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Spectral conditions for Jordan *-isomorphisms
on operator algebras

by

Osamu Hatori (Niigata) and Lajos Molnár (Szeged and Debrecen)

Abstract. We study non-linear transformations between the unitary groups of von
Neumann algebras and the twisted subgroups of positive invertible elements in unital
C∗-algebras with various preserver properties concerning the spectrum, spectral radius,
and generalized distance measures. We present several results which show that those
transformations are closely related to Jordan ∗-isomorphisms between the underlying full
algebras. In fact, our results can easily be used to characterize such isomorphisms.

1. Introduction. In this paper all algebras are assumed to be complex
and unital, the unit usually being denoted by 1. Let A1, A2 be algebras and
let σ(·) stand for the spectrum. A map (no linearity is assumed) φ : A1 → A2

is called spectrally multiplicative if
σ(φ(a)φ(b)) = σ(ab)

for all a, b ∈ A1. There has recently been considerable interest in such trans-
formations since in many cases they turn out to be closely related to isomor-
phisms, hence the spectral condition above may faithfully compress the lin-
earity and multiplicativity properties of maps into one two-variable equality
between sets of scalars. As a typical result, we recall that any spectrally mul-
tiplicative bijection between the algebras of all continuous complex valued
functions over compact Hausdorff spaces is an algebra isomorphism followed
by multiplication by a fixed real valued continuous function of modulus 1.
In fact, for first countable spaces this was proved in [7] (which was the start-
ing point of that line of investigations), while in [11] the authors removed
the first countability assumption. Concerning operator algebras, we proved
in [7] that for an infinite-dimensional Hilbert space H, any spectrally mul-
tiplicative bijection on the algebra of all bounded linear operators on H is
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either an algebra isomorphism or the negative of an algebra isomorphism.
Hence in those cases any spectrally multiplicative bijective map is a trans-
formation which can be written as an algebra isomorphism multiplied by a
central symmetry (which is a self-adjoint unitary in the center of the algebra
in question). For further reference we mention the survey paper [4] exhibit-
ing a collection of recent results (mainly concerning function algebras) as
well as the interesting paper [2] where a variant of spectrally multiplicative
maps (involving three variables, and not only two) has been investigated on
general algebras.

In this paper we continue that line of research and present results which
can be viewed as characterizations of Jordan ∗-isomorphisms between oper-
ator algebras via their spectral multiplicativity properties of different kinds
and their other characteristic invariance properties involving the spectral ra-
dius. However, there is a significant difference between the previous investiga-
tions and the one reported here: the properties we consider in this paper are
assumed to be satisfied not on the whole algebra but only on certain subsets
which are substructures of the general linear group. This means, and again it
is the main novelty here, that the spectral multiplicativity and other related
conditions are required only on some smaller sets (the so-called twisted sub-
group of positive invertible elements, or the unitary group); as we shall see,
they are still strong enough to imply that the transformations under consid-
eration are closely related to Jordan ∗-isomorphisms between the underlying
full algebras. In addition to our conditions concerning the spectral radius
we investigate transformations which preserve certain distance measures of
very general kinds. Furthermore, we study spectral-multiplicativity-like and
other conditions for pairs of maps defined on arbitrary sets with values in
the above mentioned substructures of operator algebras.

Before presenting our results we collect the following facts concerning
Jordan ∗-isomorphisms between C∗-algebras. We first recall that by [12,
Proposition 1.3] every surjective Jordan homomorphism J between arbi-
trary algebras A1, A2 preserves invertibility and satisfies J(a−1) = J(a)−1

for any invertible a ∈ A1. This implies that a Jordan isomorphism maps
the general linear group onto the general linear group and preserves the
spectra of elements. We recall the important correspondence between the
spectra of the elements ab and ba, where a, b belong to an algebra A: we
always have σ(ab) ∪ {0} = σ(ba) ∪ {0}, and hence if a, b are invertible, then
σ(ab) = σ(ba).

Let now A1, A2 be arbitrary C∗-algebras and J : A1 → A2 a Jordan iso-
morphism. By [1, Theorem 6.3.4] there exists a central projection q (by a pro-
jection we always mean a self-adjoint idempotent) in the so-called bounded
central closure of A2 (a C∗-algebra that contains A2 as a C∗-subalgebra)



Spectral conditions for Jordan ∗-isomorphisms 103

such that
J(ab) = qJ(a)J(b) + (1− q)J(b)J(a), a, b ∈ A1.

Let a, b ∈ A1 be invertible. Set x1 = qJ(a), y1 = qJ(b) and x2 = (1−q)J(a),
y2 = (1− q)J(b). We compute

σ(ab) ∪ {0} = σ(J(ab)) ∪ {0} = σ(x1y1) ∪ σ(y2x2)
= σ(x1y1) ∪ σ(x2y2) = σ(J(a)J(b)) ∪ {0}.

Since J preserves invertibility, J(a)J(b) is invertible and by the above equal-
ity we have

σ(ab) = σ(J(a)J(b)),

which proves that J is spectrally multiplicative on the general linear group.
For a C∗-algebra Aj , we denote by Ajs the real linear subspace of all

self-adjoint elements in Aj . The set of all positive elements (i.e., self-adjoint
elements with non-negative spectrum) in Aj is denoted by Aj+. The set A−1j+
of all invertibles in Aj+ is a so-called twisted subgroup of the general linear
group, meaning that it is closed under taking the inverted Jordan triple
product ab−1a. For obvious reasons, it is also called the positive definite
cone (or positive cone for short). Note that A−1j+ = expAjs. The unitary
group of Aj is denoted by Uj . Recall that Uj = exp iAjs if Aj is a von
Neumann algebra. By a symmetry we mean a self-adjoint unitary element
(or, equivalently a unitary whose square is the identity).

Recall that the spectral radius r satisfies r(a) ≤ ‖a‖ for every a in the
C∗-algebra Aj , and r(a) = ‖a‖ for any normal a ∈ Aj .

2. The case of the spaces of positive invertible elements. Besides
a characterization via the spectral multiplicativity property, the first main
result of the paper, Theorem 5, contains a sort of characterization of Jordan
∗-isomorphisms in terms of a preserver property involving so-called gener-
alized distance measures. For this we need a recently obtained very general
Mazur–Ulam type result that we cite below as Theorem 3. To formulate it
we need some preparation. From [8] we recall the following.

Definition 1. Let X be a set equipped with a binary operation � which
satisfies the following conditions:

(a1) a � a = a for every a ∈ X;
(a2) a � (a � b) = b for any a, b ∈ X;
(a3) the equation x � a = b has a unique solution x ∈ X for any given

a, b ∈ X.
In this case the pair (X, �) (or X itself) is called a point-reflection geometry.

For a C∗-algebra A and elements a, b ∈ A−1+ define a � b = ab−1a. Then
A−1+ becomes a point-reflection geometry. Indeed, conditions (a1), (a2) are
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trivial to check. Concerning (a3) we recall that for any given a, b ∈ A−1+ , the
Ricatti equation xa−1x = b has a unique solution x = a# b which is just the
geometric mean of a and b defined by

a# b = a1/2(a−1/2ba−1/2)1/2a1/2.

This result is usually termed the Anderson–Trapp theorem.
We need another concept, the one of generalized distance measures.

Definition 2. Given an arbitrary non-empty set X, a function d :
X ×X → [0,∞[ is called a generalized distance measure if for any x, y ∈ X
we have d(x, y) = 0 if and only if x = y.

Hence, in this definition we require only the definiteness property of a
metric, but neither symmetry nor the triangle inequality. Our general Mazur–
Ulam type theorem of [8] reads as follows.

Theorem 3. Let X,Y be non-empty sets equipped with binary operations
�, ?, respectively, with which they form point-reflection geometries. Let d :
X ×X → [0,∞[ and ρ : Y × Y → [0,∞[ be generalized distance measures.
Pick a, b ∈ X, set

La,b = {x ∈ X : d(a, x) = d(x, b � a) = d(a, b)}
and assume the following:

(b1) d(b � x, b � x′) = d(x′, x) for all x, x′ ∈ X;
(b2) sup{d(x, b) : x ∈ La,b} <∞;
(b3) there exists K > 1 such that d(x, b�x) ≥ Kd(x, b) for every x ∈ La,b.

Let φ : X → Y be a surjective map such that

ρ(φ(x), φ(x′)) = d(x, x′), x, x′ ∈ X,
and assume that

(b4) for the unique element c ∈ Y satisfying c ? φ(a) = φ(b � a) we have
ρ(c ? y, c ? y′) = ρ(y′, y) for all y, y′ ∈ Y .

