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NUMBER THEORY

On the Equation a? + bc = n with Restricted Unknowns
by
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To the memory of Professor Jerzy Browkin

Summary. We extend our previous results concerning the equation a? 4+ be = n to all
primes n and deal also with the general case of non-square n. Moreover, we provide partial
results on patterns of ‘1’ and ‘11’ in the continued fractions of y/n.

For a given positive integer n which is not a perfect square we are inter-
ested in the triples of positive integers (a, b, ¢) satisfying the title equation

(1) a? +bc=n
and the restriction
(2) b<c<+/n.
The set of all such triples will be denoted by T'(n) and their number by ¢(n).
By trivial verification, ¢(3) = ¢(5) = ¢(7) = t(13) = ¢(23) = ¢t(47) = 0 but
T = {(3,1,2)}, (1) =1.
Similarly
7(67) ={(5,6,7),(7,3,6),(8,1,3)}, ¢(67)=3.
The last two examples are emanations of a general phenomenon we have
proved in [3]:
if n is a prime of the form 8k + 3 and n > 3 then t(n) is odd and
positive a fortiori.
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First we state explicitly a direct generalization.
THEOREM 1. If p > 3 is a prime then t(p) is odd for p = 1,3 (mod &)
and even for p = 5,7 (mod 8).

mod 8) are proved in [3| Theorems 1 and 3|. The

(
The cases p = 3,1 (
5,7 (mod 8) can be proved in a completely analogous

remaining cases p =
manner.

The cases with t(p) even are less attractive because the case t(p) = 0 is
not excluded. Therefore the next theorem may be of some interest.

THEOREM 2. If a prime p # 13 satisfies p = 5,7 (mod 8) and either
(a) p=1 (mod 12) or (b) p = £1 (mod 5) then t(p) is even and t(p) > 2.

For the proof we need a lemma.
LEMMA 1.
(a) If p is a prime satisfying p = 1 (mod 12) then there exist positive
integers x,y such that
22 + dzy + 4 = p.
(b) If p is a prime and p = £1 (mod 5) then there exist positive integers
x,y such that
2 + 3zy + 9% = p.
Proof. Both assertions follow easily from Zagier’s reduction procedure
(see [B Teil II, §13]).
Proof of Theorem 2. (a) By Lemma [I| we have the representation

p=(x+y)°+2zy withz<uy.

)2

It follows that (z+y,2z,y) € T(p) or (z+y,y,2z) € T(p) (because p # 13),
hence t(p) > 1 and finally ¢(p) > 2 by Theorem 1.

(b) In this case

p=(x+y)?+zy withz <y,

and (z +y,z,y) € T(p).

From now on we only assume that a given positive integer n is not a
perfect square. We want to investigate the set T'(n) and its magnitude ¢(n).

For each (a,b,c) € T'(n) we consider the quadratic form
(3) f(x,y) = ba® = 2azy — cy®.
The discriminant A of f equals A = 4n. We will first prove that the form f

is reduced. By definition we should verify that the parameter n = (a++/n)/b
of the form f satisfies the inequalities

(4) n>1 —-1<n<0
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(for the general definition of the parameter of a form consult e.g. [4]). In fact

_ a—+/n —c —c

n= = >— > 1.

b a++vn = n

The parameters 7 coming from triples (a,b,c) € T'(n) are characterized by
the system of inequalities

(5) n>1  —1<9<0, n—-0>2 297>0-—1,
and form a suitable “fundamental region” in the plane (7,7). So, we can call
our form f(z,y) super-reduced.

In the next theorem we show a connection of equation under the
restrictions with continued fractions.

THEOREM 3. Let n be a positive integer not a square. In order to list all
triples (a,b, c) satisfying a®>+bc = n and b, c < \/n we can proceed as follows.
Fiz a reduced form gj(x,y) in each GL(2,Z)-equivalence class of forms with
discriminant A = 4n for j = 1,...,h where h z's the number of these classes.
Let n; be the parameter of the form g;. Let pu /q ,pqul/qu_H be a pair of
consecutive convergents to n;, where —1 < u < kj — 2, k; being the period
of nj- If

;P d)| < v and |g; ()1 40 < v

then b = g;(p, 0|, ¢ == 1g;()1, d1)| and a = Vn="bc form a

desired trzple
Moreover, all the relevant triples (a,b,c) can be obtained in the above
way.

LEMMA 2. If a rational fraction p/q has the property that

1
6 =
® e-2)< 5
then p/q is a convergent of &.
This is Satz 2.11 from [2].
LEMMA 3. Let {=[bg,b1,...] be an infinite continued fraction with all b;
positive integers and let Py/Qy denote its A\th convergent. Then for each A>1,
Py P (1! 1
Qx  @r QrQx—1’
Payi - P a1 ba+1
Q1 Qa1 Qr1Qr1’
Pz P _ a1 bat1br+2 +1

Q2 Qa1 Qar2Qr—1 '
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and for n > 3 one has
Pyyn P

b
(=DM~ withb> 3.
Qr+n  Qxr—1 (=1) Qxrin@xr—1 -

These are special cases of formula (4) on page 14 of [2].

