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Two-weight Lp-inequalities for dyadic shifts
and the dyadic square function

by

Emil Vuorinen (Helsinki)

Abstract. We consider two-weight Lp → Lq-inequalities for dyadic shifts and the
dyadic square function with general exponents 1 < p, q < ∞. It is shown that if a so-
called quadratic Ap,q-condition related to the measures holds, then a family of dyadic
shifts satisfies the two-weight estimate in an R-bounded sense if and only if it satisfies the
direct and the dual quadratic testing condition. In the case p = q = 2 this reduces to the
result by T. Hytönen, C. Pérez, S. Treil and A. Volberg (2014).

The dyadic square function satisfies the two-weight estimate if and only if it satisfies
the quadratic testing condition, and the quadratic Ap,q-condition holds. Again in the case
p = q = 2 we recover the result by F. Nazarov, S. Treil and A. Volberg (1999).

An example shows that in general the quadratic Ap,q-condition is stronger than the
Muckenhoupt type Ap,q-condition.

1. Introduction. The main purpose of this note is to consider two-
weight norm inequalities for dyadic shifts and the dyadic square function.
A two-weight Lp → Lq-inequality, 1 < p, q < ∞, for an operator T defined
for a suitable class of functions is an inequality of the form

(1.1)
( �

Rn
|Tf |qw dx

)1/q
≤ C

( �

Rn
|f |pv dx

)1/p
,

where the constant C > 0 does not depend on f . Here v and w are weights,
that is, non-negative Borel measurable functions. The two-weight inequality
(1.1) can also be formulated a little differently, which will be done later.

Dyadic shifts are in a sense discrete models of Calderón–Zygmund sin-
gular integral operators. They are much simpler than a general Calderón–
Zygmund operator, but they already have the complication that they are
not positive integral operators.
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It was shown in [5] that a general Calderón–Zygmund operator can be
represented as an average over all dyadic systems on RN of a rapidly con-
vergent series of dyadic shifts. This representation was used to prove the
so-called A2-conjecture about sharp constants in one-weight estimates for
Calderón–Zygmund operators.

Dyadic shifts fall also in the category of well localized operators as defined
by F. Nazarov, S. Treil and A. Volberg [14] . They showed that a two-weight
inequality holds for a well localized operator in L2 if and only if the operator
satisfies the so-called Sawyer type testing conditions. This means that it
suffices to show that the operator and its formal adjoint satisfy the inequality
with an arbitrary indicator of a (dyadic) cube, and hence Sawyer type testing
may also be called indicator testing. Two-weight Lp → Lq-inequalities for
well localized operators were considered in [17].

The definition of a well localized operator depends on a parameter r
which measures how “well” the operator is localized. The constant C in the
two-weight inequality proved in [14] and [17] depends on r and the constants
in Sawyer type testing conditions.

In [7] dyadic shifts were looked at from a little different perspective.
There T. Hytönen, C. Pérez, S. Treil and A. Volberg proved a two-weight
inequality in L2 assuming the Sawyer type testing conditions and finiteness
of the so-called A2-constant related to the weights. This approach was re-
lated to the A2-conjecture mentioned above, and this is the point of view
that we take in this note. The main difference between this approach and the
more general point of view of well localized operators is that this way one
gets a better estimate depending on the complexity of the shift, which was
crucial in the A2-conjecture. The complexity of the shift is somewhat anal-
ogous to the “well localization” parameter in the definition of well localized
operators.

The novelty here is that we characterize the two-weight inequality for
dyadic shifts for general exponents 1 < p, q <∞, whereas it was only done
before in the case p = q = 2. Despite the positive result in the case p = q = 2,
F. Nazarov has constructed an example (unpublished) of a Haar multiplier
(a special kind of dyadic shift) and a pair of weights such that the operator
satisfies the Sawyer type testing conditions for some 1 < p = q <∞, p 6= 2,
but still does not satisfy the (quantitative) two-weight estimate. See [17,
Section 4] for a more precise statement of the example.

Knowing that there are problems with Sawyer type testing and general
exponents p ∈ (1,∞), we generalize the testing conditions for 1 < p < ∞
in the spirit of R-bounded operator families, as used for example in [18].
We call these new testing conditions quadratic testing conditions. Similarly,
we interpret the A2-condition as a special case of a quadratic Ap,q-condition
(see Section 3 for the definition).
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Now we state a special version of the main Theorem 5.1 for dyadic shifts.
It is assumed here that we have some fixed underlying dyadic lattice D on
RN which is used in the definition of the shifts and the Ap,q-condition.

Theorem 1.1. Fix p, q ∈ (1,∞), and assume that σ and w are two
measures on RN satisfying the quadratic Ap,q-condition. Suppose T σ is a
dyadic shift with complexity κ, and let Tw be the formal adjoint of T σ.
Then there exists a constant C such that the inequality

(1.2) ‖T σf‖Lq(w) ≤ C‖f‖Lp(σ)
holds for all f ∈ Lp(σ) if and only if there exist constants C ′ and C ′′ such
that for all sequences (Qi)

∞
i=1 ⊂ D of dyadic cubes and all sequences (ai)

∞
i=1

of real numbers we have∥∥∥( ∞∑
i=1

(ai1QiT
σ1Qi)

2
)1/2∥∥∥

Lq(w)
≤ C ′

∥∥∥( ∞∑
i=1

a2i 1Qi

)1/2∥∥∥
Lp(σ)

,(1.3)

∥∥∥( ∞∑
i=1

(ai1QiT
w1Qi)

2
)1/2∥∥∥

Lp′ (σ)
≤ C ′′

∥∥∥( ∞∑
i=1

a2i 1Qi

)1/2∥∥∥
Lq′ (w)

.(1.4)

Moreover, if T σ and T w denote the best possible constants in (1.3) and
(1.4), respectively, and [σ,w]p,q is the quadratic Ap,q-constant, then the best
constant ‖T‖ in (1.2) satisfies

(1.5) ‖T‖ . (1 + κ)(T σ + T w) + (1 + κ)2[σ,w]p,q.

If p = q = 2, quadratic testing is equivalent to indicator testing and
the quadratic A2,2-condition is equivalent to the simple A2-condition. Thus,
when p = q = 2, the above theorem reduces to the one proved in [7].

As another novelty, in Theorem 5.1 we shall actually consider a family
T of dyadic shifts with complexity at most a given κ. Then it is shown that
under the quadratic Ap,q-condition, the family is R-bounded with the same
quantitative bound as in (1.5) if and only if a quadratic testing condition
for the whole family is satisfied. Our proof follows the broad outlines of
L2-theory but with additional complications coming from the general ex-
ponents. We also briefly outline the proof that if the dyadic shifts are of
a special form that arises naturally in the representation theorem concern-
ing general Calderón–Zygmund operators, then a certain weakening of the
Ap,q-condition is sufficient.

It will be shown that this quadratic Ap,q-constant is comparable to the
constant in the “two-weight Stein inequality” for conditional expectations
from Lp into Lq in the same way as the usual A2-constant is related to
boundedness of conditional expectations in weighted L2. We also construct
an example showing that for p > 2 or 1 < q < 2 the Ap,q-condition is in
general stronger than the simple Ap,q-condition. Since they are equivalent
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in the case 1 < p ≤ 2 ≤ q <∞, we deduce that the simple Ap,q-condition is
sufficient for the two-weight Stein inequality to hold if and only if 1 < p ≤
2 ≤ q <∞.

The two-weight inequality for the dyadic square function was character-
ized in L2 in terms of Sawyer type testing and the A2-condition in another
paper by F. Nazarov, S. Treil and A. Volberg [13]. We use similar ideas
to those for dyadic shifts and show that the two-weight inequality for the
dyadic square function holds from Lp into Lq if and only if the quadratic
testing condition and the quadratic Ap,q-condition hold, and we get a sim-
ilar quantitative estimate to the one for dyadic shifts. Here again we get
the previous result as a special case when p = q = 2. Our approach to the
dyadic square function is inspired by the strategy in [10], and similar steps
appeared also in [13].

2. Set up and preliminaries. We begin by specifying the basic nota-
tion and concepts we use. Two Radon measures σ and w on RN are fixed.
Most of the definitions below are made with respect to the measure σ, but
it will be clear that they are similar for any Radon measure.

For any 1 ≤ p ≤ ∞ the usual Lp-space with respect to the measure σ is
denoted by Lp(σ). For a sequence (fi)

∞
i=1 of Borel measurable functions on

RN we define

‖(fi)∞i=1‖Lp(σ;l2) :=
( �( ∞∑

i=1

|fi|2
)p/2

dσ
)1/p

,

and the space Lp(σ; l2) consists of those sequences (fi)
∞
i=1 for which this

norm is finite. All our functions will be real-valued.

We fix a dyadic lattice D on RN . This means that D =
⋃
k∈Z Dk, where

each Dk is a disjoint cover of RN with cubes of the form x+[0, 2−k)N , x ∈ RN ,
and for every k ∈ Z each cube Q ∈ Dk is a union of 2N cubes in Dk+1.

If Q ∈ Dk, denote by Q(1) the unique cube in Dk−1 that contains Q,
and for any integer r ≥ 2 define inductively Q(r) := (Q(r−1))(1). Write also
Q(0) := Q. For m = 0, 1, 2, . . . the collection ch(m)(Q) consists of those
Q′ ∈ D such that Q′(m) = Q, and we abbreviate ch(1)(Q) =: ch(Q). The
side length of a cube Q ∈ Dk is l(Q) := 2−k, and the volume l(Q)N is written
as |Q|.

Martingale decomposition. If Q ∈ D , then the average of a locally
σ-integrable function f over Q is denoted by

〈f〉σQ :=
1

σ(Q)

�

Q

f dσ
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with the understanding that 〈f〉σQ = 0 if σ(Q) = 0. For two functions f

and g we write 〈f, g〉σ :=
	
fg dσ whenever the integral makes sense. The

averaging or conditional expectation operator Ek, k ∈ Z, is defined as

Eσkf :=
∑
Q∈Dk

〈f〉σQ1Q.

