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On separation of points from additive subgroups of [}
by linear functionals and positive definite functions

by

WoJcIECH BANASZCZYK and ROBERT STEGLINSKI (Lodz)

Abstract. Let X be a finite-dimensional real normed space, and K a closed additive
subgroup of X. Let a € X \ K and let dx(a, K) be the distance from a to K. We say
that a linear functional f € X* separates a from K if dr(f(a), f(K)) > 0. We say that a
continuous positive definite function ¢ : X — C separates a from K if ¢ is constant on K
and ¢(a) # ¢(0). We consider the following question: how well can a be separated from
K by linear functionals and positive definite functions? We introduce certain quantities,
denoted by wdx (a, K) and pdy (a, K), which measure the ‘distance’ from a to K with
respect to linear functionals and positive definite functions, respectively. Then we define

_ pdx (a, K) dx(a, K)

wp(X) := sup wdx (a, K)’ ps(X) := sup W’

the suprema taken over all closed subgroups K C X and all a € X \ K. We give some
estimates of wp(X) and ps(X), mainly for X = ;. In particular we prove that wp(l) =<»
nmax{1/2,1/p} if 1 < p < 0o, and ps(ly) =<n n'/? if 2 < p < co. The results may be treated
as finite-dimensional analogs of those obtained in Banaszczyk and Steglinski (2008, Sec. 5)
for diagonal operators in I, spaces.

1. Introduction and notation. Let X be a real normed space. Let K
be an additive subgroup of X and let a € X \ K. We say that a is strongly
separated from K if it is separated from K in norm, i.e. dx(a, K) > 0, where
dx is the metric in X.

By a character of X we mean a homomorphism of the additive group
of X into the multiplicative group of complex numbers with modulus 1. We
say that a character x of X separates a from K if x|x = 1 and x(a) # 1.
We say that a linear functional f € X* separates a from K if f(K) is a
discrete subgroup of R and f(a) ¢ f(K). We say that a is weakly separated
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from K if it is separated from K by some continuous linear functional. This
holds if and only if a is separated from K by some continuous character
(there is a one-to-one correspondence between linear functionals f € X*
with f(K) C Z and continuous characters x of X with x|x = 1, given by
e?™f =y (see e.g. [AR] (23.32)]).

A complex-valued function ¢ on X is called positive definite (p.d. for
short) if 1., AiNjo(x; —xj) > 0 for allm > 1, all x1,...,2, € X and
all Aq,..., A, € C. We say that a p.d. function ¢ separates a from K if
o(x) = ¢(0) for each z € K, and ¢(a) # »(0). We say that a is P-separated
from K if it can be separated from K by some continuous p.d. function ¢;
we may of course assume that ¢(0) = 1.

If a is weakly separated from K, then it is P-separated, and conse-
quently strongly separated, from K. If dim X = oo, the three separation
conditions are not equivalent, as was proved in [BI] and [S]. The differ-
ences between these conditions can be described in terms of linear operators
between Banach spaces; the corresponding classes of operators were investi-
gated in [BS].

If dim X < oo and a is strongly separated from K, then clearly it is also
weakly separated, so that the three separation conditions are equivalent.
Nevertheless, also in the finite-dimensional case it is ‘easier’ to separate a
from K in norm than to separate it by a continuous p.d. function. Similarly,
it is ‘easier’ to separate a from K by a continuous p.d. function than by
a continuous character (or equivalently by a linear functional). The present
paper is an attempt to give to the above vague statements some more precise
meaning. To this end we need to define the distances from a to K with respect
to linear functionals and p.d. functions, respectively.

From now on all normed spaces occurring are assumed to be real and
finite-dimensional.

Let X be a normed space. We denote by A(X) the family of all closed
additive subgroups of X. If K € A(X), then K* denotes the dual subgroup:
K*:={f e X*: f(K) C Z}. We use the same symbol to denote the dual
space X* and the dual subgroup K*; this should not cause confusion. We
denote by P(X) the family of all continuous p.d. functions ¢ on X such that
p(0) = 1.