Then
φ(b � a) = φ(b) ? φ(a).

We shall also need the following properties defined for a continuous func-
tion h : ]0,∞[→ R:

(c1) h(t) = 0 if and only if t = 1;
(c2) for some θ > 0, we have |h(t)| ≥ θ for all t ∈ ]0,∞[ outside a

neighborhood of 1;
(c3) h is differentiable at t = 1 and h′(1) 6= 0;
(c4) |h(t0)| 6= |h(t−10 )| for some t0 ∈ ]0,∞[.

We begin the exposition of our new results with the next proposition.
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Proposition 4. Let Aj be a C∗-algebra for j = 1, 2. Suppose that φ is a
surjection from A−11+ onto A−12+. Suppose that there exist continuous functions
h1, h2 : ]0,∞[→ R which satisfy (c1)–(c3) and

‖h1(b−1/2ab−1/2)‖ = ‖h2(φ(b)−1/2φ(a)φ(b)−1/2)‖, a, b ∈ A−11+.

Then there exists a Jordan ∗-isomorphism J from A1 onto A2, an element
b0 ∈ A−12+, a central projection p ∈ A2 and a positive number c such that

φ(a) = b0
(
pJ(a)c + (1− p)J(a)−c

)
b0, a ∈ A−11+.

Before proving Proposition 4 we make some remarks. First of all, when-
ever a normal element of a C∗-algebra is plugged into a continuous real
function (with domain containing the spectrum of that element), it is un-
derstood the well-known continuous functional calculus is applied.

Let A be a C∗-algebra.

(R1) If a continuous function h : ]0,∞[ → R satisfies (c1), then for any
a ∈ A−1+ , the equality h(a) = 0 implies a = 1. Indeed, by the spectral mapping
theorem we have h(σ(a)) = σ(h(a)) = 0, which by (c1) implies σ(a) = {1},
i.e., σ(a− 1) = {0}, which yields a− 1 = 0. It follows that the formula

d(a, b) = ‖h(b−1/2ab−1/2)‖, a, b ∈ A−1+ ,

defines a generalized distance measure on A−1+ .
(R2) If a continuous function h : ]0,∞[→ R satisfies (c1) and (c2), then

for any sequence tn ∈ ]0,∞[ with h(tn) → 0 we have tn → 1. This easily
implies that, similarly, for any sequence an ∈ A−1+ with h(an) → 0 in the
norm topology, we have an → 1.

(R3) Let h : ]0,∞[→ R be a continuous function which is differentiable at
t = 1. Then the transformation x 7→ h(x), x ∈ A−1+ , is Fréchet-differentiable
at x = 1 with derivative (Dh)(1)y = h′(1) · y, y ∈ As. Indeed, by the
differentiability of h we have a continuous function ω : ]0,∞[ → R with
ω(1) = 0 such that h(t) − h(1) − h′(1)(t − 1) = ω(t)(t − 1) for all t ∈
]0,∞[. Hence h(x)− h(1)1− h′(1)(x− 1) = ω(x)(x− 1) for all x ∈ A−1+ , so
‖h(x)− h(1)1− h′(1)(x− 1)‖ ≤ ‖ω(x)‖ ‖x− 1‖. This implies

‖h(x)− h(1)1− h′(1)(x− 1)‖
‖x− 1‖

→ 0

as x→ 1, which proves the assertion.
(R4) If h : ]0,∞[ → R is a continuous function which satisfies (c1) and

(c3), then there exists K > 1 such that |h(t2)| ≥ K|h(t)| for all t in the
ε-neighborhood of 1 for some 0 < ε < 1. Indeed,

h(t2)

h(t)
= (t+ 1)

h(t2)/(t2 − 1)

h(t)/(t− 1)
→ 2

as t→ 1, proving our claim.
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(R5) For any invertible x ∈ A and a, b ∈ A−1+ , the element a1/2b−1a1/2

is unitarily equivalent to b−1/2ab−1/2, and (xbx∗)−1/2xax∗(xbx∗)−1/2 is uni-
tarily equivalent to b−1/2ab−1/2. Indeed, for the former statement,

a1/2b−1a1/2 = u∗(b−1/2ab−1/2)u,

where u is the unitary element in the polar decomposition of b−1/2a1/2 ∈ A.
For the latter statement,

(xbx∗)−1/2xax∗(xbx∗)−1/2

= |b1/2x∗|−1(b1/2x∗)∗(b−1/2ab−1/2)(b1/2x∗)|b1/2x∗|−1

= v∗(b−1/2ab−1/2)v,

where v is the unitary element in the polar decomposition of b1/2x∗.
(R6) For any scalar valued continuous function h on ]0,∞[, unitary u ∈ A

and a ∈ A−1+ we have h(uau−1) = uh(a)u−1. Indeed, this follows easily
from the fact that h can be uniformly approximated by polynomials on
any compact subinterval of ]0,∞[ and from the isometric property of the
continuous functional calculus.

Proof of Proposition 4. Suppose that there exist h1, h2 : ]0,∞[ → R as
in the statement. Define

d(a, b) = ‖h1(b−1/2ab−1/2)‖, a, b ∈ A−11+,

ρ(a, b) = ‖h2(b−1/2ab−1/2)‖, a, b ∈ A−12+.

By (R1), d, ρ are generalized distance measures and

(2.1) ρ(φ(a), φ(b)) = d(a, b), a, b ∈ A−11+.

Applying (R5) and (R6) we obtain d(zaz∗, zbz∗) = d(a, b) and

(2.2) d(bx−1b, bx′
−1
b) = d(x−1, x′

−1
) = d(x′, x)

for all a, b, x ∈ A−11+ and invertible z ∈ A1. Clearly, similar properties hold
for the generalized distance measure ρ.

Now define φ0 : A−11+ → A−12+ by φ0(a) = φ(1)−1/2φ(a)φ(1)−1/2 for a ∈
A−11+. Plainly, φ0 is a well defined map from A−11+ onto A−12+, it is unital in
the sense that φ0(1) = 1, and (2.1) also holds for φ0, i.e., ρ(φ0(a), φ0(b)) =
d(a, b) for all a, b ∈ A−11+.

We are going to apply Theorem 3. To check that the conditions of that
theorem are satisfied, we first define the point-reflection geometry structures
on A−1j+ in the standard way, i.e., just as after Definition 1. Condition (b1)
is fulfilled by (2.2).

To proceed, we claim the following. Let H be a subset of A−11+ with the
property that there are α, β > 0 such that α1 ≤ y ≤ β1 for all y ∈ H.
(This means that H is bounded away from zero and also from above with
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respect to the usual order ≤ defined on the set of all self-adjoint elements
coming from the notion of positivity. Recall that positive elements are the
self-adjoint ones with spectrum in the set of non-negative reals.) Then we
assert that there exists δ > 0 with the property that whenever a, b ∈ H are
such that ‖a − b‖ < δ, we necessarily have ‖b−1/2xb−1/2 − 1‖ < ε (i.e., the
spectrum of b−1/2xb−1/2 is in ]1− ε, 1 + ε[) for all x ∈ La,b, where ε appears
in (R4) in relation to h1.

Assume for a moment that this assertion is already proven. We can check
easily that for a, b ∈ A−11+ with ‖a−b‖ < δ properties (b2) and (b3) are satis-
fied. Indeed, by the isometric property of the continuous functional calculus,
(b2) is clear since h1 is bounded in [1 − ε, 1 + ε]. As for (b3), applying the
second equality of (2.2), the first part of (R5), and (R6), we can compute

d(x, bx−1b) = d(b−1xb−1, x−1) = ‖h1(x1/2(b−1xb−1)x1/2)‖
= ‖h1((x1/2b−1x1/2)2)‖ = ‖h1((b−1/2xb−1/2)2)‖
≥ K‖h1(b−1/2xb−1/2)‖ = Kd(x, b)

for all x ∈ La,b, meaning that (b3) is also satisfied.
Now, to verify the starting assertion, assume on the contrary that there

are sequences an, bn ∈ H and xn ∈ Lan,bn such that ‖an − bn‖ < 1/n but
‖b−1/2n xnb

−1/2
n − 1‖ ≥ ε. We compute

‖b−1/2n anb
−1/2
n − 1‖ = ‖b−1/2n (an − bn)b−1/2n ‖ ≤ ‖b−1n ‖ ‖an − bn‖,

and this last term converges to 0 since ‖b−1n ‖ ≤ 1/α. Therefore, b−1/2n anb
−1/2
n

