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Asymptotic structure and coarse Lipschitz geometry
of Banach spaces

by

B. M. Braga (Chicago, IL)

Abstract. We study the coarse Lipschitz geometry of Banach spaces with several
asymptotic properties. Specifically, we look at asymptotic uniform smoothness and
convexity, and several distinct Banach–Saks-like properties. We characterize the Banach
spaces which are either coarsely or uniformly homeomorphic to T p1 ⊕ · · · ⊕ T pn , where
each T pj denotes the pj-convexification of the Tsirelson space, for p1, . . . , pn ∈ (1, . . . ,∞)
and 2 6∈ {p1, . . . , pn}. We obtain applications to the coarse Lipschitz geometry of the
p-convexifications of the Schlumprecht space, and some hereditarily indecomposable Ba-
nach spaces. We also obtain some new results in the linear theory of Banach spaces.

1. Introduction. In this paper, we study nonlinear embeddings and
nonlinear equivalences between Banach spaces. For that, we look at a Banach
space (X, ‖ ·‖) as a metric space endowed with the metric ‖ ·−·‖. Let (M,d)
and (N, ∂) be metric spaces, and f : M → N be a map. For each t ∈ [0,∞),
we define the expansion modulus of f as

ωf (t) = sup{∂(f(x), f(y)) | d(x, y) ≤ t}
and the compression modulus of f as

ρf (t) = inf{∂(f(x), f(y)) | d(x, y) ≥ t}.
We say that f is a coarse map if ωf (t) < ∞ for all t ∈ [0,∞). If, in ad-
dition, limt→∞ ρf (t) = ∞, then f is a coarse embedding. We say that f
is a coarse equivalence if f is both a coarse embedding and cobounded, i.e.,
supy∈N ∂(y, f(M)) <∞. The map f is a uniform embedding if limt→0+ ωf (t)
= 0 and ρf (t) > 0 for all t ∈ (0,∞). A surjective uniform embedding is called
a uniform homeomorphism. If there exists L > 0 such that ωf (t) ≤ Lt + L
for all t ∈ [0,∞), then we call f a coarse Lipschitz map. If, in addition,
ρf (t) ≥ L−1t− L for all t ∈ [0,∞), then f is a coarse Lipschitz embedding.
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A uniformly continuous map f : X → N from a Banach space X to a
metric space N is automatically a coarse map (again see [K, Lemma 1.4]).
Similarly, f : X → M is a coarse map if and only if it is a coarse Lipschitz
map (see [K, Lemma 1.4]). Also, if two Banach spaces X and Y are coarsely
equivalent (resp. uniformly homeomorphic) then X coarse Lipschitz embeds
into Y (see [K, Proposition 1.5]).

In these notes, we are mainly interested in what kind of stability proper-
ties those notions of nonlinear embeddings and nonlinear equivalences may
have, and we will mainly work with Banach spaces having some kind of
asymptotic property. More specifically, we are concerned with asymptotically
uniformly smooth Banach spaces, asymptotically uniformly convex Banach
spaces, and Banach spaces having several different Banach–Saks-like prop-
erties (we refer to Section 2 for precise definitions).

The following general question is a central problem when dealing with
nonlinear embeddings between Banach spaces.

Problem 1.1. Let P and P ′ be classes of Banach spaces and E be a
kind of nonlinear embedding between Banach spaces. If a Banach space X
E-embeds into a Banach space Y in P, does it follow that X is in P ′?

For example, if a separable Banach space X coarse Lipschitz embeds into
a super-reflexive Banach space, then X is also super-reflexive (this follows
from [K, Proposition 1.6 and Theorem 2.4] but was first proved for uniform
equivalences in [Ri, Theorem 1A]). Another example was given by M. Mendel
and A. Naor [MN, Theorem 1.11], where they showed that if a Banach space
X coarsely embeds into a Banach space Y with cotype q and nontrivial type,
then X has cotype q + ε for all ε > 0.

If we look at nonlinear equivalences between Banach spaces, the following
is a central problem in the theory.

Problem 1.2. Let X be a Banach space and E be a kind of nonlinear
equivalence between Banach spaces. If a Banach space Y is E-equivalent to X,
what can we say about the isomorphism type of Y ? More precisely:

(i) Is the linear structure of X determined by its E-structure, i.e., if a
Banach space Y is E-equivalent to X, does it follow that Y is linearly
isomorphic to X?

(ii) Let P be a class of Banach spaces. If Y is E-equivalent to X, does
is follow that Y is linearly isomorphic to X ⊕ Z for some Banach
space Z in P?

Along those lines, it was shown in [JLS, Theorem 2.1] that the coarse
(resp. uniform) structure of `p completely determines its linear structure
for any p ∈ (1,∞). For p = 1, we do not even know if the Lipschitz
structure of `1 determines its linear structure. N. Kalton and N. Randria-
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narivony [KR, Theorem 5.4] proved that, for any p1, . . . , pn ∈ (1,∞) with
2 6∈ {p1, . . . , pn}, the linear structure of `p1 ⊕ · · · ⊕ `pn is determined by its
coarse (resp. uniform) structure (see also [JLS, Theorem 2.2]). This problem
is still open if 2 ∈ {p1, . . . , pn}.

Let T denote the Tsirelson space introduced by T. Figiel and W. John-
son [FJ]. For each p ∈ [1,∞), let T p be the p-convexification of T (see Sub-
section 2.6 for definitions). W. Johnson, J. Lindenstrauss and G. Schechtman
addressed Problem 1.2(ii) above by proving the following (see [JLS, Theo-
rem 5.8]): Suppose that either 1 < p1 < · · · < pn < 2 or 2 < p1 < · · · < pn
and set X = T p1 ⊕ · · · ⊕ T pn . Then a Banach space Y is coarsely equivalent
(resp. uniformly homeomorphic) to X if and only if Y is linearly isomorphic
to X ⊕

⊕
j∈F `pj for some F ⊂ {1, . . . , n}.

We now describe the organization and some of the results of this paper.
Firstly, in order not to make this introduction too extensive, we will post-
pone some technical definitions as well as our more technical results. The
reader will find all the background and notation necessary for this paper in
Section 2.

In relation to Problem 1.1, we prove the following in Section 3.

Theorem 1.3. Let Y be a reflexive asymptotically uniformly smooth Ba-
nach space, and assume that a Banach space X coarse Lipschitz embeds
into Y . Then X has the Banach–Saks property.

As the Banach–Saks property implies reflexivity, Theorem 1.3 above is
a strengthening of [BKL, Theorem 4.1] where the authors showed that if a
separable Banach space X coarse Lipschitz embeds into a reflexive asymp-
totically uniformly smooth Banach space, then X must be reflexive. As T
is a reflexive Banach space without the Banach–Saks property, Theorem 1.3
gives us the following new corollary.

Corollary 1.4. The Tsirelson space does not coarse Lipschitz embed
into any reflexive asymptotically uniformly smooth Banach space.

In Section 3, we also prove some results in the linear theory of Banach
spaces. Precisely, we show that an asymptotically uniformly smooth Ba-
nach space X must have the alternating Banach–Saks property (see Corol-
lary 3.2). Using descriptive-set-theoretical arguments, we also show that the
converse does not hold, i.e., that there are Banach spaces with the alternat-
ing Banach–Saks property which do not admit an asymptotically uniformly
smooth renorming (see Proposition 3.8).

In Section 4, we study coarse embeddings f : X → Y between Banach
spaces X and Y with specific asymptotic properties, and obtain a general
result on how close to an affine map the compression modulus ρf can be (see
Theorem 4.1). More precisely, E. Guentner and J. Kaminker [GK] introduced
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the following quantity: for Banach spaces X and Y , define αY (X) as the
supremum of all α > 0 for which there exists a coarse embedding f : X → Y
and L > 0 such that ρf (t) ≥ L−1tα − L for all t ≥ 0. We call αY (X) the
compression exponent of X in Y . As a simple consequence of Theorem 4.1,
we obtain Theorem 1.5 below.

We denote by S the Schlumprecht space introduced in [Sc], and for
each p ∈ [1,∞), we let Sp be the p-convexification of S, and T p be the
p-convexification of the Tsirelson space T (see Subsection 2.6 for definitions).

Theorem 1.5. Let 1 ≤ p < q. Then

(i) αT q(T p) ≤ p/q, and
(ii) αSq(Sp) ≤ p/q.

In particular, T p (resp. Sp) does not coarse Lipschitz embed into T q

(resp. Sq).

The proof of Theorem 1.5 is asymptotical in nature, hence we obtain
equivalent estimates for the compression exponent αY (X), where X and Y
are Banach spaces satisfying some special asymptotic properties. In partic-
ular, the spaces T q and Sq can be replaced in Theorem 1.5 by (

⊕
nEn)T q

and (
⊕

nEn)Sq , where (En)∞n=1 is any sequence of finite-dimensional Banach
spaces. See Theorems 4.3 and 4.5 and Corollary 4.7 for precise statements.

