-rigged module and a right A-B-correspondence. We will write this tensor
product as Y ®¢ Z, where 6 is the left action as above. However we will not
focus much on rigged modules in this paper, since that theory is older and
more developed.

We will use later the interior tensor product of weak* rigged modules
[7, [8]. Here Y is a right w*-rigged module over a dual operator algebra M,
and Z is a right w*-rigged module over a dual operator algebra NN, and
0: M — B(Z) is a weak™ continuous unital completely contractive homo-
morphism. Because Z is a left operator module B(Z)-module (see [7, p. 349)),
Z becomes an essential left dual operator module over M under the action
m -z = 6(m)z. In this case we say Z is a right M-N-correspondence (an
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abusive notation because this concept is the weak® variant of the analogous
notion studied earlier in this section under the same name). We form the
normal module Haagerup tensor product Y ®‘]’V? Z which we also write as
Y ®¢ Z (again a somewhat abusive notation; the context will have to make
it clear whether we are using the rigged or the w*-rigged variant). By [7, 3.3]
this is a right w*-rigged module over N, called the interior tensor product
of w*-rigged modules.

3. Eilenberg—Watts type theorem. The norm on the matrix space
My, o (CB(Y,Z)n) (and on its subspace M, ,(B(Y,Z))) is the operator
space norm, namely giving [fi;] the ‘completely bounded norm’ in
CB(Y, My, n(Z2)) of the map y — [f;;(y)]. We write this norm as ||[fi;]]|cb-

LEMMA 3.1. Suppose that Y is a right w*-rigged (resp. rigged) module,
and Z is a right dual operator module (resp. right operator module) over a
dual operator algebra (resp. operator algebra) M. For m,n € N suppose that
[fij] € Myn(CB(Y,Z)r), with each fij weak® continuous in the w*-rigged
case. Then

Il isllen = sup [1Lfis (i)l

where [fi;(yy)] is indexed on rows by i and on columns by j and k, and
where (y5') are the ‘coordinates’ of the map ), in Definition [1.1| (so that
Yo (b)) = Dok yibi). This norm also equals the ‘completely bounded norm’
in CB(Cn(Y),Cin(2)) of the map [y;] — [>2; fij(y;)] on Cu(Z). In partic-
ular for w*-rigged modules Y, Z over M we have

M n(B(Y, Z)) = B(Cn(Y), Cn(2))
completely isometrically.

Proof. The assertions for w*-rigged modules follow by [7, Corollary 3.6],
or by the weak™ variant of the following. In the rigged module case the result
follows by a trick which occurs very frequently in the theory (see e.g. [12]),
so we will be brief. Write the map ¢, in Definition as ¢a(y) = [ (v)],
and set y* = (yp) € M1, (Y). Then for [ype] € M,(Y) of norm 1 we have

Figpa)) = timn | £33 (37 08 0 wp) ) | = tim [ £is ) @ )
k k

The norm of this is dominated by sup,, ||[fi;(y7)]||, which in turn is domi-
nated by ||[fi;]]|e since ||y®|] < 1. This proves the displayed equation. A sim-
ilar computation shows that ||[Z fU( D < sup, ||[fij(y2)]|] for a matrix
[y??] of norm 1 with entries y?? in YV’ 1ndexed on rows by ¢, p and on columns
by ¢. In turn ||[f;;(y7)]|| is dominated by the completely bounded norm in
CB(C,(Y),Cn(Z)), as may be seen by viewing f as ‘acting by left multi-
plication’ on the n x (n - n(a)) matrix y* ® I,,. =
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For a dual operator algebra M let W), denote the category of right
w*-rigged modules over M. The morphisms are the weak* continuous (or
equivalently, adjointable) completely bounded M-module maps. For an ap-
proximately unital operator algebra M let Rj; be the category of right
rigged modules over M, with morphisms the adjointable completely bounded
M-module maps.

We will say that a functor F is completely contractive (resp. linear, nor-
mal, strongly continuous) if T — F(T) is completely contractive (resp. lin-
ear, weak® continuous, takes bounded strongly convergent (that is, ‘point-
norm’ convergent) nets to strongly convergent nets) on the space of mor-
phisms.

