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On separation of points from additive subgroups of lnp
by linear functionals and positive definite functions

by

Wojciech Banaszczyk and Robert Stegliński (Łódź)

Abstract. Let X be a finite-dimensional real normed space, and K a closed additive
subgroup of X. Let a ∈ X \ K and let dX(a,K) be the distance from a to K. We say
that a linear functional f ∈ X∗ separates a from K if dR(f(a), f(K)) > 0. We say that a
continuous positive definite function ϕ : X → C separates a from K if ϕ is constant on K
and ϕ(a) 6= ϕ(0). We consider the following question: how well can a be separated from
K by linear functionals and positive definite functions? We introduce certain quantities,
denoted by wdX(a,K) and pdX(a,K), which measure the ‘distance’ from a to K with
respect to linear functionals and positive definite functions, respectively. Then we define

wp(X) := sup
pdX(a,K)

wdX(a,K)
, ps(X) := sup

dX(a,K)

pdX(a,K)
,

the suprema taken over all closed subgroups K ⊂ X and all a ∈ X \ K. We give some
estimates of wp(X) and ps(X), mainly for X = lnp . In particular we prove that wp(lnp ) �n

nmax{1/2,1/p} if 1 ≤ p ≤ ∞, and ps(lnp ) �n n1/2 if 2 ≤ p <∞. The results may be treated
as finite-dimensional analogs of those obtained in Banaszczyk and Stegliński (2008, Sec. 5)
for diagonal operators in lp spaces.

1. Introduction and notation. Let X be a real normed space. Let K
be an additive subgroup of X and let a ∈ X \K. We say that a is strongly
separated from K if it is separated from K in norm, i.e. dX(a,K) > 0, where
dX is the metric in X.

By a character of X we mean a homomorphism of the additive group
of X into the multiplicative group of complex numbers with modulus 1. We
say that a character χ of X separates a from K if χ|K ≡ 1 and χ(a) 6= 1.
We say that a linear functional f ∈ X∗ separates a from K if f(K) is a
discrete subgroup of R and f(a) /∈ f(K). We say that a is weakly separated
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from K if it is separated from K by some continuous linear functional. This
holds if and only if a is separated from K by some continuous character
(there is a one-to-one correspondence between linear functionals f ∈ X∗

with f(K) ⊂ Z and continuous characters χ of X with χ|K ≡ 1, given by
e2πif = χ (see e.g. [HR, (23.32)]).

A complex-valued function ϕ on X is called positive definite (p.d. for
short) if

∑n
i,j=1 λiλjϕ(xi − xj) ≥ 0 for all n ≥ 1, all x1, . . . , xn ∈ X and

all λ1, . . . , λn ∈ C. We say that a p.d. function ϕ separates a from K if
ϕ(x) = ϕ(0) for each x ∈ K, and ϕ(a) 6= ϕ(0). We say that a is P-separated
from K if it can be separated from K by some continuous p.d. function ϕ;
we may of course assume that ϕ(0) = 1.

If a is weakly separated from K, then it is P-separated, and conse-
quently strongly separated, from K. If dimX = ∞, the three separation
conditions are not equivalent, as was proved in [B1] and [S]. The differ-
ences between these conditions can be described in terms of linear operators
between Banach spaces; the corresponding classes of operators were investi-
gated in [BS].

If dimX <∞ and a is strongly separated from K, then clearly it is also
weakly separated, so that the three separation conditions are equivalent.
Nevertheless, also in the finite-dimensional case it is ‘easier’ to separate a
from K in norm than to separate it by a continuous p.d. function. Similarly,
it is ‘easier’ to separate a from K by a continuous p.d. function than by
a continuous character (or equivalently by a linear functional). The present
paper is an attempt to give to the above vague statements some more precise
meaning. To this end we need to define the distances from a toK with respect
to linear functionals and p.d. functions, respectively.

From now on all normed spaces occurring are assumed to be real and
finite-dimensional.