We also apply our results to the hereditarily indecomposable Banach
spaces Xp defined by N. Dew [D], and deduce that αXq(Xp) ≤ p/q for 1 <
p < q (see Corollary 4.8).

In Section 5, we prove a general theorem regarding the nonexistence of
coarse Lipschitz embeddings X → Y1 ⊕ Y2 for Banach spaces X,Y1, Y2 with
specific asymptotic properties (see Theorem 5.6). With that result in hand,
we prove the following.

Theorem 1.6. Let 1≤ p1 < · · · < pn <∞ and p ∈ [1,∞)\{p1, . . . , pn}.
Then neither T p nor `p coarse Lipschitz embeds into T p1 ⊕ · · · ⊕ T pn. In
particular, T p coarse Lipschitz embeds into T q for no p, q ∈ [1,∞) with
p 6= q.

Finally, we use Theorem 1.6 to obtain the following characterization.

Theorem 1.7. Let 1 < p1 < · · · < pn < ∞ with 2 6∈ {p1, . . . , pn}.
A Banach space Y is coarsely equivalent (resp. uniformly homeomorphic) to
X = T p1⊕· · ·⊕T pn if and only if Y is linearly isomorphic to X⊕

⊕
j∈F `pj

for some F ⊂ {1, . . . , n}.

Clearly, Theorem 1.7 is a strengthening of [JLS, Theorem 5.8]. However,
just as for `p1 ⊕ · · · ⊕ `pn , we do not know whether the theorem above holds
if 2 ∈ {p1, . . . , pn}.
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2. Notation and background

2.1. Basic definitions. All the Banach spaces in these notes are as-
sumed to be infinite-dimensional unless otherwise stated. Let X be a Ba-
nach space. We denote the closed unit ball of X by BX , and its unit sphere
by ∂BX . If Y is also a Banach space, we write X ∼= Y if X is linearly isomor-
phic to Y . Given a Banach space X with norm ‖ ·‖X , we simply write ‖ ·‖ as
long as it is clear from the context which space the elements inside the norm
belong to. A sequence (xn)∞n=1 in a Banach space X is called seminormalized
if it is bounded and infn ‖xn‖ > 0.

Say (en)∞n=1 is a basis for the Banach space X. For x =
∑∞

n=1 xnen ∈ X,
we write supp(x) = {n ∈ N | xn 6= 0}. For all finite subsets E,F ⊂ N,
we write E < F (resp. E ≤ F ) if maxE < minF (resp. maxE ≤ minF ).
We call a sequence (yn)∞n=1 in X a block sequence of (en)∞n=1 if supp(yn) <
supp(yn+1) for all n ∈ N.

Let (Xn)∞n=1 be a sequence of Banach spaces. Let E = (en)∞n=1 be a 1-
unconditional basic sequence in a Banach space E with norm ‖·‖E . We define
the sum (

⊕
nXn)E to be the space of sequences (xn)∞n=1, where xn ∈ Xn for

all n ∈ N, such that

‖(xn)∞n=1‖ :=
∥∥∥∑
n∈N
‖xn‖en

∥∥∥
E
<∞.

One can check that (
⊕

nXn)E endowed with the norm ‖ · ‖ defined above is
a Banach space. If the Xn’s are all the same, say Xn = X for all n ∈ N, we
write (

⊕
X)E . Also, if it is implicit what is the basis E of the Banach space

E that we are working with, we write (
⊕

nXn)E .

2.2. p-convex and p-concave Banach spaces. Let X be a Banach
space with 1-unconditional basis (en)∞n=1, and let p ∈ (1,∞). We say that
the basis (en)∞n=1 is p-convex with convexity constant C (resp. p-concave with
concavity constant C) if∥∥∥∑

j∈N
(|x1j |p + · · ·+ |xkj |p)1/pej

∥∥∥p ≤ Cp k∑
n=1

‖xn‖p

(
resp. Cp

∥∥∥∑
j∈N

(|x1j |p + · · ·+ |xkj |p)1/pej
∥∥∥p ≥ k∑

n=1

‖xn‖p
)

for all x1 =
∑∞

j=1 x
1
jej , . . . , x

k =
∑∞

j=1 x
k
j ej ∈ X. We say that the basis

(en)∞n=1 satisfies an upper `p-estimate with constant C (resp. lower `p-estimate
with constant C) if

‖x1 + · · ·+ xk‖p ≤ Cp
k∑

n=1

‖xn‖p
(
resp. Cp‖x1 + · · ·+ xk‖p ≥

k∑
n=1

‖xn‖p
)
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for all x1, . . . , xk ∈ X with disjoint supports. Clearly, a p-convex (resp.
p-concave) basis with constant C satisfies an upper (resp. lower) `p-estimate
with constant C.

2.3. p-convexification. Let X be a Banach space with a 1-uncondi-
tional basis (en)∞n=1. For any p ∈ [1,∞), we define the p-convexification of
X as follows. Let

Xp =
{

(xn)∞n=1 ∈ RN
∣∣∣ xp :=

∑
n∈N
|xn|pen ∈ X

}
,

and endow Xp with the norm ‖x‖p = ‖xp‖1/p for all x ∈ Xp. By abuse of
notation, we denote by (en)∞n=1 the sequence of coordinate vectors in Xp. It
is clear that (en)∞n=1 is a 1-unconditional basis for Xp and that X1 = X.
Also, the triangle inequality implies that Xp is p-convex with constant 1.

2.4. Asymptotically p-uniformly smooth and convex spaces. Let
X be a Banach space. We define the modulus of asymptotic uniform smooth-
ness of X as

ρX(t) = sup
x∈∂BX

inf
dim(X/E)<∞

sup
h∈∂BE

‖x+ th‖ − 1.

We say that X is asymptotically uniformly smooth if limt→0+ ρX(t)/t = 0.
If there exist p ∈ (1,∞) and C > 0 such that ρX(t) ≤ Ctp for all t ∈ [0, 1],
we say that X is asymptotically p-uniformly smooth. Every asymptotically
uniformly smooth Banach space is asymptotically p-uniformly smooth for
some p ∈ (1,∞) (this was first proved in [KOS] for separable Banach spaces,
and later generalized to any Banach space in [Ra, Theorem 1.2]).

Let X be a Banach space. We define the modulus of asymptotic uniform
convexity of X as

δX(t) = inf
x∈∂BX

sup
dim(X/E)<∞

inf
h∈∂BE

‖x+ th‖ − 1.

We say that X is asymptotically uniformly convex if δX(t) > 0 for all t > 0.
If there exist p ∈ (1,∞) and C > 0 such that δX(t) ≥ Ctp for all t ∈ [0, 1],
we say that X is asymptotically p-uniformly convex.

The following proposition is straightforward.

Proposition 2.1. Let p ∈ (1,∞) and let X be a Banach space with a
1-unconditional basis satisfying an upper `p-estimate (resp. lower `p-estimate)
with constant 1. Then X is asymptotically p-uniformly smooth (resp. asymp-
totically p-uniformly convex ).

2.5. Banach–Saks properties. A Banach space X is said to have the
Banach–Saks property if every bounded sequence (xn)∞n=1 in X has a subse-
quence (xnj )

∞
j=1 such that (k−1

∑k
j=1 xnj )

∞
k=1 converges. A Banach spaceX is
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said to have the alternating Banach–Saks property if every bounded sequence
(xn)∞n=1 inX has a subsequence (xnj )

∞
j=1 such that (k−1

∑k
j=1 εjxnj )

∞
k=1 con-

verges for some (εj)
∞
j=1 ∈ {−1, 1}N. For a detailed study of these properties,

we refer to [Be].
Let p ∈ (1,∞). A Banach space X is said to have the p-Banach–Saks

property (resp. p-co-Banach–Saks property) if for every seminormalizedweakly
null sequence (xn)∞n=1 in X there exists a subsequence (xnj )

∞
j=1 and c > 0

such that

‖xn1 + · · ·+ xnk
‖ ≤ ck1/p (resp. ‖xn1 + · · ·+ xnk

‖ ≥ ck1/p)

for all k ∈ N and all k ≤ n1 < · · · < nk.
The following is a combination of [DGJ, Propositions 1.2, 1.3 and 1.6]

([DGJ, Proposition 1.6] only mentions the p-Banach–Saks property, but
a straightforward modification of the proof gives the result for the p-co-
Banach–Saks property).

Proposition 2.2. Let p ∈ (1,∞) and let X be a Banach space. If
X is asymptotically p-uniformly smooth (resp. asymptotically p-uniformly
convex), then X has the p-Banach–Saks property (resp. p-co-Banach–Saks
property).