PROPOSITION 3.2. For approximately unital operator algebras (resp. dual
operator algebras) M and N let Z be a right M-N -correspondence. Then
the interior tensor product with Z is a strongly continuous normal (resp.
normal) completely contractive linear functor from Way to Wy (resp. Ry
to RN).

In particular, if M and N are weak™ Morita equivalent dual operator
algebras in the sense of [0], then their categories of right w*-rigged modules
are isomorphic. Moreover this isomorphism is implemented by tensoring with
the equivalence bimodule.

Proof. Let F(Y) = Y ®¢ Z be the interior tensor product. That F' is
completely contractive follows from [8, Proposition 2.2 and the remark after
it], and it is easily seen to be a linear functor. If a bounded net T}; converges
to T in the strong (resp. weak™) topology in B(Y7,Y2) then T, @ [ - T ® I
strongly (resp. weak*; see [9, Theorem 3.1]).

If (M,N,X,Y) is a weak* Morita context in the sense of [6] then by the
above F(Z)=Z ®%LX is a completely contractive normal functor from R s
to Ry, with ‘inverse’ the functor G from Ry to Ry defined by G(W) =
W®3Y. As in [6, Theorem 3.5], F and G are inverse functors via completely
isometric isomorphisms, and so the categories R j; and R are isomorphic. =

THEOREM 3.3. Let M and N be approzimately unital operator algebras
(resp. dual operator algebras), and suppose that F is a strongly continuous
normal (resp. normal) completely contractive linear functor from Wy to
Whn (resp. Ry to Ry). Then there exists a right M-N -correspondence Z
such that F' is naturally unitarily isomorphic to the interior tensor product
with Z.

Proof. We are adapting the proof of the C*-module variant in [2, Theo-
rem 5.4]. Let Z = F(M). We first prove that Cy,(F'(M)) = F(Cy(M)). The
proof of the analogous statement in [2] does not work, instead we proceed
as follows. If i, : M — Cp(M) and 7, : Cp(M) — M are the canoni-
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cal inclusions and projections, then these are clearly adjointable. We have
i = (ig) € My(B(M,Cp(M))) as well as 7 = [my] € Cp(B(Cr(M), M)).
Thus F(i) is in M ,(B(Z, F(Cp(M))) and is a contraction, as also is F/(r) €
Cr(B(F(Cn(M)), Z)). By Lemma [3.1], we may view F(i) as a contraction in
B(Cn(Z),F(Cp(M))), and F(m) as a contraction in B(F(C,(M)),Cn(2)).
The composition of these latter (complete) contractions in either order is
easily seen to be the identity, so that indeed F(Cp(M)) = C,(Z) as de-
sired. Because we shall need it shortly, we note that the unitary morphism
Cn(Z) = F(Cp(M)) here is [z] = > 1 F(ix)(2k)-

As in [2, Theorem 5.4], Z is a right rigged (resp. w*-rigged) module
over N, and we make Z into an M-N-bimodule by defining mz = F(L,,)(2)
for m € M, z € Z. Here L, : M — M is left multiplication by m, a
completely bounded adjointable map. Since F' is completely contractive,
it is easy to argue that the associated homomorphism 6 : M — B(Z) is
completely contractive. Since F' is strongly continuous (resp. normal), the
left action of M on Z is nondegenerate (resp. separately weak™ continuous),
and Z is a right M-N-correspondence.

Define a bilinear map 7 : Y®ypZ — F(Y') by (y, 2) — F(Ly)(z), where L,
is left multiplication by y on M. This map is an M-balanced right N-module
map as in [2, Theorem 5.4], and in the w*-rigged case it is clearly separately
weak™ continuous. It is completely contractive in the sense of Christensen
and Sinclair, since if y = [y;;] € Ball(M,,(Y')), z = [z;] € M,,(Z) then

[Lyik] S BaH(Mn<B(M7 Y))) = Ball(IB(M, Mn(Y)))a

so that [F'(Ly,, )] € Ball(M,(B(Z, F(Y)))). Since M,(B(Z, F(Y))) may be
identified with B(C,,(Z), Cp,(F(Y))) via Lemma it is easy to see that

|32 Pz ]| < sl
k

so that 7 is completely contractive. By the universal property of the tensor
product, we obtain a complete contractive N-module map 7y : Y ®¢ Z —
F(Y') which is weak* continuous in the w*-rigged case.