Let X be a normed space. We denote by A(X) the family of all closed
additive subgroups of X. If K ∈ A(X), then K∗ denotes the dual subgroup:
K∗ := {f ∈ X∗ : f(K) ⊂ Z}. We use the same symbol to denote the dual
space X∗ and the dual subgroup K∗; this should not cause confusion. We
denote by P(X) the family of all continuous p.d. functions ϕ on X such that
ϕ(0) = 1.

By an open plank in X we mean a set of the form {x : c1 < f(x) < c2},
where 0 6= f ∈ X∗ and −∞ < c1 < c2 < ∞. The width of such a plank
is defined as the distance between its boundary hyperplanes; it is equal to
(c2 − c1)/‖f‖.

Let K ∈ A(X) and a ∈ X \K. The weak distance from a to K which we
denote by wdX(a,K), is defined as half the maximum of the widths of all
those open planks symmetric about a which are disjoint from K. It is easy
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to see that

(1.1) wdX(a,K) = max
f

d(f(a),Z)
‖f‖

,

where the maximum is taken over all non-zero f ∈ K∗. It is clear that
(1.2) wdX(ta, tK) = t · wdX(a,K), t > 0.

There is apparently no natural way to define the distance from a to K
with respect to p.d. functions. Loosely speaking, a can be well separated
from K by ϕ ∈ P(X) if ϕ|K ≡ 1, ϕ is close to 1 in some not too small
neighbourhood of 0, and far from 1 at a. For the purpose of the present
paper we adopt the following definition.

For ϕ ∈ P(X), we denote

r(ϕ) := sup {r > 0 : Reϕ(x) ≥ 5/6 if ‖x‖ ≤ r}.
In other words, r(ϕ) is the inradius of the set {x : Reϕ(x) ≥ 5/6}. The
P-distance from a to K is the number

pdX(a,K) := 3 sup
ϕ
r(ϕ),

where the supremum is taken over all ϕ ∈ P(X) with ϕ|K ≡ 1 and Reϕ(a)
≤ 1/6. It is clear that

(1.3) pdX(ta, tK) = t · pdX(a,K), t > 0.

Remark. If we replace in the above definition p.d. functions by charac-
ters, then we obtain a number which might be called the character distance
from a to K. More precisely, let us write

cdX(a,K) := 3 sup
χ
r(χ),

where the supremum is taken over all continuous characters χ of X with
χ|K ≡ 1 and Reχ(a) ≤ 1/6. A standard argument shows that the character
distance is equivalent to the weak distance. Direct computations show that

c1 ≤
cdX(a,K)

wdX(a,K)
≤ c2,

where c1 = (3/π) arccos (5/6) = 0.559 . . . and c2 =3arccos (5/6)/arccos (1/6)
= 1.252 . . . .

Let X be a normed space. We define

ws(X) := sup
K,a

dX(a,K)

wdX(a,K)
, wp(X) := sup

K,a

pdX(a,K)

wdX(a,K)
,

ps(X) := sup
K,a

dX(a,K)

pdX(a,K)
,

where each supremum is taken over all K ∈ A(X) and a ∈ X \K.
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As usual, lnp (1 ≤ p ≤ ∞) is the space Rn endowed with the norm

‖x‖p =
( n∑
k=1

|xk|p
)1/p

, x = (x1, . . . , xn).

The unit ball in lnp is denoted by Bn
p . The euclidean inner product of vectors

x, y ∈ ln2 is denoted by xy. If X = lnp , then instead of dX(a,K), wdX(a,K)
and pdX(a,K) we write dp(a,K), wdp(a,K) and pdp(a,K), respectively.