→ 1, and by (c1) it follows that d(an, bn) = ‖h1(b−1/2n anb
−1/2
n )‖ → 0. Since

xn ∈ Lan,bn , we conclude that d(an, xn) = d(an, bn) → 0, meaning that
h1(x

−1/2
n anx

−1/2
n )→ 0. Applying (R2) one can check easily that this implies

x
−1/2
n anx

−1/2
n → 1. Therefore, for every 0 < γ < 1 there is an index n0 such

that for all n ≥ n0 we have 1 − γ1 ≤ x
−1/2
n anx

−1/2
n ≤ 1 + γ1, which yields

(1/(1 + γ))an ≤ xn ≤ (1/(1 − γ))an for all n ≥ n0. Since also b−1/2n anb
−1/2
n

→ 1, in a similar manner, we may also assume that (1/(1 + γ))an ≤ bn ≤
(1/(1− γ))an for all n ≥ n0. These imply that

(1/(1 + γ)− 1/(1− γ))an ≤ xn − bn ≤ (1/(1− γ)− 1/(1 + γ))an

for all n ≥ n0. Since γ > 0 is arbitrary and an ≤ β1 for all n, we infer
that xn − bn → 0, which immediately yields b−1/2n xnb

−1/2
n → 1, contrary to

‖b−1/2n xnb
−1/2
n − 1‖ ≥ ε. This proves the above assertion, and hence (b2) and

(b3) in Theorem 3 are satisfied. Observe that (b4) holds too, which can be
checked just as (b1) above. By Theorem 3 there is δ > 0 such that whenever
a, b ∈ A−11+ and ‖a− b‖ < δ, we necessarily have

(2.3) φ0(ba
−1b) = φ0(b)φ0(a)

−1φ0(b).
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Now pick a, b ∈ A−11+. We prove that (2.3) holds for a and b. To verify
this, consider the curve

Γ (t) = a1/2
(
exp(t log(a−1/2ba−1/2))

)
a1/2, t ∈ [0, 2],

connecting a and ba−1b and passing through b. The range of this curve
is a norm-compact subset of A−11+, and hence it satisfies the condition we
imposed on the subset H of A−11+ in the previous part of the proof. Therefore,
there is δ > 0 such that for any a′, b′ ∈ Γ ([0, 2]) we have φ0(b′a′−1b′) =
φ0(b

′)φ0(a
′)−1φ0(b

′). By the uniform continuity of Γ , for close enough t, s ∈
[0, 2] we have ‖Γ (t)− Γ (s)‖ < δ. Now, we can select a large enough n such
that the elements ak = Γ (k/2n), k = 0, 1, . . . , 2n+1, satisfy ‖ak − ak+1‖ < δ.
Clearly, a0 = a, a2n = b, a2n+1 = ba−1b, and ak+1a

−1
k ak+1 = ak+2 for every

0 ≤ k ≤ 2n+1 − 2. Moreover, by the closeness of ak and ak+1 we have

φ0(ak+1a
−1
k ak+1) = φ0(ak+1)φ0(ak)

−1φ0(ak+1)

for every 0 ≤ k ≤ 2n+1 − 1. Purely algebraic computations yield

φ0(a2na
−1
0 a2n) = φ0(a2n)φ0(a0)

−1φ0(a2n).

In fact, this is just the content of [3, Lemma 4.2]. As a0 = a and a2n = b,
we see that indeed (2.3) holds for all a, b ∈ A−11+.

Setting b = 1 we deduce that φ0(a−1) = φ0(a)
−1 for all a ∈ A−11+, and so

(2.4) φ0(bab) = φ0(b)φ0(a)φ0(b), a, b ∈ A−11+.

Using (2.3) and (2.4) one can trivially deduce that for any a ∈ A−11+ we have
φ0(a

m) = φ0(a)
m, first for any integer m and then for any rational number.

Pick x ∈ A1s and define S : R→ A−12+ by

S(t) = φ0(exp(tx)), t ∈ R.
We assert that S is continuous in the norm-topology. To see this, first observe
that applying (R2) for a sequence xn ∈ A−11+ we have

‖xn − 1‖ → 0 ⇒ ‖h1(xn)‖ → 0 ⇒ d(xn, 1)→ 0 ⇒
ρ(φ0(xn), φ0(1)) = ρ(φ0(xn), 1)→ 0 ⇒ ‖h2(φ0(xn))‖ → 0

⇒ ‖φ0(xn)− 1‖ → 0.

Now, picking t, t0 ∈ R we compute

‖S(t+ t0)− S(t0)‖ = ‖φ0(exp((t+ t0)x))− φ0(exp(t0x))‖
≤ ‖φ0(exp(t0x))1/2‖2

× ‖φ0(exp(t0x))−1/2φ0(exp((t+ t0)x))φ0(exp(t0x))
−1/2 − 1‖

= ‖φ0(exp(t0x))‖
∥∥∥∥φ0(exp(−t02 x

)
exp((t+ t0)x) exp

(
−t0
2
x

))
− 1

∥∥∥∥
= ‖φ0(exp(t0x))‖ ‖φ0(exp(tx))− 1‖.
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It follows that as t → 0 we have S(t + t0) → S(t0) in the norm topology,
implying the norm-continuity of S.

We next deduce that S is a one-parameter group in A−12+. Indeed, let
m,n,m′, n′ be integers with m,m′ 6= 0. We calculate

S

(
n

m
+
n′

m′

)
= φ0

(
exp

((
n

m
+
n′

m′

)
x

))
= φ0

(
exp

1

mm′
x

)m′n+mn′

= φ0

(
exp

1

mm′
x

)m′n

φ0

(
exp

1

mm′
x

)mn′

= S

(
n

m

)
S

(
n′

m′

)
.

Since S is continuous, it follows that

S(t+ t′) = S(t)S(t′), t, t′ ∈ R.

Therefore, S is a continuous one-parameter group in A2.
By [10, Proposition 6.4.6(a)] there exists y ∈ A2 with

S(t) = exp(ty), t ∈ R.

Since S(t) is self-adjoint, so is y (use, e.g., [10, Proposition 6.4.6(c)]).
Defining f(x) = y we obtain a map f : A1s → A2s for which

φ0(exp(tx)) = S(t) = exp(tf(x)), t ∈ R, x ∈ A1s.

As φ0 preserves or more precisely respects the pair d, ρ of generalized distance
measures, it is clearly injective. This implies that so is f . Considering φ−10

in place of φ0, we clearly have an injective map g : A2s → A1s such that
φ−10 (exp(ty)) = exp(tg(y)) for all y ∈ A2s and t ∈ R. This easily implies
that y = f(g(y)) for all y ∈ A2s. Hence f is surjective and therefore it is a
bijection from A1s onto A2s. Note that f(0) = 0 by the definition of f .

Our next claim is that f is a scalar multiple of a norm-isometry. To verify
this, we assert that as t→ 0,

(2.5)
d(exp(tx), exp(ty))

|t|
→ |h′1(1)| ‖x− y‖

for all x, y ∈ A1s. Clearly,

exp
(
− t

2y
)
exp(tx) exp

(
− t

2y
)
− 1

t

= exp

(
− t
2
y

)
(exp(tx)− 1)− (exp(ty)− 1)

t
exp

(
− t
2
y

)
→ x− y.

Since

d(exp(tx), exp(ty))

|t|
=

∥∥h1(exp(− t
2y
)
exp(tx) exp

(
− t

2y
))
− h1(1)

∥∥
|t|

,
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(2.5) follows from (R3) and the chain rule. Similarly,
ρ(exp(tx), exp(ty))

|t|
→ |h′2(1)| ‖x− y‖

for all x, y ∈ A2s. Since φ0 respects the pair d, ρ of generalized distance
measures, it follows that |h′1(1)| ‖x − y‖ = |h′2(1)| ‖f(x) − f(y)‖ for all x, y
in A1s. This implies that there is c > 0 such that (1/c)f is an isometry from
A1s onto A2s. Since f(0) = 0, by the classical Mazur–Ulam theorem we infer
that f is linear. The structure of linear isometries between the self-adjoint
parts of C∗-algebras is well-known: According to a theorem of Kadison [6,
Theorem 2], (1/c)f(1) is a central symmetry in A2 and there is a Jordan
∗-isomorphism J from A1 onto A2 such that

f(x) = f(1)J(x), x ∈ A1s.

Set p = (1 + (1/c)f(1))/2. Then p is a central projection in A2 and

f(x) = c(pJ(x)− (1− p)J(x)), x ∈ A1s.

