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Summary. We extend our previous results concerning the equation a2 + bc = n to all
primes n and deal also with the general case of non-square n. Moreover, we provide partial
results on patterns of ‘1’ and ‘11’ in the continued fractions of

√
n.

For a given positive integer n which is not a perfect square we are inter-
ested in the triples of positive integers (a, b, c) satisfying the title equation

(1) a2 + bc = n

and the restriction

(2) b < c <
√
n.

The set of all such triples will be denoted by T (n) and their number by t(n).
By trivial verification, t(3) = t(5) = t(7) = t(13) = t(23) = t(47) = 0 but

T (11) = {(3, 1, 2)}, t(11) = 1.

Similarly

T (67) = {(5, 6, 7), (7, 3, 6), (8, 1, 3)}, t(67) = 3.

The last two examples are emanations of a general phenomenon we have
proved in [3]:

if n is a prime of the form 8k + 3 and n > 3 then t(n) is odd and
positive a fortiori.
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First we state explicitly a direct generalization.

Theorem 1. If p > 3 is a prime then t(p) is odd for p ≡ 1, 3 (mod 8)
and even for p ≡ 5, 7 (mod 8).

The cases p ≡ 3, 1 (mod 8) are proved in [3, Theorems 1 and 3]. The
remaining cases p ≡ 5, 7 (mod 8) can be proved in a completely analogous
manner.

The cases with t(p) even are less attractive because the case t(p) = 0 is
not excluded. Therefore the next theorem may be of some interest.

Theorem 2. If a prime p 6= 13 satisfies p ≡ 5, 7 (mod 8) and either
(a) p ≡ 1 (mod 12) or (b) p ≡ ±1 (mod 5) then t(p) is even and t(p) ≥ 2.

For the proof we need a lemma.

Lemma 1.

(a) If p is a prime satisfying p ≡ 1 (mod 12) then there exist positive
integers x, y such that

x2 + 4xy + y2 = p.

(b) If p is a prime and p ≡ ±1 (mod 5) then there exist positive integers
x, y such that

x2 + 3xy + y2 = p.

Proof. Both assertions follow easily from Zagier’s reduction procedure
(see [5, Teil II, §13]).

Proof of Theorem 2. (a) By Lemma 1 we have the representation

p = (x+ y)2 + 2xy with x < y.

It follows that (x+y, 2x, y) ∈ T (p) or (x+y, y, 2x) ∈ T (p) (because p 6= 13),
hence t(p) ≥ 1 and finally t(p) ≥ 2 by Theorem 1.

(b) In this case

p = (x+ y)2 + xy with x < y,

and (x+ y, x, y) ∈ T (p).

From now on we only assume that a given positive integer n is not a
perfect square. We want to investigate the set T (n) and its magnitude t(n).

For each (a, b, c) ∈ T (n) we consider the quadratic form

(3) f(x, y) = bx2 − 2axy − cy2.
The discriminant ∆ of f equals ∆ = 4n. We will first prove that the form f
is reduced. By definition we should verify that the parameter η = (a+

√
n)/b

of the form f satisfies the inequalities

(4) η > 1, −1 < η̄ < 0
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(for the general definition of the parameter of a form consult e.g. [4]). In fact

η =
a+
√
n

b
>

√
n

b
> 1, η̄ =

a−
√
n

b
< 0,

η̄ =
a−
√
n

b
=

−c
a+
√
n
>
−c√
n
> −1.

The parameters η coming from triples (a, b, c) ∈ T (n) are characterized by
the system of inequalities

(5) η > 1, −1 < η̄ < 0, η − η̄ > 2, 2ηη̄ > η̄ − η,
and form a suitable “fundamental region” in the plane (η̄, η). So, we can call
our form f(x, y) super-reduced.

In the next theorem we show a connection of equation (1) under the
restrictions (2) with continued fractions.

Theorem 3. Let n be a positive integer not a square. In order to list all
triples (a, b, c) satisfying a2+bc = n and b, c <

√
n we can proceed as follows.