Estimates of ws(X) are closely related to the so-called transference the-
orems in the geometry of numbers (see e.g. [C, Ch. XI, §3.3]). By a lattice
in Rn we mean an additive subgroup generated by n linearly independent
vectors. Let Ln be the family of all lattices in Rn. If L ∈ Ln, then

L∗ := {x ∈ Rn : xy ∈ Z for each y ∈ L}

is the dual lattice.
Let Cn be the family of all symmetric convex bodies in Rn. If U ∈ Cn,

then
U0 := {x ∈ Rn : |xy| ≤ 1 for each y ∈ U}

is the polar body . We denote by ‖ · ‖U the norm on Rn induced by U , and
dU is the corresponding metric.

Let U ∈ Cn. We define

kh(U) := sup
L∈Ln

sup
x∈Rn

x/∈L

sup
y∈L∗
xy/∈Z

dU (x, L) · ‖y‖U0

d(xy,Z)
.

It is clear that kh(U) is an affine invariant of U . A standard approximation
argument shows that in the above definition the supremum over all lattices
L ∈ Ln may be replaced by the supremum over all subgroups L ∈ A(Rn)
(loosely speaking, every closed additive subgroup of Rn is the limit of a
sequence of lattices).

If U ∈ Cn and if X is the normed space (Rn, ‖ · ‖U ), then the dual space
X∗ may be identified with (Rn, ‖ · ‖U0), and from the above definitions it
follows directly that ws(X) = kh(U).

It was proved in [B2, Cor. 3.4] that

kh(Bn
p ) ≤ Cpn, 1 < p <∞,

where Cp depends only on p. Next, it was proved in [B3] that

(2πe)−1n < kh(U) ≤ Cn(1 + log n)

for any U ∈ Cn, and kh(U) ≤ C ′n(1+log n)1/2 if U is symmetric with respect
to the coordinate hyperplanes; here C and C ′ are some universal constants.
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Translated to the language of normed spaces, this means that

ws(lnp ) ≤ Cpn, 1 < p <∞,
(2πe)−1n < ws(X) ≤ Cn(1 + log n)(1.4)

for any n-dimensional normed space X, and ws(X) ≤ C ′n(1+ log n)1/2 if X
has a 1-unconditional basis.

The main idea in the proofs of these inequalities is the following. Suppose
L is a lattice in X. First we show that if dX(a, L) is large enough, then a
can be well separated from L by a certain p.d. function ϕ ∈ P(X). Then we
represent ϕ as an integral of characters (with respect to the corresponding
purely atomic measure with support in L∗) and show that a can be well sep-
arated from L by one of these characters. This raises the following questions:
1◦ If a is well separated from K in norm, how well can it be separated from
K by p.d. functions? 2◦ If a is well separated from K by p.d. functions, how
well can it be separated from K by linear functionals?

The aim of the present paper is to give some estimates of wp(X) and
ps(X), mainly for X = lnp . In particular we prove that

wp(lnp ) �n nmax{1/2,1/p}, 1 ≤ p ≤ ∞,

ps(lnp ) �n n1/2, 2 ≤ p <∞.

The results of the paper may be treated as finite-dimensional analogs of the
results obtained in [BS, Sec. 5] for diagonal operators in lp spaces.

We begin with several lemmas.

Lemma 1.1. Let X be a normed space. Then

ws(X) ≤ wp(X) · ps(X).

This is a direct consequence of definitions.

Lemma 1.2. Let Y be a subspace of a normed space X. Then

(i) ws(X) ≥ ws(Y ), ws(X) ≥ ws(X/Y ),
(ii) wp(X) ≥ wp(X/Y ),
(iii) ps(X) ≥ ps(Y ), ps(X) ≥ ps(X/Y ).

Proof. Let K ∈ A(Y ) and a ∈ Y \K. Obviously, dY (a,K) = dX(a,K).
If f ∈ X∗ separates a from K, then so does g := f|Y ∈ Y ∗. Obviously,

‖g‖ ≤ ‖f‖. Hence wdX(a,K) ≤ wdY (a,K) (in fact, wdX(a,K) = wdY (a,K)
due to the Hahn–Banach theorem). Thus ws(X) ≥ ws(Y ).