2.6. Tsirelson and Schlumprecht spaces. Let c00 denote the set of
sequences of real numbers which are eventually zero, and let ‖ · ‖0 be the
max norm on c00. We denote by T the Tsirelson space defined in [FJ], i.e.,
T is the completion of c00 under the unique norm ‖ · ‖ satisfying

‖x‖ = max

{
‖x‖0,

1

2
sup
( k∑
j=1

‖Ejx‖
)}

,

where the supremum is taken over all finite sequences (Ej)
k
j=1 of finite subsets

of N such that k ≤ E1 < · · · < Ek. Therefore, for each p ∈ (1,∞), the norm
‖ · ‖p of the p-convexified Tsirelson space T p satisfies

‖x‖p = max

{
‖x‖0,

1

21/p
sup
( k∑
j=1

‖Ejx‖pp
)1/p}

,

where the supremum is taken over all finite sequences (Ej)
k
j=1 of finite subsets

of N such that k ≤ E1 < · · · < Ek (see [CS, Chapter X, Section E]).
As T p satisfies an upper `p-estimate with constant 1, it follows that T p is

asymptotically p-uniformly smooth and it has the p-Banach–Saks property.
Also, T p has the p-co-Banach–Saks property. Indeed, let (en)∞n=1 be the stan-
dard basis for T p. If (xn)∞n=1 is a normalized block subsequence of (en)∞n=1,
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then

2−1/pk1/p = 2−1/p
(2k−1∑
n=k

‖xn‖pp
)1/p

≤
∥∥∥2k−1∑
n=k

xn

∥∥∥
p

for all k ∈ N. Therefore, as for any normalized weakly null sequence (xn)∞n=1

in T p one can find a block sequence (yn)∞n=1 which is equivalent to a subse-
quence of (xn)∞n=1, we conclude that T p has the p-co-Banach–Saks property.

Remark 2.3. Let p ∈ (1,∞). Then T p contains `r for no r ∈ [1,∞) (this
is shown in [J2] for T , and the result for T p follows analogously). Similarly,
by duality arguments, T p∗ contains `r for no r ∈ [1,∞) (the reader can find
more on T p and similar duality arguments in [CS]).

The Schlumprecht space S (see [Sc]) is defined as the completion of c00
under the unique norm ‖ · ‖ satisfying

‖x‖ = max

{
‖x‖0, sup

1

log2(k + 1)

k∑
j=1

‖Ejx‖
}

where the supremum is taken over all finite sequences (Ej)
k
j=1 of finite subsets

of N such that E1 < · · · < Ek. Similarly to the p-convexified Tsirelson space,
the norm ‖ · ‖p of the p-convexified Schlumprecht space Sp is given by

‖x‖p = max

{
‖x‖0, sup

(
1

log2(k + 1)

k∑
j=1

‖Ejx‖pp
)1/p}

,

where the supremum is taken over all finite sequences (Ej)
k
j=1 of finite subsets

of N such that E1 < · · · < Ek (see [D, p. 59]).
Similarly to T p, the space Sp is asymptotically p-uniformly smooth and

has the p-Banach–Saks property, for p ∈ (1,∞).

2.7. Almost p-co-Banach–Saks property. Although T p has the p-co-
Banach–Saks property, Sp does not. However, Sp satisfies a weaker property
that will be enough for our goals. Let p ∈ (1,∞). We say that a Banach space
X has the almost p-co-Banach–Saks property if for every seminormalized
weakly null sequence (xn)∞n=1 in X there exists a subsequence (xnj )

∞
j=1 and a

sequence (θj)
∞
j=1 of positive numbers in [1,∞) such that limj→∞ j

αθ−1j =∞
for all α > 0, and

‖xn1 + · · ·+ xnk
‖ ≥ k1/pθ−1k

for all k ∈ N and all k ≤ n1 < · · · < nk. Clearly, Sp has the almost p-co-
Banach–Saks property with θk = log2(k + 1)1/p for all k ∈ N.

3. Asymptotic uniform smoothness and the alternating Banach–
Saks property. In this section, we are going to show that asymptoti-



Asymptotic structure and coarse Lipschitz geometry 79

cally uniformly smooth Banach spaces must have the alternating Banach–
Saks property (Corollary 3.2), but the converse does not hold (see Proposi-
tion 3.8). Also, we show that if a Banach space X coarse Lipschitz embeds
into a reflexive space Y which is also asymptotically uniformly smooth, then
X must have the Banach–Saks property (Theorem 1.3). As any space with
the Banach–Saks property is reflexive, this is a strengthening of [BKL, The-
orem 4.1], which says that, under the same hypothesis, X must be reflexive.

Proposition 3.1. Let X be a Banach space with the p-Banach–Saks
property for some p ∈ (1,∞), and assume that X does not contain `1. Then
X has the alternating Banach–Saks property. In particular, if X is also
reflexive, then X has the Banach–Saks property.

Proof. Assume X does not have the alternating Banach–Saks property.
Then there exist δ > 0 and a bounded sequence (xn)∞n=1 in X such that for
all k ∈ N, all ε1, . . . , εk ∈ {−1, 1}, and all n1 < · · · < nk ∈ N, we have∥∥∥∥1

k

k∑
j=1

εjxnj

∥∥∥∥ > δ(3.1)

(see [Be, Theorem 1, p. 369]). As X does not contain `1, by Rosenthal’s `1-
theorem (see [Ro]) we can assume that (xn)∞n=1 is weakly Cauchy. Hence, the
sequence (x2n−1−x2n)∞n=1 is weakly null. By (3.1), it is also seminormalized.
Therefore, as X has the p-Banach–Saks property, by taking a subsequence
if necessary, we see that∥∥∥ k∑

j=1

(xn2j−1 − xn2j )
∥∥∥ ≤ ck1/p

for all k ∈ N and some constant c > 0 independent of k. Again by (3.1), we
get

δ <

∥∥∥∥ 1

2k

2k∑
j=1

(−1)j+1xnj

∥∥∥∥ ≤ c

2
k1/p−1.

As this holds for all k ∈ N, and p > 1, if we let k →∞, we get δ = 0, which
is a contradiction.

For reflexive spaces, the alternating Banach–Saks property and the
Banach–Saks property are equivalent (see [Be, Proposition 2]), so the last
statement of the proposition follows.

Corollary 3.2. Let X be an asymptotically uniformly smooth Banach
space. Then X has the alternating Banach–Saks property. In particular, if
X is also reflexive, then X has the Banach–Saks property.

Proof. As X is asymptotically uniformly smooth, X cannot contain `1.
Therefore, we only need to notice that X has the p-Banach–Saks property
for some p ∈ (1,∞), and apply Proposition 3.1. By [Ra, Theorem 1.2],
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X is asymptotically p-uniformly smooth for some p ∈ (1,∞). Therefore, by
Proposition 2.2 above, X has the p-Banach–Saks property.

For each k ∈ N and each infinite subset M ⊂ N, we define Gk(M) as the
set of all subsets of M with k elements. We write n̄ = (n1, . . . , nk) ∈ Gk(M)
always in increasing order, i.e., n1 < · · · < nk. We define a metric d = dk on
Gk(M) by letting

d(n,m) = |{j | nj 6= mj}|
for all n = (n1, . . . , nk),m = (m1, . . . ,mk) ∈ Gk(M).

The following result will play an important role in this paper. It was
proved in [KR, Theorem 4.2] (see also [KR, Theorem 6.1]).

Theorem 3.3. Let p ∈ (1,∞), and let Y be a reflexive asymptotically
p-uniformly smooth Banach space. There exists K > 0 such that for all
infinite subsets M ⊂ N, all k ∈ N, and all bounded maps f : Gk(M) → Y ,
there exists an infinite subset M′ ⊂M such that

diam(f(Gk(M′))) ≤ K Lip(f)k1/p.

Proof of Theorem 1.3. Let f : X → Y be a coarse Lipschitz embedding.
Pick C > 0 so that ωf (t) ≤ Ct + C and ρf (t) ≥ C−1t − C for all t ≥ 0.
Assume that X does not have the Banach–Saks property. By [Be, p. 373],
there exists δ > 0 and a sequence (xn)∞n=1 in BX such that for all k ∈ N and
all n1 < · · · < n2k ∈ N, we have∥∥∥∥ 1

2k

k∑
j=1

(xnj − xnk+j
)

∥∥∥∥ ≥ δ.
For each k ∈ N, define ϕk : Gk(N)→ X by ϕk(n1, . . . , nk) = xn1 + · · ·+ xnk

for all (n1, . . . , nk) ∈ Gk(N). Therefore, diam(ϕk(Gk(M))) ≥ 2kδ, and we
have diam(f ◦ ϕk(Gk(M))) ≥ 2kδC−1 − C for all k ∈ N and all infinite
M ⊂ N.

As Lip(ϕk) ≤ 2, we have Lip(f ◦ ϕk) ≤ 3C. As Y is asymptotically
uniformly smooth, there exists p ∈ (1,∞) for which Y is asymptotically
p-uniformly smooth (see [Ra, Theorem 1.2]). By Theorem 3.3, there exist
K = K(Y ) > 0 and M ⊂ N such that diam(f ◦ ϕk(Gk(M))) ≤ 3KCk1/p for
all k ∈ N. We conclude that

2kδC−1 − C ≤ 3KCk1/p

for all k ∈ N. As p > 1, this leads to a contradiction if we let k →∞.