LEMMA 4. Let g(z,y) be a reduced form with a non-square positive dis-
criminant A. If coprime integers r, s satisfy the inequality

lg(r,8)] < VA/2
then r/s is a convergent of m or T where 1 is the parameter of the form
9(z,y).

For completeness we provide the proof of this lemma, because we have
not found it in the literature. Write explicitly g(z,y) = ax?+bxy+cy? where

ged(a, b, c) = 1 and b% — dac = A. We have n = % (see e.g. []). So
g(a,y) = a(z —yn)(z - yn),

where the bar denotes conjugation in the real quadratic field Q(v/A). Let

(t,u) be the smallest non-trivial solution of the equation

2 — Au®| =4
in positive integers ¢, u. Define the sequence (7, s,,) by the equation
t—uvA\"
2ary, — (=b+ VA)s, = (2ar — (—b+ VA)s) <I2L\/>> .
First we have
lim |rp| = lim |s,| =00 and lim |r, — s,n| = 0.
n—o0 n—oo n—o0
Fix a number £ > 0 satisfying

VARl _1
VA —lale 2

and choose n such that

[T — snn| < & < g|sy.

Then
Ti - 77' <g,
Sn
no —r VA
"—n' > | -7 — "—n‘ > — .
Sp, Sn, |al
Hence
re | gt e | WVA2] (VA N\
s M= o /|| < 7 —&) <52
Sn lalsz Sn |als? |a 2s3

By Lemma [2| the fraction r,/s,, is a convergent to 7.
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Now it follows that the initial fraction r/s is a convergent to n or 7. In
fact, let a@g, a1, ..., ar_1 be the continued fraction expansion of 7, with &
being the period. Define (a),)ncz for all integral indices n by “prolonging
mod k”:

al == Gpmodr for n € Z.

Moreover define recursively sequences p,, ¢, (n € Z) by
p2=0, pa1=1, pp=apPp1+pa2,
¢—2=1, ¢1=0, G=ag1+qm-2 (MEL).
It is easily verifiable (induction on n) that p_,, /q_, is the (n—1)th convergent
to i for n > 2.
Proof of Theorem 3. Let f(x,y) be the form obtained from g; by

F@,y) = g;0P e+ P9 1y, ¢Dz + q9) y).

The form f is equivalent to g; and we get a desired triple by setting

f(170)+f(071)_f(1a1) )

b:= ‘f(170)|> C:= |f(0’1)|’ a-= 2

The point is that
f(l O)f(O 1) = ;D49 - ;)1 q%) 1) <0

because pu / qu , pu 1/ qu +1 are consecutive convergents to 7);.

Now assume that (a,b,c) is a desired triple and consider the super-
reduced form . There exists j € {1,...,h} such that f(z,y) = bx? —
2axy — cy? is equivalent to g;(z,y). Let a, 8,7, 6 € Z satisfy

gj(ax + By,yx + dy) = f(z,y) and «ad —yf3 = £1.

Now

19i(, M| = f(1,0)] =b<vn and |g;(B,0)] = [£(0,1)] = c < Vn,

and we infer by Lemma [4| that each of the fractions a/~ and 3/ is a con-
vergent to 1 or to 7. First we exclude the possibility that both n and 7 are
involved: the numbers o/~ and /6 would then be of distinct signs, hence
so would be ad and 7. This contradicts the equality ad — gy = +1.

If both /v and (/6 are convergents to n then by Lemma 3| they are
consecutive convergents, because

gj(a,v) - g;(B,0) =b-(—c) <0.
Moreover we can assume that a/v and §/6 lie in the first period, and we are
done.
If both o/~ and /3/9 are convergents to 7 then they are again consecutive
convergents. We replace them by n; +7; — /v and n; +7; — 3/9, which
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are consecutive convergents to 7 (we use the same trick of considering a
two-sided infinite continued fraction as in the proof of Lemma .

We finish the paper by presenting some broader perspective connected
with equations similar to . The solutions of these equations, suitably re-
stricted, allow us to detect the patterns of ‘1’ and ‘11’ in the continued
fractions of |/p for some primes p.