By an open plank in X we mean a set of the form {z : ¢; < f(x) < 2},
where 0 # f € X* and —oo < ¢1 < o < o0. The width of such a plank
is defined as the distance between its boundary hyperplanes; it is equal to
(ca— )/l £l

Let K € A(X) and a € X \ K. The weak distance from a to K which we
denote by wdx (a, K), is defined as half the maximum of the widths of all
those open planks symmetric about a which are disjoint from K. It is easy
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to see that
d 7
(1.1) wdy (a, K) :maXM,
F Il
where the maximum is taken over all non-zero f € K*. It is clear that
(1.2) wdx (ta,tK) =t- wdx(a,K), t>0.

There is apparently no natural way to define the distance from a to K
with respect to p.d. functions. Loosely speaking, a can be well separated
from K by ¢ € P(X) if px = 1, ¢ is close to 1 in some not too small
neighbourhood of 0, and far from 1 at a. For the purpose of the present
paper we adopt the following definition.

For ¢ € P(X), we denote

r(p) :=sup{r > 0:Rep(z) >5/6 if ||z| < r}.

In other words, r(p) is the inradius of the set {z : Rep(z) > 5/6}. The
P-distance from a to K is the number

pdx(a, K) := 3supr(p),
©

where the supremum is taken over all ¢ € P(X) with | =1 and Re p(a)
< 1/6. It is clear that

(1.3) pdy (ta,tK) =t- pdx(a,K), t>0.

REMARK. If we replace in the above definition p.d. functions by charac-
ters, then we obtain a number which might be called the character distance
from a to K. More precisely, let us write

cdx(a, K) :=3supr(y),
X

where the supremum is taken over all continuous characters x of X with
X|x =1 and Re x(a) < 1/6. A standard argument shows that the character
distance is equivalent to the weak distance. Direct computations show that
1> CdX(a7K) < cq,

wdx (a, K)
where ¢; = (3/7) arccos (5/6) = 0.559. .. and cp = 3 arccos (5/6) /arccos (1/6)
=1.252....

C

Let X be a normed space. We define
dX(a7 K)
X):= _—
ws(X) SIEE wdx (a, K)’

dx(a, K)
s(X) :=sup — "~
ps(X) K,EL) pdy(a, K)

where each supremum is taken over all K € A(X) anda € X \ K.
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As usual, I (1 < p < oc0) is the space R" endowed with the norm

- 1/p
ol = (3 lael?) ) w = ().
k=1

The unit ball in ) is denoted by B} The euclidean inner product of vectors
z,y € 13 is denoted by xy. If X = [}, then instead of dx(a, K), wdx(a, K)
and pdy (a, K) we write dp(a, K), wdpy(a, K) and pd,(a, K), respectively.

Estimates of ws(X) are closely related to the so-called transference the-
orems in the geometry of numbers (see e.g. [C, Ch. XI, §3.3]). By a lattice
in R™ we mean an additive subgroup generated by n linearly independent
vectors. Let £, be the family of all lattices in R™. If L € £,,, then

L*:={zxeR": 2y € Z for each y € L}

is the dual lattice.

Let C,, be the family of all symmetric convex bodies in R™. If U € C,,
then

U%:={z € R": |zy| < 1 for each y € U}

is the polar body. We denote by || - || the norm on R™ induced by U, and
dy is the corresponding metric.

Let U € C,,. We define

kh(U) := sup sup sup du(@, L) HyHUO.
LeL, xR yeL* d(xy,Z)
¢l zy¢Z

It is clear that kh(U) is an affine invariant of U. A standard approximation
argument shows that in the above definition the supremum over all lattices
L € L, may be replaced by the supremum over all subgroups L € A(R")
(loosely speaking, every closed additive subgroup of R™ is the limit of a
sequence of lattices).

If U € C,, and if X is the normed space (R", | - ||7), then the dual space
X* may be identified with (R",|| - ||yo), and from the above definitions it
follows directly that ws(X) = kh(U).

It was proved in [B2), Cor. 3.4] that
kh(B)) < Cpn, 1<p<oo,
where C), depends only on p. Next, it was proved in [B3| that
(2me) " 'n < kh(U) < Cn(1 + logn)

for any U € C,, and kh(U) < C'n(14logn)'/? if U is symmetric with respect
to the coordinate hyperplanes; here C' and C’ are some universal constants.
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Translated to the language of normed spaces, this means that
ws(ly) < Cpn, 1< p < oo,
(1.4) (2me) " In < ws(X) < Cn(1 +logn)

for any n-dimensional normed space X, and ws(X) < C'n(1+1logn)/? if X
has a 1-unconditional basis.