The martingale difference related to a cube Q ∈ D is defined as

(2.1) ∆σ
Qf :=

∑
Q′∈ch(Q)

〈f〉σQ′1Q′ − 〈f〉σQ1Q.

Let (εi)
∞
i=1 be a sequence of independent random signs on some probabil-

ity space (Ω,P). This means that the sequence is independent and P(εi = 1)
= P(εi = −1) = 1/2 for all i. We will use the Kahane–Khinchin inequal-
ity [8] saying that for any Banach space X, any 1 ≤ p, q < ∞ and any
x1, . . . , xM ∈ X we have

(2.2)
(
E
∥∥∥ M∑
i=1

εixi

∥∥∥q
X

)1/q
'p,q

(
E
∥∥∥ M∑
i=1

εixi

∥∥∥p
X

)1/p
,

where E refers to the expectation with respect to the random signs.

The notation 'p,q in (2.2) means that there exists a constant C > 0
depending only on p and q and not on M , X or the elements xi such that
if A and B denote the left and right hand sides of (2.2), respectively, then
C−1B ≤ A ≤ CB. The subscript on ' indicates what the constant C
depends on, and is sometimes omitted. We use this kind of notation only if
the constant C does not depend on any relevant information in the situation,
and no confusion should arise. Similarly A ≤ CB will be written as A . B.

Let f ∈ Lp(σ) for some 1 < p < ∞. Then for any l ∈ Z we have the
martingale difference decomposition

(2.3) f =
∑
Q∈Dl

〈f〉σQ1Q +
∑
Q∈D

l(Q)≤2−l

∆σ
Qf,

where the series converges to f in any order (that is, unconditionally).
Burkholder’s inequality

(2.4) ‖f‖Lp(σ) 'p
∥∥∥( ∑

Q∈Dl

|〈f〉σQ|21Q +
∑
Q∈D

l(Q)≤2−l

|∆σ
Qf |2

)1/2∥∥∥
Lp(σ)

implies that

(2.5) ‖f‖Lp(σ) ' E
∥∥∥ ∑
Q∈Dl

εQ〈f〉σQ1Q +
∑
Q∈D

l(Q)≤2−l

εQ∆
σ
Qf
∥∥∥
Lp(σ)

,
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where {εQ}Q∈D is a collection of independent random signs. Burkholder’s
inequality (2.4) was originally proved in [1] in a little different situation.

From (2.5) and the Kahane–Khinchin inequalities one can deduce the fol-
lowing lemma for Lp(σ; l2)-norms. Below we shall also call (2.6) Burkholder’s
inequality.

Lemma 2.1. Let 1 < p < ∞ and (fk)
∞
k=−∞ ∈ Lp(σ; l2). Then for any

l ∈ Z,

(2.6) ‖(fk)∞k=−∞‖Lp(σ;l2)

'p
∥∥∥( ∞∑

k=−∞

∑
Q∈Dl

|〈fk〉σQ|21Q +
∞∑

k=−∞

∑
Q∈D

l(Q)≤2−l

|∆σ
Qfk|2

)1/2∥∥∥
Lp(σ)

.

Proof. By monotone convergence we may assume that only finitely many
functions fk are non-zero. Furthermore, by martingale convergence, we can
suppose that for every k there are only finitely many terms in the martin-
gale decomposition of fk. Thus the sums in the following computation are
actually finite.

Let {εk}k∈Z and {ε′Q}Q∈D be sequences of independent random signs on

some distinct probability spaces, and E and E′ the corresponding expecta-
tions. Then using the Kahane–Khinchin inequalities and (2.5) we compute

(2.7) ‖(fk)∞k=−∞‖
p
Lp(σ;l2)

=
∥∥∥(E∣∣∣ ∞∑

k=−∞
εkfk

∣∣∣2)1/2∥∥∥p
Lp(σ)

' E
�

RN

∣∣∣ ∞∑
k=−∞

εkfk

∣∣∣p dσ
' EE′

�

RN

∣∣∣ ∞∑
k=−∞

∑
Q∈Dl

εkε
′
Q〈fk〉σQ1Q +

∞∑
k=−∞

∑
Q∈D

l(Q)≤2−l

εkε
′
Q∆

σ
Qfk

∣∣∣p dσ.
If {ck,Q}k∈Z, Q∈D is any doubly indexed finitely non-zero set of real num-

bers, then

(2.8) EE′
∣∣∣ ∞∑
k=−∞

∑
Q∈D

εkε
′
Qck,Q

∣∣∣p = EE′
∣∣∣ ∑
Q∈D

ε′Q

∞∑
k=−∞

εkck,Q

∣∣∣p
' E

(
E′
∣∣∣ ∑
Q∈D

ε′Q

∞∑
k=−∞

εkck,Q

∣∣∣2)p/2 = E
(
E′
∣∣∣ ∞∑
k=−∞

εk
∑
Q∈D

ε′Qck,Q

∣∣∣2)p/2
'
(
EE′

∣∣∣ ∞∑
k=−∞

εk
∑
Q∈D

ε′Qck,Q

∣∣∣2)p/2 =
( ∞∑
k=−∞

∑
Q∈D

|ck,Q|2
)p/2

.

Using (2.8) in (2.7) we get the estimate we wanted.
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Principal cubes and Carleson’s embedding theorem. We will
need the construction of principal cubes. More precisely, suppose f ∈ L1

loc(σ)
and take some cube Q0 ∈ D . Set S0 = {Q0}, and assume that S0, . . . ,Sk

are defined for some non-negative integer k. Then, for S ∈ Sk, let chS (S)
consist of the maximal cubes S′ ∈ D such that S′ ⊂ S and

〈|f |〉σS′ > 2〈|f |〉σS .
Set Sk+1 :=

⋃
S∈Sk

chS (S) and

S :=

∞⋃
k=0

Sk.

Now for every Q ∈ D with Q ⊂ Q0, there exists a unique smallest S ∈ S ,
denoted by πSQ, that contains Q, and it follows from the construction that
〈|f |〉σQ ≤ 2〈|f |〉σS .

Let γ ∈ (0, 1). We say that a collection D0 ⊂ D is γ-sparse if there exist
pairwise disjoint measurable sets E(Q) ⊂ Q, Q ∈ D0, such that σ(E(Q)) ≥
γσ(Q) for all Q ∈ D0. The collection S of stopping cubes constructed above
is 1/2-sparse, which is seen by defining E(S) := S\

⋃
S′∈chS (S) S

′ for S ∈ S .
Related to these sparse families we shall use the following form of Carleson’s
embedding theorem:

Lemma 2.2. Suppose 1 < p < ∞, γ ∈ (0, 1) and (fk)
∞
k=1 ⊂ Lp(σ; l2).

For each k let Sk be any γ-sparse collection. Then

(2.9)
∥∥∥( ∞∑

k=1

∑
S∈Sk

(〈fk〉σS)21S

)1/2∥∥∥
Lp(σ)

.γ,p

∥∥∥( ∞∑
k=1

f2k

)1/2∥∥∥
Lp(σ)

.

Proof. Let Md
σ be the dyadic maximal function defined for any Borel

measurable f by

Md
σ(f) = sup

Q∈D
1Q〈|f |〉σQ.

For any k and S ∈ Sk denote again by Ek(S) the measurable subset of S
such that σ(Ek(S)) ≥ γσ(S) and Ek(S

′)∩Ek(S) = ∅ for any other S′ ∈ Sk.

To prove (2.9), assume without loss of generality that every fk is non-
negative. We want to argue by duality, and for that purpose let {gk,S :

k = 1, 2, . . . , S ∈ Sk} be any finitely non-zero collection of Lp
′
(σ) functions

(p′ denotes the Hölder conjugate exponent to p). Then
∞∑
k=1

∑
S∈Sk

�
〈fk〉σS1Sgk,S dσ ≤ γ−1

∞∑
k=1

∑
S∈Sk

〈fk〉σS〈gk,S〉σSσ(Ek(S))

≤ γ−1
∞∑
k=1

∑
S∈Sk

�
Md
σ(fk)M

d
σ(gk,S)1Ek(S) dσ
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≤ γ−1
∥∥∥( ∞∑

k=1

∑
S∈Sk

(Md
σ(fk))

21Ek(S)

)1/2∥∥∥
Lp(σ)

×
∥∥∥( ∞∑

k=1

∑
S∈Sk

(Md
σ(gk,S))21Ek(S)

)1/2∥∥∥
Lp′ (σ)

.

Since for a fixed k the sets Ek(S), S ∈ Sk, are pairwise disjoint, the first
factor on the right hand side satisfies∥∥∥( ∞∑

k=1

∑
S∈Sk

(Md
σ(fk))

21Ek(S)

)1/2∥∥∥
Lp(σ)

≤
∥∥∥( ∞∑

k=1

(Md
σ(fk))

2
)1/2∥∥∥

Lp(σ)
.p

∥∥∥( ∞∑
k=1

f2k

)1/2∥∥∥
Lp(σ)

,

where in the last step we have used the dyadic Fefferman–Stein inequality [3].
In the second factor we may just omit the indicators 1Ek(S) and apply the
Fefferman–Stein inequality again. These estimates prove (2.9).

Stein’s inequality. Let (fk)
∞
k=−∞ ∈ Lp(σ; l2), 1 < p < ∞. Stein’s

inequality, which originally appeared in [16], says that

(2.10) ‖(Eσk fk)∞k=−∞‖Lp(σ;l2) .p ‖(fk)∞k=−∞‖Lp(σ;l2).

This can equivalently be formulated by saying that for any set {fQ}Q∈D ,
where each fQ is a locally σ-integrable function, we have

(2.11)
∥∥∥( ∑

Q∈D

(〈fQ〉σQ)21Q

)1/2∥∥∥
Lp(σ)

.p

∥∥∥( ∑
Q∈D

f2Q1Q

)1/2∥∥∥
Lp(σ)

.