We now calculate

φ0(expx) = exp(c(pJ(x)− (1− p)J(x)))

=
∞∑
n=0

(c(pJ(x)− (1− p)J(x)))n

n!
=
∞∑
n=0

pJ((cx)n) + (1− p)J((−cx)n)
n!

= pJ(exp(cx)) + (1− p)J(exp(−cx)) = pJ(expx)c + (1− p)J(expx)−c

for every x ∈ A1s. Thus

(2.6) φ0(a) = pJ(a)c + (1− p)J(a)−c, a ∈ A−11+,

and we arrive at the desired conclusion.

Now, the first main result of the paper, which yields several characteri-
zations of Jordan ∗-isomorphisms, reads as follows.

Theorem 5. Let Aj be a C∗-algebra for j = 1, 2. Suppose that φ is a
surjection from A−11+ onto A−12+. Consider the following statements:

(5.1) σ(ab−1) = σ(φ(a)φ(b)−1) for all a, b ∈ A−11+;
(5.2) r(ab−1 − 1) = r(φ(a)φ(b)−1 − 1) for all a, b ∈ A−11+;
(5.3) there exist continuous functions h1, h2 : ]0,∞[ → R which satisfy

(c1)–(c3) and

‖h1(b−1/2ab−1/2)‖ = ‖h2(φ(b)−1/2φ(a)φ(b)−1/2)‖, a, b ∈ A−11+;

(5.4) there exists a Jordan ∗-isomorphism J from A1 onto A2, an element
b0 ∈ A−12+, a central projection p ∈ A2 and c > 0 such that

φ(a) = b0(pJ(a)
c + (1− p)J(a)−c)b0, a ∈ A−11+;
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(5.5) there exists a Jordan ∗-isomorphism J from A1 onto A2, an element
b0 ∈ A−12+ and a central projection p ∈ A2 such that

φ(a) = b0(pJ(a) + (1− p)J(a)−1)b0, a ∈ A−11+;

(5.6) there exists a Jordan ∗-isomorphism J from A1 onto A2 and an
element b0 ∈ A−12+ such that

φ(a) = b0J(a)b0, a ∈ A−11+.

Then (5.1)⇒(5.2)⇒(5.3)⇒(5.4). If h1 = h2, then (5.3)⇒(5.5). If h1 = h2
and they satisfy (c4), then (5.1)⇔(5.2)⇔(5.3)⇔(5.6).

Proof. It is obvious that (5.1) implies (5.2). To verify (5.2)⇒(5.3) observe
that for any a, b ∈ A−11+ we have

σ(ab−1 − 1) = σ(ab−1)− 1 = σ(b−1/2ab−1/2)− 1 = σ(b−1/2ab−1/2 − 1),

which implies that
r(ab−1 − 1) = r(b−1/2ab−1/2 − 1) = ‖b−1/2ab−1/2 − 1‖.

Therefore, assuming (5.2) and defining h1(t) = h2(t) = t− 1, t ∈ ]0,∞[, we
plainly obtain (5.3).

Proposition 4 ensures that (5.3)⇒(5.4). Observe further that if we assume
h1 = h2 and the central projection p above is non-trivial, then inserting
a = t1, t ∈ ]0,∞[ and b = 1 into (2.6), and using the generalized distance
measure preserving property of φ0, we easily obtain

|h1(t)| = max{|h1(tc)|, |h1(t−c)|}
for all t > 0. Hence |h1(t)| = |h1(t−1)| and |h1(t)| = |h1(tc)|, for all t ∈ ]0,∞[.
Differentiating h1 at t = 1 we easily see that c = 1. Therefore, if p is non-
trivial, we have c = 1. A similar argument applies when p is trivial, i.e.,
when |h1(t)| = |h1(tc)| or |h1(t)| = |h1(t−c)|, for all t ∈ ]0,∞[. This gives
(5.3)⇒(5.5) under the assumption that h1 = h2.

If h1 = h2 and |h1(t0)| 6= |h1(t−10 )| for some t0 ∈ ]0,∞[, then going
through the last part of the argument above, we see that p is necessarily
trivial, in fact p = 1, and c = 1, proving (5.3)⇒(5.6).

To complete the proof, suppose now that (5.6) holds. For any a, b ∈ A−11+

we infer that
σ(φ(a)φ(b)−1) = σ(b0J(a)J(b)

−1b−10 ) = σ(b0J(a)J(b
−1)b−10 )

= σ(J(a)J(b−1)) = σ(ab−1),

and hence we obtain (5.1).
Observe that the implication (5.3)⇒(5.5) gives a substantial generaliza-

tion of our former result [5, Theorem 9] about the structure of Thompson
isometries between the positive cones of C∗-algebras. Indeed, one has only
to choose h1 = h2 = log to obtain that result from Theorem 5.
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We also remark that in [8] we have presented structural results for surjec-
tive maps between the positive cones of factor von Neumann algebras which
respect a pair of generalized distance measures of the form similar to what
appears in (5.3) above, with the difference that in [8] we have considered ar-
bitrary unitarily invariant norms in place of the unique C∗-algebra norm ‖·‖
(operator norm). So in a sense those results concern more general distance
measures, but in a more restricted context. Indeed, due to the (mainly alge-
braic) tools we have applied there, the results [8] have been obtained only
for factor von Neumann algebras and not, like here, for general C∗-algebras.
Related results in the context of matrix algebras appeared in [9].

Now we present several sorts of extensions of our theorem.

Corollary 6. Let Aj be a C∗-algebra for j = 1, 2 and suppose that φ
and ψ are surjections from A−11+ onto A−12+. Then the following assertions are
equivalent:

(6.1) σ(ab) = σ(φ(a)ψ(b)) for all a, b ∈ A−11+;
(6.2) r(ab− 1) = r(φ(a)ψ(b)− 1) for all a, b ∈ A−11+;
(6.3) there is a continuous function h : ]0,∞[→ R which satisfies condi-

tions (c1)–(c4) and

‖h(b1/2ab1/2)‖ = ‖h(ψ(b)1/2φ(a)ψ(b)1/2)‖, a, b ∈ A−11+;

(6.4) there exists a Jordan ∗-isomorphism J from A1 onto A2 and an
element b0 ∈ A−12+ such that

φ(a) = b0J(a)b0, ψ(a) = b−10 J(a)b−10 , a ∈ A−11+.

Proof. The implication (6.1)⇒(6.2) is obvious, and to see (6.2)⇒(6.3)
set h(t) = t− 1 for t ∈ ]0,∞[.

Suppose that (6.3) holds. For any a ∈ A−11+ we have

0 = ‖h(a−1/2aa−1/2)‖ = ‖h(ψ(a−1)1/2φ(a)ψ(a−1)1/2)‖,

which implies ψ(a−1)1/2φ(a)ψ(a−1)1/2 = 1, i.e., φ(a) = ψ(a−1)−1. Then

‖h(b−1/2ab−1/2)‖ = ‖h(ψ(b−1)1/2φ(a)ψ(b−1)1/2)‖
= ‖h(φ(b)−1/2φ(a)φ(b)−1/2)‖.

Theorem 5 shows that there is a Jordan ∗-isomorphism J from A1 onto A2

and b0 ∈ A−12+ such that

φ(a) = b0J(a)b0, a ∈ A−11+.

Moreover,
ψ(a) = φ(a−1)−1 = b−10 J(a)b−10 , a ∈ A−11+,

and we obtain (6.4).
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Suppose now that (6.4) holds. For any a, b ∈ A−11+ we calculate

σ(φ(a)ψ(b)) = σ(b0J(a)J(b)b
−1
0 ) = σ(J(a)J(b)) = σ(ab).

Thus (6.1) holds, and the proof is complete.

From the above statement we immediately obtain the following corollary
which gives a complete description of spectrally multiplicative maps between
the positive cones of C∗-algebras.

Corollary 7. Let Aj be a C∗-algebra for j = 1, 2. Suppose that φ is a
surjection from A−11+ onto A−12+. Then the following statements are equivalent:

(7.1) σ(ab) = σ(φ(a)φ(b)) for all a, b ∈ A−11+;
(7.2) r(ab− 1) = r(φ(a)φ(b)− 1) for all a, b ∈ A−11+;
(7.3) there is a continuous function h : ]0,∞[→ R which satisfies condi-

tions (c1)–(c4) and

‖h(b1/2ab1/2)‖ = ‖h(φ(b)1/2φ(a)φ(b)1/2)‖, a, b ∈ A−11+;

(7.4) there exists a Jordan ∗-isomorphism J from A1 onto A2 such that

φ(a) = J(a), a ∈ A−11+.