The main idea in the proofs of these inequalities is the following. Suppose
L is a lattice in X. First we show that if dx(a, L) is large enough, then a
can be well separated from L by a certain p.d. function ¢ € P(X). Then we
represent ¢ as an integral of characters (with respect to the corresponding
purely atomic measure with support in L*) and show that a can be well sep-
arated from L by one of these characters. This raises the following questions:
1° If a is well separated from K in norm, how well can it be separated from
K by p.d. functions? 2° If a is well separated from K by p.d. functions, how
well can it be separated from K by linear functionals?

The aim of the present paper is to give some estimates of wp(X) and
ps(X), mainly for X = ly. In particular we prove that

Wp(lg) = nmax{l/Q,l/p}, 1< p< oo,

ps(ly) =n n'/2, 2<p<oo.

The results of the paper may be treated as finite-dimensional analogs of the

results obtained in [BS| Sec. 5| for diagonal operators in I, spaces.
We begin with several lemmas.

LEMMA 1.1. Let X be a normed space. Then
ws(X) < wp(X) - ps(X).
This is a direct consequence of definitions.
LEMMA 1.2. Let Y be a subspace of a normed space X. Then
(i) ws(X) >ws(Y), ws(X)>ws(X/Y),

(i) wp(X) > wp(X/Y),

(iii) ps(X) > ps(Y), ps(X)>ps(X/Y).

Proof. Let K € A(Y) and a € Y \ K. Obviously, dy (a, K) = dx(a, K).

If f € X* separates a from K, then so does g := fjy € Y. Obviously,
llgll < ||f]|- Hence wdx (a, K) < wdy (a, K) (in fact, wdx (a, K) = wdy (a, K)
due to the Hahn—Banach theorem). Thus ws(X) > ws(Y).

Next, if ¢ € P(X) separates a from K, then so does ¢ := ¢y € P(Y).
Obviously, r(¢) > r(¢). Hence pdx (a, K) < pdy (a, K). Thus ps(X) > ps(Y).

Now, let K € A(X/Y) and a € (X/Y)\ K. Let T : X — X/Y be the
quotient mapping. Choose some @ € X with Ta = a and let K := T~1(K).
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Then it is not hard to see that
dx (@, K) = dxy(a, K), wdx(@,K) = wdy)y(a, K)
and pdy (@, K) = pdx,y(a, K). This implies that
ws(X) > ws(X/Y), wp(X)>wp(X/Y) and ps(X)> ps(X/Y). m

LEMMA 1.3. Let T : X — 'Y be a linear operator between normed spaces,
and let K € A(X) and a € X \ K. Then

(i) dy(T(a), T(K)) < T - dx(a, K),
(i) wdy (T (a), T(K)) < [T - wdx(a, K),
(iii) pdy (T'(a), T(K)) < [T - pdx(a, K).

Inequality (i) is obvious, while (ii) and (iii) are direct consequences of
the corresponding definitions.

The Banach—Mazur distance between normed spaces X and Y is denoted
by d(X,Y).

LEMMA 1.4. Let X,Y be normed spaces. Then

(i) ws(X) < ws(Y) - d(X,Y),
(i) wp(X) < wp(Y) - d(X,Y),
(iii) ps(X) < ps(¥) - d(X,Y).

Proof. Choose a linear isomorphism T': X — Y with ||T| - |77} =
d(X,Y). Let K € A(X) and a € X \ K. By Lemma [1.3(i) applied to the
operator T~ : Y — X, we have

(1.5) dx(a,K) < |T7"] - dy(T(a), T(K)),
and Lemma [1.3(ii) says that
(1.6) wdx (a, K) > ||T||7" - wdy (T(a), T(K)).