The following was asked in [GLZ, Problem 2], and remains open.

Problem 3.4. If a Banach space X coarse Lipschitz embeds into a re-
flexive asymptotically uniformly smooth Banach space Y , does it follow that
X has an asymptotically uniformly smooth renorming?
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Problem 3.5. Let N be a metric space. We say that a family (Mk)
∞
k=1

of metric spaces uniformly Lipschitz embeds into N if there exists C > 0
and Lipschitz embeddings fk : Mk → N such that Lip(f) · Lip(f−1) < C
for all k ∈ N. Does the family (Gk(N), d)∞k=1 uniformly Lipschitz embed into
any Banach space without an asymptotically uniformly smooth renorming?

As noticed in [GLZ, Problem 6], a positive answer to Problem 3.5 together
with Theorem 3.3 would give us a positive answer to Problem 3.4.

It is worth noticing that the Banach–Saks property is not stable under
uniform equivalences, hence, it is not stable under coarse Lipschitz isomor-
phisms either. Indeed, if (pn)∞n=1 is a sequence in (1,∞) converging to 1,
then (

⊕
n `pn)`2 is uniformly equivalent to (

⊕
n `pn)`2⊕`1 (see [BL, p. 244]).

The space (
⊕

n `pn)`2 has the Banach–Saks property, while (
⊕

n `pn)`2 ⊕ `1
does not.

Let G(N) denote the set of finite subsets of N. We endow G(N) with the
metric D given by

D(n,m) = |n4m|,
for all n = (n1, . . . , nk),m = (m1, . . . ,ml) ∈ G(N), where n4m denotes the
symmetric difference between the sets n and m.

Proposition 3.6. G(N) Lipschitz embeds into any Banach space X with-
out the alternating Banach–Saks property. Moreover, for any ε > 0, the Lip-
schitz embedding f : G(N) → X can be chosen so that Lip(f) · Lip(f−1) <
1 + ε.

Proof. By [Be, Theorem 1, p. 369], for all η > 0, there exists a bounded
sequence (xn)∞n=1 in X such that for all k ∈ N, all ε1, . . . , εk ∈ {−1, 1}, and
all n1 < · · · < nk, we have

1− η ≤
∥∥∥∥1

k

k∑
j=1

εjxnj

∥∥∥∥ ≤ 1 + η.

Define ϕ : G(N) → X by setting ϕ(n1, . . . , nk) = xn1 + · · · + xnk
for all

(n1, . . . , nk) ∈ G(N) \ {∅}, and ϕ(∅) = 0. Then

(1− η) ·D(n,m) ≤ ‖ϕk(n)− ϕk(m)‖ ≤ (1 + η) ·D(n,m)

for all n,m ∈ G(N).

Problem 3.7. If X has the Banach–Saks property, does it follow that
G(N) does not Lipschitz embed into X? In other words, if X is a reflexive
Banach space, does G(N) Lipschitz embed into X if and only if X does not
have the Banach–Saks property?

By Corollary 3.2 above, any Banach space with an asymptotically uni-
formly smooth renorming has the alternating Banach–Saks property. To the
best of our knowledge, there is no known example of a Banach space which
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has the alternating Banach–Saks property but does not admit an asymptoti-
cally uniformly smooth renorming. However, using descriptive-set-theoretical
arguments, one can show the existence of such spaces. Recall that (X,Ω) is
called a standard Borel space if X is a set and Ω is a σ-algebra on X which
is the Borel σ-algebra associated to a Polish topology on X (i.e., a topology
generated by a complete separable metric). A subset A ⊂ X is called ana-
lytic if it is the image of a standard Borel space under a Borel map. We refer
to [Do] and [Br, Section 2] for more details on the descriptive set theory of
separable Banach spaces.

Let C[0, 1] be the space of continuous real-valued functions on [0, 1] en-
dowed with the supremum norm. Let

SB = {X ∈ C[0, 1] | X is a closed linear subspace},

and endow SB with the Effros–Borel structure, i.e., the σ-algebra generated
by

{X ∈ SB | X ∩ U 6= ∅} for U ⊂ C[0, 1] open.

This makes SB into a standard Borel space and, as C[0, 1] contains isometric
copies of every separable Banach space, SB can be seen as a coding set for
the class of all separable Banach spaces. Therefore, we can talk about Borel
and analytic classes of separable Banach spaces.

By [Br, Theorem 17], the subset ABS ⊂ SB of Banach spaces with the
alternating Banach–Saks property is not analytic. On the other hand, letting
AUS = {X ∈ SB | X is asymptotically uniformly smooth}, we have

X ∈ AUS ⇔ ∀ε ∈ Q+ ∃δ ∈ Q+ ∀t ∈ Q+ (t < δ ⇒ ρX(t) < εt).

As {X ∈ SB | dim(C[0, 1]/X) < ∞} is Borel, it is easy to check that the
condition A(t, ε) ⊂ SB given by

X ∈ A(t, ε) ⇔ ρX(t) < εt

defines an analytic subset of SB (for similar arguments, we refer to [Do, Sec-
tion 2.1]). So, AUS must be analytic. Hence, letting AUSable ⊂ SB be the
subset of Banach spaces with an asymptotically uniformly smooth renorm-
ing, we have

X ∈ AUSable ⇔ ∃Y ∈ AUS (X ∼= Y ).

As the isomorphism relation in SB × SB forms an analytic set (see [Do,
p. 11]), it follows that AUSable is analytic. This discussion together with
Corollary 3.2 gives us the following.

Proposition 3.8. AUSable ( ABS. In particular, there exist separable
Banach spaces with the alternating Banach–Saks property which do not admit
an asymptotically uniformly smooth renorming.
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4. Asymptotically p-uniformly convex/smooth spaces. In this
section, we will use results from [KR] in order to obtain some restrictions on
coarse embeddings X → Y , where the spaces X and Y are assumed to have
some asymptotic properties (see Theorem 4.1). We obtain restrictions on
the existence of coarse embeddings between the convexified Tsirelson spaces
(Theorem 1.5(i)), convexified Schlumprecht spaces (Theorem 1.5(ii)), and
some specific hereditarily indecomposable spaces introduced in [D] (Corol-
lary 4.8) beelow.

Theorem 4.1. Let p, q ∈ (1,∞). Let X be an infinite-dimensional Ba-
nach space with the p-co-Banach–Saks property and not containing `1. Let Y
be a reflexive asymptotically q-uniformly smooth Banach space. Then there
exists no coarse embedding f : X → Y such that

lim sup
k→∞

ρf (k1/p)

k1/q
=∞.

Proof. Let f : X → Y be a coarse embedding. So, there exists C > 0 such
that ωf (t) ≤ Ct+C for all t > 0. As X does not contain `1, by Rosenthal’s
`1-theorem we can pick a normalized weakly null sequence (xn)∞n=1 in X with
infn6=m ‖xn − xm‖ > 0. For each k ∈ N, define a map ϕk : Gk(N) → X by
letting

ϕk(n1, . . . , nk) = xn1 + · · ·+ xnk

for all (n1, . . . , nk) ∈ Gk(N). Then ϕk is a bounded map.
If d((n1, . . . , nk), (m1, . . . ,mk)) ≤ 1, then ‖

∑k
j=1 xnj −

∑k
j=1 xmj‖ ≤ 2.

So, Lip(f ◦ ϕk) ≤ 3C. By Theorem 3.3, there exists K = K(Y ) > 0 and an
infinite subset Mk ⊂ N such that

diam(f ◦ ϕk(Gk(Mk))) ≤ 3KCk1/q.

Without loss of generality, we may assume that Mk+1 ⊂Mk for all k ∈ N.
Let M ⊂ N diagonalize the sequence (Mk)

∞
k=1, say M = (nj)

∞
j=1. If a se-

quence (yn)∞n=1 is weakly null, so is (y2n−1 − y2n)∞n=1. Therefore, applying
the fact that X has the p-co-Banach–Saks property to the weakly null se-
quence (xn2j−1 − xn2j )

∞
j=1, we find that there exists c > 0 such that for all

k ∈ N, there exists m1 < · · · < m2k ∈Mk such that∥∥∥ k∑
j=1

(xm2j−1 − xm2j )
∥∥∥ ≥ ck1/p.

Hence, diam(ϕk(Gk(Mk))) ≥ ck1/p, which implies diam(f ◦ ϕk(Gk(Mk)))
≥ ρf (ck1/p) for all k ∈ N. So,

ρf (ck1/p) ≤ 3KCk1/q
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for all k ∈ N. Therefore, if lim supk→∞ ρf (k1/p)k−1/q =∞, we get a contra-
diction.