Proof. In the light of the previous proofs, we only need to verify
(7.3)⇒(7.4). Assuming (7.3), by Corollary 6 there exists a Jordan ∗-iso-
morphism J from A1 onto A2 and b0 ∈ A−12+ such that

φ(a) = b0J(a)b0, φ(a) = b−10 J(a)b−10 , a ∈ A−11+.

Choosing a = 1 yields b20 = b−20 , which implies b0 = 1 and we are done.

With some extra effort, from Corollary 6 we can deduce the following
formally more general result on the structure of maps defined on arbitrary
sets with values in positive cones of C∗-algebras with a specific property
closely related to spectral multiplicativity.

Theorem 8. Let Aj be a C∗-algebra for j = 1, 2 and F a non-empty set.
Suppose that Φ1 and Ψ1 are surjections from F onto A−11+ and that Φ2 and Ψ2
are surjections from F onto A−12+. The following statements are equivalent:

(8.1) σ(Φ1(x)Ψ1(y)) = σ(Φ2(x)Ψ2(y)) for all x, y ∈ F ;
(8.2) r(Φ1(x)Ψ1(y)− 1) = r(Φ2(x)Ψ2(y)− 1) for all x, y ∈ F ;
(8.3) there is a continuous function h : ]0,∞[→ R which satisfies condi-

tions (c1)–(c4) and

‖h(Ψ1(y)1/2Φ1(x)Ψ1(y)
1/2)‖ = ‖h(Ψ2(y)1/2Φ2(x)Ψ2(y)

1/2)‖, x, y ∈ F ;
(8.4) there exists a Jordan ∗-isomorphism J from A1 onto A2 and an

element b0 ∈ A−12+ such that

Φ2(x) = b0J(Φ1(x))b0, Ψ2(x) = b−10 J(Ψ1(x))b
−1
0 , x, y ∈ F.
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Proof. Again, by the previous proofs the implications (8.1)⇒(8.2)⇒(8.3)
are clear.

Suppose that (8.3) holds. To prove (8.4), we first observe that Φ1(x) =
Φ1(x

′) implies Φ2(x)=Φ2(x
′). Indeed, let x, x′∈F and assume Φ1(x)=Φ1(x

′).
Since Ψ1(F ) = A−11+, there exists y ∈ F with Ψ1(y) = Φ1(x)

−1. Then

0 = ‖h(Ψ1(y)1/2Φ1(x)Ψ1(y)
1/2)‖ = ‖h(Ψ2(y)1/2Φ2(x)Ψ2(y)

1/2)‖,
implying Ψ2(y)1/2Φ2(x)Ψ2(y)

1/2 = 1. Thus Ψ2(y)−1 = Φ2(x). In a similar way
we obtain Ψ2(y)

−1 = Φ2(x
′). Hence Φ2(x) = Φ2(x

′). In the same way one
can deduce that Ψ1(x) = Ψ1(x

′) implies Ψ2(x) = Ψ2(x
′). Now we define φ, ψ :

A−11+ → A−12+ by φ(Φ1(x)) = Φ2(x) and ψ(Ψ1(x)) = Ψ2(x) for x ∈ F . Clearly,
φ, ψ are well defined and surjective. Rewriting the equality in (8.3) we have

‖h(b1/2ab1/2)‖ = ‖h(ψ(b)1/2φ(a)ψ(b)1/2)‖, a, b ∈ A−11+.

By Corollary 6 there exists a Jordan ∗-isomorphism J from A1 onto A2 and
an element b0 ∈ A−12+ such that

φ(a) = b0J(a)b0, ψ(a) = b−10 J(a)b−10 , a ∈ A−11+.

In other words,

Φ2(x) = b0J(Φ1(x))b0, Ψ2(x) = b−10 J(Ψ1(x))b
−1
0 , x ∈ F,

and this proves (8.4).
Finally, in a way similar to the proof of Corollary 6 one can check that

(8.4) implies (8.1), which finishes the proof of the theorem.

We conclude this section with a few other corollaries which provide
characterizations of Jordan ∗-isomorphisms of the self-adjoint parts of C∗-
algebras by means of spectral-multiplicativity-type properties.

Corollary 9. Let Aj be a C∗-algebra for j = 1, 2. Suppose that f
and g are surjections from A1s onto A2s. Then the following assertions are
equivalent:

(9.1) σ(expx exp y) = σ(exp f(x) exp g(y)) for all x, y ∈ A1s;
(9.2) r(expx exp y − 1) = r(exp f(x) exp g(y)− 1) for all x, y ∈ A1s;
(9.3) there is a continuous function h : ]0,∞[→ R which satisfies condi-

tions (c1)–(c4) and

‖h(exp(y/2) exp(x) exp(y/2))‖
= ‖h(exp(g(y)/2) exp(f(x)) exp(g(y)/2))‖, x, y ∈ A1s;

(9.4) there exists a Jordan ∗-isomorphism J from A1s onto A2s and an
element b0 ∈ A−12+ such that

exp f(x) = b0(exp J(x))b0, exp g(x) = b−10 (exp J(x))b−10 , x, y ∈ A1s.

Moreover, in any of the above cases, if f(0) = 0, then f = g = J on A1s.
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Proof. Define φ(a) = exp(f(log a)) for a ∈ A−11+ and ψ(b) = exp(g(log b))

for b ∈ A−11+. Apply Corollary 6 to see the equivalence of (9.1)–(9.4). If
f(0) = 0, we easily obtain b0 = 1, which implies f = g = J on A1s.

If f = g in the previous corollary, we trivially obtain the following state-
ment.

Corollary 10. Let Aj be a C∗-algebra for j = 1, 2. Suppose that f is a
surjection from A1s onto A2s. Then the following assertions are equivalent:

(10.1) σ(expx exp y) = σ(exp f(x) exp f(y)) for all x, y ∈ A1s;
(10.2) r(expx exp y − 1) = r(exp f(x) exp f(y)− 1) for all x, y ∈ A1s;
(10.3) there is a continuous function h : ]0,∞[→ R which satisfies con-

ditions (c1)–(c4) and

‖h(exp(y/2) exp(x) exp(y/2))‖
= ‖h(exp(f(y)/2) exp(f(x)) exp(f(y)/2))‖, x, y ∈ A1s;

(10.4) there exists a Jordan ∗-isomorphism J from A1s onto A2s such
that f = J on A1s.

3. The case of unitary groups. In the last part of our paper we
present spectral conditions for Jordan ∗-isomorphisms between the unitary
groups of von Neumann algebras. In the proof of our second main result,
Theorem 12 below, we apply a general Mazur–Ulam type result concerning
groups. It appeared in [8, Proposition 20] (cf. [3, Corollary 3.9]).

Theorem 11. Suppose that G and H are groups equipped with general-
ized distance measures d and ρ, respectively. Pick a, b ∈ G, set

La,b = {x ∈ G : d(a, x) = d(x, ba−1b) = d(a, b)},
and assume the following:

(d1) d(bx−1b, bx′−1b) = d(x′, x) for all x, x′ ∈ G;
(d2) sup{d(x, b) : x ∈ La,b} <∞;
(d3) there exists K > 1 such that

d(x, bx−1b) ≥ Kd(x, b), x ∈ La,b;

(d4) ρ(cy−1c′, cy′−1c′) = ρ(y′, y) for all c, c′, y, y′ ∈ H.

Then for any surjective map φ : G→ H which satisfies

ρ(φ(x), φ(x′)) = d(x, x′), x, x′ ∈ G,
we have

φ(ba−1b) = φ(b)φ(a)−1φ(b).

One may ask if the above statement can be deduced from Theorem 3. The
easy answer is “no”, since the natural operation ab−1a, called the inverted



116 O. Hatori and L. Molnár

Jordan triple product in a group does not generally satisfy the uniqueness
part of the condition in (a3).

Analogously to Section 2, below we shall consider generalized distance
measures on unitary groups obtained from continuous functions defined on
the unit circle T.

For any continuous function h : T → C we shall consider the following
properties:

(e1) h(z) = 0 if and only if z = 1;
(e2) h is differentiable at z = 1, meaning that the limit limz→1

h(z)−h(1)
z−1

exists, and we assume that it is non-zero.

Observe that just as in (R4) one can prove that conditions (e1)–(e2) imply
that for any 0 ≤ K < 2 we have |h(z2)| ≥ K|h(z)| for all z ∈ T close enough
to 1.

The second main result of the paper reads as follows.