Next, if ϕ ∈ P(X) separates a from K, then so does ψ := ϕ|Y ∈ P(Y ).
Obviously, r(ψ)≥ r(ϕ). Hence pdX(a,K)≤ pdY (a,K). Thus ps(X)≥ ps(Y ).

Now, let K ∈ A(X/Y ) and a ∈ (X/Y ) \K. Let T : X → X/Y be the
quotient mapping. Choose some ã ∈ X with T ã = a and let K̃ := T−1(K).
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Then it is not hard to see that

dX(ã, K̃) = dX/Y (a,K), wdX(ã, K̃) = wdX/Y (a,K)

and pdX(ã, K̃) = pdX/Y (a,K). This implies that

ws(X) ≥ ws(X/Y ), wp(X) ≥ wp(X/Y ) and ps(X) ≥ ps(X/Y ).

Lemma 1.3. Let T : X → Y be a linear operator between normed spaces,
and let K ∈ A(X) and a ∈ X \K. Then

(i) dY (T (a), T (K)) ≤ ‖T‖ · dX(a,K),
(ii) wdY (T (a), T (K)) ≤ ‖T‖ · wdX(a,K),
(iii) pdY (T (a), T (K)) ≤ ‖T‖ · pdX(a,K).

Inequality (i) is obvious, while (ii) and (iii) are direct consequences of
the corresponding definitions.

The Banach–Mazur distance between normed spaces X and Y is denoted
by d(X,Y ).

Lemma 1.4. Let X,Y be normed spaces. Then

(i) ws(X) ≤ ws(Y ) · d(X,Y ),
(ii) wp(X) ≤ wp(Y ) · d(X,Y ),
(iii) ps(X) ≤ ps(Y ) · d(X,Y ).

Proof. Choose a linear isomorphism T : X → Y with ‖T‖ · ‖T−1‖ =
d(X,Y ). Let K ∈ A(X) and a ∈ X \ K. By Lemma 1.3(i) applied to the
operator T−1 : Y → X, we have

(1.5) dX(a,K) ≤ ‖T−1‖ · dY (T (a), T (K)),

and Lemma 1.3(ii) says that

(1.6) wdX(a,K) ≥ ‖T‖−1 · wdY (T (a), T (K)).

Similarly, by Lemma 1.3(iii) we have

pdX(a,K) ≤ ‖T−1‖ · pdY (T (a), T (K)),(1.7)

pdX(a,K) ≥ ‖T‖−1 · pdY (T (a), T (K)).(1.8)

Thus

ws(X)
def
= sup

K∈A(X)
a∈X\K

dX(a,K)

wdX(a,K)

(1.5),(1.6)

≤ sup
K∈A(X)
a∈X\K

‖T−1‖ · dY (T (a), T (K))

‖T‖−1 · wdY (T (a), T (K))

= ‖T‖ · ‖T−1‖ · sup
L∈A(Y )
b∈Y \L

dY (b, L)

wdY (b, L)
= d(X,Y ) · ws(Y ),
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which proves (i). Next,

wp(X)
def
= sup

K∈A(X)
a∈X\K

pdX(a,K)

wdX(a,K)

(1.7),(1.6)

≤ sup
K∈A(X)
a∈X\K

‖T−1‖ · pdY (T (a), T (K))

‖T‖−1 · wdY (T (a), T (K))

= ‖T‖ · ‖T−1‖ · sup
L∈A(Y )
b∈Y \L

pdY (b, L)

wdY (b, L)
= d(X,Y ) · wp(Y ),

which proves (ii). Finally,

ps(X)
def
= sup

K∈A(X)
a∈X\K

dX(a,K)

pdX(a,K)

(1.5),(1.8)

≤ sup
K∈A(X)
a∈X\K

‖T−1‖ · dY (T (a), T (K))

‖T‖−1 · pdY (T (a), T (K))