Note that (2.10) also follows from the dyadic Fefferman–Stein inequality
that was used in the proof of Carleson’s embedding theorem.

3. The quadratic Ap,q-condition. In this section we introduce the
quadratic Ap,q-condition and investigate its relation to the Muckenhoupt
type Ap,q-condition. Here 1 < p, q < ∞. The quadratic Ap,q-condition will
be used in the characterization of two-weight inequalities for the dyadic
square function and dyadic shifts.

The measures σ and w are said to satisfy the simple or Muckenhoupt
type Ap,q-condition if

(3.1) (σ,w)p,q := sup
Q∈D

σ(Q)1/p
′
w(Q)1/q

|Q|
<∞.

If p = q, we just write Ap.
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The measures σ and w are said to satisfy the quadratic Ap,q-condition if
for every collection {aQ}Q∈D of real numbers we have

(3.2)

∥∥∥∥( ∑
Q∈D

(
aQ
σ(Q)

|Q|

)2

1Q

)1/2∥∥∥∥
Lq(w)

≤ [σ,w]p,q

∥∥∥( ∑
Q∈D

a2Q1Q

)1/2∥∥∥
Lp(σ)

,

where [σ,w]p,q ∈ [0,∞) is the best possible constant. We also write [σ,w]p,q
< ∞ to mean that the condition holds, and [σ,w]p,q = ∞ to mean that it
does not hold. It is clear that (σ,w)p,q ≤ [σ,w]p,q, which follows by taking
only one term in the sums in (3.2).

Lemma 3.1. Let 1 < p, q <∞. The quadratic Ap,q-condition is symmet-
ric in the sense that [σ,w]p,q ' [w, σ]q′,p′.

Proof. Choose any (finitely non-zero) collection {aQ}Q∈D of real num-
bers, and let {fQ}Q∈D be a collection of Lp(σ) functions. Then

� ∑
Q∈D

aQ
w(Q)

|Q|
1QfQ dσ =

� ∑
Q∈D

aQ

	
Q fQ dσ

|Q|
1Q dw

≤
∥∥∥( ∑

Q∈D

a2Q1Q

)1/2∥∥∥
Lq′ (w)

∥∥∥∥( ∑
Q∈D

(
〈|fQ|〉σQ

σ(Q)

|Q|

)2

1Q

)1/2∥∥∥
Lq(w)

≤ [σ,w]p,q

∥∥∥( ∑
Q∈D

a2Q1Q

)1/2∥∥∥
Lq′ (w)

∥∥∥( ∑
Q∈D

(〈|fQ|〉σQ)21Q

)1/2∥∥∥
Lp(σ)

. [σ,w]p,q

∥∥∥( ∑
Q∈D

a2Q1Q

)1/2∥∥∥
Lq′ (w)

∥∥∥( ∑
Q∈D

|fQ1Q|2
)1/2∥∥∥

Lp(σ)
,

where in the last step we have used Stein’s inequality. By duality this shows
that [w, σ]q′,p′ . [σ,w]p,q.

For 1 < p, q < ∞ a two-weight version of Stein’s inequality (2.11) can
be formulated as

(3.3)

∥∥∥∥( ∑
Q∈D

(	
Q fQ dσ

|Q|

)2

1Q

)1/2∥∥∥∥
Lq(w)

≤ S
∥∥∥( ∑

Q∈D

f2Q1Q

)1/2∥∥∥
Lp(σ)

,

where {fQ}Q∈D is again a collection of locally σ-integrable functions, and
S = S (σ,w, p, q) denotes the smallest possible constant with the under-
standing that it may be infinite.

Lemma 3.2. The best constant S = S (σ,w, p, q) in (3.3) satisfies S '
[σ,w]p,q.

Proof. That [σ,w]p,q ≤ S (σ,w, p, q) follows from (3.3) with the special
functions fQ = aQ1Q, where aQ ∈ R. To see that S (σ,w, p, q) . [σ,w]p,q,
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choose any set {fQ}Q∈D of locally σ-integrable functions. Then

LHS(3.3) =

∥∥∥∥( ∑
Q∈D

(
〈fQ〉σQ

σ(Q)

|Q|

)2

1Q

)1/2∥∥∥∥
Lq(w)

≤ [σ,w]p,q

∥∥∥( ∑
Q∈D

(〈fQ〉σQ)21Q

)1/2∥∥∥
Lp(σ)

. [σ,w]p,q

∥∥∥( ∑
Q∈D

f2Q1Q

)1/2∥∥∥
Lp(σ)

,

where we have used Stein’s inequality (2.11) in the last step. Hence also
[σ,w]p,q . S (σ,w, p, q).

The next lemma shows that the quadratic Ap,q-condition is actually
equivalent to the simple Ap,q-condition if 1 < p ≤ 2 ≤ q < ∞, and a
similar remark will apply to the quadratic testing conditions below.

Lemma 3.3. If 1 < p ≤ 2 ≤ q <∞, then [σ,w]p,q = (σ,w)p,q.

Proof. This follows from the fact that Lp-spaces have certain type and
cotype properties. For our purposes it is not necessary to define these in
general, but it suffices to note that for any sequence (fk)

∞
k=1 ⊂ Lp(σ; l2), 1 <

p ≤ 2,

(3.4)
∥∥∥( ∞∑

k=1

f2k

)1/2∥∥∥
Lp(σ)

≥
( ∞∑
k=1

‖fk‖2Lp(σ)
)1/2

,

and for any sequence (gk)
∞
k=1 ⊂ Lq(σ; l2), 2 ≤ q <∞,

(3.5)
∥∥∥( ∞∑

k=1

g2k

)1/2∥∥∥
Lq(σ)

≤
( ∞∑
k=1

‖gk‖2Lq(σ)
)1/2

.

Of course these inequalities are independent of the measure.

Suppose now that the simple Ap,q-condition holds with 1 < p ≤ 2 ≤
q <∞, and let {aQ}Q∈D ⊂ R. Then

(3.6)

∥∥∥∥( ∑
Q∈D

(
aQ
σ(Q)

|Q|

)2

1Q

)1/2∥∥∥∥
Lq(w)

≤
(∑
Q∈D

∥∥∥∥aQσ(Q)

|Q|
1Q

∥∥∥∥2
Lq(w)

)1/2

≤ (σ,w)p,q

( ∑
Q∈D

‖aQ1Q‖2Lp(σ)
)1/2

≤ (σ,w)p,q

∥∥∥( ∑
Q∈D

a2Q1Q

)1/2∥∥∥
Lp(σ)

,

and thus [σ,w]p,q ≤ (σ,w)p,q.

4. The dyadic square function. In this section we consider the dyadic
square function. Let {bQ}Q∈D be a collection of real numbers. For a locally
Lebesgue integrable function the generalized dyadic square function is de-
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fined by

Sb(f) :=
( ∑
Q∈D

(bQ∆Qf)2
)1/2

,

where ∆Qf is the usual martingale difference related to the cube Q as
in (2.1), but with respect to the Lebesgue measure. The “generalized” here
refers to the coefficients bQ, and the usual dyadic square function corre-
sponds to bQ = 1 for all Q ∈ D .

Now we are interested in the two-weight estimate for this operator.
Namely, we fix exponents 1 < p, q < ∞ and want to characterize when
there exists a constant C ≥ 0 such that the inequality

(4.1)
∥∥∥( ∑

Q∈D

(bQ∆Q(fσ))2
)1/2∥∥∥

Lq(w)
≤ C‖f‖Lp(σ)

holds for all f ∈ Lp(σ). Here ∆Q(fσ) is understood as

∆Q(fσ) :=
∑

Q′∈ch(Q)

	
Q′ f dσ

|Q′|
1Q′ −

	
Q f dσ

|Q|
1Q.

Denote by Sσb the operator defined for locally σ-integrable functions f by

Sσb (f) :=
( ∑
Q∈D

(bQ∆Q(fσ))2
)1/2

,

and for all Q ∈ D define the localized version

Sσb,Q(f) :=
( ∑
Q′∈D
Q′⊂Q

(bQ′∆Q′(fσ))2
)1/2

.

If u and v are weight functions on R, that is, positive Borel functions,
and p = q = 2, a result from [13] says that

(4.2) ‖Sb(fu)‖L2(v) ≤ C‖f‖L2(u)

for all f if and only if there exists a constant C ′ such that

(4.3) ‖Sb(1Iu)‖L2(v) ≤ C ′‖1I‖L2(u)

for all I ∈ D . Also in this case the best constants in (4.2) and (4.3) satisfy
C ′ ' C. Actually a bit more was shown, namely that the two-weight in-
equality holds if and only if a Muckenhoupt type condition for the measures
and a localized testing condition hold.

Here we are going to give a characterization for (4.1) with any 1 <
p, q < ∞. This will be done in terms of a quadratic testing condition and
the quadratic Ap,q-condition introduced in the last section, and for p = q = 2
the theorem reduces to the result from [13].
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We say that the operator Sσb satisfies the global quadratic testing con-
dition (with respect to p and q) if there exists a constant C such that for
every collection {aQ}Q∈D ⊂ R we have

(4.4)
∥∥∥( ∑

Q∈D

Sσb (aQ1Q)2
)1/2∥∥∥

Lq(w)
≤ C

∥∥∥( ∑
Q∈D

a2Q1Q

)1/2∥∥∥
Lp(σ)

.

The operator Sσb is said to satisfy the local quadratic testing condition if it
similarly satisfies

(4.5)
∥∥∥( ∑

Q∈D

Sσb,Q(aQ1Q)2
)1/2∥∥∥

Lq(w)
≤ C

∥∥∥( ∑
Q∈D

a2Q1Q

)1/2∥∥∥
Lp(σ)

.

Of course it is equivalent to assume that these inequalities hold for all finitely
non-zero collections {aQ}Q∈D .