Theorem 12. Let Mj be a von Neumann algebra with unitary group Uj

for j = 1, 2. Suppose that φ is a surjection from U1 onto U2. The following
conditions are equivalent:

(12.1) σ(ab−1) = σ(φ(a)φ(b)−1) for all a, b ∈ U1;
(12.2) there exists a Jordan ∗-isomorphism J from M1 onto M2 and an

element u0 ∈ U2 such that

φ(a) = u0J(a), a ∈ U1.

Moreover, the following conditions are also equivalent:

(12.3) r(ab−1 − 1) = r(φ(a)φ(b)−1 − 1) for all a, b ∈ U1;
(12.4) there exist continuous functions h1, h2 : T→ C which satisfy con-

ditions (e1)–(e2) and

‖h1(ab−1)‖ = ‖h2(φ(a)φ(b)−1)‖, a, b ∈ U1;

(12.5) there exists a Jordan ∗-isomorphism J from M1 onto M2, an ele-
ment u0 ∈ U2 and a central projection p ∈ A2 such that

φ(a) = u0(pJ(a) + (1− p)J(a)−1), a ∈ U1.

Proof. We begin with the second part of the theorem. To see that (12.3)⇒
(12.4) set h1(z) = h2(z) = z − 1 for z ∈ T.

In the next part of the proof we follow the proof of Proposition 4 rather
closely. Assume that (12.4) holds with continuous functions h1, h2 : T → C
satisfying (e1)–(e2). Define

d(a, b) = ‖h1(ab−1)‖, a, b ∈ U1,

ρ(a, b) = ‖h2(ab−1)‖, a, b ∈ U2.
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By (e1), d, ρ are generalized distance measures and

(3.1) ρ(φ(a), φ(b)) = d(a, b), a, b ∈ U1.

One can easily check that d(zaw, zbw) = d(a, b) and

(3.2) d(bx−1b, bx′
−1
b) = d(x−1, x′

−1
) = d(x′, x)

for all a, b, x, z, w ∈ U1. Clearly, similar properties hold for ρ.
Define φ0 : U1 → U2 by φ0(a) = φ(1)−1φ(a) for a ∈ U1. Plainly, φ0 is a

well defined map from U1 onto U2, it is unital in the sense that φ0(1) = 1,
and (3.1) also holds for φ0, i.e.,

(3.3) ρ(φ0(a), φ0(b)) = d(a, b), a, b ∈ U1.

We are going to apply Theorem 11 for G = U1, H = U2, for the above
defined distance measures d, ρ and for the surjective map φ0. We have seen
in (3.2) that conditions (d1), (d4) of Theorem 11 are satisfied. Condition
(d2) also holds by the boundedness of h1. Now we show that (d3) is satisfied
for a, b ∈ U1 close enough to each other in norm. To see this, we shall need
the following simple observation: for any sequences an, bn in U1 we have

‖an − bn‖ = ‖anb−1n − 1‖ → 0 ⇔ ‖h1(anb−1n )‖ = d(an, bn)→ 0

and a similar observation holds for ρ as well. In fact, this follows easily from
the continuity of h1 and property (e1). In particular, “convergence” in any
of the generalized distance measures d, ρ is equivalent to convergence in the
norm ‖ · ‖.

In order to show that condition (d3) holds for a, b ∈ U1 close enough,
assume on the contrary that we have sequences an, bn ∈ U1 and xn ∈ Lan,bn

such that ‖an − bn‖ → 0 and

d(xn, bnx
−1
n bn) <

3
2d(xn, bn)

for all n. This last inequality means that

‖h1((xnb−1n )2)‖ < 3
2‖h1(xnb

−1
n )‖

for all n. Since d(an, xn) = d(an, bn) → 0, we have anx−1n , anb
−1
n → 1 in

norm, which apparently implies that xnb−1n → 1 in norm. On the other hand,
|h1(z2)| ≥ 3

2 |h1(z)| for all z ∈ T close enough to 1. Therefore, ‖h1((xnb−1n )2)‖
≥ 3

2‖h1(xnb
−1
n )‖ for large enough n, a contradiction. This shows that (d3)

is satisfied for a, b ∈ U1 close enough. Applying Theorem 11 it follows that
there is δ > 0 such that for any a, b ∈ U1 with ‖a− b‖ < δ, we have

φ0(ba
−1b) = φ0(b)φ0(a)

−1φ0(b).

Just as in the first part of the proof of [5, Theorem 1] we then deduce that

φ0(ba
−1b) = φ0(b)φ0(a)

−1φ0(b)
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holds not only locally, but also globally, i.e., for any a, b ∈ U1. Setting b = 1
we get φ0(a−1) = φ0(a)

−1 for every a ∈ U1, and so

(3.4) φ0(bab) = φ0(b)φ0(a)φ0(b), a, b ∈ U1.

By the equivalence of convergence in d, ρ and in norm we deduce that φ0 is
norm-continuous. Therefore, following [5, proof of Theorem 1, pp. 160–161]
employing one-parameter unitary groups, we infer that there is a bijective
map f :M1s →M2s with f(0) = 0 for which

φ0(exp(itx)) = exp(itf(x)), t ∈ R, x ∈M1s.

Just as in the proof of Theorem 5 we claim that f is a scalar multiple of a
norm-isometry. To verify this, one can prove similarly to (2.5) that

d(exp(itx), exp(ity))

|t|
→ |h′1(1)| ‖x− y‖

for all x, y ∈M1s as t→ 0. We omit the details. Similarly,
ρ(exp(itx), exp(ity))

|t|
→ |h′2(1)| ‖x− y‖

for all x, y ∈ M2s as t → 0. Since φ0 respects the pair d, ρ of general-
ized distance measures, i.e., satisfies (3.3), it follows that |h′1(1)| ‖x− y‖ =
|h′2(1)| ‖f(x) − f(y)‖ for all x, y ∈ M1s. This implies that there is a posi-
tive scalar c such that (1/c)f is an isometry from M1s onto M2s. Just as
in the proof of Theorem 5, since f(0) = 0, by the Mazur–Ulam theorem we
infer that f is linear and next apply Kadison’s theorem [6, Theorem 2] to
conclude that (1/c)f(1) is a central symmetry in M2 and there is a Jordan
∗-isomorphism J from M1 onto M2 such that

f(x) = f(1)J(x), x ∈M1s.

Set p = (1 + (1/c)f(1))/2. Then p is a central projection in M2 and

f(x) = c
(
pJ(x)− (1− p)J(x)

)
, x ∈M1s.

Next an easy calculation yields

φ0(exp ix) = exp
(
c(pJ(ix)− (1− p)J(ix))

)
(3.5)

= pJ(exp(icx)) + (1− p)J(exp(−icx))
for every x ∈ M1s. We assert that c is necessarily an integer. Indeed, since
φ0 is unital and satisfies (3.4), it follows that φ0 sends symmetries to sym-
metries. Therefore, for any non-zero projection q in M1, the spectrum of

φ0(exp iπq) = pJ(exp(icπq)) + (1− p)J(exp(−icπq))
is contained in {−1, 1}. Since J preserves the spectrum and p is central, it
follows that at least one of the sets {1, exp(icπ)}, {1, exp(−icπ)} (p might
be trivial) is contained in {−1, 1}. This implies that c is an integer; recall



Spectral conditions for Jordan ∗-isomorphisms 119

that it is also assumed to be positive. Therefore, by (3.5),

(3.6) φ0(a) = pJ(ac) + (1− p)J(a−c), a ∈ U1.

Now we prove that c = 1. Indeed, assuming that the central projection p
above is non-trivial, inserting the scalars a = z1, z ∈ T and a = 1 into (3.6)
respectively, and using the generalized distance measure preserving property
of φ0, we easily obtain

|h1(z)| = max{|h2(zc)|, |h2(z−c)|}

for all z ∈ T. Since h1, h2 each have a unique root at z = 1, we infer that c
must be 1. A similar argument works when p is trivial. This completes the
proof of (12.4)⇒(12.5).

Assume now that (12.5) holds. We compute

(3.7) r(φ(a)φ(b)−1 − 1) = ‖φ(a)φ(b)−1 − 1‖
= ‖u0(pJ(a)J(b)−1 + (1− p)J(a)−1J(b))u−10 − 1‖
= ‖pJ(a)J(b)−1 + (1− p)J(a)−1J(b)− 1‖
= max{‖p(J(a)J(b)−1 − 1)‖, ‖(1− p)(J(a)−1J(b)− 1)‖}.