THEOREM 4. Let p be a prime number of the form 12k + 7 and assume
that Z[\/p] is a unique factorization domain. Then

(i) the number 1 appears as a partial quotient in the continued fraction

expansion of \/p;
(ii) if additionally there exist positive integers x,y satisfying

(7) p=a2>+zy+y? y oddand 3y < x,
then one can find two consecutive 1’s in the continued fraction ex-
pansion of \/p.
LEMMA 5. Let p be a prime number of the form 3k + 1. Then
(i) there exist positive integers a,b, c satisfying
p=a’—be and b,c < +/p;
(ii) if additionally there exist positive integers x,y satisfying then
there exist positive odd integers a, b, c satisfying
dp=a®+bc and bc< V/D-

Proof. (i) It is very well known that there exist positive integers x, y such
that

p=a’+ay+y*=(z+y)’ -y,

so for the proof of (i) it suffices to set a = x 4+ y, b =x and ¢ = y.
(ii) Now we have

Ap = 42® + day + 4% = 22 + y)? + 3y - v,
andbyWecanseta:2$+y,b:3y,c:y.

LEMMA 6. Let p,q be positive integers satisfying |p* — €2¢?| < &. Then
p/q is a convergent of .

This is Satz 2.12 from [2].

Proof of Theorem /. (i) By Lemma [5| there exist positive integers a, b,
satisfying
a>—p=be and bc< /P
It follows that
a+\/]3:71-...-7k-51~...~5l
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where 7;,d; are all irreducible in Z[,/p] and with some € € {—1,1},
Nyi-...-vw)=¢b and N(61-...-0) =ec
Set
'yl-...-'yk:q—i—T\/ﬁ, 51‘...-51284-75\/]3.
First consider the case kIl = 0. The equality £ = [ = 0 would imply

eb =ec =1 and p = a® — 1, a contradiction. Now consider the case k > 0
and [ = 0. Then

0<a2—p:b<\/ﬁ, hence /p<a<. p+1/2.
Let \/p = [bo, b1, ...]. Then
bo=|yp]=a—1 and /p—1<by<.p—1/2.

Finally,
1
1 {\/ﬁ—bOJ< , ence 1
Now assume that k,7 > 0. We will work with the equality
(8) a+p=(q+rVp)(s+typ).

Without loss of generality we assume that ¢, s > 0. The equality t = 0 would
imply s = 1, hence [ = 0, which is not the case. Similarly, » # 0. Using
* —pr?l=b<p, | —ptP=c<p

we infer by Lemma@ that both ¢/|r| and s/|t| are convergents of |/p. Com-
paring the coefficients of 1 and /p on both sides of we get

a=qs+prt, 1=gqt+rs.
It follows that can be rewritten as

a+p=(q=rvp)(s+t/p)

with all ¢, 7, s,t positive and satisfying gt —rs = 1 and (¢,7) = (s,t) = 1.

Set
q P s P,

L= Q—’; and 7= 0,
We obviously have p # v. Moreover p = v (mod 2) because
(¢ —pr®)(s®* — pt?) = a®> —p=be > 0.
Concluding, by Lemma [3| we have {y, v} = {\ — 1, A+ 1} and
brax(up) = 1-
(i) Using Lemma [5| we now start with the equality
a? —4p = —be with a,b,c odd positive and b, ¢ < /.
In the same way as in case (i) we decompose a + 2,/p into irreducibles

a+2yp=7y1"... Y- 01-...-0
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in such a way that

NHyi-...-y)=¢b and N(0;-...-0) = —ec
with e € {—1, 1} properly chosen. Set again

YooY =q+7rD, O1-...-0p =85+1/p.

Start with the case kI = 0. The subcase k = [ = 0 is not possible because
then a? — 4p = —1, a contradiction. If £ > 0 and [ = 0 we have

1
2 40 s - -
(2f +1)"—4p b>—./p, andhence /p> f+ 5~ \/P Vp/4

where a = 2f + 1. We shall prove that \/p = [f,1,1,...]. Obviously f < /p;
in order to prove f > /p — 1 it suffices to show that

) Vr— B3> V-

which is equivalent to 9p > 1, so it does hold. Concluding, by = [/p| = f.
Further f < ,/p —1/2, and hence

1
fl—ﬁ_f

From \/p = [f,1,&] we get & = (\/p— f)/(f +1 —/p), and the inequality
&9 < 2 follows from @; hence by = 1.

<2 and b =1.

For k,l > 0 we proceed in the same way as in case (i) and arrive at the
equality
a+2yp = (Pu = Quvp) (P + Quv/p);
but now
(P = pQp)(P; — pQy) = a” = 4p = —be < 0,
hence ;1 # v (mod 2). Using P,Q, — P,Q, = 2 we infer by Lemma 3| that
{p, v} ={A+2,A— 1}, and finally

bmax(ug/) = bmax(,u,y)—l =1
REMARK. The natural question arises about the applicability of our re-
sults to concrete primes p. By Hecke’s prime number theorem [I] the primes
p satisfying condition @ form a positive proportion of all primes. The issue
of unique factorization in Z[,/p] is even more elusive—following Gauss we
strongly believe that it holds for infinitely many primes p but we cannot
prove it.
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