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Flows with Ratner’s property have discrete
essential centralizer

by

Adam Kanigowski (State College, PA) and
Mariusz Lemańczyk (Toruń)

Abstract. We show that a free, ergodic action of R with (finite) Ratner’s property
has countable discrete essential centralizer. Moreover, we show that such flows are mildly
mixing.

1. Introduction. In the 1980’s, when studying dynamics of horocycle
flows acting on the unit tangent spaces of surfaces with constant negative
curvature, M. Ratner discovered a special property, now called Ratner’s prop-
erty, which is a particular way of divergence of orbits of nearby points.
Namely, the speed of that divergence is polynomial, and this seems to be
a characteristic property for so called parabolic dynamics. This property was
used by Ratner [18] to prove some important joining rigidity phenomena in
the class of horocycle flows (see also [15], [19]). Namely, for every ergodic
joining, different from product measure, of an ergodic flow (Tt) acting on
a standard Borel probability space (X,B, µ) with a flow having Ratner’s
property, the projection map on the X-coordinate has finite fibers. More-
over, flows with Ratner’s property enjoy the pairwise independence property
(PID), that is, any self-joining (of arbitrary order) which is pairwise inde-
pendent is just product measure. As noticed in [10], the PID property forces
mixing to be mixing of all orders. During the last decade many other flows
have been shown to enjoy Ratner’s property (with some modifications of
the original definition but keeping the aforementioned joining phenomena).
Mixing of all orders of horocycle flows was known before Ratner’s work
(see [16]), but it is only very recently that, via Ratner’s property, mixing of
all orders was established for some classes of smooth flows on surfaces [1] (see
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also [14]). Ratner’s property itself however does not imply mixing. Indeed,
all other known classes of flows satisfying Ratner’s property (see [2], [4], [5],
[11], [12], [13]) are not mixing. On the other hand, all these examples are
mildly mixing. As a matter of fact, it was already asked by J.-P. Thouvenot
in the 1990’s whether Ratner’s property is compatible with the rigidity prop-
erty of flows. More precisely, Thouvenot asked whether there exists a flow
(Tt)t∈R with Ratner’s property acting on a standard Borel probability space
(X,B, µ) for which for some tn → ∞, we have f ◦ Ttn → f in L2 for each
f ∈ L2(X,B, µ). Recall that mild mixing can be defined as the absence of
non-trivial rigid factors, so no one of known examples of flows with Ratner’s
property was rigid.

In this note, we will prove the following results.

Theorem 1. Assume that a measurable, measure-preserving flow T =
(Tt) is free, ergodic and enjoys Ratner’s property. Then its essential central-
izer EC(T ) := C(T )/{Tt : t ∈ R} is discrete and countable.

As the essential centralizer of a rigid flow is uncountable, this in particular
answers Thouvenot’s question.

Theorem 2. Assume that a measurable, measure-preserving flow T =
(Tt) is free, ergodic and has Ratner’s property. Then, for each S ∈ C(T ),
either S is mildly mixing or S is of finite order.

We have the following immediate corollary (which also answers Thou-
venot’s question):

Corollary 1.1. A flow with Ratner’s property is mildly mixing.

Let us mention that some of the ideas of our proof remind those used
in [8] to show that the Chacon transformation (which has Ratner’s property
as a Z-action) commutes only with its powers.

2. Basic definitions. Let (X,B, µ) be a standard Borel probability
space. We denote by Aut(X,B, µ) the group of all (measure-preserving) au-
tomorphisms of that space. Each element S ∈ Aut(X,B, µ) can also be
treated as a unitary operator on L2(X,B, µ) via Sf := f ◦S. Endowed with
the strong operator topology, Aut(X,B, µ) becomes a Polish group.

Throughout, we consider only measurable R-representations in
Aut(X,B, µ), i.e. flows T = (Tt) on (X,B, µ). Measurability means that
the map X × R 3 (x, t) 7→ Ttx is measurable. A flow is called rigid if for a
sequence (tn)n≥1, tn →∞, we have

lim
n→∞

µ(TtnA4A) = 0 for every A ∈ B.

This is equivalent to saying that, as operators on L2(X,B, µ), Ttn → Id
strongly.
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Remark 2.1. If Sn ∈ Aut(X,B, µ), n ≥ 1, and Sn → Id strongly on
L2(X,B, µ), then Sn → Id in measure. Indeed, there is no harm to assume
that X is a compact metric space with a metric d. Fix ε > 0 and cover
X by finitely many balls B1, . . . , Bm o radius ε. Now, given δ > 0, for
n ≥ n0, we have µ(Bi ∩ S−1n Bi) ≥ (1 − δ)µ(Bi) for i = 1, . . . ,m. Hence
µ({x ∈ X : d(x, Snx) ≥ 2ε}) < 2mδ, and the claim follows.