Showing that 7y is a complete isometry is similar to the (matrix normed
version of the) computation in [2 Theorem 5.4]. However to take into ac-
count the w*-rigged module case, the argument changes a bit. In either
case, for u € Y ®y Z we see that 7y (u) is the appropriate limit over a of

F(t6n) F (o) 7y (u). Consequently,
1y )n)llag, vy = sup NE(@a) 7y (wig)ll] - for [ui] € Ma(Y @6 Z).
As in [2, bottom of p. 277], we have
F(¢a)y (ui) = 70, 0 (1) (e @ T) (i)
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Since 7¢ (o (M) is a complete isometry, we deduce that
1y In()laz,pvy) = sup [ll(ea ® D (wiplll = llullar,ve,2),

with the last equality holding by the formula immediately after Defini-
tion [I.1], since ¢, ® I and 1, ® I are the asymptotic factorization maps
for Y ®¢ Z. Thus 7y is a complete isometry.

That 7y has dense range follows similarly to the argument for this in
[2, Theorem 5.4], the key point being that the functions 7y o (¢, ® I) and
F(¢q)o0 TCpp (e (M) B8TEE ON Cr(a)(M) @p Y. So Ty is a completely isometric
isomorphism, that is, a unitary isomorphism, and it is an easy exercise to
see that it implements the natural equivalence in the desired sense. m

REMARK. Asin pure algebra, it is an easy exercise to see that this yields
a bijection between (isomorphism classes of) right AM-N-correspondences
and (isomorphism classes of) such strongly continuous completely contrac-
tive functors. Composition of such functors corresponds to the interior tensor
product of the bimodules.

4. The exterior tensor product of w*-rigged modules. If Y is a
right w*-rigged module over M, and if Z is a right w*-rigged module over IV,
we define the weak* exterior tensor product Y ® Z to be their normal minimal
(or spatial) tensor product (see e.g. [10, 1.6.5]). We may view it as a module
over M ® N as follows. Let L(Y) and L(Z) be the weak linking algebras for
Y and Z respectively (as in [7), 3.2]). Viewing Y and Z as the 1-2-entries of
L(Y) and L(Z) respectively, identify Y ® Z with the obvious subspace of
the dual operator algebra tensor product L(Y) ® L(Z). Write Y ® Z for its
completion in the weak® topology of L(Y) ® L(Z). In this way, Y ® Z can
be seen to be invariant under right multiplication by the 2-2-corner M ® N
of L(Y)® L(Z). Thus Y®Z is a right dual operator (M ® N)-module.

The normal minimal tensor product of any dual operator spaces Y
and Z, and in particular hence the exterior tensor product of w*-rigged mod-
ules, is completely isometrically and weak*-homeomorphically contained in
(Y ® Z,)*, where ® is the operator space projective tensor product. Thus it
is contained completely isometrically and weak*-homeomorphically, via the
canonical inclusions, in CB(Y,, Z) and CB(Z,,Y). Indeed, by basic operator
space theory (see e.g. [I3, [10]), we can identify (Y ® Z,)* = CB(Y:, Z) =
CB(Z,,Y) with the normal Fubini tensor product of ¥ and Z, and it is
known that this contains a canonical copy of ¥ ® Z (see [13, Theorem
7.2.3]).

In what follows we will use the fact that the normal minimal tensor
product is functorial. That is, if Yy and Z; are dual operator spaces, and if
Ty : Y — Zy are completely bounded weak* continuous maps, for k =1, 2,



Rigged modules II: multipliers and duality 95

then Th' @ Ty : Y1 ® Z1 — Yo ® Zs defines a unique completely bounded
weak® continuous map. Moreover, ||T1 @ To|le < [|T1]|eb]|Z2]|cb- This also
follows from some basic operator space theory (see e.g. [13] [10]). Tensoring
the predual maps of T}, with respect to the operator space projective tensor
product, and then dualizing, gives a weak* continuous map u : ((¥1)s &
(Z1):)* = ((Ya)x ® (Z3)4)* with completely bounded norm < || 71| T2 -
As in the last paragraph, we can identify ((Y3)s ® (Zg)«)* with the normal
Fubini tensor product of Y, and Zj. Restricting u to the copy of Y1 ® Z1, we
get a completely bounded weak* continuous map from Y; ® Z7 — Yo ® Zs.