Similarly, by Lemma [1.3(iii) we have

(17) pisc(a, ) < [T - pdy (T(a). T(K).
(18) piy(a, K) > |[T] " - pdy (T(a), T(K)).
Thus
@R 171 dy (T(a), T(K)
WSO iy (a, K) S0P T wdy (T {a), T(K)
a€X\K a€X\K
—ir - s -2OL) _ax vy sy,

LeA(y) wdy (b, L)
beY\L
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which proves (i). Next,

def pdx(a, K) €D |77 - pdy (T(a), T(K))
wp(X)= sup ————=~ < sup —
X o wix(@K) = iy 1T - wdy (T(a), T(K))
aeX\K aeX\K
_ dy (b, L)
=|T|-IT7Y - sup pYi’:dX,y.Wpy’
T[T LS wdy (b, ) (X,Y)-wp(Y)
beY'\L
which proves (ii). Finally,
det dx(a, K) .65 IT—Y| - dy (T(a), T(K))
ps(X)= sup ———= < sup —
X o bx(@E) = k2P T - pdy (T(a), T(K))
aeX\K aeX\K
_ dy (b, L)
=T|-IT7 Y- sup — -~ =d(X,Y) ps(Y),
T[T U pdy (b.1) (X,Y) -ps(Y)
beY'\L

which proves (iii). =

We will need the following standard facts about Banach—Mazur distances
between [} spaces:

(1.9) d(ly,13) =n'/P712 1 <p<a,
(1.10) a(n, iy =n'"tr, 1< p<2,
(1.11) a(n, 1) < 3n'/?, 2<p<oo
(see e.g. |JL, pp. 43-44]).

2. Estimates of wp(l}). Let u be a Radon probability measure on R™.
The Fourier transform of u is defined by

fi(z) = | ™™du(y), zeR™
RTL
LEMMA 2.1. Let pu be a Radon probability measure on R™. Suppose that
for some 0 < e < 1/2,
(2.1) Repi(z) >1—¢  forall x € BY.
Then p({y € R™: ||yl > 1/3}) < 2e.
Proof. Let V.= {y € R" : |ly|l2 > 1/3} and U = R™ \ V. Let v be the

probability measure uniformly distributed on BY.. Naturally, v is real-valued
and we may write

V= S Refi(z) dv(z) = Re S p(x) dv(x)
Bz R™
= Re | D) du(y) = | o) duty) = (§+ ) o(y) duly).
Uu Vv

R7 R7
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Standard calculations show that if y = (y1,...,yn) € V, then

Consequently,

9 < Yduly) + 3 § duly) = () + u(V)/2 = 1~ u(V)/2.
U |4

On the other hand, (2.1]) implies that ¢ > 1 — . Hence pu(V) < 2¢. =

LEMMA 2.2. Let K € AR") and a € R\ K. If pd.(a,K) > 1, then
wda(a, K) >1/9.

Proof. In view of (1.2) and (1.3) it is enough to show that pd ., (a, K) > 3
implies wds(a, K) > 1/3. So, assume that pd,(a, K) > 3. Then there is some
¢ € P(R") with ¢ = 1 such that Rep(a) < 1/6 and Rep(z) > 5/6 for
x € Bl. According to the Bochner theorem, there is a (unique) Radon
probability measure p on R"™ with 11 = ¢. Since ¢ = 1, the measure p is
concentrated on the dual subgroup

K*:={zx e R": 2y € Z for each y € K},

Le. wW(R"\K*)=0.Let U = {y € R": ||y|l2 < 1/3} and V = R"\ U. Setting
£ =1/6 in Lemma[2.1] we get (V) < 1/3, so that u(K*NU) = p(U) > 2/3.
If cos(2may) > 3/4 for all y € K* N U, then

1

o > Rep(a) = | cos(2ray)du(y) = ( | + | )cos(2nay)dp(y)
K* K*nU K*NV
3 3 2 1 1
Cu(K* —uw(K*NnV)>=Z2.2_Z ==

which is impossible. So, there must be some yy € K* N U with cos(2mwayy)
< 3/4. Then d(ayg,Z) > (27) " arccos(3/4) > 1/9 and

d 7 d 7 1 1
wda(a, K) = max (ay, Z) > (ayo, Z) ﬁ =
veK: lyll2 llyoll2 /3 3

The first equality above follows from (1.1) (we identify here (I§)* with I§ in
the usual way). =

LEMMA 2.3. One has wp(l}) > %n for all n > 1.
Proof. Fix n and consider the function ¢ : R — R given by

Y(z) =1-3nd(z,n'Z), —oo<z<o0.
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Clearly, ¢ is a piecewise-linear, continuous and positive definite periodic
function on R, with period n~!'; direct calculations show that
7 10 X cos[(2k + 1)2mn]

- - — <x < .
W) =35t 3 L2k e

Thus ¢ € P(R). We have ¢(3n!) = 1/6 and
(2.2) Y(z) >1-3njz[, —oo<z< 0.