It follows that if Sn → Id strongly on L2(X,B, µ), then for a subsequence
(nk), we have Snk

→ Id µ-a.e.

Following [6], a flow T is called mildly mixing if it has no non-trivial rigid
factors, i.e.

lim inf
t→∞

µ(T−tB 4B) > 0 for every B ∈ B with 0 < µ(B) < 1.

Let C(T ) := {S ∈ Aut(X,B, µ) : STt = TtS for every t ∈ R} denote the
centralizer of T and let the essential centralizer of T be defined as

EC(T ) = C(T )/{Tt : t ∈ R}.
Then C(T ) is closed in Aut(X,B, µ), hence is a Polish group. Moreover,
EC(T ) is also a group, although its topological properties depend on whether
the subgroup {Tt : t ∈ R} is closed.

Remark 2.2. If T is rigid then EC(T ) is uncountable. This result is
folklore but we provide an argument for completeness.

First notice that in a Polish group G, if we have a dense subgroup H
then either H = G or H is a set of first category. Indeed, if H is of second
category then H = HH−1 contains a neighborhood U of 1, so H is also
open. But it is also closed (the complement of H is a union of cosets of H),
so H is a clopen subgroup. Since it is dense, H = G.

If H is of first category and if G =
⋃
i≥1 giH then G is still of first

category, which contradicts the fact that G is Polish.
In our context, we use this for H := {Tt : t ∈ R} ⊂ {Tt : t ∈ R} =: G (1).

For joining theory of dynamical systems, we refer the reader to [7].

3. The centralizer of flows with Ratner’s property

3.1. Ratner’s property. Recall now the notion of (finite) Ratner’s
property introduced in [2]. This is a weakening of Ratner’s original property
introduced in [18] in the context of horocycle flows. Assume that X is a
σ-compact metric space with a metric d. Let (Tt) ⊂ Aut(X,B, µ) be an
ergodic flow.

(1) This argument has been communicated to us by A. Danilenko and replaced our
first argument based on the open map theorem for Polish groups together with the fact
that a solenoidal group is either R, or it is compact, or else it is not locally compact.
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Definition 3.1. Fix a finite set P ⊂ R \ {0} and t0 ∈ R. Then (Tt) is
said to have the R(t0, P ) property if for every ε > 0 and N ∈ N there exist
κ = κ(ε) > 0, δ = δ(ε,N) and a set Z = Z(ε,N) ⊂ X with µ(Z) > 1 − ε
such that for any x, y ∈ Z with x not in the orbit of y and d(x, y) < δ there
exist M = M(x, y) and L = L(x, y), with M,L ≥ N and L/M ≥ κ, and
there exists p = p(x, y) ∈ P such that

(1)
1

L
|{n ∈ [M,M + L] : d(Tnt0x, Tnt0+py) < ε}| > 1− ε.

We say that (Tt) has Ratner’s property (with the set P ) if the set

{s ∈ R : (Tt) has the R(s, P ) property}
is uncountable.

Remark 3.2. (1) If (X,B, µ) is a standard Borel probability space and
there is no good metric structure on X then we say that a flow T = (Tt) ⊂
Aut(X,B, µ) has Ratner’s property (with some set P ) if there exist a σ-
compact metric space (X ′, d′) and a flow T ′ = (T ′t) ⊂ Aut(X ′,B′, µ′) which
has Ratner’s property (with the set P ) such that the flows T and T ′ are
measure-theoretically isomorphic. In such a situation we say that T ′ is a
good metric model of T .

(2) It is shown in [2] that Ratner’s property does not depend on the choice
of a good metric model. In particular, Ratner’s property does not depend on
the choice of metric in Definition 3.1. It follows that Ratner’s property can
be defined unambiguously for flows defined on standard Borel probability
spaces.

(3) If (Tt) ⊂ Aut(X,B, µ) is a free ergodic R-action with (X, d) a σ-
compact metric space and all Tt being isometries then T does not have
Ratner’s property (e.g. consider the flow Tt(x, y) = (x+ t, y+αt) on T2 with
α irrational).