THEOREM 4.1. The weak*-exterior tensor product of w*-rigged modules
Y and Z is a w*-rigged module.

Proof. Suppose that ¢ : Y — Cpq)(M) and g : Cpq)(M) — Y are
factorization maps for Y, and suppose that (g : Z — C,,5)(IN) and g :
Cp)(IN) — Z are factorization nets for Z, as in Definition By operator
space theory we know that C,(M) @ Cp(N) = Cpm(M®N) completely
isometrically and weak*-homeomorphically. By functoriality of ®, we can
define ¢ ® (g and Yo ®ng of Y ® Z through spaces C o) (M) @ Cpy()(N) =
Ch(a)ym(8)(M®N ), and check that the conditions of Definition |I.1are met. m

COROLLARY 4.2. Suppose that Y1 and Zy are right w*-rigged modules
over M, and that Yo and Zy are right w*-rigged modules over N. Suppose
that Ty, : Y — Zi are completely bounded and weak* continuous module
maps over M and N respectively, for k = 1,2. Then T1 @ Ty : Y1 ® Z1 —
Yo ® Zy defines a unique completely bounded weak® continuous (M ® N)-
module map. Moreover, || Th @ Ta||ep < |11 ||| T2]|cb-

Proof. Nearly all of this is just the functoriality discussed above Theo-
rem It is easy to argue by weak* density arguments that 77 ® T5 is an
(M ® N)-module map. =

One may check that the weak* exterior tensor product has other prop-
erties analogous to the interior tensor product. For example it is associa-
tive, ‘injective’, and is appropriately projective for w*-orthogonally comple-
mented submodules and commutes with direct sums (we will prove this at
the end of the next section).

5. Complemented submodules. We say that a w*-rigged module Z
over a dual operator algebra M is the w*-orthogonal direct sum of weak*
closed submodules Y and W if Y + W = Z, Y NW = (0), and W and Y
are the ranges of two completely contractive idempotent maps P and Q.
We say that Y is w*-orthogonally complemented in Z if there exists such
a W. It follows from algebra that the latter two maps P, are unique,
and are M-module maps adding to Iz with PQQ = QP = 0. Also, they
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are weak* continuous. Indeed suppose that x; = y; + w; is a bounded net
with weak* limit x = y + w, where y,y € Y and wy,w € W. Then (y;)
is bounded, and if y;, — 2 is a weak® convergent subnet, then z € Y and
wy, — x —z € W. It follows that z = y and z — 2 = w. By topology
y; — y weak®, so by the Krein-Smulian theorem P is weak* continuous. It
follows from e.g. [I, Theorem 7.2] that Z is the w*-rigged module direct sum
Y @&°W completely isometrically and unitarily. From [7, Section 3.5], we see
that the w*-orthogonally complemented submodules of a w*-rigged module
Z are precisely the ranges of completely contractive idempotents in B(Z).

ProPOSITION 5.1. The right M-summands in a w*-rigged module Z in
the sense of [4] (see also [10, Sections 4.5 and 4.8]) are precisely the w*-
orthogonally complemented submodules of Z. For any such submodule W of
Z there is a unique contractive linear projection from Z onto W.

Proof. This is similar to the proof of Corollary but using the fact
from [7, Theorem 2.3] that the left multiplier operator algebra of Z is B(Z),
so that the orthogonal projections here are the completely contractive idem-
potents in B(Z). m

ExXAMPLE 5.2. Unlike the case when M is a von Neumann algebra (see
e.g. [10, 8.5.16]), weak* closed submodules of w*-rigged modules (or even
of weak® Morita equivalence bimodules) need not be w*-orthogonally com-
plemented. For example, if f is a nontrivial inner function in M = H*>(D)
(such as the monomial z) then Y = fH*(D) is not complemented in the
M-module Z = H*> (D). We note that Y is a weak® Morita equivalence bi-
module, with Y = f~1M. The latter is not a subset of M, and indeed the
adjoint ¢ of the inclusion map i : Y — Z is not a projection.