Remark 4.2. Let X be any Banach space containing a sequence (xn)∞n=1

which is asymptotically `1, i.e., there exists L > 0 such that for all m ∈ N,
there exists k ∈ N such that (xnj )

m
j=1 is L-equivalent to (ej)

m
j=1 for all k ≤

n1 < · · · < nm ∈ N, where (ej)
∞
j=1 is the standard `1-basis. Then, proceeding

exactly as above, we can show that there exists no coarse embedding f : X →
Y such that

lim sup
k→∞

ρf (k)

k1/q
=∞,

where q ∈ (1,∞) and Y is a reflexive asymptotically q-uniformly smooth
Banach space.

Let X and Y be Banach spaces. We define αY (X) as the supremum of
all α > 0 for which there exists a coarse embedding f : X → Y and L > 0
such that

L−1‖x− y‖α − L ≤ ‖f(x)− f(y)‖
for all x, y ∈ X. We call αY (X) the compression exponent of X in Y , or
the Y -compression of X. If for all α > 0, no such f and L exist, we set
αY (X) = 0. As ωf is always bounded by an affine map (because X is a
Banach space), it follows that αY (X) ∈ [0, 1]. Also, αY (X) = 0 if X does
not coarsely embed into Y .

The quantityαY (X)was introduced byE.Guentner and J.Kaminker [GK].
For a detailed study of α`q(`p), αLq(`p), α`q(Lp), and αLq(Lp), where p, q ∈
(0,∞), we refer to [B].

Using this terminology, let us reinterpret Theorem 4.1.

Theorem 4.3. Let 1 < p < q. Let Y be a reflexive asymptotically
q-uniformly smooth Banach space.

(i) If X contains a sequence which is asymptotically `1, then αY (X)
≤ 1/q.

(ii) If X is an infinite-dimensional Banach space with the p-co-Banach–
Saks property and not containing `1, then αY (X) ≤ p/q.

In particular, X does not coarse Lipschitz embed into Y .

Proof. (ii) Let L > 0 and f : X → Y be a coarse embedding such that
ρf (t) ≥ L−1tα − L for all t > 0. By Theorem 4.1, we must have

lim sup
k→∞

(kα/p−1/qL−1 − Lk−1/q) <∞.

Therefore, α/p− 1/q ≤ 0, and the result follows.
(i) This follows from Remark 4.2 and the same reasoning as (ii) above.
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Notice that Y being reflexive in Theorem 4.3 cannot be removed. Indeed,
c0 contains a Lipschitz copy of any separable metric space (see [A]), and it
is also asymptotically q-uniformly smooth for any q ∈ (1,∞).

Corollary 4.4. Let 1 < p < q. Let X be asymptotically p-uniformly
convex, and Y be reflexive and asymptotically q-uniformly smooth. Then
αY (X) ≤ p/q.

Requiring the Banach space X to have the p-co-Banach–Saks property in
Theorem 4.3 is actually too much, and we can weaken this condition by only
requiring X to have the almost p-co-Banach–Saks property. More precisely,
we have the following.

Theorem 4.5. Let 1 < p < q. Let X be an infinite-dimensional Ba-
nach space with the almost p-co-Banach–Saks property. Let Y be a reflexive
asymptotically q-uniformly smooth Banach space. Then αY (X) ≤ p/q. In
particular, X does not coarse Lipschitz embed into Y .

Proof. Let f : X → Y be a coarse embedding and pick C > 0 such
that ωf (t) ≤ Ct + C for all t ≥ 0. If X contains `1, the result follows
from Theorem 4.3(i). If X does not contain `1, we can pick a normalized
weakly null sequence (xn)∞n=1 in X with infn6=m ‖xn − xm‖ > 0. By taking
a subsequence of (xn)∞n=1 if necessary, pick (θk)

∞
k=1 as in the definition of

the almost p-co-Banach–Saks property. Define ϕk : Gk(N) → X by letting
ϕk(n1, . . . , nk) = xn1 + · · ·+ xnk

for all (n1, . . . , nk) ∈ Gk(N).
Following the proof of Theorem 4.1, we get

ρf (k1/pθ−1k ) ≤ 3KCk1/q

for all k ∈ N. Let L > 0 and α > 0 be such that ρf (t) ≥ L−1tα − L for all
t > 0. Then

kα/p−1/qθ−αk L−1 ≤ 4KC

for large enough k ∈ N. As limk→∞ k
βθ−αk =∞ for all β > 0, we must have

α/p− 1/q ≤ 0.

Remark 4.6. Let (xn)∞n=1 be a bounded sequence in a Banach space X
with the following property: there exists a sequence of positive reals (θj)

∞
j=1

in [1,∞) such that limj→∞ j
αθ−1j =∞ for all α > 0, and

(∗) kθ−1k ≤ ‖±xn1 ± · · · ± xnk
‖

for all n1 < · · · < nk ∈ N. The proof of Theorem 4.5 gives αY (X) ≤ 1/q
for any reflexive asymptotically q-uniformly smooth Banach space Y with
q > 1.

Let q > 1, and let (En)∞n=1 be a sequence of finite-dimensional Banach
spaces. Let E be a 1-unconditional basic sequence. Notice that if E generates
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a reflexive asymptotically q-uniformly smooth Banach space, then (
⊕

nEn)E
is also reflexive and asymptotically q-uniformly smooth. Hence, Theorems 4.3
and 4.5 have the following

Corollary 4.7. Let 1 < p < q, and let (En)∞n=1 be a sequence of
finite-dimensional Banach spaces. Let E be a 1-unconditional basic sequence
generating a reflexive asymptotically q-uniformly smooth Banach space.

(i) If X contains a sequence with property (∗), then α(
⊕

n En)E (X)
≤ 1/q.

(ii) If X is an infinite-dimensional Banach space with the almost p-co-
Banach–Saks property, then α(

⊕
n En)E (X) ≤ p/q.

In particular, X does not coarse Lipschitz embed into (
⊕

nEn)E .

Proof of Theorem 1.5. (i) As noticed in Subsection 2.6, T p has the
p-co-Banach–Saks property, and is asymptotically p-uniformly smooth for
all p ∈ (1,∞). Therefore, as T p is reflexive (see [OSZ, Proposition 5.3(b)])
for all p ∈ [1,∞), the result follows from Theorem 4.3 (or Corollary 4.7).

(ii) For any p ∈ (1,∞), Sp has the almost p-co-Banach–Saks property
and is asymptotically p-uniformly smooth. By [CK, Theorem 8 and Propo-
sition 2(2)], Sp is reflexive for all p ∈ [1,∞). So, the result follows from
Corollary 4.7.

A Banach space X is called hereditarily indecomposable if none of its
subspaces can be decomposed as a sum of two infinite-dimensional Banach
spaces. In [D, Chapter 5], for each p ∈ (1,∞), Dew constructed a hereditarily
indecomposable space Xp with a basis (en)∞n=1 satisfying the following prop-
erties: (i) Xp is reflexive, (ii) the base (en)∞n=1 satisfies an upper `p-estimate
with constant 1, and (iii) if (xn)∞n=1 is a block sequence of (en)∞n=1, then for
all n ∈ N, ∥∥∥ n∑

j=1

xj

∥∥∥ ≥ f(n)−1/p
( n∑
j=1

‖xj‖p
)1/p

,

where f : N → [0,∞) is a function such that, among other properties,
limn→∞ n

αf(n)−1 =∞ for all α > 0. In particular, Xp has the almost p-co-
Banach–Saks property, and it is asymptotically p-uniformly smooth. This,
together with Theorem 4.5, gives us the following.

Corollary 4.8. Let 1 < p < q. Then αXq(Xp) ≤ p/q. In particular,
Xp does not coarse Lipschitz embeds into Xq.

Problem 4.9. Let 1 ≤ p < q. Is it true that αT q(T p) = αSq(Sp) = p/q?
If p > 1, does αXq(Xp) = p/q hold?

Remark 4.10. It is worth noticing that, if p > max{q, 2}, then
αT q(T p) = 0. Indeed, for all r ≥ 2, T r has cotype r + ε for all ε > 0 (see
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[DJT, p. 305]). On the other hand, if r < 2, then T r has cotype 2. This fol-
lows from the fact that, for any ε > 0, T r has an equivalent norm satisfying
a lower `(r+ε)-estimate (we explain this in the proof of Corollary 1.6 below),
therefore, by [LT, Theorem 1.f.7 and Proposition 1.f.3(i)], T r has cotype 2.
Similarly, by [LT, Theorem 1.f.7 and Proposition 1.f.3(ii)], T r has nontrivial
type for all r ∈ (1,∞). By [MN, Theorem 1.11], if a Banach space X coarsely
embeds into a Banach space Y with nontrivial type, then

inf{q ∈ [2,∞) | X has cotype q} ≤ inf{q ∈ [2,∞) | Y has cotype q}.

Therefore, we conclude that T p does not coarsely embed into T q if p >
max{q, 2}. So, αT q(T p) = 0.

Problem 4.11. Let 1 ≤ q < p ≤ 2. What can we say about αT q(T p)?