We shall modify the quadratic Ap,q-conditions according to the coef-
ficients bQ. The measures satisfy the A b

p,q-condition if for every collection
{aQ}Q∈D of real numbers we have

(4.6)

∥∥∥∥( ∑
Q∈D

(
aQbQ

σ(Q)

|Q|

)2

1Q

)1/2∥∥∥
Lq(w)

≤ [σ,w]bp,q

∥∥∥( ∑
Q∈D

a2Q1Q

)1/2∥∥∥
Lp(σ)

,

where again [σ,w]bp,q denotes the best possible constant.

Now we can state the two-weight theorem for the dyadic square function:

Theorem 4.1. Let 1 < p, q <∞. The dyadic square function Sσb satisfies
the two-weight inequality (4.1) if and only if it satisfies the global quadratic
testing condition (4.4) and if and only if it satisfies the local quadratic
testing condition (4.5) and the quadratic A b

p,q-condition (4.6) holds.

In this case the best constant ‖Sσb ‖ in (4.1) satisfies ‖Sσb ‖ ' Sglob '
Sloc + [σ,w]bp,q, where Sglob and Sloc are the best possible constants in (4.4)
and (4.5), respectively.

Let us discuss the case p = q = 2, or more generally 1 < p ≤ 2 ≤ q <∞.
Similarly to what was noted above in Lemma 3.3, the A b

p,q-condition is
equivalent to assuming

sup
Q∈D
|bQ|

σ(Q)1/p
′
w(Q)1/q

|Q|
. 1.

The same kind of computation shows that the quadratic testing conditions
are equivalent to the corresponding Sawyer type testing conditions. For ex-
ample considering the global testing (4.4), this means that it is enough to
assume just

‖Sσb (1Q)‖Lq(w) ≤ Cσ(Q)1/p

uniformly for all Q ∈ D .
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With these facts Theorem 4.1 reduces to the result proved in [13] when
p = q = 2.

Proof of Theorem 4.1. We begin by showing that the global, and hence
also the local testing condition is a necessary consequence of the two-weight
inequality (4.1). Then we show that global testing implies the quadratic
A b
p,q-condition. The main part of the proof is to show that local testing and

the A b
p,q-condition are also sufficient for (4.1).

Necessity of the testing conditions. This is very much like a classi-
cal theorem of Marcinkiewicz and Zygmund [12], which says that bounded
linear operators in Lp-spaces have an extension to a vector-valued situation.
Choose a sequence (fk)

l
k=1 ⊂ Lp(σ) and let (εk)

l
k=1 be a sequence of in-

dependent random signs. Then using the Kahane–Khinchin inequalities we
compute

(4.7)
∥∥∥( l∑

k=1

|Sσb (fk)|2
)1/2∥∥∥

Lq(w)
=
∥∥∥( ∑

Q∈D

l∑
k=1

|bQ∆Q(fkσ)|2
)1/2∥∥∥

Lq(w)

=
∥∥∥( ∑

Q∈D

E
∣∣∣ l∑
k=1

εkbQ∆Q(fkσ)
∣∣∣2)1/2∥∥∥

Lq(w)

=
∥∥∥(E∥∥∥{ l∑

k=1

εkbQ∆Q(fkσ)
}
Q∈D

∥∥∥2
l2

)1/2∥∥∥
Lq(w)

'
(
E
∥∥∥∥∥∥{ l∑

k=1

εkbQ∆Q(fkσ)
}
Q∈D

∥∥∥
l2

∥∥∥q
Lq(w)

)1/q
' E

∥∥∥∥∥∥{ l∑
k=1

εkbQ∆Q(fkσ)
}
Q∈D

∥∥∥
l2

∥∥∥
Lq(w)

,

where at the first “'” we have used the Kahane–Khinchin inequality in l2,
and at the second in Lq(w; l2). Linearity of the martingale differences and
the assumed two-weight inequality (4.1) imply

RHS(4.7) = E
∥∥∥Sσb ( l∑

k=1

εkfk

)∥∥∥
Lq(w)

(4.8)

≤ ‖Sσb ‖E
∥∥∥ l∑
k=1

εkfk

∥∥∥
Lp(σ)

' ‖Sσb ‖
∥∥∥( l∑

k=1

f2k

)1/2∥∥∥
Lp(σ)

,

where at “'” we have used the Kahane–Khinchin inequality, first in Lp(σ)
and then in R. From (4.7) and (4.8) it is seen that the two-weight inequality
(4.1) implies the global quadratic testing condition (4.4).
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Global testing implies the A b
p,q-condition. For any Q ∈ D let

{Qk}2
N

k=1 be its dyadic children. If Q ∈ D and k ∈ {1, . . . , 2N}, then

σ(Qk)

|Qk|
. |∆Q(1Qkσ)(x)|

for any x ∈ Q, and thus

|aQbQ|
σ(Qk)

|Qk|
1Q . Sσb,Q(aQ1Qk).

This leads to∥∥∥∥( ∑
Q∈D

(
aQbQ

σ(Qk)

|Qk|

)2

1Q

)1/2∥∥∥∥
Lq(w)

.
∥∥∥( ∑

Q∈D

Sσb,Q(aQ1Qk)2
)1/2∥∥∥

Lq(w)

≤
∥∥∥( ∑

Q∈D

Sσb (aQ1Qk)2
)1/2∥∥∥

Lq(w)
≤ Sglob

∥∥∥( ∑
Q∈D

a2Q1Qk

)1/2∥∥∥
Lp(σ)

≤ Sglob

∥∥∥( ∑
Q∈D

a2Q1Q

)1/2∥∥∥
Lp(σ)

.

Since(∑
Q∈D

(
aQbQ

σ(Q)

|Q|

)2

1Q

)1/2

≤
2N∑
k=1

(∑
Q∈D

(
aQbQ

σ(Qk)

|Qk|

)2

1Q

)1/2
,

we get [σ,w]bp,q . Sglob.

Sufficiency of local testing and the A b
p,q-condition. Now we turn

to the main part of the theorem, which consists in showing that local testing
and the A b

p,q-condition are sufficient for the estimate (4.1). To this end, fix
f ∈ Lp(σ). We can assume here that there are only finitely many non-
zero coefficients bQ in the definition of Sσb , and we prove a bound that
is independent of this finite number. Of course the original local testing
condition implies the same condition for this “truncated” square function.

There are at most 2N increasing sequences Qi1 ( Qi2 ( · · · , i = 1, . . . , j
≤ 2N , of dyadic cubes in D such that

(4.9) RN =

j⋃
i=1

∞⋃
k=1

Qik

and
∞⋃
k=1

Qik ∩
∞⋃
k=1

Qi
′
k = ∅ for i 6= i′.

It follows from the properties of dyadic systems that for every cube Q ∈ D
there exists i ∈ {1, . . . , j} such that Q ⊂

⋃∞
k=1Q

i
k.
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Since there are only finitely many non-zero bQs, we can choose indices

k1, . . . , kj such that if bQ 6= 0, then Q ⊂
⋃j
i=1Q

i
ki

, and we write Q̃i := Qiki .

Thus we can assume that the function f is supported on
⋃j
i=1 Q̃i. Since

Sσb f =
∑j

i=1 S
σ
b (1Q̃if), it is enough to bound each of these separately.

The choice of the cubes Q̃i implies that Sσb (1Q̃i) = Sσ
b,Q̃i

(1Q̃i), and thus

‖〈f〉σ
Q̃i
Sσb (1Q̃i)‖Lq(w) = ‖〈f〉σ

Q̃i
Sσ
b,Q̃i

(1Q̃i)‖Lq(w)
≤ Sloc‖〈f〉σQ̃i1Q̃i‖Lp(σ) ≤ Sloc‖1Q̃if‖Lp(σ).

So finally it is enough to fix some Qiki =: Q0, and assume that the function
f is supported on Q0 and has zero σ-average.

We use a splitting of the function inside the operator, similar to one
in [10]; a corresponding step also appeared in [13]. Consider some Q ∈ D .
Since the martingale differences ∆σ

Qf have σ-integral zero, the term ∆Q(fσ)
in the square function can be written as

∆Q(fσ) = ∆Q

((
∆σ
Qf +

∑
R:R)Q

∆σ
Rf
)
σ
)

= ∆Q((∆σ
Qf)σ) + 〈f〉σQ∆Q(1Qσ).

Here we have used the fact that f has zero average to get
∑

R:R)Q∆
σ
Rf1Q =

〈f〉σQ1Q. Accordingly we split the estimate for the square function into two
parts as

‖Sσb (f)‖Lq(w) ≤
∥∥∥( ∑

Q∈D

(
bQ∆Q((∆σ

Qf)σ)
)2)1/2∥∥∥

Lq(w)
(4.10)

+
∥∥∥( ∑

Q∈D

(
bQ〈f〉σQ∆Q(1Qσ)

)2)1/2∥∥∥
Lq(w)

.

For the first term on the right hand side of (4.10) we estimate

|∆Q((∆σ
Qf)σ)| .

	
|∆σ

Qf | dσ
|Q|

1Q = 〈|∆σ
Qf |〉σQ

σ(Q)

|Q|
1Q.

This together with the A b
p,q-condition gives∥∥∥( ∑

Q∈D

(
bQ∆Q((∆σ

Qf)σ)
)2)1/2∥∥∥

Lq(w)

.

∥∥∥∥( ∑
Q∈D

(
bQ

	
|∆σ

Qf | dσ
|Q|

)2

1Q

)1/2∥∥∥∥
Lq(w)

≤ [σ,w]bp,q

∥∥∥( ∑
Q∈D

(〈|∆σ
Qf |〉σQ)21Q

)1/2∥∥∥
Lp(σ)

. [σ,w]bp,q

∥∥∥( ∑
Q∈D

(∆σ
Qf)21Q

)1/2∥∥∥
Lp(σ)

' [σ,w]bp,q‖f‖Lp(σ),
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where the second to last step follows from Stein’s inequality (2.11), and the
last step follows from Burkholder’s inequality (2.4).