LEMMA 5.3. Let Z be a w*-rigged module over M and let P : Z — Z be
a w*-continuous completely contractive idempotent module map. Then the
range of P is a w*-rigged module over M , which is w*-orthogonally comple-
mented in Z. Also P is adjointable both as a map into Z and into P(Z).

—_~

The dual module P(Z) of P(Z) can be identified completely isometrically
and w*-homeomorphically with the weak* orthogonally complemented sub-
module P(Z) of Z, with the dual pairing being the restriction of the pairing
ZxZ— M.

Proof. 1t is easy to see from Remark after [7, Theorem 2.7], and consid-
ering the maps between Z and Y = P(Z), that Y is a w*-rigged module
over M. By [T, Proposition 3.4], P is adjointable both as a map into ¥ and
into Z. Since P is an orthogonal projection in B(Z), Y is w*-orthogonally
complemented in Z (cf. [7, Theorem 3.9]). We define W = Ran(P) =
{foP: fe Z}. Thisis easily seen to be a weak* closed submodule of Y.
Note that CB?(Y, M) = {fly : f € CB7(Z,M)}. The map f > fiy : W —
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CBC(Y, M) is a complete isometric M-module map, so that Y 2 P(Z). The
remaining assertion is now easy to check. =

PROPOSITION 5.4. If Y is a weak® orthogonally complemented submod-
ule in a w*-rigged module Z, then B(Y') is completely isometrically isomor-

phic to a weak® closed completely contractively weak® complemented subal-
gebra of B(Z).

Proof. Let ¢ : Y — Z be the inclusion and P : Z — Y the projection.
Then by functoriality of the tensor product,

iQP:YQPY =B(Y) = Zo5} Z=B(2)
is completely contractive and weak® continuous, and is easily checked to
be a homomorphism. Similarly one obtains a completely contractive weak™
continuous retraction P ® i : Z @3¢ Z = B(Z) — Y @8 Y = B(Y) with
(Pi)o(i®P)=1.u
For the following result we recall that the W*-dilation of a right w*-rigged
module Z over a dual operator algebra M is the canonical right W*-module

over a von Neumann algebra N generated by M given by Y ®g N. Here
6 : M — N is the inclusion.

COROLLARY 5.5. Let Z be a right w*-rigged module over a dual operator
algebra M, and suppose that Y is a subspace of Z, with i : Y — Z the
inclusion map. The following are equivalent:

(1) Y is weak* orthogonally complemented in Z.

(2) Y is a w*-rigged module over M and there exists a completely con-
tractive weak* continuous M-module map j : Y — Z such that
10 Jj=1I.

(3) Y is a w*-rigged module over M, and there is a von Neumann algebra
N generated by M such that the induced map t @ Iy between the
WH*-dilations of Y and Z with respect to N is an isometry whose
W*-module adjoint (i ® In)* maps Z @ 1y into Y ®@ 1.

(4) Same as (3), but for every von Neumann algebra N generated by M.

Proof. (1)=(4). If P: Z — Y is the projection then we have adjointable
contractions f = (i®Iy) : YN — Z@JIN and g = (PRIy) : ZRPN —
Y®‘]’\f}N with go f = I. It follows that f is an isometry, g = f*, and f* =g
maps Z ® 1y into Y ® 1y.

(3)=(1). Let j be the canonical isometry from Y into its W*-dila-
tion, which is a complete isometry by [7, 3.4]. It follows that W =
(i ® In)(Y ®3% N) is a weak* closed submodule of Z @ N, and the latter
is a W*-module. By e.g. [10, 8.5.16], the C*-module adjoint of i ® Iy is
a contractive weak* continuous projection P from Z ®‘]’V’} N onto W. Thus
Po(i®Iy)=1onY @} N. Define Q(z) = j7'(i ® Iy) ' P(z ® 1); this
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is a weak™® continuous completely contractive M-module projection onto Y.
Indeed,
Qi) =i (e Iy) Py ®1) =5 (y@1) =y, yeY.