Furthermore, by taking adjoints we get

(3.8) ‖(1− p)(J(a)−1J(b)− 1)‖ = ‖(1− p)(J(b)−1J(a)− 1)‖
= ‖J(b)−1(1− p)(J(a)− J(b))‖ = ‖(1− p)(J(a)− J(b))J(b)−1‖

= ‖(1− p)(J(a)J(b)−1 − 1)‖

since 1 − p commutes with every element in M2. It follows from (3.7) and
(3.8) that

r(φ(a)φ(b)−1 − 1) = max{‖p(J(a)J(b)−1 − 1)‖, ‖(1− p)(J(a)J(b)−1 − 1)‖}
= ‖p(J(a)J(b)−1 − 1) + (1− p)(J(a)J(b)−1 − 1)‖ = ‖J(a)J(b)−1 − 1‖

= r(J(a)J(b−1)− 1) = r(ab−1 − 1).

The last equality follows from the spectral multiplicativity of J . Thus we
obtain (12.3).

Let us now consider the first part of the theorem. Assume (12.1) holds.
It trivially implies (12.3), which implies (12.5). Consequently, there exists a
Jordan ∗-isomorphism J fromM1 ontoM2, an element u0 ∈ U2 and a central
projection p ∈ A2 such that

φ(a) = u0
(
pJ(a) + (1− p)J(a)−1

)
, a ∈ U1.

It is not hard to verify that p must be the identity, which yields (12.2). Since
(12.2)⇒(12.1) is trivial, the proof is complete.
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Corollary 13. Let Mj be a von Neumann algebra with unitary group
Uj for j = 1, 2. Suppose that φ and ψ are surjections from U1 onto U2. Then
the following conditions are equivalent:

(13.1) σ(ab) = σ(φ(a)ψ(b)) for all a, b ∈ U1;
(13.2) there exists a Jordan ∗-isomorphism J from M1 onto M2 and an

element u0 ∈ U2 such that

φ(a) = u0J(a), ψ(a) = J(a)u−10 , a ∈ U1.

Moreover the following conditions are also equivalent:

(13.3) r(ab− 1) = r(φ(a)ψ(b)− 1) for all a, b ∈ U1;
(13.4) there exist continuous functions h1, h2 : T→ C which satisfy con-

ditions (e1)–(e2) and

‖h1(ab)‖ = ‖h2(φ(a)ψ(b))‖, a, b ∈ U1;

(13.5) there exists a Jordan ∗-isomorphism J fromM1 ontoM2, a central
projection p ∈M2, and u0 ∈ U2 such that

φ(a)=u0(pJ(a)+(1−p)J(a)−1), ψ(a)=(pJ(a)+(1−p)J(a)−1)u−10 , a∈U1.

Proof. Setting b = a−1, from both (13.1) and (13.4) we obtain ψ(a−1) =
φ(a)−1. An easy application of Theorem 12 gives (13.1)⇒(13.2) and (13.4)⇒
(13.5). The rest of the proof is similar to previous arguments. For example,
(13.5)⇒(13.3) can be proved by a reasoning similar to the one for
(12.5)⇒(12.3). We omit the details.

Corollary 14. Let Mj be a von Neumann algebra with unitary group
Uj for j = 1, 2. Suppose that φ is a surjection from U1 onto U2. Then the
following conditions are equivalent:

(14.1) σ(ab) = σ(φ(a)φ(b)) for all a, b ∈ U1;
(14.2) there exists a Jordan ∗-isomorphism J from M1 onto M2 and a

central symmetry u0 ∈ U2 such that

φ(a) = u0J(a), a ∈ U1.

Moreover the following conditions are also equivalent:

(14.3) r(ab− 1) = r(φ(a)φ(b)− 1) for all a, b ∈ U1;
(14.4) there exist continuous functions h1, h2 : T→ C which satisfy con-

ditions (e1)–(e2) and

‖h1(ab)‖ = ‖h2(φ(a)φ(b))‖, a, b ∈ U1;

(14.5) there exists a Jordan ∗-isomorphism J fromM1 ontoM2, a central
projection p ∈M2, and a central symmetry u0 ∈ U2 such that

φ(a) = u0(pJ(a) + (1− p)J(a)−1), a ∈ U1.
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Proof. We apply Theorem 13 for ψ = φ. The only implications that
need a closer look are (14.1)⇒(14.2) and (14.4)⇒(14.5). Assuming (14.1) we
have a Jordan ∗-isomorphism J : M1 → M2 and u0 ∈ U2 such that φ(a) =
u0J(a) = J(a)u−10 for all a ∈ U1. Since the unitary group linearly generates
the whole algebra, it follows that u0x = xu−10 for all x ∈ M2, which readily
implies that u0 = u−10 , and so u0 is central. A similar argument applies for
(14.4)⇒(14.5). The rest can be proved by already employed arguments.

To simplify the formulations of the remaining results, in what follows we
shall omit conditions regarding the invariance properties of the transforma-
tions under consideration with respect to generalized distance measures. We
are convinced that after having read the paper carefully up to this point,
the reader will be able to easily complete the results with such additional
equivalent conditions.

Theorem 15. Let Mj be a von Neumann algebra with unitary group Uj

for j = 1, 2, and F a non-empty set. Suppose that Φj and Ψj are surjections
from F onto Uj for j = 1, 2. Then the following conditions are equivalent:

(15.1) σ(Φ1(x)Ψ1(y)) = σ(Φ2(x)Ψ2(y)) for all x, y ∈ F ;
(15.2) there exists a Jordan ∗-isomorphism J from M1 onto M2 and an

element u0 ∈ U2 such that

Φ2(x) = u0J(Φ1(x)), Ψ2(x) = J(Ψ1(x))u
−1
0 , x ∈ F.

Moreover, the following conditions are also equivalent:

(15.3) r(Φ1(x)Ψ1(y)− 1) = r(Φ2(x)Ψ2(y)− 1) for all x, y ∈ F ;
(15.4) there exists a Jordan ∗-isomorphism J fromM1 ontoM2, a central

projection p ∈M2, and u0 ∈ U2 such that

Φ2(x) = u0(pJ(Φ1(x)) + (1− p)J(Φ1(x))
−1), x ∈ F,

Ψ2(x) = (pJ(Ψ1(x)) + (1− p)J(Ψ1(x))−1)u−10 , x ∈ F.
Proof. Suppose that (15.2) holds. We easily infer that

σ(Φ2(x)Ψ2(y)) = σ(J(Φ1(x))J(Ψ1(y))) = σ(Φ1(x)Ψ1(y)), x, y ∈ F.
Conversely, suppose that (15.1) holds. We first observe that Φ1(x) =

Φ1(x
′) implies Φ2(x) = Φ2(x

′). Indeed, assume Φ1(x) = Φ1(x
′). Then

σ(Φ2(x)Ψ2(y)) = σ(Φ1(x)Ψ1(y)) = σ(Φ1(x
′)Ψ1(y))

= σ(Φ2(x
′)Ψ2(y)), y ∈ F.

Pick y ∈ F with Ψ2(y) = Φ2(x)
−1. Such a y exists since Ψ2(F ) = U2. Then

{1} = σ(Φ2(x)Ψ2(y)) = σ(Φ2(x
′)Ψ2(y)).

Hence 1 = Φ2(x
′)Ψ2(y), and thus

Φ2(x
′) = Ψ2(y)

−1 = Φ2(x).
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In the same way we see that Ψ1(x) = Ψ1(x
′) implies Ψ2(x) = Ψ2(x

′). Define
φ, ψ : U1 → U2 by φ(Φ1(x)) = Φ2(x) and ψ(Ψ1(x)) = Ψ2(x) for x ∈ F .
Clearly, φ, ψ are well defined surjections from U1 onto U2. Moreover,

σ(ab) = σ(φ(a)ψ(b)), a, b ∈ U1.

By Theorem 13 there exists a Jordan ∗-isomorphism from M1 onto M2 and
u0 ∈ U2 such that

φ(a) = u0J(a), ψ(a) = J(a)u−10 , a ∈ U1,

and we easily conclude that (15.2) holds.
The implication (15.4)⇒(15.3) can be proved by a reasoning similar to

that for (12.5)⇒(12.3).
Suppose now that (15.3) holds. We first observe that Φ1(x) = Φ1(x

′)
implies Φ2(x) = Φ2(x

′) for any x, x′ ∈ F . Indeed, assume Φ1(x) = Φ1(x
′).

Then

r(Φ2(x)Ψ2(y)− 1) = r(Φ1(x)Ψ1(y)− 1) = r(Φ1(x
′)Ψ1(y)− 1)

= r(Φ2(x
′)Ψ2(y)− 1), y ∈ F.

As Ψ2(F ) = U2, there exists y ∈ F with Ψ2(y) = Φ2(x)
−1. Then

0 = r(Φ2(x)Ψ2(y)− 1) = r(Φ2(x
′)Ψ2(y)− 1).