Let K = n~'Z" c R"® and a = (ay,...,a,), where a; = %n‘l for
k=1,...,n. Let ¢ : R" — R be given by

1 n
= gzw@k% x=(x1,...,2,) € R"™.
k=1

Since 1 € P(R), it follows that ¢ € P(R"). It is clear that ¢ = 1 and
v(a) =1/6. By (2.2), for each x = (x1,...,z,) € R™ we have
1 n
olx) > -3 (1= Snlayl) =1 el
k=1
So, if ||z|y < r := 1/10, then ¢(x) > 5/6. This means that pd;(a, K) >
3r = 3/10.
Set K* = {f € (I1)*" : f(K) C Z}. We may identify (I7)* with [, and
K* with nZ™. If f € K* and f # 0, then || f|| > n. Thus

Af(@,2) _ 1

Consequently,

THEOREM 2.4. For all n > 1 one has
(i) 2nt/P <wp(l?) <9n'/P, 1<p<2,
(ii) %nl/Q <wp(ly) < In'/?2, 2 <p<oo.
Proof. By Lemmas and [1.4{ii) we have
In < wplI}) < wp(I2) - (i3, 1), 1<p< oo

Hence
-
wp(lp) > End(I},1p)"" = En-ntPTt =St 1 <p <o,

5
n -
wp(ly) > Snd(iy, 1) =
This yields the 1ower estimates in (i ) and (ii).

3
57
3 1,-1/2 _ 1,1/2
3N =5,

Ul
[N}
N
i
A
8
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To obtain the upper estimates, suppose first that p > 2. Let K € A(R™)
and a € R"\ K. We want to show that
pdp(avK) < 977,1/2.
wdp(a, K) —
In view of (1.2) and (1.3) we may assume that pd,(a, K) = n/P. Then
pdoo(a, K) > 1, because || - ||oo/| - I, > n~'/7. Hence wda(a, K) > 1/9 due
to Lemma Since | - [|/| - [l2 > n'/P~1/2 it follows that

wdy(a, K) > P12 ydy(a, K) > énl/p_lﬂ,

which proves ([2.3)).

We have thus proved that Wp(lg) < 9n1/2 for p > 2, in particular for
p = 2. Hence, by Lemma (ii), for p < 2 we obtain

wp(I) < wp(ig) - d(In, 1) < 9nl/2 . pl/e=1/2 —gpl/p.

(2.3)

REMARK. Let X be an n-dimensional normed space. By Dvoretzky’s
theorem, there exists a subspace Y of X such that m := dim(X/Y") > ¢glogn
and d(X/Y,15") < 2, where ¢g > 0 is some universal constant. Hence, by

Lemmas [I.2[(ii), [[.4[ii) and Theorem [2.4]i), we get
wp(X) > wp(X/Y) > Lwp(i') > Em'/? > e (logn) /2,

For some special classes of spaces the estimate m > ¢glogn can be much
improved, which leads to the corresponding improvement of the lower esti-
mate of wp(X). Conjecture: there is a universal constant ¢ > 0 such that
wp(X) > en'/? for any n-dimensional normed space X.

3. Estimates of ps(l}))

THEOREM 3.1. There is a universal constant ¢ > 0 such that ps(X) >
en’? for any n-dimensional normed space X .