Clearly (4) implies (3), and (1) implies all the others.

(2)=(1). P =joiisa weak" continuous completely contractive projec-
tion onto j(Y). So_the latter is weak™ orthogonally complemented in Z.
Hence by Lemma its dual module may be identified with P(Z) =
i(j(Z)) =Y (note that joi = Iy, so j maps onto Y), and this is weak*
orthogonally complemented in Z. =

REMARK. It seems possible that the equivalences in the last result still
hold with some of the words ‘weak* continuous’ or ‘M-module’ removed
from (2). However this seems quite difficult at present, although the last
assertion of Proposition [5.1| seems pertinent here. Things are better if Z is a
module of the kind considered in Theorem [2.3] If we are in that case, suppose
that there exists a completely contractive M-module map j : Y — Z such
that 10 j = Iy asin (2). Then P = j o1 is a completely contractive M-
module projection on Z = CB?(Z, M)y = CB(Y, M) . Hence it is weak*
continuous by Theorem and we can continue as in the proof of (2)=(1)
above.

At the end of [7, Section 3] we mentioned with a sketchy proof the fact
that direct sums commute with the interior tensor product; indeed, we have
left and right distributivity of ®‘]’\} over column direct sums of w*-rigged
modules. It is also true that direct sums commute with the exterior tensor
product. The proof we give of the latter fact will cover the interior tensor
product cases too, or is easily adaptable to those.

PROPOSITION 5.6. Suppose that M, N are dual operator algebras. If
(Yi)ker is a family of right w*-rigged modules over M, and Z is a right
w*-rigged module over N, then

(Br)57= P iz2),
k k
unitarily as right w*-rigged modules.

Proof. We shall prove the more general statement that
C ~ C
(@ Yk> ®g 4 = @ (Y ®s Z),
k k

unitarily as right w*-rigged modules, where ®g is any functorial tensor prod-
uct (that is, the tensor product of weak* continuous completely contractive
right module maps is also a weak* continuous completely contractive right
module map) that produces a right w*-rigged module from right w*-rigged
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modules, and for which the canonical map ¥ x Z — Y ®3 Z is separately
weak* continuous and has range whose span is weak™ dense. These assertions
are true for the interior and exterior tensor product (see [6], particularly Sec-
tion 2 there, and e.g. [10, 1.6.5]).

We will use the functoriality of ®g and [7, Theorem 3.9]: If Y = @) Y%
and i, m; are as in that result, then 7, ® I and i, ® I are weak™ continuous
completely contractive right module maps that compose to the identity on
Y, ®p Z (since their composition is weak® continuous and equals I on the
weak® dense subset Y ® Z). Similarly, they also satisfy (7, ® I)(i; ® I) =0
if j # k. Thus we will be done by [7, Theorem 3.9] if >, (i @ I)(m, ®I) =1
in the weak® topology of B(Y ®g Z). To see this, let Ta = >, A ixm for
finite A C I. We will be done if Th ® I — I weak* in B(Y ®g Z), since
TA®T = peplix®@I)(m @1).

Indeed, we shall prove a more general fact: if a bounded net S; converges
to S weak” in B(Y') then S; ® I — S ® I weak® in B(Y ®3 Z). Suppose that
we have a weak* convergent subnet S;, ® I — R. By [7, Theorem 3.5] we see
that R € B(Y ®3 Z), and hence R is weak* continuous. For y € Y, z € Z we
have S¢(y) — S(y) weak® (this follows since the latter describes the weak*
convergence of bounded nets in CB(Y) by e.g. [10, 1.6.1], and since by [7,
Theorem 2.3], B(Y') is a weak™ closed subalgebra of CB(Y')). Hence

(S$:D(yR2)=Si(y) @2z—=>SYy)R2z=(SRI)(y 2).

Thus R(y ® z) = (S® I)(y ® z). Hence R = S ® I since they are weak™
continuous and agree on a dense subset. By topology it follows that Sy @1 —
S ® I weak* as desired. m
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