Remark 3.3. Notice that if Rt : T→ T, t ∈ R, is the linear flow on the
additive circle, i.e. Rt(x) = x+t mod 1, then (Rt) satisfies Ratner’s property
(with any finite set P ). Indeed, any two points are in one orbit, so Defini-
tion 3.1 holds trivially. The group of eigenvalues of this flow is Z. It is not hard
to see that the only ergodic flows which have discrete spectrum and (infinite)
cyclic group of eigenvalues are rescalings of the linear flow. Such R-actions
are, up to isomorphisms, all ergodic (non-trivial) non-free R-actions (2).

In view of Remark 3.2, from now on, we assume that a flow T = (Tt) acts
on a standard Borel probability space (X,B, µ), where (X, d) is a compact
metric space. In view of Remark 3.3, we will assume that the R-actions under
consideration are free.

(2) Note that such flows have the minimal self-joining property.
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3.2. Proof of Theorem 1. We begin with the following lemma:

Lemma 3.4. If T = (Tt) is ergodic and has Ratner’s property (with a
set P ) then {Tt : t ∈ R} is open in C(T ).

Notice that Theorem 1 is a straightforward consequence of Lemma 3.4:

Proof of Theorem 1. By Lemma 3.4, it follows that the topological group
EC(T ) = C(T )/{Tt : t ∈ R} is discrete (as {Tt : t ∈ R} is normal and
clopen). But EC(T ) is separable (since C(T ) is separable). Hence EC(T )
is countable.

Therefore, it is enough to prove Lemma 3.4. Before we provide its proof,
more definitions and observations will be needed. Let T = (Tt) be an ergodic
flow such that Tt0 is ergodic. Fix a finite set P ⊂ R \ {0}. Set
(2) Ak := {x ∈ X : d(x, Tpx) > k−1 for all p ∈ P}.
We have the following:

(P1) limk→∞ µ(Ak) = 1.
(P2) There exists k0 ∈ N such that for every κ > 0, there exist a set

Wκ ⊂ X with µ(Wκ) > 0.99 and a number N0 ∈ N such that for
any M,L ≥ N0 with L/M ≥ κ, and every x ∈Wκ, we have

(3)
1

L
|{n ∈ [M,M + L] : Tnt0x ∈ Ak0}| ≥ 0.99.

(P3) Let B ∈ B with µ(B) = 1. For every κ > 0 there exist a set
Vκ ⊂ X with µ(Vκ) > 0.99 and a number N1 ∈ N such that for any
M,L ≥ N1 with L/M ≥ κ and every x ∈ Vκ, we have

(4)
1

L
|{n ∈ [M,M + L] : Tnt0x ∈ B}| ≥ 0.99.

Indeed, notice that for every k ∈ N, we have Ak ⊂ Ak+1. Let A :=
⋃
k≥1Ak.

Then Ac is the set of periodic points for T with periods belonging to P ,
so by ergodicity (of T ), it has measure 0. Therefore µ(A) = 1, and since
Ak ⊂ Ak+1 for k ≥ 1, we obtain (P1). To prove (P2) we use (P1) to obtain the
existence of k0 ∈ N such that µ(Ak0) ≥ 1−10−4. Then (P2) follows by using
the pointwise ergodic theorem for 1Ak0

and Tt0 , and then Egorov’s theorem
which gives a uniform convergence on a set of arbitrarily large measure (in
our case this set is Wκ). For (P3), just note that it is a particular case of the
same argument used to show (P2) (for a constant sequence of sets).

Assume now that (Sn)n∈N ⊂ C(T ) and define

(5) Bk := {x ∈ X : (∃nk) d(x, Snx) < k−1 for all n ≥ nk}, B :=
⋂
k≥1

Bk.

We have the following:
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(P4) If Sn → Id µ-a.e., then µ(B) = 1 (note that if we assume only that
Sn → Id strongly, as operators on L2(X,B, µ), then by Remark 2.1,
we can replace (Sn) by a µ-a.e. convergent subsequence).

(P5) If {Sn : n ∈ N} ∩ {Tt : t ∈ R} = ∅, then there exists a set X0 with
µ(X0) = 1 such that for every n ∈ N and every x ∈ X0,

(6) Snx /∈ {Ttx : t ∈ R}.

Indeed, for (P4) it is enough to notice that µ(Bk) = 1 for every k ≥ 1. To
obtain (P5) notice that for every n ∈ N the set

Xn :=
{
x ∈ X : Sn(x) ∈ {Ttx : t ∈ R}

}
is measurable: it is the X-projection of the measurable set {(x, t) ∈ X ×
R : Snx = Ttx}. Moreover, Xn is T -invariant, hence by ergodicity we have
µ(Xn) ∈ {0, 1}. But by assumption, Sn /∈ {Tt : t ∈ R}, hence µ(Xn) = 0.
Finally, set X0 =

⋂
n≥1X

c
n.