Fix a reduced form gj(x, y) in each GL(2,Z)-equivalence class of forms with
discriminant ∆ = 4n for j = 1, . . . , h where h is the number of these classes.
Let ηj be the parameter of the form gj. Let p

(j
u /q

(j)
u , p

(j)
u+1/q

(j)
u+1 be a pair of

consecutive convergents to ηj, where −1 ≤ u ≤ kj − 2, kj being the period
of ηj. If

|gj(p(j)u , q(j)u )| <
√
n and |gj(p(j)u+1, q

(j)
u+1)| <

√
n

then b := |gj(p(j)u , q
(j)
u )|, c := |gj(p(j)u+1, q

(j)
u+1)| and a :=

√
n− bc form a

desired triple.
Moreover, all the relevant triples (a, b, c) can be obtained in the above

way.

Lemma 2. If a rational fraction p/q has the property that

(6)
∣∣∣∣ξ − p

q

∣∣∣∣ < 1

2q2

then p/q is a convergent of ξ.

This is Satz 2.11 from [2].

Lemma 3. Let ξ=[b0, b1, . . .] be an infinite continued fraction with all bj
positive integers and let Pλ/Qλ denote its λth convergent. Then for each λ≥1,

Pλ
Qλ
− Pλ−1
Qλ−1

= (−1)λ−1
1

QλQλ−1
,

Pλ+1

Qλ+1
− Pλ−1
Qλ−1

= (−1)λ−1
bλ+1

Qλ+1Qλ−1
,

Pλ+2

Qλ+2
− Pλ−1
Qλ−1

= (−1)λ−1
bλ+1bλ+2 + 1

Qλ+2Qλ−1
,
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and for n ≥ 3 one has
Pλ+n
Qλ+n

− Pλ−1
Qλ−1

= (−1)λ−1
b

Qλ+nQλ−1
with b ≥ 3.

These are special cases of formula (4) on page 14 of [2].
Lemma 4. Let g(x, y) be a reduced form with a non-square positive dis-

criminant ∆. If coprime integers r, s satisfy the inequality

|g(r, s)| <
√
∆/2

then r/s is a convergent of η or η where η is the parameter of the form
g(x, y).

For completeness we provide the proof of this lemma, because we have
not found it in the literature. Write explicitly g(x, y) = ax2+bxy+cy2 where
gcd(a, b, c) = 1 and b2 − 4ac = ∆. We have η = −b+

√
∆

2a (see e.g. [4]). So
g(x, y) = a(x− yη)(x− yη),

where the bar denotes conjugation in the real quadratic field Q(
√
∆). Let

(t, u) be the smallest non-trivial solution of the equation
|t2 −∆u2| = 4

in positive integers t, u. Define the sequence (rn, sn) by the equation

2arn − (−b+
√
∆)sn = (2ar − (−b+

√
∆)s)

(
t− u

√
∆

2

)n
.

First we have
lim
n→∞

|rn| = lim
n→∞

|sn| =∞ and lim
n→∞

|rn − snη| = 0.

Fix a number ε > 0 satisfying

b
√
∆/2c√

∆− |a|ε
<

1

2
,

and choose n such that
|rn − snη| < ε < ε|sn|.

Then ∣∣∣∣rnsn − η
∣∣∣∣ < ε,∣∣∣∣rnsn − η
∣∣∣∣ > |η − η| − ∣∣∣∣rnsn − η

∣∣∣∣ >
√
∆

|a|
− ε.

Hence∣∣∣∣rnsn − η
∣∣∣∣ =
|g(r, s)|
|a|s2n

/ ∣∣∣∣rnsn − η
∣∣∣∣ < b

√
∆/2c
|a|s2n

·
(√

∆

|a|
− ε
)−1

<
1

2s2n
.

By Lemma 2 the fraction rn/sn is a convergent to η.
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Now it follows that the initial fraction r/s is a convergent to η or η. In
fact, let a0, a1, . . . , ak−1 be the continued fraction expansion of η, with k
being the period. Define (a′n)n∈Z for all integral indices n by “prolonging
mod k”:

a′n := anmod k for n ∈ Z.
Moreover define recursively sequences pn, qn (n ∈ Z) by

p−2 = 0, p−1 = 1, pn = a′npn−1 + pn−2,

q−2 = 1, q−1 = 0, qn = a′nqn−1 + qn−2 (n ∈ Z).