The last thing to do is to bound the second term in (4.10). Let F be the
collection of principal cubes for the function f , constructed by beginning
from the cube Q0.

Note that ∆Q(1Qσ) = ∆Q(1Rσ) for every cube D 3 R ⊃ Q. Using the
principal cubes we estimate∥∥∥( ∑

Q∈D

(
bQ〈f〉σQ∆Q(1Qσ)

)2)1/2∥∥∥
Lq(w)

.
∥∥∥( ∑

F∈F

(〈|f |〉σF )2
∑
Q∈D

πFQ=F

(bQ∆Q(1Fσ))2
)1/2∥∥∥

Lq(w)

≤
∥∥∥( ∑

F∈F

(〈|f |〉σF )2Sσb,F (1F )2
)1/2∥∥∥

Lq(w)

≤ Sloc

∥∥∥( ∑
F∈F

(〈|f |〉σF )21F

)1/2∥∥∥
Lp(σ)

. Sloc‖f‖Lp(σ),

where the last step follows from Carleson’s embedding theorem (2.9).

Note that we have actually applied the quadratic testing condition only
with a collection that is sparse with respect to the measure σ. This concludes
the proof of Theorem 4.1.

5. Dyadic shifts. Now we begin to consider dyadic shifts. First we give
some basic definitions, and then we move on to characterize the two-weight
inequality.

For any interval I ⊂ R write h0I := |I|−1/21I and h1I := |I|−1/2(1Il − 1Ir),
where |I| is the length of I, and Il and Ir are the left and right halves of I.
The function h0I is called the non-cancellative Haar function and h1I the
cancellative Haar function related to the interval I.

For a cube Q = I1 × · · · × IN ∈ D , where each Ii is an interval in R,
define for η ∈ {0, 1}N the Haar function related to the cube by

hηQ(x1, . . . , xN ) :=
N∏
i=1

hηiIi (xi).

If some ηi is non-zero, then hηQ is called cancellative since
	
hηQ dx = 0;

otherwise it is called non-cancellative. In any case
	
|hηQ|2 dx = 1.

Fix two non-negative integers m and n. For every cube K ∈ D suppose
we have a linear operator AσK defined on locally σ-integrable functions by
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(5.1) AσKf :=
∑
I,J∈D

I(m)=J(n)=K

aIJK〈f, hJI 〉σhIJ ,

where hJI is a Haar function related to the cube (not interval) I ∈ D and
hIJ is a Haar function related to the cube J ∈ D . The coefficients aIJK ∈ R
satisfy |aIJK | ≤

√
|I| |J |/|K|. Here the Haar functions are just some Haar

functions, not any specific ones, and hence we do not specify them with the
superscript η. Similarly define the corresponding dual operator

AwKg :=
∑
I,J∈D

I(m)=J(n)=K

aIJK〈g, hIJ〉whJI

for locally w-integrable functions, where it should be noted that the func-
tions hJI and hIJ are in “opposite” places.

As a direct consequence of the size assumption on the coefficients we get,
for any f ∈ L1

loc(σ),

(5.2) |AσKf | ≤
1

|K|

�

K

|f | dσ1K ,

and a similar estimate holds for AwK .

We assume that there are only finitely many K ∈ D such that the
coefficients aIJK are non-zero. We make this assumption to have the dyadic
shift well defined in the general two-weight setting, but all the bounds below
will be independent of this number.

With the operators AσK , the dyadic shift T σ is defined by

(5.3) T σf :=
∑
K∈D

AσKf, f ∈ L1
loc(σ),

and the shift Tw is defined analogously with the operators AwK . They are
formal adjoints of each other in the sense that

〈T σf, g〉w = 〈f, Twg〉σ

for all f ∈ L1
loc(σ) and g ∈ L1

loc(w). The shift T σ is said to have parameters
(m,n), and correspondingly the shift Tw has parameters (n,m). The number
max{m,n} is the complexity of the shift.

Instead of a single dyadic shift we are going to consider a family T of
dyadic shifts with at most a given complexity. Let us first recall the definition
of R-bounded operator families as used for example in [18]. Suppose (εk)

∞
k=1

is a sequence of independent random signs. If X and Y are two Banach
spaces and T is a family of linear operators from X into Y , then T is said
to be R-bounded if there exists a constant C such that for all U ∈ {1, 2, . . . },
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(Tu)Uu=1 ⊂ T and (xu)Uu=1 ⊂ X,

(5.4) E
∥∥∥ U∑
u=1

εuTuxu

∥∥∥
Y
≤ CE

∥∥∥ U∑
u=1

εuxu

∥∥∥
X
.

We denote the smallest possible constant C in (5.4) by R(T ).
If X = Lp(σ) and Y = Lq(w) for some 1 ≤ p, q <∞, then similar com-

putations with the Kahane–Khinchin inequality as above with the dyadic
square function shows that in this case R-boundedness can be equivalently
defined as

(5.5)
∥∥∥( U∑

u=1

(Tufu)2
)1/2∥∥∥

Lq(w)
. R(T )

∥∥∥( U∑
u=1

f2u

)1/2∥∥∥
Lp(σ)

,

where R(T ) is the constant as in (5.4). If p = q = 2, it is easily seen from
(5.5) that in this case R-boundedness is equivalent to uniform bounded-
ness. On the other hand, from (5.4) one sees that if T consists of a single
operator T , then R-boundedness means just the boundedness of T .

Let T = {T σα : α ∈ A } be a collection of dyadic shifts. If T σα ∈ T ,
then we write Twα for the corresponding formal adjoint. We say that the
collection T of dyadic shifts satisfies the (local) quadratic testing condition
(with respect to exponents 1 < p, q <∞) if for every U ∈ {1, 2, . . . } and all
sequences (au)Uu=1 ⊂ R, (T σu )Uu=1 ⊂ T and (Qu)Uu=1 ⊂ D we have∥∥∥( U∑

u=1

(au1QuT
σ
u 1Qu)2

)1/2∥∥∥
Lq(w)

≤ T σ
∥∥∥( U∑

u=1

a2u1Qu

)1/2∥∥∥
Lp(σ)

,(5.6)

∥∥∥( U∑
u=1

(au1QuT
w
u 1Qu)2

)1/2∥∥∥
Lp′ (σ)

≤ T w
∥∥∥( U∑

u=1

a2u1Qu

)1/2∥∥∥
Lq′ (w)

,(5.7)

where T σ, T w < ∞ are the best possible constants. Note that it is not
forbidden that Tu = Tu′ for some u 6= u′. In particular, if T consists only
of a single shift, then we get the corresponding quadratic testing condition
for the dyadic square function as above.

The two-weight theorem for dyadic shifts is as follows:

Theorem 5.1. Let 1 < p, q < ∞ and assume that the measures σ and
w satisfy the quadratic Ap,q-condition. Suppose T is a collection of dyadic
shifts as in (5.3) with complexities at most κ. Then the collection T is
R-bounded from Lp(σ) into Lq(w) if and only if it satisfies the quadratic
testing conditions (5.6) and (5.7), and in this case

(5.8) R(T ) . (1 + κ)(T σ + T w) + (1 + κ)2[σ,w]p,q.

Again before proving the theorem we comment quickly on the case 1 <
p ≤ 2 ≤ q < ∞. Similar computations to (3.6) show that in this case



Two-weight Lp-inequalities 43

R-boundedness is equivalent to uniform boundedness, the quadratic testing
condition reduces to Sawyer type testing, and the quadratic Ap,q-condition
becomes the simple Ap,q-condition. Thus we find that a dyadic shift T σ is
bounded from Lp(σ) into Lq(w) if and only if the Sawyer type conditions

‖1QT σ1Q‖Lq(w) ≤ T σσ(Q)1/p

and

‖1QTw1Q‖Lp′ (σ) ≤ T
ww(Q)1/q

′

hold for all Q ∈ D , and the measures satisfy the Muckenhoupt type Ap,q-
condition

(σ,w)p,q := sup
Q∈D

σ(Q)1/p
′
w(Q)1/q

|Q|
<∞.

In this case

‖T σ‖Lp(σ)→Lq(w) . (1 + κ)(T σ + T w) + (1 + κ)2(σ,w)p,q,

which is the result proved in [7] when p = q = 2.

Proof of Theorem 5.1. Suppose T is R-bounded, whence clearly the
quadratic testing condition (5.6) is satisfied. Using duality one sees that the
collection of formal adjoints of the shifts in T is R-bounded from Lq

′
(w)

into Lp
′
(σ), and thus also (5.7) is satisfied. Hence it is enough to show the

sufficiency of the testing conditions.

So we assume that we have a collection T of dyadic shifts with com-
plexity at most κ satisfying the quadratic testing conditions (5.6) and (5.7).
For any U = 1, 2, . . . suppose we have some sequences (T σu )Uu=1 ⊂ T and
(fu)Uu=1 ⊂ Lp(σ). To prove (5.8) it is enough to take an arbitrary sequence

(gu)Uu=1 ⊂ Lq
′
(w) and show that

∣∣∣ U∑
u=1

〈T σu fu, gu〉w
∣∣∣

.
(
(1 + κ)(T σ + T w) + (1 + κ)2(σ,w)p,q

)
‖(fu)Uu=1‖Lp(σ;l2)‖(gu)Uu=1‖Lq′ (w;l2).

For every u we write the corresponding shift as

T σu fu =
∑
K∈D

Aσu,Kfu =
∑
K∈D

∑
I,J∈D

I(m)=J(n)=K

auIJK〈fu, hJI,u〉σhIJ,u.