Proof of Lemma 3.4. To show that {Tt : t ∈ R} is open it is enough to
show that for any sequence (Sn)n∈N ⊂ C(T ) such that Sn → Id strongly,
there exists n0 such that for n ≥ n0, Sn = Ttn for some tn ∈ R. Assume for
contradiction that there exists (Sn)n∈N ⊂ C(T ) such that Sn → Id strongly
and

{Sn : n ∈ N} ∩ {Tt : t ∈ R} = ∅.

By (P5), after restricting toX0, we may assume that (6) holds for x ∈ X. Fix
t0 ∈ R such that Tt0 is ergodic. We will show that for every such t0, T fails
the R(t0, P ) property. Since an ergodic flow can have at most countably
many non-ergodic time automorphisms, this will finish the proof of Lemma
3.4. Since t0 ∈ R is fixed, we will write Tt0 =: T .

Fix k0 from (P2) and let 0 < ε < min(0.01, k−20 ) with κ = κ(ε) coming
from the R(t0, P ) property. Let N0 come from (P2) and N1 from (P3) (for
B ∈ B defined in (5); notice that by (P4), µ(B)=1). Take N ≥ max(N0, N1).
Let δ = δ(ε,N) and suppose a set Z = Z(ε,N) with µ(Z) ≥ 1 − ε is given
by the R(t0, P ) property. Let k > max(δ−2, ε−2) and set n = nk, where nk
is given by (5). We will show that for every x ∈ B ∩Wκ ∩ Vκ, x and Snx
do not satisfy (1). This means that (x, Snx) /∈ Z × Z. This will finish the
proof since by (6), x and Snx are not in the same orbit of T , by (5) we have
d(x, Snx) < k−1 < δ2 < δ, and

S−1n (Z) ∩ (B ∩Wκ ∩ Vκ ∩ Z) = ∅,

which yields a contradiction since all the sets in the intersection above have
measure at least 0.99.

Fix x ∈ B ∩Wκ ∩ Vκ. Assume that (x, Snx) ∈ Z × Z. Then there ex-
ist M,L ≥ N with L/M ≥ κ such that (1) is satisfied for x, Snx. Let
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(see (2), (5))

(7) W := {i ∈ [M,M + L] : Tix ∈ Ak0 ∩B}.
From (3) and (4) we deduce that |W | ≥ 3L/4. By (2) and (5), it follows that
for all i ∈W and p ∈ P , we have (by the choice of k0 and k)

d(Ti+px, Ti(Snx)) ≥ d(Ti+px, Tix)− d(Tix, Ti(Snx))
= d(Ti+px, Tix)− d(Tix, Sn(Tix)) ≥ k−10 − k

−1 ≥ ε1/2 − ε2 > ε.

Now, since |W | ≥ 3L/4, (1) is not satisfied for x, Snx. This completes the
proof.

3.3. Proof of Theorem 2

Proposition 3.5. If T = (Tt) is ergodic and has Ratner’s property
then every (non-trivial) factor S = (St) of T acts freely and has Ratner’s
property.

We will use the following lemma (see [2, Remark 2 and Theorem 5.1])

Lemma 3.6. Let T = (Tt) be an ergodic flow on a standard Borel proba-
bility space (X,B, µ). If T has Ratner’s property, then T is a finite extension
of each of its non-trivial factors.

Now, we prove Proposition 3.5.

Proof of Proposition 3.5. Let S = (St) : (Y, C, ν) → (Y, C, ν) be a factor
of T , where (Y, C, ν) is a standard Borel probability space, and (Y, dY ) is
a compact metric space. In view of Lemma 3.6, we can assume that X =
Y × {0, . . . , k − 1} and µ is the product of ν and the normalized counting
measure on {0, . . . , k − 1}. Moreover, X becomes a compact metric space
with the metric d(x, x′) = dY (y, y

′) + dk(i, i
′), where x = (y, i), x′ = (y′, i′)

and dk stands for the discrete metric on {0, . . . , k − 1}. Let π : X → Y be
given by π(y, i) = y so that π ◦ Tt = St ◦ π.

Let us first show that the action of (St) is free. Suppose not. Then for
ν-a.e. y ∈ Y there exists r ∈ R such that Sry = y. Let x ∈ X be such that
π(x) = y. Then, for every n ≥ 1,

π(Tnrx) = Snr(π(x)) = Snr(y) = y,

so for every n ≥ 1, we have Tnrx ∈ π−1(y). But since the action of (Tt) is
free, for µ-a.e. x ∈ X, we have Tn1sx 6= Tn2sx whenever n1 6= n2. Hence
π−1y is not finite, which is a contradiction.