It is easily verifiable (induction on n) that p−n/q−n is the (n−1)th convergent
to η for n ≥ 2.

Proof of Theorem 3. Let f(x, y) be the form obtained from gj by

f(x, y) = gj(p
(j)
u x+ p

(j)
u+1y, q

(j)
u x+ q

(j)
u+1y).

The form f is equivalent to gj and we get a desired triple by setting

b := |f(1, 0)|, c := |f(0, 1)|, a :=

∣∣∣∣f(1, 0) + f(0, 1)− f(1, 1)

2

∣∣∣∣.
The point is that

f(1, 0)f(0, 1) = gj(p
(j)
u , q(j)u ) · gj(p(j)u+1, q

(j)
u+1) < 0

because p(ju /q
(j)
u , p

(j)
u+1/q

(j)
u+1 are consecutive convergents to ηj .

Now assume that (a, b, c) is a desired triple and consider the super-
reduced form (3). There exists j ∈ {1, . . . , h} such that f(x, y) = bx2 −
2axy − cy2 is equivalent to gj(x, y). Let α, β, γ, δ ∈ Z satisfy

gj(αx+ βy, γx+ δy) = f(x, y) and αδ − γβ = ±1.

Now

|gj(α, γ)| = |f(1, 0)| = b <
√
n and |gj(β, δ)| = |f(0, 1)| = c <

√
n,

and we infer by Lemma 4 that each of the fractions α/γ and β/δ is a con-
vergent to η or to η. First we exclude the possibility that both η and η are
involved: the numbers α/γ and β/δ would then be of distinct signs, hence
so would be αδ and βγ. This contradicts the equality αδ − βγ = ±1.

If both α/γ and β/δ are convergents to η then by Lemma 3 they are
consecutive convergents, because

gj(α, γ) · gj(β, δ) = b · (−c) < 0.

Moreover we can assume that α/γ and β/δ lie in the first period, and we are
done.

If both α/γ and β/δ are convergents to η then they are again consecutive
convergents. We replace them by ηj + ηj − α/γ and ηj + ηj − β/δ, which
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are consecutive convergents to η (we use the same trick of considering a
two-sided infinite continued fraction as in the proof of Lemma 4).

We finish the paper by presenting some broader perspective connected
with equations similar to (1). The solutions of these equations, suitably re-
stricted, allow us to detect the patterns of ‘1’ and ‘11’ in the continued
fractions of √p for some primes p.

Theorem 4. Let p be a prime number of the form 12k + 7 and assume
that Z[

√
p] is a unique factorization domain. Then

(i) the number 1 appears as a partial quotient in the continued fraction
expansion of √p;

(ii) if additionally there exist positive integers x, y satisfying

(7) p = x2 + xy + y2, y odd and 3y < x,

then one can find two consecutive 1’s in the continued fraction ex-
pansion of √p.

Lemma 5. Let p be a prime number of the form 3k + 1. Then

(i) there exist positive integers a, b, c satisfying

p = a2 − bc and b, c <
√
p;

(ii) if additionally there exist positive integers x, y satisfying (7) then
there exist positive odd integers a, b, c satisfying

4p = a2 + bc and b, c <
√
p.

Proof. (i) It is very well known that there exist positive integers x, y such
that

p = x2 + xy + y2 = (x+ y)2 − xy,
so for the proof of (i) it suffices to set a = x+ y, b = x and c = y.

(ii) Now we have

4p = 4x2 + 4xy + 4y2 = (2x+ y)2 + 3y · y,
and by (7) we can set a = 2x+ y, b = 3y, c = y.

Lemma 6. Let p, q be positive integers satisfying |p2 − ξ2q2| < ξ. Then
p/q is a convergent of ξ.

This is Satz 2.12 from [2].

Proof of Theorem 4. (i) By Lemma 5 there exist positive integers a, b, c
satisfying

a2 − p = bc and b, c <
√
p.

It follows that
a+
√
p = γ1 · . . . · γk · δ1 · . . . · δl
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where γi, δj are all irreducible in Z[
√
p] and with some ε ∈ {−1, 1},

N(γ1 · . . . · γk) = εb and N(δ1 · . . . · δl) = εc.