We finish this section with an application of Theorems 4.3 and 4.5 and
[AB, Theorem 3.4]. By looking at the proof of the latter, one can easily see
that the authors proved a stronger result than the one stated in their paper.
More precisely, they proved the following.

Theorem 4.12. Let 0 < p < q. There exist maps (ψj : R→ R)∞j=1 such
that for all x, y ∈ R,

Ap,q|x− y|p ≤ max{|ψj(x)− ψj(y)|q | j ∈ N}

and ∑
j∈N
|ψj(x)− ψj(y)|q ≤ Bp,q|x− y|p,

where Ap,q, Bp,q are positive constants.

Proposition 4.13. Let 1 ≤ p < q. There exists a map f : T p →
(⊕T q)T q which is simultaneously a coarse and a uniform embedding such
that ρf (t) ≥ Ctp/q for some C > 0. In particular, α(⊕T q)Tq (T p) = p/q.

Proof. Let (ψj)
∞
j=1, Ap,q, and Bp,q be given by Theorem 4.12. Define

f : T p → (
⊕
Tq)T q by letting

f(x) =
(
(ψj(xn)− ψj(0))∞j=1

)∞
n=1

for all x = (xn)∞n=1 ∈ T p. One can easily check that f satisfies

A1/q
p,q ‖x− y‖p/q ≤ ‖f(x)− f(y)‖ ≤ B1/q

p,q ‖x− y‖p/q

for all x, y ∈ T p. As T q is q-convex, it is easy to see that (
⊕
T q)T q is

asymptotically q-uniformly smooth. Since (
⊕
T q)T q is reflexive, we conclude

that α(
⊕
T q)Tq (T p) = p/q.
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Corollary 4.14. T strongly embeds into a super-reflexive Banach space.

Proof. It is easy to check that (
⊕
T 2)T 2 is super-reflexive. Indeed, super-

reflexivity is equivalent to a uniformly convex renorming. Hence, if E is a
1-unconditional basis generating a super-reflexive space, and X is a super-
reflexive space, then so is (

⊕
X)E (see [LT, p. 100]).

Similarly, we get the following.
Proposition 4.15. Let 1 ≤ p < q. There exists a map f : Sp →

(
⊕
Sq)Sq which is simultaneously a coarse and a uniform embedding such

that ρf (t) ≥ Ctp/q for some C > 0. In particular, α(
⊕
Sq)Sq (Sp) = p/q.

5. Coarse Lipschitz embeddings into sums. In this last section,
we will be specially interested in the nonlinear geometry of the Tsirelson
space and its convexifications. In order to obtain Theorem 1.6, we will prove
a technical result on the coarse Lipschitz nonembeddability of certain Ba-
nach spaces into the direct sum of Banach spaces with certain p-properties
(Theorem 5.6). The main goal of this section is to characterize the Banach
spaces which are coarsely (resp. uniformly) equivalent to T p1 ⊕ · · · ⊕T pn for
p1, . . . , pn ∈ (1, . . . ,∞) and 2 6∈ {p1, . . . , pn}.

Given x, y ∈ X and δ > 0, the approximate midpoint between x and y
with error δ is given by

Mid(x, y, δ) = {z ∈ X | max{‖x− z‖, ‖y − z‖} ≤ 2−1(1 + δ)‖x− y‖}.
The following lemma is an asymptotic version of [JLS, Lemma 1.6(i)] and
[KR, Lemma 3.2].

Lemma 5.1. Let X be an asymptotically p-uniformly smooth Banach
space for some p ∈ (1,∞). There exists c > 0 such that for all x, y ∈ X,
all δ > 0, and all weakly null sequences (xn)∞n=1 in BX , there exists n0 ∈ N
such that for all n > n0, we have

u+ δ1/p‖v‖xn ∈ Mid(x, y, cδ),

where u = 1
2(x+ y) and v = 1

2(x− y).

Proof. By [DGJ, Proposition 1.3], there exists c > 0 such that for all
weakly null sequences (xn)∞n=1 in BX , we have

lim sup
n
‖x+ xn‖p ≤ ‖x‖p + c · lim sup

n
‖xn‖p.

Fix such sequence. As
∥∥x− (u+ δ1/p‖v‖xn)

∥∥ =
∥∥v − δ1/p‖v‖xn∥∥, we get

lim sup
n

∥∥x− (u+ δ1/p‖v‖xn)
∥∥p ≤ (1 + cδ)‖v‖p.

Therefore, as (1 + cδ)1/p < 1 + cδ, we see that there exists n0 ∈ N such that
‖x− (u+ δ1/p‖v‖xn)‖ ≤ (1 + cδ)‖v‖ for all n > n0. Similarly we can prove
that ‖y − (u+ δ1/p‖v‖xn)‖ ≤ (1 + cδ)‖v‖ for all n > n0.
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The following lemma is a simple modification of [KR, Lemma 3.3], or
[JLS, Lemma 1.6(ii)], so we omit its proof.

Lemma 5.2. Suppose 1 ≤ p < ∞, and let X be Banach space with a
1-unconditional basis (en)∞n=1 satisfying a lower `p-estimate with constant 1.
For all x, y ∈ X and δ > 0, there exists a compact subset K ⊂ X that

Mid(x, y, δ) ⊂ K + 2δ1/p‖v‖BX ,
where u = 1

2(x+ y) and v = 1
2(x− y).

For each s > 0, let

Lips(f) = sup
t≥s

ωf (t)

t
and Lip∞(f) = inf

s>0
Lips(f).

We will need the following proposition (see [KR, Proposition 3.1]).

Proposition 5.3. Let X be a Banach space and M be a metric space.
Let f : X → M be a coarse map with Lip∞(f) > 0. Then for all ε, t > 0
and all δ ∈ (0, 1), there exists x, y ∈ X with ‖x− y‖ > t such that

f(Mid(x, y, δ)) ⊂ Mid(f(x), f(y), (1 + ε)δ).

The following lemma will play the same role in our settings as Proposi-
tion 3.5 of [KR] did in that paper.

Lemma 5.4. Let 1 ≤ q < p. Let X be an asymptotically p-uniformly
smooth Banach space, and Y be a Banach space with a 1-unconditional basis
satisfying a lower `q-estimate with constant 1. Let f : X → Y be a coarse
map. Then, for any t > 0 and any δ ∈ (0, 1), there exist x ∈ X, τ > t, and
a compact subset K ⊂ Y such that, for any weakly null sequence (xn)∞n=1

in BX , there exists n0 ∈ N such that

f(x+ τxn) ∈ K + δτBY for all n > n0.

Proof. If Lip∞(f) = 0, then there exists τ > t such that Lipτ (f) < δ.
Hence, ωf (τ) < δτ , and the result follows by letting x = 0 and K = {f(0)}.
Indeed, if z ∈ BX , we have

‖f(τz)− f(0)‖ ≤ ωf (‖τz‖) ≤ ωf (τ) ≤ δτ.

Assume Lip∞(f) > 0. In particular, C = Lips(f) > 0 for some s > 0.
Let c > 0 be given by Lemma 5.1 applied to X and p. As q < p, we can pick
ν ∈ (0, 1) such that 2C(2c)1/qν1/q−1/p < δ. By Proposition 5.3, there exist
u, v ∈ X such that ‖u− v‖ > max{s, 2tν−1/p} and

f(Mid(u, v, cν)) ⊂ Mid(f(u), f(v), 2cν).

Let x = 1
2(u+ v), and τ = ν1/p

∥∥1
2(u− v)

∥∥ (so τ > t). Fix a weakly null
sequence (xn)∞n=1 in BX . Then, by Lemma 5.1, there exists n0 ∈ N such that
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x+ τxn ∈ Mid(u, v, cν) for all n > n0. So,

f(x+ τxn) ⊂ f(Mid(u, v, cν)) ⊂ Mid(f(u), f(v), 2cν)

for all n>n0. LetK ⊂ Y be given by Lemma 5.2 applied to Y , f(u), f(v)∈ Y ,
and 2cν. So,

Mid(f(u), f(v), 2cν) ⊂ K + 2(2c)1/qν1/q
‖f(u)− f(v)‖

2
BY .

Since Lips(f) = C and ‖u − v‖ > s, we have ‖f(u) − f(v)‖ ≤ C‖u − v‖
= 2Cτν−1/p. Hence,

2(2c)1/qν1/q
‖f(u)− f(v)‖

2
≤ 2C(2c)1/qν1/q−1/pτ < δτ,

and we are done.

Remark 5.5. Lemma 5.4 remains valid if we only assume that X has
an equivalent norm |||·||| with which X becomes asymptotically p-uniformly
smooth. Indeed, let M ≥ 1 be such that B(X,‖·‖) ⊂ M · B(X,|||·|||). Fix t > 0
and δ ∈ (0, 1). Applying Lemma 5.4 to (X, |||·|||) with t′ = Mt and δ′ = δ/M ,
we obtain x ∈ X, τ ′ > t′, and a compact set K ⊂ Y . The result now follows
by letting τ = τ ′/M .