It remains to show that S has Ratner’s property. Fix t0 such that (Tt)
has the R(t0, P ) property. We will show that (St) also has the R(t0, P )
property (with the metric dY ). Fix ε,N and let κ, δ, Z be as in the definition
of R(t0, P ) property for (Tt). If ε > 0 is small enough compared to 1/k, then
Z ⊃ ZY ×{0, . . . , k− 1}, where ZY ∈ C and ν(ZY ) > 1− ε. Notice that any
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x, x′ ∈ Z such that d(x, x′) < δ are of the form x = (y, i), x′ = (y′, i) for
some y, y′ ∈ ZY with dY (y, y′) < δ. Take any y, y′ ∈ ZY such that y is not
in the orbit of y′ and dY (y, y′) < δ. Next, let M,L, p be as in the definition
of R(t0, P ) for x = (y, i) and x′ = (y′, i). Then

1

L
|{n ∈ [M,M + L] : dY (Snt0y, Snt0+py

′) < ε}|

≥ 1

L
|{n ∈ [M,M + L] : d(Tnt0x, Tnt0+px

′) < ε}| ≥ 1− ε.

It follows that S has the R(t0, P ) property. This completes the proof of
Proposition 3.5.

Remark 3.7. It follows from [2] that Lemma 3.6 holds without the free-
ness assumption. By Remark 3.3, also the assertion of Proposition 3.5 holds
without the assumption that the action of T is free.

Now we give the proof of Theorem 2:

Proof of Theorem 2. Let STt = TtS for all t ∈ R. Assume first that S
is not ergodic. Notice that A := {A ∈ B : SA = A} is a factor of (Tt).
By Lemma 3.6 it follows that (Tt) can be represented as a skew product
over Y (where Y = X/A) with finite fibers. Let us denote this space by
Y × {0, . . . , k − 1} for some k ∈ N. Since S ∈ C(T ), it follows that S acts
on Y × {0, . . . , k − 1} as the identity on the first coordinate. It is hence of
the form S(x, i) = (x, τx(i)), with τx being a bijection of {0, . . . , k − 1}. It
easily follows that Sk! = Id.

Assume now that S is ergodic. We will show that S is mildly mixing.
Since T has Ratner’s property, the Kronecker factor for T is trivial. Indeed,
if not then by Proposition 3.5 the action on the Kronecker factor is free, so by
Remarks 3.2 and 3.3, it does not have Ratner’s property, contrary to Propo-
sition 3.5. Thus, T is weakly mixing. Furthermore, since S ∈ C(T ), S is also
weakly mixing. Suppose that S is not mildly mixing and let F be a non-trivial
rigid factor of it. Then S|F is rigid and F is invariant under all Tt, whence
F is a non-trivial factor for T . Moreover, S|F is still weakly mixing, whence
all its powers (S|F )n, n ∈ Z, are distinct (and in particular (S|F )n 6= Id for
n 6= 0). What is more, if for some 0 6= n ∈ Z, we have (S|F )n = Trn |F , then
T |F is rigid (since (S|F )n is rigid), and hence its essential centralizer would
be uncountable, in contradiction with Theorem 1 applied to T |F , since the
latter action has Ratner’s property by Proposition 3.5. It follows that

(8) (S|F )k /∈ {Tt|F : t ∈ R} for 0 6= k ∈ Z.

Since S|F is rigid, the group {Tt|F : t ∈ R} is not open in C(T |F ). This yields
a contradiction with Theorem 1. Hence S has no non-trivial rigid factors,
and so it is mildly mixing. This completes the proof of Theorem 2.
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3.4. Final remarks. We have proved that for flows satisfying Ratner’s
property the essential centralizer is countable (and discrete). We emphasize
that this fact is not a consequence of the finite fiber property of ergodic join-
ings of flows with Ratner’s property, mentioned in the Introduction. Indeed,
it seems to be possible to adapt the construction of a rigid and simple auto-
morphism from [9] to obtain a simple and rigid flow. We have been unable
to decide whether the essential centralizer of a flow with Ratner’s property
can indeed be infinite (in particular, whether it can contain an element of
infinite order). If H = (ht) is a horocycle flow then EC(H) is finite (see [17,
Corollary 4]). For another class of flows enjoying Ratner’s property, so called
von Neumann special flows over irrational rotations (with the rotation of
bounded type), the same phenomenon has been proved [2, 3].
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