Proof. According to the quotient of subspace theorem of Milman (see e.g.
[ILM|, Th. 3.1.1] or [GM) Th. 5.3.1]), there are subspaces Z C Y C X such
that m := dim(Y/Z) > n/2 and d(Y/Z,15") < C, where C is some universal
constant. From Lemmas [1.2{iii) and [I.4{(iii) we obtain
(3.1)  ps(X) = ps(Y) 2 ps(Y/Z) = d(Y/Z, 1) - ps(iF) = C ps(if).
From Theorem [2.4(i) and Lemma 1.1 it follows that

Om'/? - ps(i5") = wp(l5') - ps(l") = ws(l5").
Next, we have ws(I5*) > (2re)~'m (see (T.4)). Hence ps(Iy’) > ¢ym'/?,
where ¢; = (18me)~!. As m > n/2, it follows that ps(l5*) > 271/2¢;nl/2.
From this and (3.1)) we obtain ps(X) > 27%2¢;C~'n!/2. u
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Let K € A(R"™). Let m be the dimension of the components of K and let
Ax be the m-dimensional Lebesgue measure on K. We define

oK (z) = S e mlle—yl3 d)‘K(y)/S e I3 dape(y), z € R™
K K

It is not hard to see that o € P(R™) (see [B4, Lemma 4.4]). For a convex
body U € C,, we define

BU) = sup sup (S eI/ 3 i),
LEL, z€R™ <y€(L+z)\U el )

LEMMA 3.2. Let K € AR"), a € R" and U €C,. If (U+a)NK =10,
then @xc(a) < B(U).

This is a direct consequence of [B2, Lemma 1.3].
LEMMA 3.3. For all n > 1 one has

(i) B(rBy) < pnﬂ*p/2f(%p)r*p, p>1, r>0,

(ii) B(rBy) < 2(2me)2n "2~ 1> (n/27)V/2,
(iii) B(rBL) < 2ne™™", r>0.
This was proved in [B2, Lemmas 2.8-2.10].
THEOREM 3.4. For all n > 1 one has

(i) ps(lp) < gn'/?, 1<p<2,

(i) ps(ir) < 2p*2nl/2 2 <p< oo,

(iif) ps(I™) < n'/2(3 + logn)'/2.

Proof. (i) Suppose first that p = 2. Fix n > 1. Next, take K € A(R")
and a € R" such that

(3.2) dy(a, K) > n'/2.
We will prove that
(3.3) prc(a) < 1/6.

Suppose first that n = 1. If K = {0}, then g (z) = e™ for z € R, so
that g (a) = e ™ < e™™ < 1/6. If K # {0}, then K = 9Z for some 9 > 0,

and
SDK(SU) _ Z e*ﬂ'(ﬂ?‘i’k'ﬂ)Q/Ze*ﬂ'klﬂQ’ reR.
keZ keZ

As d(a,9Z) > 1, we have ¥ > 2 and it is not hard to see that

prc(a) < 3 eTmEHRDT < 9(emT 4 o0 ey ) < 1/6.
kEeZ
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If n > 2, then, by Lemma (ii),

B(n'2BY) < 2(2me)"/? e™™ = 2(2me! 72™)? < 1/6,
and (3.3]) follows from Lemma

By [B4, Lemma 4.4(ii)] we have ¢ (z) > e ™I2I3 for all € R”. This
means that g (z) > 5/6 whenever |z]2 < ¢ = (%logg)lm. Hence,
by (33).

(3.4) pdy(a, K) > 3cp.

We have thus shown that (3.2) implies (3.4), for all K and a. In view
of (1.3, this means that
. d K 1/2
(3.5) ps(18) < sup 2, K) 7 Inl/2
K. Pda(a, K) = 3co
If p < 2, then from Lemma [1.4{iii) we obtain

ps(ip) < ps(1g) - d(iy, 1) LT Lnl/2 ptloo12 = 1,

(ii) Fix n > 1 and p > 2. Let r := %pl/in/Q. From Lemma (i), after
easy computations based on Stirling’s formula, we get

(3.6) B(rBy) < 1/6.
Take K € A(R"™) and a € R™ such that
(3.7) dp(a, K) >

Then from and Lemma we get . Hence, as before, we ob-
tain ((3.4)). As H Ip/1l - ll2 > n'/P=1/2 it follows that

(3.8) pdy(a, K) > 3cont/P=1/2,
We have thus shown that (3.7) implies (3.8), for all K and a. In view
of ([1.3)), this yields

v dya,K) , 7
gy et pla, K) _ 1/2,1/2
psly) = UE)Pd (0,K) = Begn!/p172 ~ 15" "

The proof of (iii) is analogous, only Lemma [3.3(i) should be replaced by
Lemma [3.3(iii). =

1/2,,1/2

< 2p
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