Theorem 5.6. Let 1 ≤ q1 < p < q2. Assume that

(i) X is an asymptotically p-uniformly smooth Banach space with the
p-co-Banach–Saks property, and it does not contain `1,

(ii) Y1 is a Banach space with a 1-unconditional basis satisfying a lower
`q1-estimate with constant 1, and

(iii) Y2 is a reflexive asymptotically q2-uniformly smooth Banach space.

Then X does not coarse Lipschitz embed into Y1 ⊕ Y2.
Proof. Let Y1 ⊕1 Y2 denote the space Y1 ⊕ Y2 endowed with the norm

defined by ‖(y1, y2)‖ = ‖y1‖ + ‖y2‖ for all (y1, y2) ∈ Y1 ⊕ Y2. Assume f =
(f1, f2) : X → Y1 ⊕1 Y2 is a coarse Lipschitz embedding. Then there exists
C > 0 such that ρf (t) ≥ C−1t− C and ωf2(t) ≤ Ct+ C for all t > 0.

Fix k ∈ N and δ ∈ (0, 1). Then, by Lemma 5.4, there exists τ > k, x ∈ X,
and a compact subsetK ⊂ Y1 such that, for any weakly null sequence (yn)∞n=1

in BX , there exists n0 ∈ N such that

f1(x+ τyn) ∈ K + δτBY1

for all n > n0.
Since X does not contain `1, by Rosenthal’s `1-theorem we can pick a

normalized weakly null sequence (xn)∞n=1 in X with infn6=m ‖xn − xm‖ > 0.
As X has the p-Banach–Saks property (Proposition 2.2), there exists c > 0
(independent of k) such that, by going to a subsequence if necessary, we have

‖xn1 + · · ·+ xnk
‖ ≤ ck1/p
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for all n1 < · · · < nk ∈ N. Define a map ϕk,δ : Gk(N)→ X by letting

ϕk,δ(n1, . . . , nk) = x+
τ

c
k−1/p(xn1 + · · ·+ xnk

)

for all (n1, . . . , nk) ∈ Gk(N).
As d((n1, . . . , nk), (m1, . . . ,mk))≤ 1 implies ‖

∑k
j=1 xnj −

∑k
j=1 xmj‖≤ 2,

we have Lip(f2 ◦ϕk,δ) ≤ 2τCk−1/pc−1+C. Therefore, by Theorem 3.3, there
exists Mk,δ ⊂ N such that

diam(f2 ◦ ϕk,δ(Gk(Mk,δ))) ≤ 2KτCk1/q2−1/pc−1 +KCk1/q2

for some K > 0 independent of k and δ.
Notice that if (nj1, . . . , n

j
k)
∞
j=1 is a sequence in Gk(Mk,δ) with njk < nj+1

1

for all j ∈ N, then (x
nj
1

+ · · ·+x
nj
k
)∞j=1 is a weakly null sequence in ck1/pBX .

Therefore,
f1 ◦ ϕk,δ(nj1, . . . , n

j
k) ∈ K + δτBY1

for large enough j. This argument together with standard Ramsey the-
ory allows us, by passing to a subsequence of Mk,δ, to assume that for all
(n1, . . . , nk) ∈ Gk(Mk,δ),

f1 ◦ ϕk,δ(n1, . . . , nk) ∈ K + δτBY1 .

Therefore, as K is compact, by passing to a further subsequence, we can
assume that diam(f1 ◦ ϕk,δ(Gk(Mk,δ))) ≤ 3δτ (see [KR, Lemma 4.1]).

We have shown that for all k ∈ N and all δ ∈ (0, 1), there exists a
subsequence Mk,δ ⊂ N such that

diam(f ◦ ϕk,δ(Gk(Mk,δ))) ≤ 2KτCk1/q2−1/pc−1 +KCk1/q2 + 3δτ.(5.1)

We may assume that Mk+1,δ ⊂Mk,δ for all k ∈ N and all δ ∈ (0, 1). For each
δ ∈ (0, 1), let Mδ ⊂ N diagonalize the sequence (Mk,δ)

∞
k=1.

As X has the p-co-Banach–Saks property, arguing similarly to the proof
of Theorem 4.1, we find that there exists d > 0 (independent of k) such that
for all k ∈ N, there exist n1 < · · · < n2k ∈Mk,δ such that∥∥∥ k∑

j=1

(xn2j−1 − xn2j )
∥∥∥ ≥ dk1/p.

Therefore, diam(ϕk,δ(Gk(Mδ))) ≥ τd/c, which implies that

diam(f ◦ ϕk,δ(Gk(Mδ))) ≥ τd(cC)−1 − C(5.2)

for all k ∈ N and all δ ∈ (0, 1). So, (5.1) and (5.2) give

τd(cC)−1 − C ≤ 2KτCk1/q2−1/pc−1 +KCk1/q2 + 3δτ
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for all k ∈ N and δ ∈ (0, 1). As τ > k, this yields

d(cC)−1 − Ck−1 ≤ 2KCk1/q2−1/pc−1 +KCk1/q2−1 + 3δ

for all k ∈ N and all δ ∈ (0, 1). As q2 > p > 1, by letting k →∞ and δ → 0
we get a contradiction.

If T = (T1, T2) : X → Y1 ⊕ Y2 is a linear isomorphic embedding, then ei-
ther T1 : X → Y1 or T2 : X → Y2 is not strictly singular, i.e., Ti : X0 → Yi is a
linear isomorphic embedding for some infinite-dimensional subspace X0 ⊂ X
and some i ∈ {1, 2}. Is there an analog of this result for coarse Lipschitz em-
beddings? Precisely, we ask the following.

Problem 5.7. Let X, Y1 and Y2 be Banach spaces and consider a coarse
Lipschitz embedding f = (f1, f2) : X → Y1 ⊕ Y2. Is there an infinite-
dimensional subspace X0 ⊂ X such that either f1 : X0 → Y1 or f2 : X0 → Y2
is a coarse Lipschitz embedding?

We can now prove Theorem 1.6, which will be essential in the proof of
Theorem 1.7.

Proof of Theorem 1.6. Saym ∈ {1, . . . , n−1} is such that p ∈ (pm, pm+1)
(the other cases have analogous proofs). Then (T pm+1 ⊕ · · · ⊕ T pn)`∞ is
reflexive (see [OSZ, Proposition 5.3(b)8]). Also, it is easy to see that
(T pm+1 ⊕ · · · ⊕ T pn)`∞ is asymptotically pm+1-uniformly smooth. By Theo-
rem 5.6, it is enough to prove the following.

Claim. Fix ε > 0 such that pm + ε < p. Then (T p1 ⊕ · · · ⊕ T pm)`pm
can be renormed so that it has a 1-unconditional basis satisfying a lower
`pm+ε-estimate with constant 1.

For each k ∈ N and p ∈ [1,∞), denote by Pk = P pk : T p → T p the
projection on the first k coordinates, and let Qk = Id−Pk. By [JLS, Propo-
sition 5.6], there exist M ∈ [1,∞) and N ∈ N such that QN (T pj ) has an
equivalent norm with (pj + ε)-concavity constant M for all j ∈ {1, . . . ,m}
(precisely, the modified Tsirelson norm has this property; see [CS] for defi-
nition).

As the shift operator on the basis of T p is an isomorphism onto Q1(T
p),

we find that T p ∼= Qk(T
p) for all k ∈ N and p ∈ [1,∞). Therefore,

(T p1 ⊕ · · · ⊕ T pm)`pm has an equivalent norm with (pm + ε)-concavity con-
stant M . By [LT, Proposition 1.d.8], we can assume that M = 1. As a
q-concave basis with constant 1 satisfies a lower `q-estimate with constant 1,
we are done.

To prove Theorem 1.7, we need a lemma. For that, we must introduce
some notation. Let p ∈ (1,∞). A Banach space X is said to be as-Lp if
there exists λ > 0 such that for every n ∈ N there is a finite-codimensional
subspace Y ⊂ X such that every n-dimensional subspace of Y is contained
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in a subspace of X which is λ-isomorphic to Lp(µ) for some µ. As noticed
in [JLS, Proposition 2.4.a], every as-Lp space is super-reflexive. Also, the
p-convexifications T p are as-Lp (see [JLS], p. 440).

The following lemma, although not explicitly written, is contained in the
proof of [JLS, Proposition 2.7]. For the convenience of the reader, we provide
its proof here.

Lemma 5.8. Say 1 < p1 < · · · < pn <∞ and X = Xp1⊕· · ·⊕Xpn, where
Xpj is as-Lpj for all j ∈ {1, . . . , n}. Assume that Y is coarsely equivalent
to X. Then:

(i) There exists a separable Banach spaceW such that Y⊕W is Lipschitz
equivalent to

⊕n
j=1(X

pj ⊕ Lpj ).
(ii) Moreover, if Y = Y p1 ⊕ · · · ⊕ Y pn, where Y pj is as-Lpj for all

i ∈ {1, . . . , n}, then
⊕n

j=1(Y
pj ⊕ Lpj ) is Lipschitz equivalent to⊕n

j=1(X
pj ⊕ Lpj ).