= ‖T‖ · ‖T−1‖ · sup
L∈A(Y )
b∈Y \L

dY (b, L)

pdY (b, L)
= d(X,Y ) · ps(Y ),

which proves (iii).
We will need the following standard facts about Banach–Mazur distances

between lnp spaces:

d(lnp , l
n
2 ) = n1/p−1/2, 1 ≤ p ≤ 2,(1.9)

d(lnp , l
n
1 ) = n1−1/p, 1 ≤ p ≤ 2,(1.10)

d(lnp , l
n
1 ) ≤ 3n1/2, 2 < p ≤ ∞(1.11)

(see e.g. [JL, pp. 43–44]).

2. Estimates of wp(lnp ). Let µ be a Radon probability measure on Rn.
The Fourier transform of µ is defined by

µ̂(x) =
�

Rn

e2πixy dµ(y), x ∈ Rn.

Lemma 2.1. Let µ be a Radon probability measure on Rn. Suppose that
for some 0 < ε < 1/2,

(2.1) Re µ̂(x) ≥ 1− ε for all x ∈ Bn
∞.

Then µ({y ∈ Rn : ‖y‖2 > 1/3}) < 2ε.

Proof. Let V = {y ∈ Rn : ‖y‖2 > 1/3} and U = Rn \ V . Let ν be the
probability measure uniformly distributed on Bn

∞. Naturally, ν̂ is real-valued
and we may write

ϑ :=
�

Bn
∞

Re µ̂(x) dν(x) = Re
�

Rn

µ̂(x) dν(x)

= Re
�

Rn

ν̂(y) dµ(y) =
�

Rn

ν̂(y) dµ(y) =
( �
U

+
�

V

)
ν̂(y) dµ(y).
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Standard calculations show that if y = (y1, . . . , yn) ∈ V , then

ν̂(y) =
n∏
k=1

sin(2πyk)

2πyk
<

1

2
.

Consequently,

ϑ ≤
�

U

dµ(y) +
1

2

�

V

dµ(y) = µ(U) + µ(V )/2 = 1− µ(V )/2.

On the other hand, (2.1) implies that ϑ > 1− ε. Hence µ(V ) < 2ε.

Lemma 2.2. Let K ∈ A(Rn) and a ∈ Rn \K. If pd∞(a,K) ≥ 1, then
wd2(a,K) ≥ 1/9.

Proof. In view of (1.2) and (1.3) it is enough to show that pd∞(a,K) > 3
implies wd2(a,K) ≥ 1/3. So, assume that pd∞(a,K) > 3. Then there is some
ϕ ∈ P(Rn) with ϕ|K ≡ 1 such that Reϕ(a) ≤ 1/6 and Reϕ(x) ≥ 5/6 for
x ∈ Bn

∞. According to the Bochner theorem, there is a (unique) Radon
probability measure µ on Rn with µ̂ = ϕ. Since ϕ|K ≡ 1, the measure µ is
concentrated on the dual subgroup

K∗ := {x ∈ Rn : xy ∈ Z for each y ∈ K},

i.e. µ(Rn \K∗) = 0. Let U = {y ∈ Rn : ‖y‖2 ≤ 1/3} and V = Rn \U . Setting
ε = 1/6 in Lemma 2.1, we get µ(V ) < 1/3, so that µ(K∗∩U) = µ(U) > 2/3.

If cos(2πay) > 3/4 for all y ∈ K∗ ∩ U , then

1

6
≥ Reϕ(a) =

�

K∗

cos(2πay) dµ(y) =
( �

K∗∩U
+

�

K∗∩V

)
cos(2πay) dµ(y)

>
3

4
µ(K∗ ∩ U)− µ(K∗ ∩ V ) >

3

4
· 2
3
− 1

3
=

1

6
,

which is impossible. So, there must be some y0 ∈ K∗ ∩ U with cos(2πay0)
≤ 3/4. Then d(ay0,Z) ≥ (2π)−1 arccos(3/4) > 1/9 and

wd2(a,K) = max
y∈K∗
y 6=0

d(ay,Z)
‖y‖2

≥ d(ay0,Z)
‖y0‖2

>
1/9

1/3
=

1

3
.