Let again
⋃∞
k=1Q

i
k, i = 1, . . . , j ≤ 2N , be the different “quadrants” of

our dyadic system, as explained around (4.9). Because we have assumed that
every shift consists of only finitely many operators AσK , we can choose for

every i a cube Qiki := Q̃i such that auIJK 6= 0 implies K ⊂
⋃j
i=1 Q̃i. Since the
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definition of the shift shows that T σu (fu1Q̃i) is supported on 1Q̃i , we have

U∑
u=1

〈T σu fu, gu〉w =

j∑
i=1

U∑
u=1

〈T σu 1Q̃ifu, 1Q̃igu〉w,

and it is enough to estimate for each i separately.

Finally, we split

(5.9) 〈T σu 1Q̃ifu, 1Q̃igu〉w = 〈T σu (1Q̃i(fu − 〈fu〉
σ
Q̃i

)), 1Q̃i(gu − 〈gu〉
w
Q̃i

)〉w
+
〈
1Q̃i(fu − 〈fu〉

σ
Q̃i

), 〈gu〉wQ̃iT
w
u 1Q̃i

〉
σ

+
〈
〈fu〉σQ̃iT

σ1Q̃i , 1Q̃igu
〉
w
,

and the sum over u of the last two terms can be bounded directly by using
the testing conditions. For example∣∣∣ U∑

u=1

〈fu〉σQ̃i〈T
σ
u 1Q̃i , 1Q̃igu〉w

∣∣∣
≤
∥∥∥( U∑

u=1

(〈fu〉σQ̃i1Q̃iT
σ
u 1Q̃i)

2
)1/2∥∥∥

Lq(w)

∥∥∥( U∑
u=1

|1Q̃igu|
2
)1/2∥∥∥

Lq′ (w)

≤ T σ
( U∑
u=1

(〈fu〉σQ̃i)
2
)1/2

σ(Q̃i)
1/p‖(1Q̃igu)Uu=1‖Lq′ (w;l2),

and using the fact that an l2-sum of averages is less than the average of the
l2-sum we get( U∑

u=1

(〈fu〉σQ̃i)
2
)1/2

σ(Q̃i)
1/p

≤
〈( U∑

u=1

f2u

)1/2〉σ
Q̃i
σ(Q̃i)

1/p ≤ ‖(1Q̃ifu)Uu=1‖Lp(σ;l2).

After these reductions it is enough to fix one cube Qiki =: Q0 and suppose
that for every u the functions fu and gu are supported on Q0 and have zero
averages. Since the shifts T σu are a priori bounded, by Lp-convergence of
martingale differences we can assume that

fu =
∑
Q∈D
Q⊂Q0

∆σ
Qfu, gu =

∑
Q∈D
Q⊂Q0

∆w
Qgu,

where the sums are finite.

Using the martingale decomposition

(5.10)
U∑
u=1

〈T σu fu, gu〉w =
U∑
u=1

∑
Q,R∈D

〈T σu∆σ
Qfu, ∆

w
Rgu〉w,
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we split the proof into parts depending on the relative positions of the
cubes Q and R; this part of the proof follows the outlines in [4]. The cases
“l(Q) ≤ l(R)” and “l(Q) > l(R)” are treated symmetrically, and here we
concentrate on the first. Using the maximal possible complexity κ of the
shifts, we further split into three cases “Q ∩ R = ∅”, “Q(κ) ( R” and
“Q ⊂ R ⊂ Q(κ)”, and these are treated separately using different properties
of the shifts.

In the summations we understand that we are summing over dyadic
cubes, and we will not always write “Q ∈ D” in the summation condition.
Moreover, since we have assumed the finite martingale decompositions of f
and g, we can think that every Q ∈ D that appears below actually belongs
to some sufficiently big finite collection D0 ⊂ D . This way all the sums
are actually finite, and one does not have to worry about any convergence
issues.

At this point it is convenient to introduce the notation

∆σ,i
Q f :=

∑
Q′∈D
Q′(i)=Q

∆σ
Q′f

for any f ∈ L1
loc(σ), Q ∈ D and i ∈ {0, 1, 2, . . . }, and similarly for the

measure w.

Disjoint cubes: Q ∩R = ∅ and l(Q) ≤ l(R). Here we bound the part

(5.11)
∣∣∣ U∑
u=1

∑
l(Q)≤l(R)
Q∩R=∅

〈T σu∆σ
Qfu, ∆

w
Rgu〉w

∣∣∣.
Consider a fixed u first, and suppose the shift T σu has parameters (m,n) with
m + n ≤ κ. Fix two cubes Q,R ∈ D with Q ∩ R = ∅ and suppose K ∈ D
is such that 〈Aσu,K∆σ

Qfu, ∆
w
Rgu〉w 6= 0. We must have Q ∩K 6= ∅ 6= R ∩K,

which combined with Q ∩ R = ∅ implies that Q,R ⊂ K. Also, since the
functions ∆σ

Qf and ∆w
Rg have zero σ- and w-averages, respectively, and a

Haar function hI is constant on the children of I, we have K ⊂ Q(m) and
K ⊂ R(n). Thus the sum (5.11) is actually zero if m = 0 or n = 0. Hence
we assume m,n ≥ 1, rearrange the sum in question and estimate with (5.2)
as

(5.12)
∑

l(Q)≤l(R)
Q∩R=∅

|〈T σu∆σ
Qfu, ∆

w
Rgu〉w|

≤
m∑
i=1

n∑
j=1

∑
K∈D

∑
Q,R∈D

Q(i)=R(j)=K

|〈Aσu,K∆σ
Qfu, ∆

w
Rgu〉w|
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≤
κ∑

i,j=1

∑
K∈D

∑
Q,R∈D

Q(i)=R(j)=K

‖∆σ
Qfu‖L1(σ)‖∆w

Rgu‖L1(w)

|K|

=

κ∑
i,j=1

∑
K∈D

‖∆σ,i
K fu‖L1(σ)‖∆

w,j
K gu‖L1(w)

|K|
.

Note that this estimate does not depend on the parameters (m,n) of the
shift.

Then for any fixed i and j, we sum over u, and continue with

(5.13)
U∑
u=1

∑
K∈D

‖∆σ,i
K fu‖L1(σ)‖∆

w,j
K gu‖L1(w)

|K|

=
� U∑
u=1

∑
K∈D

‖∆σ,i
K fu‖L1(σ)

|K|
|∆w,j

K gu| dw

≤
∥∥∥( U∑

u=1

∑
K∈D

(‖∆σ,i
K fu‖L1(σ)

|K|

)2
1K

)1/2∥∥∥
Lq(w)

·
∥∥∥( U∑

u=1

∑
K∈D

(∆w,j
K gu)21K

)1/2∥∥∥
Lq′ (w)

=: A ·B.

Using the quadratic Ap,q-condition we get

(5.14) A =

∥∥∥∥( U∑
u=1

∑
K∈D

(
〈|∆σ,i

K fu|〉σK
σ(K)

|K|

)2

1K

)1/2∥∥∥∥
Lq(w)

≤ [σ,w]p,q

∥∥∥( U∑
u=1

∑
K∈D

(〈|∆σ,i
K fu|〉σK)21K

)1/2∥∥∥
Lp(σ)

≤ [σ,w]p,q

∥∥∥( ∑
K∈D

(〈( U∑
u=1

(∆σ,i
K fu)2

)1/2〉σ
K

)2
1K

)1/2∥∥∥
Lp(σ)

.

Applying Stein’s inequality (2.11) and then Burkholder’s inequality (2.6) to
the last term in (5.14) we obtain

RHS(5.14) . [σ,w]p,q

∥∥∥( ∑
K∈D

U∑
u=1

(∆σ,i
K fu)21K

)1/2∥∥∥
Lp(σ)

. [σ,w]p,q‖(fu)Uu=1‖Lp(σ;l2).

The factor B in (5.13) is estimated directly using Burkholder’s inequality,
and then it only remains to sum over the finite ranges of i and j, which
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produces a factor κ2 in the final estimate. Hence we have shown that

(5.11) . κ2 · [σ,w]p,q‖(fu)Uu=1‖Lp(σ;l2)‖(gu)Uu=1‖Lq′ (w;l2).

Deeply contained cubes: Q(κ) ( R. We again consider a fixed T σu
with parameters (m,n) first. Assume Q,R ∈ D are such that Q(κ) ( R.
If Aσu,K∆

σ
Qfu is non-zero, we must have K ⊂ Q(m) ⊂ Q(κ) ( R. Since

Aσu,K∆
σ
Qfu is supported on K and ∆w

Rg is constant on the children of R, we
see that

〈Aσu,K∆σ
Qfu, ∆

w
Rgu〉w =

〈
Aσu,K∆

σ
Qfu, 〈∆w

Rgu〉wQ(κ)1Q(κ)

〉
w
,

and thus

〈T σu∆σ
Qfu, ∆

w
Rgu〉w =

〈
T σu∆

σ
Qfu, 〈∆w

Rgu〉wQ(κ)1Q(κ)

〉
w
.

Taking “Q(κ)” as a new summation variable we can rewrite the sum to
be estimated as

(5.15)
∑

Q,R∈D
Q(κ)(R

〈T σu∆σ
Qfu, ∆

w
Rgu〉w

=
∑
Q∈D

∑
R∈D
R)Q

∑
Q′∈D
Q′(κ)=Q

〈
T σu∆

σ
Q′fu, 〈∆w

Rgu〉wQ1Q
〉
w

=
∑
Q∈D

〈
∆σ,κ
Q fu, 〈gu〉wQ∆

σ,κ
Q Twu 1Q

〉
σ
,

where we collapsed the sum
∑

R∈D , R)Q〈∆w
Rgu〉wQ1Q = 〈gu〉wQ1Q, and used

the fact that the martingale difference operator ∆σ,κ
Q can be put also on

the other side of the pairing 〈·, ·〉σ. Now we have again an equation that is
independent of the parameters (m,n), so it holds for all the shifts T σu .