Set
γ1 · . . . · γk = q + r

√
p, δ1 · . . . · δl = s+ t

√
p.

First consider the case kl = 0. The equality k = l = 0 would imply
εb = εc = 1 and p = a2 − 1, a contradiction. Now consider the case k > 0
and l = 0. Then

0 < a2 − p = b <
√
p, hence

√
p < a <

√
p+ 1/2.

Let √p = [b0, b1, . . .]. Then
b0 = b√pc = a− 1 and

√
p− 1 < b0 <

√
p− 1/2.

Finally,

b1 =

⌊
1

√
p− b0

⌋
< 2, hence b1 = 1.

Now assume that k, l > 0. We will work with the equality
(8) a+

√
p = (q + r

√
p)(s+ t

√
p).

Without loss of generality we assume that q, s > 0. The equality t = 0 would
imply s = 1, hence l = 0, which is not the case. Similarly, r 6= 0. Using

|q2 − pr2| = b <
√
p, |s2 − pt2| = c <

√
p

we infer by Lemma 6 that both q/|r| and s/|t| are convergents of √p. Com-
paring the coefficients of 1 and √p on both sides of (8) we get

a = qs+ prt, 1 = qt+ rs.

It follows that (8) can be rewritten as
a+
√
p = (q − r√p)(s+ t

√
p)

with all q, r, s, t positive and satisfying qt − rs = 1 and (q, r) = (s, t) = 1.
Set

q

r
=
Pµ
Qµ

and
s

t
=
Pν
Qν

.

We obviously have µ 6= ν. Moreover µ ≡ ν (mod 2) because
(q2 − pr2)(s2 − pt2) = a2 − p = bc > 0.

Concluding, by Lemma 3 we have {µ, ν} = {λ− 1, λ+ 1} and
bmax(µ,ν) = 1.

(ii) Using Lemma 5 we now start with the equality
a2 − 4p = −bc with a, b, c odd positive and b, c <

√
p.

In the same way as in case (i) we decompose a+ 2
√
p into irreducibles

a+ 2
√
p = γ1 · . . . · γk · δ1 · . . . · δl
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in such a way that

N(γ1 · . . . · γk) = εb and N(δ1 · . . . · δl) = −εc
with ε ∈ {−1, 1} properly chosen. Set again

γ1 · . . . · γk = q + r
√
p, δ1 · . . . · δl = s+ t

√
p.

Start with the case kl = 0. The subcase k = l = 0 is not possible because
then a2 − 4p = −1, a contradiction. If k > 0 and l = 0 we have

(2f + 1)2 − 4p = −b > −√p, and hence
√
p > f +

1

2
>
√
p−√p/4

where a = 2f + 1. We shall prove that √p = [f, 1, 1, . . .]. Obviously f < √p;
in order to prove f > √p− 1 it suffices to show that

(9)
√
p−√p/4− 1

2
>
√
p− 2

3
,

which is equivalent to 9p > 1, so it does hold. Concluding, b0 = b√pc = f .
Further f < √p− 1/2, and hence

ξ1 =
1

√
p− f

< 2 and b1 = 1.

From √p = [f, 1, ξ2] we get ξ2 = (
√
p− f)/(f + 1−√p), and the inequality

ξ2 < 2 follows from (9); hence b2 = 1.
For k, l > 0 we proceed in the same way as in case (i) and arrive at the

equality
a+ 2

√
p = (Pµ −Qµ

√
p)(Pν +Qν

√
p),

but now
(P 2

µ − pQ2
µ)(P 2

ν − pQ2
ν) = a2 − 4p = −bc < 0,

hence µ 6≡ ν (mod 2). Using PµQν − PνQµ = 2 we infer by Lemma 3 that
{µ, ν} = {λ+ 2, λ− 1}, and finally

bmax(µ,ν) = bmax(µ,ν)−1 = 1.

Remark. The natural question arises about the applicability of our re-
sults to concrete primes p. By Hecke’s prime number theorem [1] the primes
p satisfying condition (7) form a positive proportion of all primes. The issue
of unique factorization in Z[

√
p] is even more elusive—following Gauss we

strongly believe that it holds for infinitely many primes p but we cannot
prove it.
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