The first equality above follows from (1.1) (we identify here (ln2 )
∗ with ln2 in

the usual way).

Lemma 2.3. One has wp(ln1 ) ≥ 3
5n for all n ≥ 1.

Proof. Fix n and consider the function ψ : R→ R given by

ψ(x) = 1− 5
3nd(x, n

−1Z), −∞ < x <∞.
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Clearly, ψ is a piecewise-linear, continuous and positive definite periodic
function on R, with period n−1; direct calculations show that

ψ(x) =
7

12
+

10

3π2

∞∑
k=0

cos[(2k + 1)2πnx]

(2k + 1)2
, −∞ < x <∞.

Thus ψ ∈ P(R). We have ψ
(
1
2n
−1) = 1/6 and

(2.2) ψ(x) ≥ 1− 5
3n|x|, −∞ < x <∞.

Let K = n−1Zn ⊂ Rn and a = (a1, . . . , an), where ak = 1
2n
−1 for

k = 1, . . . , n. Let ϕ : Rn → R be given by

ϕ(x) =
1

n

n∑
k=1

ψ(xk), x = (x1, . . . , xn) ∈ Rn.

Since ψ ∈ P(R), it follows that ϕ ∈ P(Rn). It is clear that ϕ|K ≡ 1 and
ϕ(a) = 1/6. By (2.2), for each x = (x1, . . . , xn) ∈ Rn we have

ϕ(x) ≥ 1

n

n∑
k=1

(
1− 5

3n|xk|
)
= 1− 5

3‖x‖1.

So, if ‖x‖1 ≤ r := 1/10, then ϕ(x) ≥ 5/6. This means that pd1(a,K) ≥
3r = 3/10.

Set K∗ = {f ∈ (ln1 )
∗ : f(K) ⊂ Z}. We may identify (ln1 )

∗ with ln∞, and
K∗ with nZn. If f ∈ K∗ and f 6= 0, then ‖f‖ ≥ n. Thus

wd1(a,K)
(1.1)
= max

f∈K∗
f 6=0

d(f(a),Z)
‖f‖

≤ 1

2n
.

Consequently,

wp(ln1 ) ≥
pd1(a,K)

wd1(a,K)
≥ 3/10

1/(2n)
=

3

5
n.

Theorem 2.4. For all n ≥ 1 one has

(i) 3
5n

1/p ≤ wp(lnp ) ≤ 9n1/p, 1 ≤ p ≤ 2,
(ii) 1

5n
1/2 ≤ wp(lnp ) ≤ 9n1/2, 2 < p ≤ ∞.

Proof. By Lemmas 2.3 and 1.4(ii) we have
3
5n ≤ wp(ln1 ) ≤ wp(lnp ) · d(ln1 , lnp ), 1 ≤ p ≤ ∞.

Hence

wp(lnp ) ≥ 3
5nd(l

n
1 , l

n
p )
−1 (1.10)

≥ 3
5n · n

1/p−1 = 3
5n

1/p, 1 ≤ p ≤ 2,

wp(lnp ) ≥ 3
5nd(l

n
1 , l

n
p )
−1 (1.11)

≥ 3
5n ·

1
3n
−1/2 = 1

5n
1/2, 2 < p ≤ ∞.

This yields the lower estimates in (i) and (ii).
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To obtain the upper estimates, suppose first that p ≥ 2. Let K ∈ A(Rn)
and a ∈ Rn \K. We want to show that

(2.3)
pdp(a,K)

wdp(a,K)
≤ 9n1/2.