Then we sum over u and estimate

(5.16)
∣∣∣ U∑
u=1

∑
Q∈D

〈
∆σ,κ
Q fu, 〈gu〉wQ∆

σ,κ
Q Twu 1Q

〉
σ

∣∣∣
=
∣∣∣ � U∑
u=1

∑
Q∈D

∆σ,κ
Q fu〈gu〉wQ∆

σ,κ
Q Twu 1Q dσ

∣∣∣
≤
∥∥∥( U∑

u=1

∑
Q∈D

(∆σ,κ
Q fu)2

)1/2∥∥∥
Lp(σ)

·
∥∥∥( U∑

u=1

∑
Q∈D

(〈gu〉wQ∆
σ,κ
Q Twu 1Q)2

)1/2∥∥∥
Lp′ (σ)

,

where Burkholder’s inequality (2.6) implies that the first factor on the right
hand side is dominated by ‖(fu)Uu=1‖Lp(σ;l2).
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In the second factor we note that if ϕ is any locally w-integrable function,
then ∆σ,κ

Q Awu,K(1{Qϕ) = 0 for any Q,K ∈ D , which follows from the fact
that the shift has complexity at most κ. This shows that

(5.17) ∆σ,κ
Q Twu 1Q = ∆σ,κ

Q Twu 1P

for any D 3 P ⊃ Q.
Beginning from the cube Q0, construct the sets Gu of principal cubes for

the functions gu with respect to the measure w. Since the functions gu have
finite martingale difference decompositions, and are accordingly constant on
sufficiently small cubes Q ∈ D , the collections Gu are finite.

Using the remark (5.17) we proceed with∥∥∥( U∑
u=1

∑
Q∈D

(〈gu〉wQ∆
σ,κ
Q Twu 1Q)2

)1/2∥∥∥
Lp′ (σ)

.
∥∥∥( U∑

u=1

∑
G∈Gu

(〈|gu|〉wG)2
∑
Q∈D

πGuQ=G

(∆σ,κ
Q Twu 1G)2

)1/2∥∥∥
Lp′ (σ)

.
∥∥∥( U∑

u=1

∑
G∈Gu

(〈|gu|〉wG1GT
w
u 1G)2

)1/2∥∥∥
Lp′ (σ)

≤ T w
∥∥∥( U∑

u=1

∑
G∈Gu

(〈|gu|〉wG1G)2
)1/2∥∥∥

Lq′ (w)
. T w‖(gu)Uu=1‖Lq′ (w;l2),

where we have used Burkholder’s inequality (2.6) in the second step and
Carleson’s embedding theorem (2.9) in the last step. This concludes the
proof for the part “Q(κ) ( R”.

Contained cubes of comparable size: Q ⊂ R ⊂ Q(κ). For a fixed u,
the sum to be estimated in this last subsection can be written as

(5.18)
κ∑
i=0

∑
R∈D

∑
Q∈D
Q(i)=R

〈T σu∆σ
Qfu, ∆

w
Rgu〉w

=
κ∑
i=0

2N∑
k=1

∑
R∈D

〈
∆σ,i
R fu, 〈∆w

Rgu〉wRkT
w
u 1Rk

〉
σ

=

κ∑
i=0

2N∑
k=1

∑
R∈D

〈
1Rk∆

σ,i
R fu, 〈∆w

Rgu〉wRkT
w
u 1Rk

〉
σ

+
κ∑
i=0

2N∑
k=1

∑
R∈D

〈
1{Rk∆

σ,i
R fu, 〈∆w

Rgu〉wRkT
w
u 1Rk

〉
σ
,

where the cubes Rk are the dyadic children of R.
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Consider the first sum on the right side of (5.18). We fix some i and k,
sum over u and use testing to deduce that∣∣∣ U∑

u=1

∑
R∈D

〈
1Rk∆

σ,i
R fu, 〈∆w

Rgu〉wRkT
w
u 1Rk

〉
σ

∣∣
≤
∥∥∥( U∑

u=1

∑
R∈D

(1Rk∆
σ,i
R fu)2

)1/2∥∥∥
Lp(σ)

·
∥∥∥( U∑

u=1

∑
R∈D

(〈∆w
Rgu〉wRk1RkT

w
u 1Rk)2

)1/2∥∥∥
Lp′ (σ)

. T w‖(fu)Uu=1‖Lp(σ;l2)
∥∥∥( U∑

u=1

∑
R∈D

|〈∆w
Rg〉wRk1Rk |

2
)1/2∥∥∥

Lq′ (w)

. T w‖(fu)Uu=1‖Lp(σ;l2)‖(gu)Uu=1‖Lq′ (w;l2).

Now turn to the other sum in (5.18) to be estimated. With the same no-
tation as there, we have 1{RkA

w
u,K1Rk 6= 0 only if K ⊃ R. Hence, using (5.2),

we get∣∣〈1{Rk∆σ,i
R fu, 〈∆w

Rgu〉wRkT
w
u 1Rk

〉
σ

∣∣
≤
∑
K∈D
K⊃R

‖1{Rk∆
σ,i
R fu‖L1(σ)‖1Rk∆w

Rgu‖L1(w)

|K|

'
‖1{Rk∆

σ,i
R fu‖L1(σ)‖1Rk∆w

Rgu‖L1(w)

|R|
.

Summing this over k, and then over R ∈ D and u ∈ {1, . . . , U}, leads,
as in (5.13) and (5.14), to

(5.19)

U∑
u=1

∑
R∈D

2N∑
k=1

‖1{Rk∆
σ,i
R fu‖L1(σ)‖1Rk∆w

Rgu‖L1(w)

|R|

≤
∥∥∥∥( U∑

u=1

∑
R∈D

(‖∆σ,i
R fu‖L1(σ)

|R|

)2

1R

)1/2∥∥∥∥
Lq(w)

·
∥∥∥( U∑

u=1

∑
R∈D

(∆w
Rgu)2

)1/2∥∥∥
Lq′ (w)

. [σ,w]p,q‖(fu)Uu=1‖Lp(σ;l2)‖(gu)Uu=1‖Lq′ (w;l2).

Summing over i ∈ {0, . . . , κ} produces the factor 1 +κ in the final estimate.
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This finishes the proof of the case “Q ⊂ R ⊂ Q(κ)”, and hence also of
Theorem 5.1.

Lemma 5.2. Let 1 < p, q < ∞ and suppose T is a family of dyadic
shifts containing all shifts with parameters (m,n). If T is R-bounded from
Lp(σ) into Lq(w), then

[σ,w]p,q ≤ 2N min(m,n)R(T ).

Proof. Suppose for example that m ≤ n. The case m > n is similar. For
every I ∈ D define the shift

T σI :=
∑
J∈D

J(n−m)=I

√
|I| |J |
|I(m)|

〈·, hI〉σhJ ,

where the functions hI and hJ are some fixed Haar functions related to the
cubes I and J . Define also fI := hI

√
|I|.

With these definitions we have |T σI fI | =
σ(I)

2Nm|I|1I , and clearly |fI | = 1I .

Thus, if {aI}I∈D is any finitely non-zero set of real numbers, then

2−Nm
∥∥∥(∑

I∈D

(
aI
σ(I)

|I|
1I

)2)1/2∥∥∥
Lq(w)

=
∥∥∥(∑

I∈D

(aIT
σ
I fI)

2
)1/2∥∥∥

Lq(w)

≤ R(T )
∥∥∥(∑

I∈D

(aIfI1I)
2
)1/2∥∥∥

Lp(σ)
= R(T )

∥∥∥(∑
I∈D

a2I1I

)1/2∥∥∥
Lp(σ)

,

which shows that [σ,w]p,q ≤ 2NmR(T ).

Corollary 5.3. Suppose 1 < p, q < ∞. The family T of all shifts
with parameters (m,n) is R-bounded from Lp(σ) into Lq(w) if and only if
the family satisfies the quadratic testing conditions (5.6) and (5.7), and the
quadratic Ap,q-condition holds. Moreover, we have the quantitative estimate

2−N min(m,n)[σ,w]p,q+T σ+T w . R(T ) . (1+κ)(T σ+T w)+(1+κ)2[σ,w]p,q,

where T σ and T w are the testing constants and κ = max{m,n}.

Dyadic shifts of a specific form. We look at the case when all the
operators AσK in the definition of the dyadic shifts are of the form

(5.20) AσKf :=
∑

I,J : I(m)=J(n)=K
I∨J=K

aIJK〈f, hJI 〉σhIJ ,

where I ∨ J denotes the smallest cube (if it exists) in D containing both I
and J . Thus I ∨ J = K is equivalent to I and J being subcubes of different
children of K. This kind of dyadic shifts arise naturally when representing
general Calderón–Zygmund operators with dyadic shifts as in [5]. Note that
in this case if AσK is to be non-zero then m,n ≥ 1.
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In this situation a weaker form of the quadratic Ap,q-condition is suf-
ficient in Theorem 5.1. Namely, let again Qk, k ∈ {1, . . . , 2N}, denote
the dyadic children of a cube Q ∈ D . We do not have any special or-
dering in mind, and in fact the ordering need not be the same for differ-
ent cubes. Thus, if Q,Q′ ∈ D and Q 6= Q′, then Qk and Q′k need not
be in symmetrical places with respect to the parents Q and Q′. We say
that the measures σ and w satisfy the quadratic A ∗p,q-condition if for any

k, l ∈ {1, . . . , 2N}, k 6= l, and any collection {aQ}Q∈D of real numbers we
have

(5.21)

∥∥∥∥( ∑
Q∈D

(
aQ
σ(Qk)

|Qk|

)2

1Ql

)1/2∥∥∥∥
Lq(w)

≤ [σ,w]∗p,q

∥∥∥( ∑
Q∈D

a2Q1Qk

)1/2∥∥∥
Lp(σ)

,

where again [σ,w]∗p,q denotes the best possible constant. Similarly to the
case of the quadratic Ap,q-condition, we have [σ,w]∗p,q ' [w, σ]∗q′,p′ .