Proof. We need some more definitions. Let U be an ultrafilter on N, and
Z be a Banach space. We define the ultrapower of Z with respect to U as
ZU = {(zn)∞n=1 ∈ ZN | supi∈N ‖zn‖ < ∞}/∼, where (zn)∞n=1 ∼ (yn)∞n=1 if
limn∈U ‖zn − yn‖ = 0. Then ZU is a Banach space with norm ‖[(zn)∞n=1]‖ =
limn∈U ‖zn‖, where (zn)∞n=1 is a representative of the class [(zn)∞n=1] ∈ ZU .
Notice that z ∈ Z 7→ [(z)∞n=1] ∈ ZU is a linear isometric embedding. If
Z is reflexive, then Z is 1-complemented in the ultrapower ZU (where the
projection is given by [(zn)n] ∈ ZU 7→ w-limn∈U zn ∈ Z), and we write
ZU = Z ⊕ ZU ,0. Also, we have (Z ⊕ E)U = ZU ⊕ EU .

We can now prove the lemma. For simplicity, assume that n = 2.
(i) Let U be a nonprincipal ultrafilter on N. As Y is coarsely equivalent

toX, YU is Lipschitz equivalent toXU = Xp1
U ⊕X

p2
U (see [K, Proposition 1.6]).

As the spaces Xpj
U are reflexive, using the separable complementation prop-

erty for reflexive spaces (see [FJP, Section 3]), we can pick complemented
separable subspaces W ⊂ YU ,0, and Xj,0 ⊂ X

pj
U ,0, for j ∈ {1, 2}, such that

Y ⊕W is Lipschitz equivalent to (Xp1 ⊕X1,0)⊕ (Xp2 ⊕X2,0). By enlarging
Xj,0 and W if necessary, we can assume that Xj,0 = Lpj for j ∈ {1, 2} (this
follows from [JLS, Proposition 2.4.a], [LR, Theorems I(ii) and III(b)]).

(ii) The argument why X1,0⊕X2,0 can be enlarged so that X1,0⊕X2,0 =
Lp1 ⊕ Lp2 also shows that W can be assumed to be Lp1 ⊕ Lp2 .

We can now prove Theorem 1.7. As mentioned in Section 1, the theorem
was proved in [JLS, Theorem 5.8] for the cases 1 < p1 < · · · < pn < 2 and
2 < p1 < · · · < pn < ∞. In our proof, Theorem 1.6 will play a similar role
to that of [JLS, Corollary 1.7] in their proof. Also, we use ideas in the proof
of [KR, Theorem 5.3] in order to unify the cases 1 < p1 < · · · < pn < 2 and
2 < p1 < · · · < pn < ∞. For brevity, we will only present the parts of the
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proof that require Theorem 1.6, and therefore are different from what can
be found in the literature.

Sketch of the proof of Theorem 1.7. By [JLS, Proposition 5.7], T p is uni-
formly homeomorphic to T p⊕`p for all p ∈ [1,∞). So, the backward direction
follows. Let us prove the forward direction. As uniform homeomorphism im-
plies coarse equivalence, it is enough to assume that Y is coarsely equivalent
to X. By Theorem 1.6, Y does not contain `2. Letm ∈ {1, . . . , n−1} be such
that 2 ∈ (pm, pm+1) (if such an m does not exist, the result simply follows
from [JLS, Theorem 5.8]).

Claim 1. X ⊕
⊕n

j=1 Lpj and Y ⊕
⊕n

j=1 Lpj are Lipschitz equivalent.

By Lemma 5.8(i), there exists a separable Banach space W such that
Y ⊕W is Lipschitz equivalent to

⊕n
j=1(T

pj ⊕ Lpj ). Hence, the image of Y
through this Lipschitz equivalence is the range of a Lipschitz projection in⊕n

j=1(T
pj ⊕ Lpj ). Therefore, by [HM, Theorem 2.2], Y is isomorphic to

a complemented subspace of
⊕n

j=1(T
pj ⊕ Lpj ). Let A be this isomorphic

embedding. For each i ∈ {m+1, . . . , n}, let πi : Y → Lpi be the composition
of A with the projection

⊕n
j=1(T

pj ⊕Lpj )→ Lpi . As Y does not contain `2,
πi factors through `pi (see [J1]). Hence, Y is isomorphic to a complemented
subspace of

m⊕
j=1

(T pj ⊕ Lpj )⊕
n⊕

j=m+1

(T pj ⊕ `pj ).

As Z1 :=
⊕m

j=1(T
pj ⊕ Lpj ) and Z2 :=

⊕n
j=m+1(T

pj ⊕ `pj ) are totally
incomparable (i.e., none of their infinite-dimensional subspaces are isomor-
phic), we have Y ∼= Y1⊕Y2, where Y1 and Y2 are complemented subspaces of
Z1 and Z2, respectively (see [EW, Theorem 3.5]). Hence, Y ∗1 is complemented
in Z∗1 . Notice that, as Y is coarsely equivalent to the super-reflexive space X,
also Y is super-reflexive (see [Ri, Theorem 1A]). Hence, Y1 is super-reflexive,
and so is Y ∗1 . As Y1 has cotype 2 (see Remark 4.10) and Y ∗1 has nontriv-
ial type (because Y ∗1 is super-reflexive), it follows that Y ∗1 has type 2 (see
[P, the remark below Theorem 1]). So, Y ∗1 does not contain a copy of `2.
Indeed, otherwise Y ∗1 would contain a complemented copy of `2 (see [Ma]),
contradicting that Y1 does not contain a copy of `2.

Proceeding similarly and using the fact that Y ∗1 does not contain `2, we
deduce from the main theorem of [J1] that Y ∗1 is isomorphic to a comple-
mented subspace of

⊕m
j=1(T

pj ∗ ⊕ `p̃j ), where each p̃j is the conjugate of pj
(i.e., 1/pj + 1/p̃j = 1). Therefore, Y1 embeds into

⊕m
j=1(T

pj ⊕ `pj ) as a
complemented subspace. This implies that Y embeds into

⊕n
j=1(T

pj ⊕ `pj )
as a complemented subspace.

As the spaces (T pj ⊕ `pj )nj=1 are totally incomparable, we can write Y
as Yp1 ⊕ · · · ⊕ Ypn , where each Ypj is a complemented subspace of T pj ⊕ `pj
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(see [EW, Theorem 3.5]) and it is an as-Lpj (see [JLS, Lemma 2.5 and
Proposition 2.7]). By Lemma 5.8(ii), X ⊕

⊕n
j=1 Lpj and Y ⊕

⊕n
j=1 Lpj are

Lipschitz equivalent.

Claim 2. There exists a quotient W of Lp1⊕· · ·⊕Lpn such that Y ⊕W
is isomorphic to X ⊕

⊕n
j=1 Lpj .

The proof of Claim 2 is the same as that of [JLS, Claim in Proposi-
tion 2.10], so we do not present it here. We now finish the proof of Theo-
rem 17. As X does not contain any `s, every operator of X into

⊕n
j=1 Lpj

is strictly singular (see [KM, Theorems II.2 and IV.1]). Therefore, by [EW]
(or [LT, Theorem 2.c.13]), Y ∼= YX ⊕ YL and W ∼= WX ⊕WL, where YX
and WX are complemented subspaces of X, YL and WL are complemented
subspaces of

⊕n
j=1 Lpj , and X ∼= YX ⊕WX . Proceeding as in the proof of

Claim 1 above, we find that YL is complemented in
⊕n

j=1 `pj . So, YL is either
finite-dimensional or isomorphic to

⊕
j∈F `pj for some F ⊂ {1, . . . , n}.

Let us show that WX is finite-dimensional. Suppose this is not the case.
As W is a quotient of

⊕n
j=1 Lpj , and WX is complemented in W , we de-

duce that W ∗X embeds into
⊕n

j=1 Lp̃j , where for each j, p̃j is the conjugate
of pj . Therefore, W ∗X must contain some `s (again see [KM, Theorems II.2
and IV.1]). As W ∗X embeds into X∗, and X∗ does not contain any `s, this is
a contradiction.

As X ∼= YX ⊕WX and dim(WX) < ∞, we see that dim(X/YX) < ∞.
Therefore, asX is isomorphic to its hyperplanes, we conclude that YX ∼= X.

Problem 5.9. Does Theorem 1.7 hold if 2 ∈ {p1, . . . , pn}?

Problem 5.10. What can we say if a Banach space X is either coarsely
or uniformly equivalent to the Tsirelson space T?

Remark 5.11. It is worth noticing that, using Remark 5.5 and adapting
the proofs of [KR, Theorems 5.5 and 5.7 ] to our settings, one can show that
(
⊕
Tp)Tq does not coarse Lipschitz embed into Tp ⊕ Tq for all p, q ∈ [1,∞)

with p 6= q.
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