In view of (1.2) and (1.3) we may assume that pdp(a,K) = n1/p. Then
pd∞(a,K) ≥ 1, because ‖ · ‖∞/‖ · ‖p ≥ n−1/p. Hence wd2(a,K) ≥ 1/9 due
to Lemma 2.2. Since ‖ · ‖p/‖ · ‖2 ≥ n1/p−1/2, it follows that

wdp(a,K) ≥ n1/p−1/2wd2(a,K) ≥ 1
9n

1/p−1/2,

which proves (2.3).
We have thus proved that wp(lnp ) ≤ 9n1/2 for p ≥ 2, in particular for

p = 2. Hence, by Lemma 1.4(ii), for p < 2 we obtain

wp(lnp ) ≤ wp(ln2 ) · d(lnp , ln2 )
(1.9)

≤ 9n1/2 · n1/p−1/2 = 9n1/p.

Remark. Let X be an n-dimensional normed space. By Dvoretzky’s
theorem, there exists a subspace Y ofX such thatm := dim(X/Y ) ≥ c0 log n
and d(X/Y, lm2 ) ≤ 2, where c0 > 0 is some universal constant. Hence, by
Lemmas 1.2(ii), 1.4(ii) and Theorem 2.4(i), we get

wp(X) ≥ wp(X/Y ) ≥ 1
2 wp(l

m
2 ) ≥ 3

10m
1/2 ≥ 3

10c
1/2
0 (log n)1/2.

For some special classes of spaces the estimate m ≥ c0 log n can be much
improved, which leads to the corresponding improvement of the lower esti-
mate of wp(X). Conjecture: there is a universal constant c > 0 such that
wp(X) ≥ cn1/2 for any n-dimensional normed space X.

3. Estimates of ps(lnp )

Theorem 3.1. There is a universal constant c > 0 such that ps(X) ≥
cn1/2 for any n-dimensional normed space X.

Proof. According to the quotient of subspace theorem of Milman (see e.g.
[LM, Th. 3.1.1] or [GM, Th. 5.3.1]), there are subspaces Z ⊂ Y ⊂ X such
that m := dim(Y/Z) ≥ n/2 and d(Y/Z, lm2 ) ≤ C, where C is some universal
constant. From Lemmas 1.2(iii) and 1.4(iii) we obtain

(3.1) ps(X) ≥ ps(Y ) ≥ ps(Y/Z) ≥ d(Y/Z, lm2 )−1 · ps(lm2 ) ≥ C−1 ps(lm2 ).

From Theorem 2.4(i) and Lemma 1.1 it follows that

9m1/2 · ps(lm2 ) ≥ wp(lm2 ) · ps(lm2 ) ≥ ws(lm2 ).

Next, we have ws(lm2 ) > (2πe)−1m (see (1.4)). Hence ps(lm2 ) ≥ c1m
1/2,

where c1 = (18πe)−1. As m ≥ n/2, it follows that ps(lm2 ) ≥ 2−1/2c1n
1/2.

From this and (3.1) we obtain ps(X) ≥ 2−1/2c1C
−1n1/2.
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Let K ∈ A(Rn). Let m be the dimension of the components of K and let
λK be the m-dimensional Lebesgue measure on K. We define

ϕK(x) =
�

K

e−π‖x−y‖
2
2 dλK(y)

/ �
K

e−π‖y‖
2
2 dλK(y), x ∈ Rn.

It is not hard to see that ϕK ∈ P(Rn) (see [B4, Lemma 4.4]). For a convex
body U ∈ Cn we define

β(U) = sup
L∈Ln

sup
x∈Rn

( ∑
y∈(L+x)\U

e−π‖y‖
2
2
/∑
y∈L

e−π‖y‖
2
2

)
.

Lemma 3.2. Let K ∈ A(Rn), a ∈ Rn and U ∈ Cn. If (U + a) ∩K = ∅,
then ϕK(a) ≤ β(U).

This is a direct consequence of [B2, Lemma 1.3].