The two-weight inequality for the Hilbert transform was characterized by
M. Lacey, E. Sawyer, C.-Y. Shen and I. Uriarte-Tuero [11] and M. Lacey [9]
in the case when the measures σ and w do not have common point masses.
This restriction was lifted by T. Hytönen [6], and a key new component was
a similar kind of weakening to we have here of the Poisson A2 conditions
used in [11] and [9].

Theorem 5.4. Let 1 < p, q < ∞ and assume that the measures σ and
w satisfy the quadratic A ∗p,q-condition. Suppose T is a collection of dyadic
shifts with complexities at most κ, and suppose every shift in T is of the spe-
cific form (5.20). Then the collection T is R-bounded from Lp(σ) into Lq(w)
if and only if it satisfies the quadratic testing conditions (5.6) and (5.7), and
in this case

(5.22) R(T ) . (1 + κ)(T σ + T w) + (1 + κ)2[σ,w]∗p,q.

We outline the proof of Theorem 5.4, which is probably known to spe-
cialists.

All we need to do is to look at the previous proof, consider the places
where the quadratic Ap,q-condition was applied, and show that in this spe-
cial case it is enough to assume the weaker condition. The quadratic Ap,q-
condition was applied in two places: first at the end of the subsection
dealing with the case “Q ∩ R = ∅”, and then at the end of the case
“Q ⊂ R ⊂ Q(κ)”.

Assume that K ∈ D and we have an operator AσK of the form (5.20).
Then for f ∈ L1

loc(σ) and g ∈ L1
loc(w) we have
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|〈AσKf, g〉w| =
∣∣∣ ∑
k,l∈{1,...,2N}

k 6=l

∑
I(m−1)=Kk
J(n−1)=Kl

aIJK〈f, hJI 〉σ〈g, hIJ〉w
∣∣∣(5.23)

≤
∑

k,l∈{1,...,2N}
k 6=l

‖1Kkf‖L1(σ)‖1Klg‖L1(w)

|K|
.

If we use (5.23) in (5.12), we end up with the term

κ∑
i,j=1

∑
K∈D

∑
k 6=l

‖1Kk∆
σ,i
K fu‖L1(σ)‖1Kl∆

w,j
K gu‖L1(w)

|K|
.

If one continues as in (5.13) with fixed k 6= l, the result is∥∥∥( U∑
u=1

∑
K∈D

(
‖1Kk∆

σ,i
K fu‖L1(σ)

|K|
)21Kl

)1/2∥∥∥
Lq(w)

·
∥∥∥( U∑

u=1

∑
K∈D

(1Kl∆
w,j
K gu)2

)1/2∥∥∥
Lq′ (w)

.

The factor related to g is directly handled by using Burkholder’s inequality,
and the other related to f is estimated via the A ∗p,q-condition as in (5.14).
In the end one can sum over the finite ranges of k and l. This takes care of
the first application of the A ∗p,q-condition.

The other application is even easier, since there the functions are already
in the right form. If we look at the first term in (5.19), we see that it can
be written as

U∑
u=1

∑
R∈D

2N∑
k=1

‖1{Rk∆
σ,i
R fu‖L1(σ)‖1Rk∆w

Rgu‖L1(w)

|R|

=
∑
k,l
k 6=l

U∑
u=1

∑
R∈D

‖1Rl∆
σ,i
R fu‖L1(σ)‖1Rk∆w

Rgu‖L1(w)

|R|
,

and for a fixed pair k 6= l this can again be estimated by using the A ∗p,q-
condition.

6. Examples related to the quadratic Ap,q-condition. Consider the
one-weight case with p = q ∈ (1,∞), where we have an almost everywhere
(in the Lebesgue sense) positive Borel measurable function w : RN → R.
With the same symbol we also denote the Borel measure

w(E) :=
�

E

w dx,
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where E ⊂ RN is any Borel set. The dual weight to w is σ := w−1/(p−1),
and we again use σ for the corresponding measure. The Muckenhoupt Ap
characteristic is defined as

[w]p := sup
Q∈D

σ(Q)p−1w(Q)

|Q|p
,

and the Muckenhoupt Ap class consists of those weights that have [w]p <∞.

In this one-weight case the weighted Stein inequality (3.3) can be equiv-
alently written as

(6.1)

∥∥∥∥( ∑
Q∈D

(	
Q fQ dx

|Q|

)2

1Q

)1/2∥∥∥∥
Lp(w)

≤ S
∥∥∥( ∑

Q∈D

f2Q1Q

)1/2∥∥∥
Lp(w)

.

It can quite easily be seen that if p = 2 then the constant S in the

weighted Stein inequality is [w]
1/2
2 , that is, the inequality (6.1) holds with

a finite constant if and only if the weight is in the Muckenhoupt A2 class.
A quantitative form of the extrapolation theorem of Rubio de Francia [15]
by O. Dragičević, L. Grafakos, M. Pereyra and S. Petermichl [2] then implies
that the best constant S (w, p) in (6.1) satisfies

S (w, p) .

{
[w]

1/(2(p−1))
p , 1 < p ≤ 2,

[w]
1/2
p , 2 ≤ p <∞.

Since Lemma 3.2 shows that the quadratic Ap,q-constant is equivalent to
the best constant in the two-weight Stein inequality, we get the quantitative
estimates {

[w]
1/p
p ≤ [σ,w]p,p . [w]

1/(2(p−1))
p , 1 < p ≤ 2,

[w]
1/p
p ≤ [σ,w]p,p . [w]

1/2
p , 2 ≤ p <∞.

On the other hand, in the general two-weight setting the quadratic Ap,q-
condition is strictly stronger than the simple Ap,q-condition if p > 2 or
q < 2:

Lemma 6.1. Let p, q ∈ (1,∞).

(a) If 1 < p ≤ 2 ≤ q < ∞, then (σ,w)p,q = [σ,w]p,q for all Radon
measures σ and w.

(b) If 2 < p <∞ or 1 < q < 2, then there exist Radon measures σ and
w such that (σ,w)p,q <∞ but [σ,w]p,q =∞.

Proof. Case (a) is just Lemma 3.3, so we need to prove only the other
assertion. Let 1 < p, q <∞ and choose a cube Q0 ∈ D with |Q0| = 1. Then
we simply set the measure σ to be 1Q0dx, that is, the Lebesgue measure
restricted to Q0.
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The measure w that we next construct must satisfy

w(Q) ≤ C |Q|q

σ(Q)q/p′
, Q ∈ D ,

for some constant C. Keeping this in mind we set

w :=
∞∑
k=1

|Q(k)
0 |

q−11
Q

(k)
0 \Q

(k−1)
0

dx.

To see that the pair (σ,w) satisfies the simple Ap,q-condition, first note
that since the measures are supported on Q0 and {Q0, respectively, then
σ(Q)w(Q) = 0 for all cubes Q ∈ D with l(Q) ≤ 1. Also if Q ∈ D is
such that l(Q) > 1 and σ(Q) 6= 0, there exists an l ∈ {1, 2, . . . } such that

Q = Q
(l)
0 . But then

w(Q
(l)
0 ) =

l∑
k=1

|Q(k)
0 |

q−1|Q(k)
0 \Q

(k−1)
0 | '

l∑
k=1

|Q(k)
0 |

q ' |Q(l)
0 |

q,

and this shows that
σ(Q

(l)
0 )1/p

′
w(Q

(l)
0 )1/q

|Q(l)
0 |

. 1.

Thus (σ,w)p,q . 1.
On the other hand, consider the quadratic Ap,q-condition, and choose

some K ∈ {1, 2, . . . }. We set ak = 1 for k ∈ {1, . . . ,K} and ak = 0 for
k > K. Then the construction of the measures shows that

(6.2)
∥∥∥( K∑

k=1

(
ak
σ(Q

(k)
0 )

|Q(k)
0 |

)2
1
Q

(k)
0

)1/2∥∥∥q
Lq(w)

=

K∑
k=1

( K∑
m=k

|Q(m)
0 |

−2
)q/2
|Q(k)

0 |
q−1|Q(k)

0 \Q
(k−1)
0 | '

K∑
k=1

|Q(k)
0 |
−q+q = K,

where in the second to last step we have used the fact that a geometric sum
is about as large as its largest term.

For the quadratic Ap,q-condition to hold, this should be dominated by

(6.3) [σ,w]qp,q

∥∥∥( K∑
k=1

1
Q

(k)
0

)1/2∥∥∥q
Lp(σ)

= [σ,w]qp,qK
q/2.

Comparing (6.2) and (6.3), we see that since K was arbitrary, (6.3) can
dominate (6.2) only if q ≥ 2.

So if q < 2, we can construct a pair (σ,w) of weights such that (σ,w)p,q
<∞ but [σ,w]p,q =∞. On the other hand, if p > 2, then p′ < 2, and we can
construct measures such that (σ,w)q′,p′ = (w, σ)p,q < ∞ and [σ,w]q′,p′ '
[w, σ]p,q =∞.
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Combining Lemmas 3.2 and 6.1 we get the following corollary:

Corollary 6.2. If p, q ∈ (1,∞), then the simple Ap,q-condition is suf-
ficient for the two-weight Stein inequality (3.3) if and only if 1 < p ≤ 2 ≤
q <∞.
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[2] O. Dragičević, L. Grafakos, M. C. Pereyra and S. Petermichl, Extrapolation and

sharp norm estimates for classical operators on weighted Lebesgue spaces, Publ.
Mat. 49 (2005), 73–91.

[3] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971),
107–115.

[4] T. P. Hytönen, Representation of singular integrals by dyadic operators, and the
A2-theorem, arXiv:1108.5119v1 [math.CA] (2011).

[5] T. P. Hytönen, The sharp weighted bound for general Calderón–Zygmund operators,
Ann. of Math. (2) 175 (2012), 1473–1506.

[6] T. P. Hytönen, The two-weight inequality for the Hilbert transform with general
measures, arXiv:1312.0843 [math.CA] (2013).
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