As Φ2(x
′)Ψ2(y) is unitary, we have

‖Φ2(x
′)Ψ2(y)− 1‖ = r(Φ2(x

′)Ψ2(y)− 1) = 0,

implying
Φ2(x

′) = Ψ2(y)
−1 = Φ2(x).

In a similar way we see that Ψ1(x) = Ψ1(x
′) implies Ψ2(x) = Ψ2(x

′). Once
again, define maps φ, ψ : U1 → U2 by φ(Φ1(x)) = Φ2(x) and ψ(Ψ1(x)) =
Ψ2(x) for x ∈ F , which turn out to be well defined and surjective. Moreover,

r(ab− 1) = r(φ(a)ψ(b)− 1), a, b ∈ U1.

Then by Theorem 13 there exists a Jordan ∗-isomorphism, a central projec-
tion p ∈M2 and u0 ∈ U2 such that

φ(a) = u0(pJ(a)+(1−p)J(a)−1), ψ(a) = (pJ(a)+(1−p)J(a)−1)u−10 , a∈U1.

This shows that (15.4) holds.

Finally, we present corollaries of the former results from which non-linear
spectral-multiplicativity-type conditions can be deduced for maps between
the self-adjoint parts of von Neumann algebras to be Jordan ∗-isomorphisms.

Corollary 16. Let Mj be a von Neumann algebra for j = 1, 2. Suppose
that f and g are bijections fromM1s ontoM2s. Then the following conditions
are equivalent:

(16.1) σ(exp(ix) exp(iy)) = σ(exp(if(x)) exp(ig(y))) for all x, y ∈M1s;
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(16.2) there exists a Jordan ∗-isomorphism J from M1 onto M2 and an
element u0 ∈ U2 such that

exp(if(x)) = u0 exp(iJ(x)), exp(ig(x)) = (exp(iJ(x)))u−10 , x∈M1s.

In particular, if f and g are homogeneous, then f = g = J and u0 = 1.
Moreover, the following conditions are also equivalent:

(16.3) r(exp(ix) exp(iy)−1)=r(exp(if(x)) exp(ig(y))−1) for x, y∈M1s;
(16.4) there exists a Jordan ∗-isomorphism J fromM1 ontoM2, a central

projection p ∈M2 and u0 ∈ U2 such that

exp(if(x)) = u0
(
p exp(iJ(x)) + (1− p)(exp(iJ(x)))−1

)
,

exp(ig(x)) =
(
p exp(iJ(x)) + (1− p)(exp(iJ(x)))−1

)
u−10 ,

for every x ∈M1s.

In particular, if f and g are homogeneous, then f = g = (2p − 1)J and
u0 = 1.

Proof. Suppose that (16.2) holds. We infer that

σ
(
exp(if(x)) exp(ig(y))

)
= σ

(
u0 exp(iJ(x)) exp(iJ(y))u

−1
0

)
= σ(J(exp(ix))J(exp(iy))) = σ(exp(ix) exp(iy)), x, y ∈M1s.

In particular, if f is homogeneous, then f(0) = 0. It follows that u0 = 1 and

exp(itf(x)) = exp(if(tx)) = exp(itJ(x)), t ∈ R, x ∈M1s.

Letting t→ 0, from

(exp(itf(x))− 1)/t = (exp(itJ(x))− 1)/t

we obtain f(x) = J(x) for all x ∈ M1s. In the same way we deduce that
g(x) = J(x) for all x ∈M1s if g is homogeneous.

Suppose that (16.1) holds. Set F = M1s and define Φ1, Ψ1 : M1s → U1

by Φ1(x) = Ψ1(x) = exp(ix) for x ∈M1s. Also define Φ2, Ψ2 : M1s → U2 by
Φ2(x) = exp(if(x)) and Ψ2(x) = exp(ig(x)) for x ∈M1s. As exp iMjs = Uj ,
the maps Φj and Ψj are surjective for j = 1, 2. Obviously,

σ(Φ1(x)Ψ1(y)) = σ(Φ2(x)Ψ2(y)), x, y ∈ F.

Then by Theorem 15 there exists a Jordan ∗-isomorphism J :M1 →M2 and
u0 ∈ U2 such that

exp(if(x)) = Φ2(x) = u0J(Φ1(x)) = u0J(exp(ix)) = u0 exp(iJ(x)),

exp(ig(x)) = Ψ2(x) = J(Ψ1(x))u
−1
0 = J(exp(ix))u−10 = (exp(iJ(x)))u−10 ,

for every x ∈M1s, and hence we obtain (16.2).
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Now suppose that (16.4) holds. Then by a simple calculation we have

exp(if(x)) exp(ig(y))

= u0
(
pJ(exp(ix))J(exp(iy)) + (1− p)J(exp(ix))−1J(exp(iy))−1

)
u−10 .

Using a calculation similar to the one we have applied in the proof of
(12.5)⇒(12.3) we find that

r(exp(ix) exp(iy)− 1) = r(exp(if(x)) exp(ig(x))− 1), x, y ∈M1s,

and hence we obtain (16.3). In particular, if f is homogeneous, then f(0) = 0.
Thus

1 = exp(if(0)) = u0
(
pJ(exp(i0)) + (1− p)J(exp(i0))−1

)
= u0.

It follows that

exp(itf(x)) = exp(if(tx)) = p exp(iJ(tx)) + (1− p)(exp(iJ(tx)))−1

= p exp(itJ(x)) + (1− p) exp(−itJ(x)), x ∈M1s.

Letting t→ 0, from(
exp(itf(x))−1

)
/it = p

(
exp(itJ(x))−1

)
/it+(1−p)

(
exp(−itJ(x))−1

)
/it,

we deduce
f(x) = (2p− 1)J(x), x ∈M1s.

In a similar manner we obtain g(x) = (2p− 1)J(x) for x ∈M1s.
Suppose that (16.3) holds. Set F = M1s and once again define Φ1, Ψ1 :

M1s → U1 by Φ1(x) = Ψ1(x) = exp(ix) and Φ2, Ψ2 : M1s → U2 by Φ2(x) =
exp(if(x)), Ψ2(x) = exp(ig(x)) for x ∈ M1s. Then Φj and Ψj are both
surjective maps for j = 1, 2. Clearly,

r(Φ1(x)Ψ1(y)− 1) = r(Φ2(x)Ψ2(y)− 1), x, y ∈M1s.

By Theorem 15 there exists a Jordan ∗-isomorphism J from M1 onto M2,
a central projection p ∈M2 and a unitary u0 ∈ U2 such that

Φ2(x) = u0
(
pJ(Φ1(x)) + (1− p)J(Φ1(x))

−1),
Ψ2(x) =

(
pJ(Ψ1(x)) + (1− p)J(Ψ1(x))−1

)
u−10 ,

for every x ∈M1s. Then

exp(if(x)) = u0
(
J(exp(ix)) + (1− p)J(exp(ix))−1

)
= u0

(
p exp(iJ(x)) + (1− p)(exp(iJ(x)))−1

)
and

exp(ig(x)) =
(
pJ(exp(ix)) + (1− p)J(exp(ix))−1

)
u−10

=
(
p exp(iJ(x)) + (1− p)(exp(iJ(x)))−1

)
u−10

for every x ∈M1s. This completes the proof.
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The following statement is an easy consequence of Corollary 16—one just
needs to take g = f (and have a short look at the argument in the proof of
Corollary 14 concerning centrality).

Corollary 17. Let Mj be a von Neumann algebra for j = 1, 2. Suppose
that f is a bijection from M1s onto M2s. Then the following conditions are
equivalent:

(17.1) σ(exp(ix) exp(iy)) = σ(exp(if(x)) exp(if(y))) for all x, y ∈M1s;
(17.2) there exists a Jordan ∗-isomorphism J from M1 onto M2 and a

central symmetry u0 ∈ U2 such that

exp(if(x)) = u0 exp(iJ(x)), x ∈M1s.

In particular, if f is homogeneous, then f = J and u0 = 1.
The following conditions are also equivalent:

(17.3) r(exp(ix) exp(iy)−1)=r(exp(if(x)) exp(if(y))−1) for x, y∈M1s;
(17.4) there exists a Jordan ∗-isomorphism J : M1 → M2, a central

projection p ∈M2 and a central symmetry u0 ∈ U2 such that

exp(if(x)) = u0
(
p exp(iJ(x))+(1−p)(exp(iJ(x)))−1

)
, x ∈M1s.

In particular, if f is homogeneous, then f = (2p− 1)J and u0 = 1.
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