Lemma 3.3. For all n ≥ 1 one has

(i) β(rBn
p ) < pnπ−p/2Γ

(
1
2p
)
r−p, p ≥ 1, r > 0,

(ii) β(rBn
2 ) < 2(2πe)n/2n−n/2rne−πr

2
, r ≥ (n/2π)1/2,

(iii) β(rBn
∞) < 2ne−πr

2
, r > 0.

This was proved in [B2, Lemmas 2.8–2.10].

Theorem 3.4. For all n ≥ 1 one has

(i) ps(lnp ) <
7
5n

1/p, 1 ≤ p ≤ 2,
(ii) ps(lnp ) ≤ 2p1/2 n1/2, 2 < p <∞,
(iii) ps(ln∞) ≤ n1/2(3 + log n)1/2.

Proof. (i) Suppose first that p = 2. Fix n ≥ 1. Next, take K ∈ A(Rn)
and a ∈ Rn such that

(3.2) d2(a,K) > n1/2.

We will prove that

(3.3) ϕK(a) ≤ 1/6.

Suppose first that n = 1. If K = {0}, then ϕK(x) = e−πx
2 for x ∈ R, so

that ϕK(a) = e−πa
2 ≤ e−π < 1/6. If K 6= {0}, then K = ϑZ for some ϑ > 0,

and
ϕK(x) =

∑
k∈Z

e−π(x+kϑ)
2/∑

k∈Z
e−πk

2ϑ2 , x ∈ R.

As d(a, ϑZ) ≥ 1, we have ϑ ≥ 2 and it is not hard to see that

ϕK(a) <
∑
k∈Z

e−π(a+kϑ)
2 ≤ 2(e−π + e−9π + e−25π + · · · ) < 1/6.
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If n ≥ 2, then, by Lemma 3.3(ii),

β(n1/2Bn
2 ) < 2(2πe)n/2 e−πn = 2(2πe1−2π)n/2 < 1/6,

and (3.3) follows from Lemma 3.2.
By [B4, Lemma 4.4(ii)] we have ϕK(x) ≥ e−π‖x‖

2
2 for all x ∈ Rn. This

means that ϕK(x) ≥ 5/6 whenever ‖x‖2 ≤ c0 :=
(
1
π log

6
5

)1/2. Hence,
by (3.3),

(3.4) pd2(a,K) ≥ 3c0.

We have thus shown that (3.2) implies (3.4), for all K and a. In view
of (1.3), this means that

(3.5) ps(ln2 )
def
= sup

K,a

d2(a,K)

pd2(a,K)
≤ n1/2

3c0
< 7

5n
1/2.

If p < 2, then from Lemma 1.4(iii) we obtain

ps(lnp ) ≤ ps(ln2 ) · d(lnp , ln2 )
(3.5),(1.9)
< 7

5n
1/2 · n1/p−1/2 = 7

5n
1/p.

(ii) Fix n ≥ 1 and p > 2. Let r := 7
5p

1/2n1/2. From Lemma 3.3(i), after
easy computations based on Stirling’s formula, we get

(3.6) β(rBn
p ) < 1/6.

Take K ∈ A(Rn) and a ∈ Rn such that

(3.7) dp(a,K) ≥ r.
Then from (3.6) and Lemma 3.2 we get (3.3). Hence, as before, we ob-
tain (3.4). As ‖ · ‖p/‖ · ‖2 ≥ n1/p−1/2, it follows that

(3.8) pdp(a,K) ≥ 3c0n
1/p−1/2.

We have thus shown that (3.7) implies (3.8), for all K and a. In view
of (1.3), this yields

ps(lnp )
def
= sup

K,a

dp(a,K)

pdp(a,K)
≤ r

3c0n1/p−1/2
=

7

15c0
p1/2n1/2 < 2p1/2n1/2.

The proof of (iii) is analogous, only Lemma 3.3(i) should be replaced by
Lemma 3.3(iii).
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